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Quantification of Smoothing Requirement for 3D
Optic Flow Calculation of Volumetric Images

Alireza Bab-Hadiashar, Senior Member, IEEE, Ruwan B. Tennakoon, Member, IEEE, and Marleen de Bruijne

Abstract— Complexities of dynamic volumetric imaging chal-
lenge the available computer vision techniques on a number of
different fronts. This paper examines the relationship between
the estimation accuracy and required amount of smoothness
for a general solution from a robust statistics perspective. We
show that a (surprisingly) small amount of local smoothing is
required to satisfy both the necessary and sufficient conditions for
accurate optic flow estimation. This notion is called “just enough”
smoothing, and its proper implementation has a profound effect
on the preservation of local information in processing 3D dynamic
scans. To demonstrate the effect of “just enough” smoothing, a
robust 3D optic flow method with quantized local smoothing is
presented, and the effect of local smoothing on the accuracy of
motion estimation in dynamic lung CT images is examined using
both synthetic and real image sequences with ground truth.

Index Terms— 3D optic flow, 4-D CT, Gaussian smoothing,
volumetric images.

I. INTRODUCTION

MOTION estimation is one of the most crucial and well-
studied problems of computer vision. The underlying

task is very general and has a wide range of applications.
In the context of medical imaging, the estimation of motion
has received substantial attention. With the advance of 3D
dynamic imaging by MR, CT and ultrasound, motion esti-
mation has become important in diagnostics, for instance to
assess localized abnormalities in heart wall motion or vessel
distensibility, as well as in radiation therapy planning and
to compensate for soft tissue motion during image guided
interventions.

From the beginning, two distinct approaches to estimation
of apparent motion (or optic flow) have emerged. The first
approach, described by Horn & Schunck [1], views the esti-
mation as a global optimization problem and attempts to find
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globally smooth warping regimes that relate sequential images
to each other. The second approach, presented by Lucas &
Kanade [2], views the problem as a local correspondence
problem.

In both of the above approaches, smoothing plays a crucial
role. The optic flow, due to the well-known aperture problem,
is ill-posed and cannot be solved for a single data point (a pixel
in 2D or a voxel in 3D). Therefore, some degree of smoothing
or regularization is always required.

From a historical perspective, the global and local
approaches were conceptually much closer at the beginning
(in late 70s and early 80s) than they are now. A typical
test image sequence of the time consisted mostly of a few
thousands gray level pixels (small digitized TV signal) of
usually a single flat moving object (see the Result section of
[1]). Therefore, it is important to interpret their assertion that
apparent velocity “varies smoothly almost everywhere in the
image” [1] in its context which is very different to today’s
concept of an image sequence (typically containing a large
amount of detail including several motions).

It is also important to note here that, although some excel-
lent results have been produced by refining global methods
[3]–[5] and the accuracy of optical flow estimation, as mea-
sured by Middlebury benchmark [6], has been improving, the
effect of local smoothing on the estimation accuracy is yet
to be fully understood. To examine the underlying cause of
success of those methods, a baseline method similar to Horn
& Schunck [1] was used in [7] to study the influence of
different choices about how to model an appropriate objective
function and its approximation (for computational tractability)
and optimization on the overall accuracy. Their comparisons
showed that applying a median filter to optical flow esti-
mates in different iterations of those algorithms produced the
most significant improvements. Although this is a form of
local smoothing, a theory on how much spatial smoothing is
required, at a given scale, is yet to be developed. In particular,
the above study does not consider the effect of smoothing
imposed by Lucas & Kanade [2] type formulation of the
optical flow problem. This paper is an attempt to address
this important question by examining how much smoothing
would be sufficient from a local perspective. In this context,
[8] addresses the question of how to merge global and local
approaches while we aim to answer the question of where
the meeting should take place. In other word, the desire is to
study the concept of just enough smoothing: The least amount
of smoothing that both overcomes the ill-posed nature of this
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problem and ensures the desired accuracy of the estimation
process.

In 2D optical flow estimation, the work of Xu et al. [9] has
shown that the imposition of global smoothing can be partial
toward global changes and would highlight those changes
(motions) at the expense of localized variations. In volumetric
images, where there is no 3D to 2D projection, the bias
introduced by imposing more than just enough smoothness is
particularly undesirable. For example, in 4D chest CT scans
the lungs display a complex deformation pattern during the
respiratory cycle, with motion boundaries where the lungs
slide along the rib cage and lung lobes move relative to each
other. The elastic characteristics of airways and large blood
vessels differ from those of lung parenchyma, and pathologic
tissue such as pulmonary nodules can be expected to deform
differently from its surroundings. Global smoothing could
lead to errors in the estimate of tumor motion, and thus to
inaccuracies in derived treatment plans.

In cases where some prior knowledge does exist, this
can simply be included in the motion models. However, the
analysis presented here is based on the distribution of residuals
near a motion boundary and the result does not depend upon
the type of models used.

The concept of just enough smoothing has, in the past,
been considered in the context of scale space theory and
in particular, for finding the appropriate scale to terminate
a multiscale hierarchical algorithm [10]. The scale space
approach however differs from the robust statistics approach
presented in this paper in a fundamental way. In the scale
space approach, the discontinuities (motion boundaries) are
modeled by transitions toward higher scales in which small
discontinuities, except the main motion, are smooth enough
to be considered continuous. The problem is then solved at
that scale and the solution is then propagated to the finer
scales to recover smaller motions. The question of just enough
smoothing in the above therefore, refers to finding the scale
at which the estimation is most reliable.

In robust statistics, the discontinuities are explicitly modeled
as separate instances of a single model (or a finite set of
plausible models) and the scale of each instance and the shape
of the smoothing window are estimated concurrently with the
model parameters [11]. In this context, just enough smoothing
refers to the size of locality (size of population, bandwidth,
etc depending on the type of estimator) where the estimation
is based upon. To our knowledge, the relationship between
the amount of smoothing and accuracy of the estimation has
thus far not been quantified (either by analysis or experiment)
and more importantly no specific link between the amount of
sufficient smoothing and the accuracy of estimation has yet
been established.

Comparison of existing results for calculation of 2D optic
flow reveals that for real images with discontinuous flow (like
Otte image sequence [12] - in contrast to synthetic images
like Yosemite sequence with fairly smooth flow), the local
robust approaches perform as well as global ones (for instance,
compare the results presented in table 4 of [13] with the
ones presented in table 8 of [4] and table 5 of [8]) and the
best available result thus far [8] is achieved by modeling the

local discontinuities using a robust estimator. Therefore, the
question of what should be the extent of local smoothing
is also important in fine tuning hybrid (combining local and
global) methods.

A. 3D Optic Flow Estimation

In contrast to 2D optic flow calculation, the use of 3D
methods, particularly for dynamic CT images, has only
started to attract the attention of practitioners in recent years
[14]–[16] and its issues and potentials are yet to be fully
analyzed. In the biomedical imaging area, 3D optic flow
calculation was first used to capture the heart 3D motion using
CT [17] and MRI [18] images. The pioneering work of [17]
assumes that the image is conserved and incompressible and
therefore the velocity field satisfies the divergence-free and
the incompressibility constraints. However, the computation
of the flow using these two constraints is an ill-posed problem
and the solution was found by adding a smoothness term to
regularize the penalty function of the weighted sum of the
two constraining terms. The velocity field was then calculated
by minimizing this penalty function using variational calculus
(the minimizing solution generally satisfies the Euler-Lagrange
equations) and the solution was found by solving a set of
simultaneous coupled elliptic partial differential equations.
The differential equations were further discretized resulting
in a system of linear equations where the solution is an
approximation of the velocity field. This method, in essence,
is very similar to some of the contemporary approaches for
both calculating the 2D optic flow [3], [8], [19], [20] and
energy minimization based image registration [5], [21], [22]
techniques.

Except the 3D generalizations of the original version of
Lucas & Kanade optic flow method [23], [24], to our knowl-
edge, no other Lucas & Kanade based 3D optic flow method
has yet appeared in computer vision literature and the poten-
tials and difficulties associated with using such methods on
dynamic 3D data such as 4D CT are yet to be explored. Lucas
& Kanade optic flow based method, in contrast to variational
based methods, is of particular interest here because it allows
the effect of smoothing to be directly controlled and measured.

B. Outline

In this paper, we first examine the theoretical relationship
between the estimation accuracy and required amount of
smoothness for a general solution from a robust statistics
perspective. The analysis leads to a guideline for the sufficient
amount of smoothing for the 3D optic flow estimation.

A robust 3D optic flow in which the imposition of smooth-
ing can be locally quantized is then devised to test the pro-
posed hypothesis of smoothing requirement. The hypothesis
was then tested using a geometrically realistic synthetic CT
image sequence of the breathing lung and five cases of real
4D CT lung images with extensive set of expert annotated
land marks. We further examined, both quantitatively and
qualitatively, the suitability of imposing the “just enough”
smoothing on real 4D CT scans in calculating motions near
fissures (borders of lobes) and show the deteriorating effect of
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unnecessary smoothing on the estimation of motion particu-
larly in those areas.

II. HOW MUCH SMOOTHING IS “JUST ENOUGH”?

To answer the above question, we first need to establish an
explicit relationship between the smoothing requirement and
the estimation accuracy. To ascertain this relationship, we first
consider the 3D optic flow estimation problem. The optic flow
constraint in 3D is generally written as [17]:

Ix u + Iyv + Izw + It = 0 (1)

where Ix , Iy and Iz are the spatial and It is the temporal
derivatives of the image brightness function I and u, v and w
are unknown components of the local flow along x , y and z
axes respectively. The imposition of this constraint implies that
for every voxel, there is only one equation for three unknowns
and therefore it is not possible to solve this without adding
extra assumption that is generally referred to as smoothing.

The simplest form of smoothing is imposed by assuming
the flow to be constant in a local neighborhood and therefore,
the above equation is turned into a system of linear equations
that can be solved for the unknown components of the flow. In
this context, the question of how much smoothing is imposed
directly relates to size of this neighborhood and the number
of voxels included in the calculation of velocity components.
We use this scenario as the basis of our analysis.

To measure the effect of smoothing on accuracy, we then
need to examine how the estimation is performed. We already
know that in absence of noise one needs to apply the smooth-
ing assumption to only three voxels to be able to calculate the
flow in 3D (this is the necessary condition). However, noise is
always present and therefore substantially more voxels need to
be included. Extra smoothing assumption is therefore required
solely for the sake of accuracy. More importantly, as the
motion boundaries and unmodeled data are unavoidable, some
form of outlier rejection (robust statistics) is also required to
ensure the accuracy. It’s worth noting here that assuming other
models of motion (for example affine) only affects the amount
of necessary smoothing (would be 12 voxels for full 3D affine).
Regardless of the chosen model, one would need to include
significantly more points than the necessary number in order
to obtain an accurate estimate and therefore the sufficiency
requirement is not directly affected by the type of motion
model.

Having formulated the problem in this setting, for a given
level of noise, the amount of required smoothing now directly
relates to the number of included voxels and in turn, the
number of included voxels directly relates to the accuracy
of estimation that is expressed by a measure called finite
sample bias. Following [25], the finite sample bias of a robust
estimator is defined as:

λ(n; ��, H ) ≡
∣
∣
∣E

[

σ̂ 2
n ; ��, H

]

− σ 2
∣
∣
∣ /σ 2 (2)

where σ is the true scale and E
[

σ̂ 2
n ; ��, H

]

is the statistical
mean of the square of an estimated scale for a given hypothe-
sized fit �� and a specific data distribution H . The arguments
n, �� and H are to show that this is a scale invariant definition

of bias and the above measure only depends on the number
of data samples, the hypothesized fit and the data population,
but not on the scale σ .

Using the above definition we propose an approach that
generates a straightforward relationship between the required
smoothing and the estimation accuracy by which, the mini-
mum sufficient smoothing requirement can be evaluated based
on the desired level of accuracy. The analysis here does not
include the relationship between the estimation bias and the
level of noise as the latter is fixed in a given set of data and
interested readers are referred to [25] for detailed discussion
of that relationship.

For the sake of quantifying the amount of “just enough”
smoothing, we also need to choose the estimator. Based on the
analysis of [26], we implemented the MSSE (Modified Selec-
tive Statistical Estimator) [27], as the most consistent1 robust
estimator, for the estimation task. The analysis presented in
[25] shows that all estimators including MSSE are heavily
biased when the distance between the two parallel structures
(e.g. two very similar motions in a selected region), μ, is less
than 5σ . In this scenario, structures in data are too close to
be separated from each other and existence of one structure
heavily bias the estimation of the other structure. The analysis
also showed that the estimation accuracy would not improve
by increasing the amount of data. However, for μ ≥ 5σ , the
MSSE finite sample bias is always less than 20% and the finite
sample bias does not change with the inlier percentage or the
distance between the two structures (μ). Importantly, the finite
sample bias of the MSSE as well as a number of other robust
estimators analyzed in [25] do not significantly change as the
number of data samples increases beyond a relatively small
sample size (of around 100). As such, the minimum amount
of required smoothing would not be significantly different if
any other high breakdown estimators were used instead.

We also assume that the smoothing support is a cube (as the
data is discretized in Cartesian grid) centered on the voxel of
interest. In absence of any prior information, the cube is to be
constructed symmetrically around the target. Having specified
the estimation parameters, we are now able to hypothesize
the minimum size requirement of the Gaussian window by
analyzing the finite sample bias of the estimator in cases where
there are multiple motions in the region of interest. Since we
use locally constant velocity model, the motion boundary is
modeled by a step edge in the velocity space.

The finite sample bias of various robust estimators, includ-
ing MSSE, for segmenting a step edge structure, as the worst-
case scenario, have already been analyzed [25]. The regression
framework used in [25], as shown in section IV-D, is identical
to the flow estimation presented here. Part of the results
presented in fig. 9 of [25] are reproduced here and shown
in Fig. 1. The above results show that for cases where the
estimator is consistent, less than 100 data points are required
to minimize the effect of finite sample bias of the robust
estimator. Therefore, a cube with sides as little as 5 or 7
voxels should provide the minimum required smoothing even

1An estimator is said to be consistent if its estimated value approaches the
true value as the number of data approaches infinity.
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Fig. 1. Finite sample bias of MSSE in the segmentation of a step edge
discontinuity with height of either 4 or 6 times the scale of noise in the
measured data with 30% inliers. It is important to note here that as shown in
[25], for μ > 5σ , the amount of finite sample bias is not affected by either
the μ or the inlier ratio.

in cases where the target voxel is in the vicinity of a motion
boundary and only a fraction of voxels actually belong to the
motion of interest. The minimum requirement in 3D data is
therefore delightfully small (a CT scan typically has more than
10 million voxels). This means that very localized changes
should be directly observable. We examine this hypothesis
both in terms of the average accuracy using synthetic and
real data (with known ground truth) and its implication for
segmenting lung motion based on known anatomical features
in real 4D CT data.

III. ESTIMATION OF 3D OPTIC FLOW

To examine the full implications of the smoothing require-
ments in the context of robust optic flow calculation, we
present a straightforward optic flow method. In this method,
we estimate the 3D flow by assuming that the majority of vox-
els in a local cube can be explained by velocity perturbations
around a constant value (inlier group). Voxels with motions
that cannot be explained by the above model (based on the
MSSE criteria) would be considered an outlier and would not
be included in the estimation process. The velocity of the inlier
group is calculated using the Least Square method.

We have implemented the above regularization approach
and solved the estimation (MSSE [27]) step using random
sampling. The spatial and temporal derivatives are calcu-
lated as prescribed by [23] using either Simoncelli’s [28] or
Gaussian derivative masks.

The implementation of MSSE, as described in Algorithm 1,
is very straight forward and only involves taking N number of
random samples of 3 voxels from within the support volume.
The 3D flow is then calculated for each 3-tuple by solving the
system of three linear equations for the three unknown compo-
nents of the flow at that point. The flow vectors for all samples
are then used to calculate square residuals (algebraic distance

Algorithm 1 The Step-by-Step Algorithm for MSSE
Inputs: Spatial and temporal derivatives, number of repetitive

epochs N
1: Repeat step 2-6 for N times:
2: Choose an elemental subset(3-tuple) by random sampling;
3: Compute the Corresponding velocity vector using

⎡

⎣

u
v
w

⎤

⎦ = −
⎡

⎣

I×1 Iy1 Iz1
I×2 Iy2 Iz2
I×3 Iy3 Iz3

⎤

⎦

−1 ⎡

⎣

It1
It2
It3

⎤

⎦

4: Calculate the Square Residuals r2 = (Ix u+Iyv+Izw+It )
2;

5: Sort the square residuals in ascending order;
6: Find the sample with the least K th Square Residuals;
7: Recalculate the square residuals using the velocity vector

with the least median square residual and sort them;
8: Find the first point starting from the median where |ri+1| >

2.5σi , the data up to this point are considered inliers;
9: Calculate the final velocity vector using all the inlier points.

between voxels’ optic flow constraints and the calculated flow
of a given 3-tuple) of all voxels inside the support window.
The sample that has the minimum sorted square residuals at
the K th order index of those residuals is selected as the best
estimate (in out experiments we set K = 0.5 which gives
the median). By starting from the K th residual of this best
estimate, the point where the condition: |ri+1| < T σi based
on σ 2

i = �i
j=1r2

j /(i −3) is no longer true is found and voxels
up to this index are considered as inliers. In the above, r is the
residual and is given by: r2 = (Ix u+Iyv+Izw+It )

2 where i is
the sorted index, T is a constant threshold and numbers around
1.5-2.5 is usually used to indicate an inclusion of around
93−99% of inliers based on a normal distribution for noise.
The least squares solution of all the inlier voxels is considered
as the final estimate. Since the final scale estimate is calculated
by using least squares and including all inliers, the variation
of T has little effect on the final results [27].

IV. EXPERIMENTAL RESULTS

To investigate the effect of the local smoothing on the
accuracy of optic flow we created a sequence of synthetic 3D
images having a variety of known motions. The sequence is
designed to mimic typical changes in lung CT sequences with
several objects having different motions and irregularly shaped
motion boundaries. The geometry of lungs are generated from
the segmentation of a real human lung CT image and the
textures are created by superimposing three 3D sinusoidal
patterns similar to the ones used in [29].

In this sequence, the lungs have affine motions while
the background has constant 3D motion. A small stationary
column, between two lungs, has also been included to simulate
motionless parts of a real image. A sample 2D slice (axial
view) and its associated flow field are shown in Fig. 2.
Although the texture in this sequence is synthetic, the geome-
try and types of motions are quite realistic and exhibits similar
issues encountered in real images including issues associated
with existence of quantization noise and deterioration of the
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Fig. 2. Sample of axial view of the sinusoidal image (top) and its flow field
(bottom). The white arrow identifies the stationary column area.

estimation of derivatives near the motion boundaries. The
lungs are however not segmented into different lobes (with
different motions) because the analysis is based on using a
spatially small area and therefore having different segments
does not improve the relevance of the experiment.

For error measurement, we have extended and used the Fleet
and Jepson [30] angular measure of error. In the extension of
this scheme to 3D, the flow at every voxel is represented by
a 4D vector of its Cartesian components in a homogeneous
coordinate system (u, v, w, 1) and the error is measured
as an angular deviation of the calculated flow from the true
velocity. The error is therefore calculated by finding the inverse
cosine of the dot product of two vectors in the above 4D
homogeneous coordinate system. A detailed analysis of this
measure is provided in [29] and will not be repeated here.

A. Effect of Smoothing on Accuracy

To demonstrate the effect of the size of the Gaussian
window on the estimation accuracy, we have varied the size
from 3 × 3 × 3 to 11 × 11 × 11 voxels. The results shown
in Table I are in full agreement with our predictions based
on the finite sample bias (see the last part of section 2). The
accuracy is significantly enhanced when the size of window
increases from 3 × 3 × 3 to 5 × 5 × 5 (which is only around
0.00028% of whole data). However any more increases in the
amount of smoothing results in only small changes to the final
accuracy.

TABLE I

ESTIMATION ACCURACY OF CALCULATING 3D OPTIC FLOW USING

DIFFERENT SIZES OF SMOOTHING WINDOWS

Size of Average Error Standard Deviation

Smoothing Window (degrees) (degrees)

3 × 3 × 3 4.49 16.04

5 × 5 × 5 2.74 11.10

7 × 7 × 7 2.07 8.88

9 × 9 × 9 1.84 8.24

11 × 11 × 11 1.75 8.12

Fig. 3. Change in average error when the smoothing window size is varied,
σ = 2.0.

B. Optic Flow Estimation Using Real 4-D CT Images

Both cardiac and respiratory motions severely affect the
quality of lung CT images. Four dimensional CT images
are developed to facilitate the analysis of respiratory motion
by using spirometer signals to align and synchronize data
acquired during different breathing cycles. The data however
contains a large amount of noise owing to low-dose protocols
used in dynamic CT imaging as well as various types of
artifacts due to the fact that lung deformation is not exactly the
same in each respiratory cycle (4D CT is typically acquired
during several cycles) and cardiac motion is out of sync with
breathing cycle. However, 4D CT data is increasingly used for
tracking lung motion and helps clinicians minimize and better
target radiation in oncology treatments.

Currently there are two commonly used and openly avail-
able thoracic 4D CT data sets with ground truth in terms
of landmark motions [31], [32] that can be used to validate
the accuracy of dense flow calculations. In our experiments,
we used both datasets to show real data applications of
the proposed theory. The data provided by the “University
of Texas M.D. Anderson Cancer Center” [31] contains 300
manually identified landmark points per case. The results of
nine deformable registration algorithms using these data have
also been provided in [31], [33], [34]. To provide context,
results of similar approaches have also been included here. The
Dataset provided by “Léon Bérard Cancer Center & CREATIS
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TABLE II

AVERAGE ERROR OF CALCULATING 3D OPTIC FLOW USING DIFFERENT

SIZES OF SMOOTHING WINDOW FOR REAL 4-D CT DATA

Gaussian Case 1 Case 2 Case 3 Case 4 Case 5

Window Av Error Av Error Av Error Av Error Av Error

Size (SE)a (SE) (SE) (SE) (SE)

Average 4.01 4.65 9.42 6.73 7.10

Disp (2.91) (4.09) (4.81) (4.21) (5.14)

Maximum
12.65 17.8 21.0 18.46 24.78

Disp

3 × 3 × 3
5.028 4.496 6.383 9.193 9.018

(0.416) (0.371) (0.374) (0.450) (0.853)

5 × 5 × 5
2.945 2.916 4.349 6.062 5.986

(0.221) (0.192) (0.205) (0.257) (0.381)

7 × 7 × 7
2.269 2.315 3.528 4.773 5.387

(0.138) (0.141) (0.176) (0.207) (0.314)

9 × 9 × 9
1.936 1.897 3.353 4.188 4.969

(0.119) (0.114) (0.160) (0.181) (0.288)

11 × 11 × 11
1.710 1.828 3.156 3.949 4.742

(0.097) (0.109) (0.150) (0.165) (0.261)

13 × 13 × 13
1.661 1.641 3.187 3.785 4.536

(0.099) (0.098) (0.150) (0.158) (0.252)
a Standard Error as defined in [31].

Fig. 4. Average registration errors of our method for each case. Correspond-
ing average errors from [31] and [33] are also shown for comparison.

lab, Lyon, France” [32] has three images with 100 manually
annotated landmarks in all frames.

The first five cases of [31] are used here to study the effect
of the size of the Smoothing Window on estimation accuracy.
We have varied the size from 3 × 3 × 3 to 13 × 13 × 13
voxels and the results are shown in Table II.

The above results, similar to the ones obtained using syn-
thetic data, show that the increase in overall accuracy due
to increase in the size of Smoothing Window is plateauing
when window sizes are larger. To illustrate this further, average
errors are plotted against Smoothing window size in Fig. 3.
To bring all the results to the same scale, the average errors
are divided by the average error of 13 × 13 × 13 window
size for each case.

TABLE III

P-VALUES AND HYPOTHESIS TEST RESULTS (WITH CONFIDENCE

INTERVAL OF 99%) OF PAIRED T-TESTS CONDUCTED TO TEST THE

SIGNIFICANCE OF IMPROVEMENTS ACHIEVED BY INCREASING

THE SIZE OF THE SMOOTHING WINDOW. H = 1 MEANS THAT

THE DIFFERENCES ARE STATISTICALLY SIGNIFICANT

3 × 3 × 3 5 × 5 × 5 7 × 7 × 7 9 × 9 × 9 11 × 11 × 11
↓ ↓ ↓ ↓ ↓

5 × 5 × 5 7 × 7 × 7 9 × 9 × 9 11 × 11 × 11 13 × 13 × 13

Case 1
P 9.56E-06 0.008 0.068 0.142 0.722
H 1 1 0 0 0

Case 2
P 2.00E-04 0.012 0.021 0.660 0.201
H 1 0 0 0 0

Case 3
P 2.35E-06 0.003 0.460 0.370 0.738
H 1 1 0 0 0

Case 4
P 2.77E-09 1.00E-04 0.033 0.330 0.473
H 1 1 0 0 0

Case 5
P 1.20E-03 0.226 0.328 0.560 0.570
H 1 0 0 0 0

Fig. 5. Effect of varying the size of the smoothing window on average
landmark errors in images of Popi Model data set [32].

To show that slight improvements in the mean accuracy
of larger window sizes are not statistically significant, Paired
t-test was conducted and the results are shown in Table III.
For a given set of images, we calculated the p-value using the
landmark registration errors of two adjacent smoothing win-
dow sizes. These results were then used to compare the mean
errors against a null hypothesis (results are not significantly
different) based on a confidence interval of 99%. A p-value
< 1% means that the null hypothesis is rejected (H = 1)
and the difference between the two results are statistically
significant. As expected we can see that in all cases the results
improve when the smoothing size increase from 3 × 3 × 3 to
5 × 5 × 5 but increases beyond 7 × 7 × 7 are not statistically
significant.

The average errors of our method for all those cases are
also compared with the results in [31], [33] 2 and are shown
in Fig. 4. In particular, the OFM (Optical Flow Method) in this

2The mean errors for our method are calculated using the publicly available
landmark set (containing 300 landmarks per image), which is a subset of the
full landmark set used to calculate the results in [31] and [33].
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(a) (b) (c)

(d) (e)

Fig. 6. Position of different landmark points used in our calculations (P1–P9). Where possible, the fissure is also highlighted in these images.

Fig. (from [31]) represents the results of the Horn & Schunck
based flow calculation method which is a global method. The
average error in landmark registration across all five cases for
OFM is 7.3 mm whereas for our method with σ = 0.5 it is
4.051 mm and with σ = 2.0 the average error is 2.962 mm.

The MLS (moving least-square) in Fig. 4 (from [31]) is
a landmark based registration algorithm which uses external
information (expert knowledge) for identifying the landmarks.
MLS has achieved an average error of 2.074 mm across all
five cases. The difference between the average errors of our
method (σ = 2.0) and the MLS is less than the intra-observer
error (this is the error in identifying the Landmark points
by an expert in repeated experiments) for the first 3 cases.
This shows that for small displacements, local optic flow
based method can achieve similar results to that of hand tuned
registration methods.

It is important to note that a hierarchical approach would
have yielded more accurate results for the last two cases which
have higher displacements. We have not implemented this
because improving accuracy by itself is not the aim here. Also,
the landmark dataset used in evaluating our method consists
of 300 publicly available landmarks.

In the next set of experiments, we used the Popi model
dataset provided by [32] to demonstrate the effect of smooth-
ing window size on the accuracy of optic flow calculations.
The flow field was calculated using two adjacent frames in
each 4DCT dataset. All landmarks were used to calculate the
mean landmark error for each time step and results are shown
in Fig. 5. In this figure, each time frame of 4DCT image is

Fig. 7. Variation in estimation error with smoothing window size for
landmark points near a fissure.

identified by a frame number e.g. T00, T10, T20, etc. and
the mean landmark errors of all landmarks at each time step
are averaged over the three cases. These results, similar to
ones achieved for DIR data, are in line with our theoretical
predictions.
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Fig. 8. Variation in estimation error with smoothing window size for
landmark points not near a fissure.

C. Side Effects of Smoothing Increases

A lung contains separate lobes with different deformation
patterns and the motion at the lobes boundaries (fissure) is
discontinuous. The juxtaposition of lobes in a typical lung is
shown in Fig. 6.

To see the effect of the size of Smoothing window on
the accuracy of estimation near the fissure, we compared the
estimated error for different smoothing window sizes for a
small selection of points near the fissure and points in the
same image, but further away from the fissure. The results
of estimation error for different smoothing window sizes are
shown in Fig. 7. As was predicted, the results show that
the increase in smoothing window can indeed deteriorate the
overall accuracy.

Four points (P6, P7, P8 & P9) are selected from cases 1
and 2 where P6 is in the same sagittal slice as P1 and P7 &
P8 are in the same axial slice as P2 but are further apart from
the fissure than P1 and P2. The errors are plotted against the
Smoothing window size in Fig. 8.

D. Detection of Local Variations in Flow Fields

To highlight the importance of controlling the size of
smoothing window, we concentrate on the detection of
anatomically induced variation in flow field. We first introduce
a novel way of visualizing the variations of 3D flow fields in
3D space and use that method to show the detectability of
anatomical variation of flow fields on both synthetic and real
4D CT images. To visualize the variation, we rewrite the 3D
optic flow constraints (equation 1) as

Ix

It
u + Iy

It
v + Iz

It
w = −1. (3)

The optic flow constraint is commonly viewed as a plane
in the velocity space of (u, v,w). However, using the dual-
ity of points and planes in perspective geometry, we can

Fig. 9. The bottom image is an axial view of the sinusoidal image where
the cubic region with two distinct motions is marked by a white rectangle.
Bottom image plots the associated voxels in the derivative space (red dots and
green asterisks are used for moving voxels, while black crosses represent the
outliers). The points are segmented by fitting planes using MSSE. The bottom
picture is rotated to show how the points are aligned with respect to the affine
plane. Since a plane in the derivative space represents constant motion, the
points with constant underlying motion (red dots) fit a plane better than the
points with affine underlying motion (green asterisks).

view the above equation as a point in the derivative space
(Ix/It , Iy/It , Iz/It ) and therefore all the points having the
same (constant) velocity will form a 3D plane parameterized
by (u, v,w). The importance of this transformation stems from
the fact that while it’s very difficult to visualize a number of
3D planes crossing each other around the vicinity of a single
point, we can easily visualize a set of points scattering around
a plane in a 3D Cartesian space.

To demonstrate the effectiveness of the above transfor-
mation to visualize the existence of different motions in a
local area, we consider a cubic region in the synthetic lung
image introduced earlier. The cubic region is shown in the
top part of Fig. 9 by a white rectangle in the axial view
and includes voxels with two different motions: constant and
affine. A regular subset (one in nine) of voxels from this area is
plotted in the derivative space and the points are segmented by
applying MSSE sequentially (i.e. a fit and remove application
of MSSE as explained in [27]).
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Fig. 10. Top image is an axial view of a 4-D CT image where the two cubic
areas with either one (the top rectangle placed entirely on one lobe) or two
(the lower rectangle straddles two lobes separated by the fissure - shown by
a white line) distinct motions are marked by white rectangles. The middle
and bottom images plot the associated voxels in the derivative space (red dots
and green asterisks are used for moving voxels, while black crosses represent
the outliers). The points in both areas are segmented by fitting planes using
MSSE. The middle and bottom pictures are rotated to show how the points
are aligned with respect to every plane. The bottom picture clearly shows that
the difference between the motions of two lobes on different sides of a fissure
is detectable using a local approach.

The resulting planes are shown in the bottom part of the
Fig. 9 while the plot is rotated to show the spread of points
around one of those planes. As expected, voxels with constant
underlying motion fit well to a plane in the derivative space
and therefore form a very thin scatter of points around a plane.

The voxels with affine motions, on the other hand, are scattered
wider while they still generally spread near a plane as long as
they are spatially close to each other in the actual image. These
results support our earlier hypothesis that good estimates of
motion can be achieved using localized small smoothing area.

We can now apply the same transformation to the real 4D
CT images and examine the possibility of detecting anatomical
motion boundaries. We have examined the possibility of
detecting the differences in motion between individual lung
lobes by considering two small (local) cubic areas in a 4D
CT image. As shown in the top part of Fig. 10, one of these
cubes (shown by a white rectangle in the axial view) is entirely
within a lobe and the other straddles two different lobes (where
the fissure - highlighted by a white line - is located).

We have plotted all the points associated with the voxels in
those areas and applied the MSSE [27] (with 30% minimum
ratio and T = 2) to segment the motions. The segmentation
results for both areas are shown in the middle and bottom
parts of Fig. 10. While only one motion is detected in the
upper area, the one straddling two lobes includes two distinct
motions. This evidence again shows that imposition of “just
enough” smoothing is important in preserving the local flow
information.

V. CONCLUSION

A new approach to quantifying the minimum required
smoothing based on the concept of the finite sample bias
of a robust estimator is presented. The proposed approach
is very general and makes predictions about required amount
of smoothness to satisfy the sufficiency condition for a broad
range of visual estimation tasks such as optic flow calculation.
We particularly showed that smoothing over a cubic area
as small as 5 to 7 voxels wide is sufficient to achieve the
highest practical accuracy. This is a significant observation
as it proves that very localized changes in motion in 3D
data is directly observable. The predictions were tested for
3D optic flow estimation of 4D lung CT images and the
results showed, inline with theoretical predictions, that only
a very small amount of local smoothing is required to achieve
high accuracy and observe local anatomically induced motion
variations and that in some cases increasing the amount of
smoothing deteriorates results.
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