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Abstract
The distributed Hill estimator is a divide-and-conquer algorithm for estimating the 
extreme value index when data are stored in multiple machines. In applications, esti-
mates based on the distributed Hill estimator can be sensitive to the choice of the 
number of the exceedance ratios used in each machine. Even when choosing the 
number at a low level, a high asymptotic bias may arise. We overcome this potential 
drawback by designing a bias correction procedure for the distributed Hill estimator, 
which adheres to the setup of distributed inference. The asymptotically unbiased dis-
tributed estimator we obtained, on the one hand, is applicable to distributed stored 
data, on the other hand, inherits all known advantages of bias correction methods in 
extreme value statistics.

Keywords  Extreme value index · Distributed inference · Bias correction

1  Introduction

Consider a distribution function F which belongs to the maximum domain of attrac-
tion of an extreme value distribution with a positive extreme value index 𝛾 > 0 , that 
is,
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where U(t) ∶= F←(1 − 1∕t) with t > 1 , and ← denotes the left-continuous inverse 
function. Such a distribution is also called a heavy-tailed distribution, where the 
extreme value index governs the tail of the distribution. Estimating the extreme 
value index is a key step for making statistical inference on the tail behaviour of 
F. Various methods have been proposed to estimate the extreme value index, such 
as the Hill estimator (Hill 1975), the maximum likelihood estimator (Smith 1987; 
Drees et al. 2004; Zhou 2009) and the moment estimator (Dekkers et al. 1989).

Conducting extreme value analysis often requires large datasets in order to 
select extreme observations in the tail. Such datasets may be stored in multiple 
machines and cannot be combined into one dataset due to data privacy issue. For 
example, datasets collected in industries such as banking and healthcare require 
high level consumer privacy and cannot be shared across different organizations. 
Another potential situation is that some massive datasets cannot be processed 
by a single computer due to internet traffic or memory constraints. Distributed 
inference refers to the statistical problem of analyzing data stored in multiple 
machines. It often requires a divide-and-conquer (DC) algorithm. In a DC algo-
rithm, one calculates statistical estimators on each machine in parallel and then 
communicates them to a central machine. The final estimator is obtained on the 
central machine, often by a simple average; see, for example, Li et al. (2013) for 
kernel density estimation, Fan et  al. (2019) for principal component analysis, 
Volgushev et al. (2019) for quantile regression.

In this paper, we aim at estimating the extreme value index in the distributed 
inference context. Assume that independent and identically distributed (i.i.d.) 
observations X1,… ,XN drawn from F are stored in m machines with n observa-
tions on each machine, i.e. N = mn . In the context of distributed inference, we 
assume that only limited (finite) number of results can be transmitted from each 
machine to the central machine. As a result, we cannot apply statistical proce-
dures to the oracle sample, i.e., the hypothetically combined dataset 

{
X1,… ,XN

}
.

Chen et  al. (2021) proposes the distributed Hill estimator to estimate the 
extreme value index � . On each machine, the Hill estimator is applied and then 
transmitted to the central machine. On the central machine, the average of the 
Hill estimates collected from the m machines are calculated. Let M(1)

j
≥ ⋯ ≥ M

(n)

j
 

denote the order statistics of the observations on machine j for j = 1,… ,m . Then 
the Hill estimator on machine j can be constructed by using the top k exceedance 
ratios M(i)

j
∕M

(k+1)

j
, i = 1,… , k , as

The distributed Hill estimator is defined as

lim
t→∞

U(tx)

U(t)
= x𝛾 , x > 0,

𝛾̂j,k =
1

k

k∑
i=1

(
logM

(i)

j
− logM

(k+1)

j

)
, j = 1,… ,m.
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Chen et al. (2021) studies the asymptotic behaviour of the distributed Hill estima-
tor and shows sufficient conditions under which the distributed Hill estimator pos-
sesses the oracle property: its speed of convergence and asymptotic distribution 
coincides with the oracle Hill estimator. Here, the oracle Hill estimator is the Hill 
estimator using the top km exceedance ratios of the oracle sample 

{
X1,… ,XN

}
 , 

i.e. 𝛾̂ = l−1
∑l

i=1

�
logM(i) − logM(l+1)

�
 , where l = km and M(1) ≥ ⋯ ≥ M(N) are 

the order statistics of the oracle sample 
{
X1,… ,XN

}
 . The choice of l = km is in 

line with the standard distributed inference literature. Note that the oracle property 
compares the distributed estimator to the oracle estimator when the two estimators 
are constructed based on the same sample size. Different from standard statistics, 
extreme value statistics use observations in the tail only, for example, the Hill esti-
mator is based on the exceedance ratios. Therefore, the oracle property for the Hill 
estimator is meaningful only if the distributed estimator and the oracle estimator are 
constructed based on the same number of exceedance ratios.

In applications with finite sample size, one important tuning parameter in the Hill 
estimator is the number of exceedance ratios l used in the estimation. Recall that the 
maximum domain of attraction condition is a limiting relation instead of an exact 
model, it provides only an approximation to the tail of a distribution. Consequently, 
the number of exceedance ratios used in the estimation, l, is related to the asymp-
totic bias in the limit distribution of the Hill estimator. This differs from classical 
statistics where bias often vanishes sufficiently fast as sample size tending to infinity. 
More specifically, the choice leads to a bias-variance tradeoff: with a low level of 
l, the estimation variance is at a high level; by increasing the level of l, the estima-
tion variance is reduced but the estimation bias may arise. For the distributed Hill 
estimator 𝛾̂DH,k , this issue is regarding the choice of k on each machine. One needs 
to balance the number of exceedance ratios (k) with the number of machines (m), 
in order to control the total bias in the distributed estimator. In addition, recall that 
the effective number of exceedance ratios involved in 𝛾̂DH,k is km. As k increases 
by 1, the effective number of exceedance ratios will increase by m. Thus, the per-
formance of 𝛾̂DH,k is very sensitive to the choice of k. If m is large, with even a low 
level of k, the asymptotic bias may be at a high level which may not be acceptable in 
applications.

In existing extreme value statistics literature, there are two types of solutions for 
selecting the number of exceedance ratios in the estimation. The first stream of litera-
ture aims at finding the optimal level that balances the asymptotic bias and variance, 
see e.g. Danielsson et al. (2001) and Guillou and Hall (2001). The second stream of 
literature corrects the bias and eventually allows for choosing a high level of the num-
ber of exceedance ratios, see e.g. Gomes et al. (2008) and de Haan et al. (2016). In 
applications, if the sample size is large, the bias correction methods are preferred since 
they possess at least two advantages. First, bias correction methods allow for choos-
ing a higher level of the number of exceedance ratios than that used for the original 

𝛾̂DH,k ∶=
1

m

m∑
j=1

𝛾̂j,k =
1

m

m∑
j=1

1

k

k∑
i=1

(
logM

(i)

j
− logM

(k+1)

j

)
.
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estimator, which results in also a lower level of variance. Second, bias correction meth-
ods lead to estimates that are less sensitive to the choice of the number of exceedance 
ratios.

In this paper, we shall adapt the distributed Hill estimator such that it is suitable for 
finite sample applications. More specifically, we introduce a bias correction procedure 
for estimating the extreme value index, without compromising the distributed inference 
setup. Notice that existing bias correction methods often rely on estimating a second 
order parameter and a second order scale function as given in (1) below. Such an esti-
mation again requires the oracle sample which is infeasible in the context of distributed 
inference. Therefore, we resort to a different approach, sticking to the requirement that 
only limited (fixed) number of results can be transmitted from each machine to the cen-
tral machine. In such a way, the resulting estimator is not only asymptotically unbiased, 
but also in the same spirit of a DC algorithm. We name it as “asymptotically unbiased 
distributed estimator” for the extreme value index. The asymptotically unbiased dis-
tributed estimator, on the one hand, is applicable to distributed stored data, on the other 
hand, inherits the advantages of bias correction methods in extreme value statistics.

We remark that the requirement of transmitting limited (fixed) number of results 
from each machine to the central machine is in line with the privacy concern in prac-
tice. Consider a practical example where various insurance companies would not like 
to share their client level claim data, but would nevertheless be willing to collaborate 
with each other such that they can obtain a more accurate estimation for the tail risk 
of a certain type of insurance claims. They are willing to share some estimation results 
provided that other companies cannot infer client level data from the shared results. 
Given the sensitivity of the data, insurance companies would like to share as few results 
as possible. The less results transmitted and shared, the less likely that client level data 
can be recovered. In the proposed asymptotically unbiased distributed estimator, we 
require that each machine transmit five results to the central machine. We nevertheless 
consider other alternatives when further limitations on the number of results transmit-
ted are imposed. We compare their performance by an extensive simulation study.

The rest of the paper is organized as follows. Section  2 presents the idea for 
bias correction. Section 3 proposes a DC algorithm for estimating the second order 
parameter, defines the asymptotically unbiased distributed estimator for the extreme 
value index and shows the main theoretical results. Section  4 provides a simula-
tion study to confirm that the asymptotically unbiased distributed estimator exhibits 
superior performance compared to the distributed Hill estimator. We discuss some 
extensions of our results in Sect. 5. The proofs are given in the Appendix.

Throughout the paper, a(t) ≍ b(t) means that both |a(t)/b(t)| and |b(t)/a(t)| are 
O(1) as t → ∞.

2 � Bias correction methodology

To obtain the asymptotic normality of the distributed Hill estimator 𝛾̂DH,k , Chen 
et al. (2021) assumes the following second order condition. Suppose that there exist 
an eventually positive or negative function A with limt→∞ A(t) = 0 and a real number 
� ≤ 0 such that
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for all x > 0 , which is equivalent to

In addition, assume that as N → ∞,

and k is either a fixed integer or an intermediate sequence, i.e. k = k(N) → ∞,

k∕n → 0 . Under conditions (1) and (2), Chen et al. (2021) shows that the distributed 
Hill estimator possesses the following asymptotic expansion:

where PN ∼ N(0, 1) and

with Γ denoting the gamma function. By Lemma 2 (see below), we have that, if k 
is a fixed integer, then g(k, n, �) → k�Γ(k − � + 1)∕Γ(k + 1) , as N → ∞ . If k is an 
intermediate sequence, then g(k, n, �) → 1 , as N → ∞.

Since the bias term of the distributed Hill estimator is an explicit function 
(1 − �)−1A(n∕k)g(k, n, �) , we shall estimate the bias, subtract it from the original dis-
tributed Hill estimator, which leads to the asymptotically unbiased distributed estimator.

The estimation of the bias term requires estimating the second order parameter � and 
the second order scale function A in condition (1). For simplicity, we follow the bias 
correction literature to assume that 𝜌 < 0 , see e.g. de Haan et al. (2016) and Gomes and 
Pestana (2007). In order to obtain the asymptotic behavior of the estimator for � , a third 
order condition is often assumed. We invoke the third order condition in Alves et al. 
(2003) as follows. Suppose that there exist an eventually positive or negative function B 
with limt→∞ B(t) = 0 and a real number 𝜌̃ ≤ 0 such that

Lastly, following Cai et al. (2012) and de Haan et al. (2016), we use a higher inter-
mediate sequence k� for estimating the second order parameter � . Assume that as 
N → ∞ , k� = k�(N) → ∞, k�∕n → 0 , and

lim
t→∞

U(tx)

U(t)
− x�

A(t)
= x�

x� − 1

�
,

(1)lim
t→∞

logU(tx) − logU(t) − � log x

A(t)
=

x� − 1

�
.

(2)m = m(N) → ∞, n = n(N) → ∞, n∕ logm → ∞,

𝛾̂DH,k − 𝛾 =
𝛾PN√
km

+
A(n∕k)

1 − 𝜌
g(k, n, 𝜌) +

1√
km

oP(1),

(3)g(k, n, �) ∶=
(
k

n

)�Γ(n + 1)Γ(k − � + 1)

Γ(n − � + 1)Γ(k + 1)
,

(4)

lim
t→∞

1

B(t)

{
logU(tx) − logU(t) − 𝛾 log x

A(t)
−

x𝜌 − 1

𝜌

}
=

1

𝜌̃

(
x𝜌+𝜌̃ − 1

𝜌 + 𝜌̃
−

x𝜌 − 1

𝜌

)
.

(5)

√
k�mA(n∕k�) → ∞,

√
k�mA

2(n∕k�) → �1 ∈ ℝ,
√

k�mA(n∕k�)B(n∕k�) → �2 ∈ ℝ.
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Similar to de Haan et al. (2016), in the eventual asymptotically unbiased distributed 
estimator for the extreme value index, one can choose a higher number of exceed-
ance ratios than that used in the distributed Hill estimator. In our context, we choose 
a sequence kn such that, as N → ∞ , kn∕k� → 0 and

Here, similar to the distributed Hill estimator, kn can be either a fixed integer or an 
intermediate sequence.

3 �  Main results

We first introduce the estimator for the second order parameter � in the distributed 
inference setup and study its asymptotic behavior. Then we define the asymp-
totically unbiased distributed estimator for the extreme value index and show its 
asymptotic behavior.

3.1 � Estimating the second order parameter

If the oracle sample can be used, then there are several estimators for the second 
order parameter � , see e.g. Alves et al. (2003) and Gomes et al. (2002). However, 
since we cannot apply a statistical procedure to the oracle sample, we need to 
develop a DC algorithm for estimating � . Consider the following statistics com-
puted based on observations on machine j,

We request that each machine sends the values R(�)

j,k
, � = 1, 2, 3 to the central 

machine. On the central machine, we take the average of the R(�)

j,k
 statistics to obtain

Motivated by Alves et  al. (2003), we define the estimator for the second order 
parameter � as

where

(6)
√
knmA(n∕kn) → ∞,

√
knmA

2(n∕kn) → 0,
√
knmA(n∕kn)B(n∕kn) → 0.

R
(�)

j,k
∶=

1

k

k∑
i=1

{
logM

(i)

j
− logM

(k+1)

j

}�

, � = 1, 2, 3.

R
(�)

k
=

1

m

m∑
j=1

R
(�)

j,k
, � = 1, 2, 3.

(7)�̂k,� ∶= −3
|||||
Tk,� − 1

Tk,� − 3

|||||
,
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and � ≥ 0 is a tuning parameter. For � = 0 , Tk,� is defined by continuity. In practice, 
it is suggested to choose � ∈ [0, 1] , see e.g. Gomes and Pestana (2007) and Gomes 
et al. (2008).

Before studying the asymptotics of 𝜌̂k,𝜏 , we first establish that for R(�)

k
 in the 

following proposition. Note that in this proposition, we use a general sequence 
k. Nevertheless, the proposition will be applied both for k = kn and k = k� , see 
Sect. 3.2.

Proposition 1  Assume that the distribution function F satisfies the third order condi-
tion (4) with parameters 𝛾 > 0, 𝜌 < 0 and 𝜌̃ ≤ 0 , and condition (2) holds. In addi-
tion, suppose that an intermediate sequence k satisfies that as N → ∞ , k∕n → 0 and √
kmA(n∕k)B(n∕k) = O(1),

√
kmA2(n∕k) = O(1) . Then for suitable versions of the 

functions A and B, denoted as A0 and B0 (see Lemma 4 below), we have that as 
N → ∞ , 

	 (i)	

	 (ii)	

	 (iii)	

where (P(1)

N
,P

(2)

N
,P

(3)

N
)T ∼ N(�,�) with

Tk,� ∶=

(
R
(1)

k

)�

−
(
R
(2)

k
∕2

)�∕2

(
R
(2)

k
∕2

)�∕2

−
(
R
(3)

k
∕6

)�∕3
,

√
km

�
R
(1)

k
− 𝛾

�
− 𝛾P

(1)

N
−

g(k, n, 𝜌)

1 − 𝜌

√
kmA0(n∕k) −

g(k, n, 𝜌 + 𝜌̃)

1 − 𝜌 − 𝜌̃√
kmA0(n∕k)B0(n∕k) = op(1),

√
km

�
R
(2)

k
− 2𝛾2

�
− 𝛾2P

(2)

N
− 2𝛾

√
kmA0(n∕k)

g(k, n, 𝜌)

𝜌

�
1

(1 − 𝜌)2
− 1

�

−
√
kmA2

0
(n∕k)

g(k, n, 2𝜌)

𝜌2

�
1

1 − 2𝜌
−

2

1 − 𝜌
+ 1

�

− 2𝛾
√
kmA0(n∕k)B0(n∕k)

g(k, n, 𝜌 + 𝜌̃)

𝜌 + 𝜌̃

�
1

(1 − 𝜌 − 𝜌̃)2
− 1

�
= op(1),

√
km

�
R
(3)

k
− 6𝛾3

�
− 𝛾3P

(3)

N
− 6𝛾2

√
kmA0(n∕k)

g(k, n, 𝜌)

𝜌

�
1

(1 − 𝜌)3
− 1

�

− 3𝛾
√
kmA2

0
(n∕k)

g(k, n, 2𝜌)

𝜌2

�
1

(1 − 2𝜌)2
−

2

(1 − 𝜌)2
+ 1

�

− 6𝛾2
√
kmA0(n∕k)B0(n∕k)

g(k, n, 𝜌 + 𝜌̃)

𝜌 + 𝜌̃

�
1

(1 − 𝜌 − 𝜌̃)3
− 1

�
= oP(1),
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Applying Proposition 1 leads to the asymptotic behavior of 𝜌̂k,𝜏 as follows.

Theorem 1  Assume that the distribution function F satisfies the third order condi-
tion (4) with parameters 𝛾 > 0, 𝜌 < 0 and 𝜌̃ ≤ 0 , and condition (2) holds. Suppose 
that the intermediate sequence k� satisfies condition (5). Then as N → ∞ , for each 
� ≥ 0,

where 𝜌̂k𝜌,𝜏 is defined in (7).

3.2 � Asymptotically unbiased distributed estimator for the extreme value index

Motived by de Haan et al. (2016), we define the following estimator as the asymp-
totically unbiased distributed estimator for the extreme value index:

where � ≥ 0 is a tuning parameter. Notice that the estimator 𝛾̃kn,k𝜌,𝜏 in (8) adheres to a 
DC algorithm since each machine only sends five values 

{
R
(1)

j,kn
,R

(2)

j,kn
,R

(1)

j,k�
,R

(2)

j,k�
,R

(3)

j,k�

}
 

to the central machine.

Remark 1  The statistic R(1)

kn
 is the original distributed Hill estimator 𝛾̂DH,kn

.

The following theorem shows the asymptotic normality of the asymptotically 
unbiased distributed estimator.

Theorem 2  Assume that the distribution function F satisfies the third order condi-
tion (4) with parameters 𝛾 > 0, 𝜌 < 0 and 𝜌̃ ≤ 0 , and condition (2) holds. Suppose 
that k�, kn satisfy conditions (5) and (6) respectively. Then as N → ∞ , for each � ≥ 0

,

Remark 2  We investigate the conditions in Theorem  2 to determine the range of 
m (and k) such that the oracle property holds. The last statement in Condition (2), 
n∕ logm → ∞ as N → ∞ , provides an upper bound for m as m = o(N∕ logN) as 

� =

⎛
⎜⎜⎝

1 4 18

4 20 98

18 98 684

⎞
⎟⎟⎠
.

√
k𝜌mA0(n∕k𝜌)(𝜌̂k𝜌,𝜏 − 𝜌) = OP(1),

(8)𝛾̃kn,k𝜌,𝜏 ∶= R
(1)

kn
−

R
(2)

kn
− 2

(
R
(1)

kn

)2

2R
(1)

kn
𝜌̂k𝜌,𝜏(1 − 𝜌̂k𝜌,𝜏)

−1
,

√
knm

�
𝛾̃kn,k𝜌,𝜏 − 𝛾

�
d
−→N

�
0, 𝛾2

�
1 +

�
𝜌−1 − 1

�2��
.
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N → ∞ . Condition (6) leads to an upper bound for knm : based on the second order 
condition (1), we need to have knm = O(N�) with 𝜉 < 1 . Clearly, for the number of 
machine m, the second upper bound is a stricter requirement than the first.

Remark 3  The limit distribution in Theorem 2 is the same as that of the bias cor-
rected Hill estimator based on the oracle sample, see for example de Haan et  al. 
(2016). In other words, the asymptotically unbiased distributed estimator achieves 
the oracle property regardless whether kn is a fixed integer or an intermediate 
sequence. Chen et al. (2021) shows that when kn is a fixed integer, the distributed 
Hill estimator may possess a higher bias than that of the oracle Hill estimator. Con-
sequently, the distributed Hill estimator achieves the oracle property only if addi-
tional conditions are assumed, see Corollary 1 therein. If the additional conditions 
fail, the violation of the oracle property is due to the difference in the asymptotic 
biases of the two estimators. By contrast, the asymptotically unbiased distributed 
estimator achieves the oracle property without any additional assumption when kn is 
a fixed integer. This is due to the fact that the asymptotic bias was corrected.

Nevertheless, if Condition (6) is violated in the following sense: as N → ∞ , √
knmA

2(n∕kn) → �3 and 
√
knmA(n∕kn)B(n∕kn) → �4 where �3 ≠ 0 or �4 ≠ 0 , then 

the oracle bias corrected estimator will possess a non-zero asymptotic bias. In this 
case, the asymptotically unbiased distributed estimator may not possess the oracle 
property.

Remark 4  We investigate the optimal choice for kn in terms of the level of the 
asymptotic root mean squared error (RMSE). We first consider the asymptotically 
unbiased distributed estimator. To simplify the discussion, we focus on the case 
A(t) ≍ t𝜌,B(t) ≍ t𝜌̃ as t → ∞ . The best attainable rate of convergence is achieved 
when squared bias and variance are of the same order, that is, when

as N → ∞ . Solving kn yields that kDC
n

≍ N−2�∗∕(1−2�∗)m−1 as N → ∞ , where 
𝜌∗ = 𝜌 +max(𝜌, 𝜌̃).

Similarly, we obtain the optimal choice of kn in a single machine as 
k
Single
n ≍ n−2�

∗∕(1−2�∗) . Note that, as N → ∞ , kDC
n

∕k
Single
n ≍ m−1∕(1−2�∗)

→ 0 . We con-
clude that the two optimal choices do not match each other: the optimal choice of kn 
at each individual machine is too high for optimally using the asymptotically unbi-
ased distributed estimator. In practice, for example, in the insurance claim example, 
to make use of the asymptotically unbiased distributed estimator, one needs to coor-
dinate the choice of kn at all insurance companies instead of allowing each insurance 
company to choose the optimal level of kn based on their own data.

1√
knm

≍ A(n∕kn)
�
A(n∕kn) + B(n∕kn)

�
,
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4 � Simulation study

4.1 � Comparison with the original distributed Hill estimator

In this subsection, we conduct a simulation study to demonstrate the finite sample 
performance of the asymptotically unbiased distributed estimator for the extreme 
value index. Data are simulated from three distributions: the Fréchet distribution, 
F(x) = exp

(
−x−1

)
, x > 0 ; the Burr distribution, F(x) = 1 − (1 + x1∕2)−2, x > 0 ; and 

the absolute Cauchy distribution with the density function f (x) = 2∕
{
�(1 + x

2)
}
,

x > 0 . The first, second and third order indices of the three distributions are listed in 
Table 1. We generate r = 1000 samples with sample size N = 10000 . The value of k� 
is chosen to be [n0.98] as suggested by Cai et al. (2012), where [x] denotes the largest 
integer less than or equal to x.

To apply the asymptotically unbiased distributed estimator, we use the following 
procedure: 

1.	 On each machine j, we calculate R(1)

j,kn
 , R(2)

j,kn
 , R(1)

j,k�
 , R(2)

j,k�
 , R(3)

j,k�
 and transmit them to 

the central machine.
2.	 On the central machine, we take the average of the R(1)

j,kn
 , R(2)

j,kn
 , R(1)

j,k�
 , R(2)

j,k�
 , R(3)

j,k�
 sta-

tistics collected from the m machines to obtain R(1)

kn
 , R(2)

kn
 , R(1)

k�
 , R(2)

k�
 , R(3)

k�
.

3.	 On the central machine, we estimate the second order parameter � by (7) with 
k = k� . The value of the tuning parameter � is set at 0, 0.5 and 1.

4.	 On the central machine, we estimate the extreme value index by (8) for various 
values of kn , using 𝜌̂k𝜌,𝜏.

We assume that the N = 10000 observations are stored in m = 1, 20, 100 machines 
with n = N∕m observations each. Note that the case m = 1 corresponds to applying 
the statistical procedure to the oracle sample directly. The corresponding estimator 
is therefore the oracle estimator.

Figure 1 shows the absolute bias against various levels of kn for the three distribu-
tions with m = 20 . The results for other values of m show similar patterns and are 
thus omitted. We observe that, the asymptotically unbiased distributed estimator 
𝛾̃kn,k𝜌,𝜏 generally has superior performance compared to the original distributed Hill 
estimator 𝛾̂DH,kn

 . As kn increases, the bias of the distributed Hill estimator increases, 
while the asymptotically unbiased distributed estimator has almost zero bias except 
for very high level of kn . This is in line with the asymptotic theory. In addition, the 

Table 1   The first, second and 
third order indicies for the 
distributions

Fréchet Burr Absolute 
Cauchy

� 1 1 1
� −1 −1∕2 −2

𝜌̃ −1 −1∕2 −4
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choice of � affects the performance of the asymptotically unbiased distributed esti-
mator. When 𝜌 < −1 (absolute Cauchy distribution), � = 1 is a better choice than 
� = 0 . When � ≥ −1 (Fréchet distribution and Burr distribution), � = 0 is a better 
choice than � = 1 . This is in line with the findings in Alves et al. (2003).

Next, we compare the performance of the asymptotically unbiased distributed 
estimator for different values of m. In this comparison, we fix � = 0.5 . We plot the 
RMSE of the estimators against various levels of knm in Fig.  2. For the Fréchet 
distribution and the absolute Cauchy distribution, the performance of the asymp-
totically unbiased distributed estimator is generally not sensitive to the variation in 
m. The performance across different values of m is comparable to the case m = 1 , 
i.e., the oracle property holds. For the Burr distribution, the oracle property only 
holds when knm is low. When knm is high, the oracle bias corrected estimator fails 
to correct the bias and the RMSE for the distributed estimator is higher than that of 
the oracle estimator. This observation is in line with the theoretical discussion in 
Remark 3.

One important advantage of bias correction method in extreme value statistics 
is that the bias corrected estimator is relatively insensitive to the number of tail 
observations used in estimation, when applying it to a single sample. This advantage 
might be less pronounced for the distributed estimator since increasing kn by 1 will 
effectively lead to an increase of the number of tail observations by m. To examine 
this effect, we compare the single sample performance of the asymptotically unbi-
ased distributed estimator with different values of m. Figure 3 shows the plot of the 
estimates against various levels of knm based on one single sample consisting of 
10000 observations. We observe that the path of the asymptotically unbiased distrib-
uted estimator across different values of m is comparable to the case m = 1 . In other 

(a) Fréchet (b) Burr (c) Absolute Cauchy

Fig. 1   Absolute bias for different levels of k
n
 with m = 20

(a) Fréchet (b) Burr (c) Absolute Cauchy

Fig. 2   RMSE for different levels of k
n
m



	 L. Chen et al.

1 3

words, the asymptotically unbiased distributed estimator inherits the advantage of 
the bias correction estimator: it stabilizes the performance over a broader range of 
knm.

Finally, we examine the impact of choosing k� . In this comparison, we fix m = 20 
and � = 0.5 , and consider three choices of k� = [n0.96], [n0.98], [n0.99] . Figure 4 shows 
the plots of the RMSE against various levels of kn . For the Fréchet and the absolute 
Cauchy distribution, the asymptotically unbiased distributed estimator is not sensi-
tive to the choice of k� , while k� = [n0.98] performing slight better for high level of 
kn . For the Burr distribution, k� = [n0.96] yields slightly better performance. Never-
theless, the RMSEs for the three choices of k� are still comparable when kn is low.

4.2 � Further limitation for transmission

Recall that for the asymptotically unbiased distributed estimator, we need to transmit 
five statistics from each of the m machines to the central machine. If there are fur-
ther limitations on the number of results that can be transmitted, such as only three, 
or even one statistic can be transmitted, the estimation procedure in Sect. 4.1 will 
not be applicable. In this subsection, we consider two alternative procedures for bias 
correction in the distributed inference setup with fewer number of transmissions.

Firstly, we consider a bias correction procedure if only three statistics can be 
transmitted. We can estimate the second order parameter � on each machine and 
transmit the estimates for � to the central machine. The detailed procedures are 
given as follows:

(a) Fréchet (b) Burr (c) Absolute Cauchy

Fig. 3   Single sample performance

(a) Fréchet (b) Burr (c) Absolute Cauchy

Fig. 4   Performance for different choices of k�
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•	 On each machine j, we calculate R(1)

j,kn
 , R(2)

j,kn
 , R(1)

j,k�
 , R(2)

j,k�
 , R(3)

j,k�
.

•	 On each machine j, we estimate the second order parameter � by 

 with 

 and transmit 𝜌̂j,k𝜌,𝜏 ,R
(1)

j,kn
,R

(2)

j,kn
 to the central machine.

•	 On the central machine, we take the average of the 𝜌̂j,k𝜌,𝜏 ,R
(1)

j,kn
,R

(2)

j,kn
 to obtain 

•	 On the central machine, we estimate the extreme value index by 

Secondly, we consider a bias correction procedure if only one statistic can be trans-
mitted. We can conduct bias correction on each machine and transmit the estimates 
using the bias-corrected Hill estimator to the central machine. Then we take the aver-
age of these estimates on the central machine. In this procedure, each machine only 
sends one statistic to the central machine. The detailed procedures are as follows:

•	 On each machine j, we calculate R(1)

j,kn
 , R(2)

j,kn
 , R(1)

j,k�
 , R(2)

j,k�
 , R(3)

j,k�
 and estimate the sec-

ond order parameter � by (9).
•	 On each machine j, we estimate the extreme value index by 

 and transmit the estimates 𝛾̃j,kn,k𝜌,𝜏 to the central machine.
•	 On the central machine, we take the average of these estimates by 

(9)𝜌̂j,k𝜌,𝜏 ∶= −3
|||||
Tj,k𝜌,𝜏 − 1

Tj,k𝜌,𝜏 − 3

|||||
,

Tj,k�,� ∶=

(
R
(1)

j,k�

)�

−
(
R
(2)

j,k�
∕2

)�∕2

(
R
(2)

j,k�
∕2

)�∕2

−
(
R
(3)

j,k�
∕6

)�∕3
,

𝜌̃k𝜌,𝜏 =
1

m

m∑
j=1

𝜌̂j,k𝜌,𝜏 , R
(1)

kn
=

1

m

m∑
j=1

R
(1)

j,kn
, R

(2)

kn
=

1

m

m∑
j=1

R
(2)

j,kn
.

𝛾̃
(2)

kn,k𝜌,𝜏
∶= R

(1)

kn
−

R
(2)

kn
− 2

(
R
(1)

kn

)2

2R
(1)

kn
𝜌̃k𝜌,𝜏(1 − 𝜌̃k𝜌,𝜏)

−1
.

𝛾̃j,kn,k𝜌,𝜏 ∶= R
(1)

j,kn
−

R
(2)

j,kn
− 2

(
R
(1)

j,kn

)2

2R
(1)

j,kn
𝜌̂j,k𝜌,𝜏(1 − 𝜌̂j,k𝜌,𝜏)

−1
,

𝛾̃
(3)

kn,k𝜌,𝜏
∶=

1

m

m∑
j=1

𝛾̃j,kn,k𝜌,𝜏 .
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The asymptotic theories of these two estimators 𝛾̃ (2)
kn,k𝜌,𝜏

 and 𝛾̃ (3)
kn,k𝜌,𝜏

 are left for further 
study. We only provide a finite sample comparison between the proposed estimator 
and these two estimators.

In this comparison, we fix � = 0.5 . Figure 5 shows the RMSE for the Fréchet distri-
bution. The figures for the Burr distribution and the absolute Cauchy distribution have 
similar patterns and are therefore omitted. We observe that all three bias corrected esti-
mators 𝛾̃kn,k𝜌,𝜏 , 𝛾̃

(2)

kn,k𝜌,𝜏
 and 𝛾̃ (3)

kn,k𝜌,𝜏
 generally perform better than the original distributed 

Hill estimator. In addition, 𝛾̃kn,k𝜌,𝜏 and 𝛾̃ (2)
kn,k𝜌,𝜏

 have similar performance for all three val-
ues of m with 𝛾̃kn,k𝜌,𝜏 performing slightly better for the Fréchet distribution and 𝛾̃ (2)

kn,k𝜌,𝜏
 

performing slightly better for the absolute Cauchy distribution.
The performance of 𝛾̃ (3)

kn,k𝜌,𝜏
 is unstable when m is at a high level. In this case, n is at a 

low level. Therefore, conducting bias correction on each machine is suboptimal since 
the bias correction procedure requires a relatively large sample size.

5 � Discussion

In this section, we discuss three extensions of our main results. The first two considers 
relaxing some technical assumptions in the current framework. The last one extends 
our result to estimating high quantiles.

First, we relax the assumption that the sample sizes on all machines are equal. 
Assume that N observations are distributed stored in m machines with nj = nj(N) 
observations in machine j, j = 1, 2,… ,m , i.e. N =

∑m

j=1
nj . We assume that all 

nj, j = 1, 2,… ,m diverge in the same order. Mathematically, there exist positive con-
stants c1 and c2 , such that for all N ≥ 1,

We choose kj, j = 1, 2,… ,m such that the ratios kj∕nj are homogenous across all the 
m machines, i.e.,

where k = m−1
∑m

j=1
kj and n = N∕m . Define

c1 ≤ min
1≤j≤m njm∕N ≤ max

1≤j≤m njm∕N ≤ c2.

k1∕n1 = k2∕n2 = ⋯ = km∕nm =∶ k∕n,

(a) m=1 (b) m=20 (c) m=100

Fig. 5   RMSE for the Fréchet distribution
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Under the same conditions as in Proposition 1, by following similar steps as in the 
proof of the proposition, we can obtain that, as N → ∞,

Similar results hold for R(2)

k
 and R(3)

k
.

Then, with defining the asymptotically unbiased distributed estimator for the 
extreme value index as

Theorem 2 still holds.
Second, we relax the assumption that all the data are drawn from the same distri-

bution. We maintain the assumption that observations on the same machine follow 
the same distribution, but assume that observations across machines are not identi-
cally distributed. More specifically, denote the common distribution function of the 
observations in machine j as Fm,j, j = 1, 2,… ,m . We assume the heteroscedastic 
extreme model in Einmahl et al. (2016) holds for Fm,j, j = 1, 2,… ,m : there exists a 
continous distribution function F such that

uniformly for all 1 ≤ j ≤ m and all m ∈ ℕ with cm,j uniformly bounded away from 0 
and ∞.

Under this heteroscedastic extremes setup, the first order parameters � for all Fm,j , 
j = 1, 2,… ,m are the same. This heteroscedastic extreme setup is similar to the 
setup in Sect. 3 in Chen et al. (2021). Its practical relevance can be again illustrated 
by the example of estimating tail risks in insurance claims. For a given type of insur-
ance, claims in different insurance companies may not follow the same distribution 
due to the fact that different companies may be specialized in different segments of 
the market. Nevertheless, they may share the same shape parameter of the tail due to 
the underlying nature of the insured risk.

Chen et  al. (2021) introduces additional assumptions to ensure that the hetero-
scedastic extremes assumption does not introduce an additional bias; see assump-
tions in Theorem 4 therein, particularly Condition D. Under the same assumption, 

R
(�)

k
∶=

m∑
j=1

nj

N
R
(�)

j,k
, � = 1, 2, 3.

√
km

�
R
(1)

k
− 𝛾

�
=𝛾P

(1)

N
+
√
kmA0(n∕k)

1

m

m�
j=1

g(kj, nj, 𝜌)

1 − 𝜌
+
√
kmA0(n∕k)B0(n∕k)

1

m

m�
j=1

g(kj, nj, 𝜌 + 𝜌̃)

1 − 𝜌 − 𝜌̃
+ oP(1).

𝛾̃kn,k𝜌,𝜏 ∶= R
(1)

kn
−

R
(2)

kn
− 2

(
R
(1)

kn

)2

2R
(1)

kn
𝜌̂k𝜌,𝜏(1 − 𝜌̂k𝜌,𝜏)

−1
,

(10)lim
x→∞

1 − Fm,j(x)

1 − F(x)
= cm,j,
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by following similar techniques in the proof, we can show that the heteroscedastic 
extremes setup does not affect the statement in Theorem 2.

Third, we discuss how to obtain the asymptotically unbiased distributed estimator 
for the high quantile x(pN) ∶= U(1∕pN) , where pN = O(1∕N) as N → ∞ . Motivated 
by de Haan et al. (2016), we define the asymptotically unbiased distributed estimator 
for high quantile as

Note that, the estimator x̂kn,k𝜌,𝜏 also adheres to a DC algorithm since each machine 
only sends six values 

{
R
(1)

j,kn
,R

(2)

j,kn
,R

(1)

j,k�
,R

(2)

j,k�
,R

(3)

j,k�
,M

(kn+1)

j

}
 to the central machine. 

Since x̂kn,k𝜌,𝜏(pN) are constructed by R
(�)

k
 ( k = kn and k� , � = 1, 2, 3 ) and 

m−1
∑m

j=1
M

(kn+1)

j
 , the asymptotic theory of x̂kn,k𝜌,𝜏(pN) can be established using simi-

lar techniques as in the proof of Theorem 4.2 in de Haan et al. (2016). We leave the 
details to the readers.

Appendix

Proofs

Preliminary

Lemma 1  Let Y , Y1,… , Yn be i.i.d. Pareto (1) random variables with distribution 
function 1 − 1∕y, y ≥ 1 . Let Y (1) ≥ ⋯ ≥ Y (n) be the order statistics of 

{
Y1,… , Yn

}
 . 

Let f be a function such that Var{f (Y)} < ∞ . Then for any k ≥ 1,

where Y∗
1
, Y∗

2
,… , Y∗

k
 are i.i.d. Pareto (1) random variables. Moreover,

is independent of Y (k+1) and asymptotically normally distributed with mean zero and 
variance Var{f (Y)} as n → ∞ , provided that k = k(n) → ∞ and k∕n → 0.

Proof of Lemma 1  This Lemma follows directly from Lemma 3.2.3 in de Haan and 
Ferreira (2006) with the fact that logY  follows a standard exponential distribution. 	
� ◻

x̂kn,k𝜌,𝜏(pN) ∶=
1

m

m�
j=1

M
(kn+1)

j

�
k

npN

�𝛾̂kn ,k𝜌 ,𝜏

⎛
⎜⎜⎜⎜⎝
1 −

�
R
(2)

kn
−
�
R
(1)

kn

�2
��

1 − 𝜌̂k𝜌,𝜏

�2

2R
(1)

k,n

�
𝜌̂k𝜌,𝜏

�2

⎞
⎟⎟⎟⎟⎠
.

1

k

k∑
i=1

f

(
Y (i)

Y (k+1)

)
d
=
1

k

k∑
i=1

f (Y∗
i
),

√
k

�
1

k

k�
i=1

f

�
Y (i)

Y (k+1)

�
− �f (Y)

�
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Lemma 2  Let Y1,… , Yn be i.i.d. Pareto (1) random variables and Y (1) ≥ ⋯ ≥ Y (n) be 
the order statistics of 

{
Y1,… , Yn

}
 . Then for any 𝜌 < 0,

where g(k, n, �) is defined in (3). Moreover, if k is a fixed integer, then 
g(k, n, �) → k�Γ(k − � + 1)∕Γ(k + 1) as n → ∞ . If k is an intermediate sequence, i.e. 
k → ∞, k∕n → 0 as n → ∞ , then,

Proof of Lemma 2 

We first handle the case when k is a fixed integer. By the Stirling’s formula,

as x → ∞ , we have that, as n → ∞,

which leads to

Next, we handle the case when k is an intermediate sequence. By the Stirling’s for-
mula, we have that, as n → ∞,

By the Taylor’s formula and some direct calculation, we obtain that, as n → ∞,

�

{(
k

n
Y (k+1)

)�
}

= g(k, n, �),

g(k, n, �) = 1 +
1

2

(
�2 − �

)
k−1 −

1

2

(
�2 − �

)
(n − �)−1 + O

(
k−2

)
.

�

{(
k

n
Y (k+1)

)�
}

=
n!

(n − k − 1)!k! ∫
∞

1

(
1 −

1

y

)n−k−1(
1

y

)k+2(
k

n
y
)�

dy

=
(
k

n

)� n!

(n − k − 1)!k! ∫
∞

1

(
1 −

1

y

)n−k−1(
1

y

)k+2−�

dy

=
(
k

n

)�Γ(n + 1)Γ(k − � + 1)

Γ(n − � + 1)Γ(k + 1)

= g(k, n, �).

Γ(x) =
√
2�(x − 1)

�
e−1(x − 1)

�x−1�
1 + (x − 1)−1∕12 + O

�
1∕x2

��

Γ(n + 1) ∼ (2�n)1∕2
(
n

e

)n

, Γ(n − � + 1) ∼ {2�(n − �)}1∕2
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,
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and

It follows that, as n → ∞,

	�  ◻

Lemma 3  Let Y1,… , Yn be i.i.d. Pareto (1) random variables and Y (1) ≥ ⋯ ≥ Y (n) be 
the order statistics of 

{
Y1,… , Yn

}
 . Define for 𝜌 < 0,

Then, the following results hold. 

	 (i)	 For fixed k, �(Za
k
) < ∞ , for a = 1, 2, 3, 4 . Moreover, �

(
Z2
k

)
−
{
�
(
Zk
)}2

> 0.
	 (ii)	 For intermediate k, i.e., k = k(n) → ∞, k∕n → 0 as n → ∞ , and a = 1, 2, 3, 4 , 

Proof of Lemma 3  By Lemma 1, we have that,

where Y∗
1
,… , Y∗

k
 are i.i.d. Pareto (1) random variables. Denote Ti =

{
(Y∗

i
)� − 1

}
∕� , 

for i = 1,… , k and Zk = k−1
∑k

i=1
Ti . Then, Ti, i = 1,… , k follows the generalized 

Pareto distribution with the cumulative distribution function F(t) = 1 − (1 + �t)−1∕� . 
Thus, we have that for a = 1, 2, 3, 4,

First, we handle the case when k is fixed. The result is obvious since kZk is a finite 
sum of i.i.d. generalized Pareto random variables with shape parameter 𝜌 < 0.

Next, we handle the case when k is an intermediate sequence. For a = 1 , we have 
that, E(Zk) = E(Ti) = (1 − �)−1.

(
1 −

�

k

)k−�+1∕2

= e−�
{
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1

2
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For a = 2 , we have that,

For a = 3 , we have that

The term �
(
Z4
k

)
 can be handled in a similar way as that for handling �

(
Z3
k

)
 . 	�  ◻

Lemma 4  Assume that the distribution function F satisfies the third order condition 
(4). Then there exist two functions A0(t) ∼ A(t) and B0(t) = O{B(t)} as t → ∞ , such 
that for any 𝛿 > 0 , there exists a t0 = t0(𝛿) > 0 , for all t ≥ t0 and tx ≥ t0,

Proof of Lemma 4  This lemma follows from applying Theorem B.3.10 in de Haan 
and Ferreira (2006) to the function f (t) ∶= logU(t) − � log t . 	�  ◻

Proofs for Section 3

Recall that U = {1∕(1 − F)}← . Then X
d
=U(Y) , where Y follows the Pareto (1) distribu-

tion. Since we have i.i.d. observations 
{
X1,… ,XN

}
 , we can write Xi

d
=U(Yi) , where {

Y1,… , YN
}
 is a random sample of Y. Recall that the N observations are stored in m 

machines with n observations each. For machine j, let Y (1)

j
≥ ⋯ ≥ Y

(n)

j
 denote the order 

statistics of the n Pareto (1) distributed variables corresponding to the n observations in 
this machine. Then M(i)

j

d
=U(Y

(i)

j
), i = 1,… , n, j = 1,… ,m.

Proof of Proposition 1  We intend to replace t and tx in Lemma 4 by n/k and 
Y
(i)

j
, i = 1,… , k + 1, j = 1,… ,m , respectively. For this purpose, we introduce the set
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logU(tx)−logU(t)−𝛾 log x

A0(t)
−

x𝜌−1

𝜌

B0(t)
−

x𝜌+𝜌̃ − 1

𝜌 + 𝜌̃

|||||||
≤ 𝛿x𝜌+𝜌̃ max(x𝛿 , x−𝛿).

Ft0
∶=

{
Y
(k+1)

j
≥ t0, for all 1 ≤ j ≤ m

}
.
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By Lemma S.2 in the supplementary material of Chen et al. (2021), we have that for 
any t0 > 1 , if condition (2) holds, then limN→∞ ℙ

(
Ft0

)
= 1 . Then, we can apply the 

intended replacement to get that, as N → ∞,

where the oP(1) term is uniform for all 1 ≤ i ≤ k + 1 and 1 ≤ j ≤ m . By applying (11) 
twice for a general i and i = k + 1 and the inequality x�±�∕y�±� ≤ (x∕y)�±� for any 
x, y > 0 , we get that as N → ∞,

By taking the average across i and j, we obtain that

Firstly, we handle I1 . By Lemma 1, we have that,

where Yj,∗

i
, i = 1,… , k, j = 1,… ,m are independent and identically distributed 

Pareto (1) random variables. The central limit theorem yields that as N → ∞

, I1 = �P
(1)

N
+ oP(1), where P(1)

N
∼ N(0, 1).

For I2 , write �j,n =
�
kY

(k+1)

j
∕n

��

(k�)−1
∑k

i=1

��
Y
(i)

j
∕Y

(k+1)

j

��

− 1
�

 . Then we have 
that I2 =

√
kmA0(n∕k)m

−1
∑m

j=1
�j,n , where �j,n, j = 1,… ,m are i.i.d. random variables.
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We are going to show that, as N → ∞,

If k is fixed, (13) follows directly from Lemma 3 (i) and the Lyapunov central limit 
theorem for triangular array.

Next, we handle the case when k is an intermediate sequence. In this case, in 
order to apply the Lyapunov central limit theorem with 4-th moment, we need to cal-
culate Var

(
�j,n

)
 and �[

{
�j,n − �

(
�j,n

)}4
] . Denote m(a)

n
∶= �

{(
�j,n

)a}
, a = 1, 2, 3, 4 . 

By Lemma 1, we have that,

First, we calculate Var
(
�j,n

)
 . By Lemma 3, we have that,

here in the last step, we used the fact that as n → ∞ , g(k, n, �) → 1 and 
g(k, n, 2�) → 1 . By Lemma 2, we have that, as n → ∞,

Hence, as n → ∞ , Var
(
�j,n

)
= k−1(1 − �)−2

(
(1 − 2�)−1 + �2

)
+ o(k−1).

Next, we calculate �[
{
�j,n − �

(
�j,n

)}4
] . By Lemma 2 and Lemma 3, we have that, 

for a = 3, 4 , as N → ∞,

Note that,

(13)
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⎪⎨⎪⎩
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By some direct calculation, all terms of order k−1 and n−1 are cancelled out. Thus, as 
N → ∞ , �[

{
(�j,n − �

(
�j,n

)}4
] = O(k−2) . Combining Var(�j,n) and �[

{
�j,n − �

(
�j,n

)}4
] ,  

we conclude that the sequences 
{
�j,n

}m

j=1
 satisfy the Lyapunov’s condition. Then, (13)  

follows by the central limit theorem. Applying (13), we obtain that, as N → ∞,

For I3 , by using the weak law of large numbers for triangular array, we have that, as 
N → ∞,

where the last equality follows by the condition 
√
kmA(n∕k)B(n∕k) = O(1).

For I4 , by similar arguments as for I3 , we obtain that, as N → ∞ , I4
P
−→0 . Combin-

ing I1, I2, I3 and I4 , we have proved (i).
Next, we handle R(2)

k
 . By (12), we obtain that, as N → ∞,
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.
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=∶ I5 + I6 + I7 + I8 + oP(1).
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For I5 , by Lemma 1, we have that

The central limit theorem yields that as N → ∞ , I5 = �2P
(2)

N
+ oP(1) , where 

P
(2)

N
∼ N(0, 20) . In addition, the covariance of P(1)

N
 and P(2)

N
 is equal to the covariance 

of logYj,∗

i
 and 

(
log Y

j,∗

i

)2

 , where Yj,∗

i
 follows the Pareto (1) distribution. Hence, 

Cov(P
(1)

N
,P

(2)

N
) = 4.

For I6 , we write I6 = 2
√
kmA0(n∕k)m

−1
∑m

j=1
�j,n , where

are i.i.d. random variables for j = 1, 2,… ,m . We can verify the Lyapunov’s condi-
tion for the series 

{
�j,n

}m

j=1
 following similar steps as those for 

{
�j,n

}m

j=1
 . Then by 

applying the central limit theorem and Lemma 2, we obtain that

By the weak law of large numbers for triangular array, we have that

and

Combining the results for I5, I6, I7 and I8 , we have proved (ii).
Finally, we handle R(3)

k
 . Also, by (12), we have that
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By similar steps as for handling the four items I5, I6, I7 and I8 , we can show that 
I9 = �3P

(3)

N
+ oP(1) , where P(3)

N
∼ N(0, 684) and Cov(P(1)

N
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(3)

N
) = 18, Cov(P

(2)
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= 98 . And

which yields (iii). 	�  ◻

Proof of Theorem 1  Applying Proposition 1 with k = k� , we have that, as N → ∞,
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As a consequence, we have that, as N → ∞,

It follows that, as N → ∞,
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By the condition (5), the dominating terms in the two expressions above are

respectively. Therefore, as N → ∞,

It follows that as N → ∞,

Theorem 1 is thus proved by applying the Cramér’s delta method. 	�  ◻
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The relation kn∕k� → 0 implies that A(n∕kn)∕A(n∕k�) → 0 as N → ∞ . Thus, by 
Theorem 1, we have that, as N → ∞,

Together with the consistency of 𝜌̂k𝜌,𝜏 and R(1)

kn
 , we have that, as N → ∞,

Combining with Proposition 1, we obtain that, as N → ∞,

	�  ◻
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