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Abstract— Suppressing tissue clutter is an essential step in blood 

flow estimation and visualization, even when using ultrasound 

contrast agents. Blind source separation (BSS)-based clutter filter 

for high frame rate ultrasound imaging has been reported to 

perform better in tissue clutter suppression than the conventional 

frequency-based wall filter and nonlinear contrast pulsing 

schemes. The most notable BSS technique, singular value 

decomposition (SVD) has shown compelling results in cases of slow 

tissue motion. However, its performance degrades when the tissue 

motion is faster than the blood flow speed, conditions which are 

likely to occur when imaging the small vessels, such as in the 

myocardium. Independent component analysis (ICA) is another 

BSS technique that has been implemented as a clutter filter in the 

spatiotemporal domain. Instead, we propose to implement ICA in 

the spatial domain where motion should have less impact. In this 

work, we propose a clutter filter with the combination of SVD and 

ICA to improve the contrast-to-background ratio (CBR) in cases 

where tissue velocity is significantly faster than the flow speed. In 

an in vitro study, the range of fast tissue motion velocity was 5-25 

mm/s and the range of flow speed was 1-12 mm/s. Our results show 

that the combination of ICA and SVD yields 7 – 10 dB higher CBR 

than SVD alone, especially in the tissue high-velocity range. The 

improvement is crucial for cardiac imaging where relatively fast 

myocardial motions are expected. 

Index Terms—Contrast-enhanced ultrasound, clutter filter, 

slow blood flow, tissue motion, blind source separation 

 

I. INTRODUCTION 

ontrast-enhanced Ultrasound (CEUS) imaging is a 

diagnostic tool in clinical practice that enables the 

assessment of microvascular flow and perfusion [1]–[4]. 

By intravascular injection, encapsulated microbubbles act as 

ultrasound contrast agents (UCA) that lit up the otherwise 

hypoechoic blood regions since they produce strong back-

scatter signal upon ultrasound insonification. This enhancement 

improves ultrasound sensitivity to detect vascular flow and 

allows quantitative evaluation of microvascular flow [5]. 

Regional microvessel characterization with CEUS, such as 

characterizing focal liver lesions [2], [6] and renal masses[1] 

has been recommended and is performed in clinical practice. 

Moreover, CEUS for detecting myocardial blood flow and 

perfusion has been used for decades [7], [8], albeit with a 

limited accuracy to detect regional perfusion deficits [9], [10]. 

Actually, resolving the flow of contrast agents in the 

myocardial vascular structure, rather than just detecting the 

presence of contrast agents, could improve diagnostic 

assessment [11], [12]. However, quantitative CEUS results 

have significant variations due to scanner settings, patients 

physiological variations, and factors relating to the 

microbubbles [13], [14]. Cardiac imaging has additional 

problems due to substantial tissue motion.  The peak cardiac 

motion around the location of the left coronary artery has a 

speed of up to 56mm/s [15]. This rapid motion causes strong 

tissue clutter artifacts that impair the contrast signal visibility 

[16].  

In the past decades, two main approaches have been 

developed to suppress the strong tissue clutter that conceals the 

microbubble flow signal. The first one is frequency-based wall 

clutter filters for ultrasonic flow imaging, which operate in the 

temporal domain [17], [18]. It works with the assumption that 

the flow inside the vessel is faster than the tissue motion, which 

is not the case with the combination of slow flow in the 

microvasculature and the fast-moving tissue, causing spectral 

contents overlap in temporal domain [19]. The second approach 

is by using contrast specific imaging techniques that exploit the 

nonlinear properties of microbubbles [20]. One option is by 

imaging of the harmonic signals of the transmit frequency 

(subharmonic, second harmonic, superharmonic) [21]–[23]. 

The alternative is by transmitting a sequence of pulses that 

cancel the linear tissue components when combined, yet retain 

nonlinear contrast signal components; such as pulse inversion 

(PI) [24], amplitude modulation (AM) [25], and power 

modulated pulse inversion (PMPI / CPS) [26]. However, 

ultrasound also propagates non-linearly through tissue, which 

diminishes the contrast between tissue and microbubble non-

linear signal, thus reducing contrast visibility [27]. Moreover, 

since the nonlinear signals have lower signal amplitude and 

multiple transmit-receive events are combined, noise can 

become a significant factor [28]. Lastly, contrast-specific 

pulsing sequences need very well-controlled transmit signals to 

work optimally in actual clinical settings [29]. 

More recently, blind source separation (BSS) techniques, 

which attempt to estimate the original sources of signal 

mixtures without the information of the mixing process and the 
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sources, received a lot of attention as clutter filters [30]. 

Singular value decomposition (SVD) [31], [32] and 

independent component analysis (ICA) [33] have shown 

potential to outperform conventional temporal filters, as they 

discriminate the clutter and flow signal by their spatiotemporal 

statistical properties instead of just temporal information. This 

however means that a BSS clutter filter assumes that the 

underlying statistics in, and between, the image pixels are 

stationary. This is not necessarily true in medical imaging: In 

presence of motion, clutter statistics per pixel can change over 

time since the image moves over the pixels. Hence, the motion 

within the sample period should be limited, and sufficient frame  

rate is required, to maintain coherence throughout the filtering 

interval [34]. Low temporal sampling rates (provided by 

conventional line-by-line scanning) cause loss of 

spatiotemporal coherence which makes clutter removal 

ineffective. 

Breakthroughs in ultrafast ultrasonic imaging have enabled 

the acquisition of more than 1000 images per second, which is 

an order of magnitude higher than conventional line-by-line 

scanning. The fast acquisition is achieved by transmitting broad 

beams that scan the whole field of view with a limited number 

of beams, instead of line-by-line focused beams [35], [36]. 

Along with coherent compounding of multiple transmission 

events (e.g. angled plane-waves), the ultrafast ultrasound 

approach can produce high temporal sampling images without 

significant quality degradation compared to line-by-line 

scanning [37], [38].  

SVD is a BSS method based on eigen decomposition that 

uses second-order statistics (i.e., variance) as the objective 

function, projecting the data onto orthogonal subspaces and 

ranking the singular vectors based on their eigenvalues. SVD 

filtering of high-framerate ultrasound images has been proven 

to be significantly more effective than conventional temporal 

filtering for clutter suppression in flow imaging of small vessels 

[39]. Typically, SVD filters assume that the tissue, flow, and 

noise components can be decomposed into distinct rank 

subspaces, ordered (decreasingly) by the magnitude of their 

eigenvalues. Subsequently, a threshold can be applied to 

remove the unwanted components, with a low rank threshold 

for tissue removal and a separate high rank threshold for noise 

suppression. Several estimators have been investigated and it 

was reported that the optimal threshold could be estimated 

using the correlation matrix of the spatial singular vectors [40]. 

However, SVD performance to suppress clutter drops off 

significantly with slower flow rate and faster tissue motion [39], 

[41]. The SVD filter operates on the assumption that the tissue 

signal has a low spatiotemporal correlation with the 

microbubble signal. However, their spatiotemporal correlation 

increases with tissue motion as the tissue encloses the vessels, 

which causes the decomposition to be less effective. Motion 

compensation on beamformed images before an SVD filter was 

investigated but the contrast to background ratio (CBR) 

improvement was not significant [41]. A combination of non-

linear imaging schemes (AM) with SVD was also investigated 

and were shown to attain worse CBR than only SVD filter [42]. 

Lastly, clustering the ranks based on the singular values, spatial 

correlation, and mean Doppler frequency with the K-means 

algorithm instead of choosing a threshold was proposed to 

improve the clutter and flow distinction [43].  Although K-

means clustering improves the performance, it is still limited by 

the efficacy of SVD to separate clutter and flow into different 

components. It could not resolve the case when the tissue 

motion is significantly faster than the flow speed, which causes 

the resulting decomposed components to still consist of 

mixtures of clutter and flow signals.  

ICA is another BSS technique that has been investigated as 

clutter filter [44]. Where SVD transforms data onto a basis with 

orthogonal vectors; ICA seeks to transform the data onto a basis 

with statistically independent vectors. In doing so, ICA might 

provide better results than SVD when the components are 

correlated in time. With the assumption that the microbubbles 

are sparser than tissue signal [30], [39], their respective 

statistical distribution are different and independent of each 

other, regardless of the tissue motion. Recently, Tierney et al 

[45] have shown that in combination with ultrafast ultrasound 

imaging, ICA is better than SVD in detecting slow flow when 

the tissue velocity is low and displacement is small. However, 

their ICA implementation over long SVD ensemble and 

component selection based on power Doppler image rely upon 

the assumption that large displacement does not occur through 

the ensemble period. Such assumption is likely to be violated in 

cardiac imaging, where fast tissue motion and large 

displacement exist throughout the cardiac cycle.  

With the aim of detecting slow flow during high velocity 

tissue motion, we propose a combination of SVD and ICA as a 

clutter filter with high-framerate CEUS plane-wave images. 

Instead of implementing ICA on the spatial singular vectors that 

represent the flow signals in the entire SVD ensemble duration, 

we use ICA on a pre-filtered images in a short time window 

where the flow location is almost static. SVD is used as a pre-

filter to remove any semi-static clutter and tissue components. 

Subsequently the ICA algorithm is employed to further isolate 

microbubble signal from the residual clutter. Here, it operates 

as a spatial filter on a subset of images that are almost spatially 

stationary, enabled by the ultrafast imaging framerate. The 

signal that consists of microbubble or clutter signal will be 

unmixed based on their distinct statistical distribution [46]. We 

chose the fourth-order statistics (normalized kurtosis) as the 

selection parameter in ICA as it is correlated with ultrasound 

scatter density [30], [47]. We evaluated and compared the 

performance of our proposed filter to SVD in an in vitro setup 

where the induced motion simulates realistic cardiac velocity 

and in a range of slow flow speeds.  

II. METHODS 

A. In vitro Setup 

A tissue-mimicking wall-less flow phantom was used for in 

vitro data acquisition, see Fig. 1. The phantom was made from 

a suspension of 10% w/v polyvinyl alcohol (PVA) and 1% w/v 

silicon carbide as background scattering particles, with one 

completed freeze-thaw thermal cycle. Diluted in-house 

phospholipid-coated microbubbles (F-type [48], concentration 

~ 7.6 x 105 MB/mL), which have similar performance to the 

commercially available Target-Ready MicroMarker 

(FUJIFILM VisualSonics, Inc.), were used. They were 

continuously infused through a 1 mm diameter channel by a 

syringe pump (AL-1000, World Precision Instruments, 

Sarasota, FL).  An ultrasound probe (see below) was attached 
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to a linear motorized stage. Rigid tissue motion was emulated 

by moving the probe during image acquisition in various 

directions. The diagonal direction had 45° angle with both the 

vertical and horizontal direction, in-plane with the probe image 

plane; see arrows on left-top in Fig. 1. Initially the tube was 

located at 2.5 cm depth inside the image; as the probe was 

moving away from the phantom, the depth was up to 4.3cm. 

To test the efficacy of the filter performance, 2 series of 

experiments were performed: the first investigated the effect of 

tissue motion while keeping flow speed constant (Table 1) and 

the second investigated the effect of flow speed while keeping 

the tissue motion constant (Table 2). These velocities are 

realistic for cardiac imaging except for peak-early diastolic and 

peak-early systolic motion [15]. Reported flow speeds in this 

channel were calculated by the ratio of the flow rate (provided 

by the perfusion pump setting) and the channel cross-sectional 

area and hence is the average flow speed, not peak flow speed. 

B. Ultrasound Acquisition and Beamforming 

RF acquisitions were performed with a linear transducer 

array (L7-4, Philips ATL, Bothell, WA), connected to a 

Vantage 256 system (Verasonics Inc., Redmond, WA). Each 

experiment was repeated 3 times. The transmission sequence 

consisted of 5 tilted plane waves from -7° to 7° with 3.5° 

increments with a pulse repetition frequency of 5,000 Hz. The 

transmitted pulses had a center frequency of 5.2 MHz (4 cycles, 

fundamental imaging) at a mechanical index (MI) of 0.05, 

measured with a standard hydrophone setup (30 mm from the 

transducer). Delay-and-sum beamforming and angular 

compounding was performed with the Ultrasound Toolbox [50] 

in Matlab (2020B, the Mathworks, Natick, 2020) on a 0.5 λ 

resolution grid. 

 

 
Fig. 1. Experimental setup to investigate the effect of probe motion and flow 
speed. The flow phantom consists of tissue-mimicking material (gray area) and 

a 1 mm wall-less cavity to emulate a small vessel. The probe was attached to a 

linear stage and moved during an acquisition while microbubbles were 

continuously injected. 

 

 

 

TABLE I 
PARAMETERS OF PROBE MOTION EXPERIMENT 

 

Probe motion experiment 

Probe axis Diagonal, axial, lateral 

Probe velocity 0, 5, 10, 15, 20, 25 mm/s 
Average flow speed 6 mm/s 

 
TABLE II 

PARAMETERS OF FLOW SPEED EXPERIMENT 
 

Flow speed experiment 

Probe axis Diagonal 

Probe velocity 25 mm/s 

Average flow speed 1, 2, 3, 6, 8, 12 mm/s 

 

C. Two-step BSS framework rationale 

A sequence of beamformed contrast-enhanced ultrasound 

images (s) can be modeled as a linear mixture of 3 independent 

components: tissue clutter signal (c), microbubble signal (b), 

and noise (n):  

 

 𝑠(𝑥, 𝑧, 𝑡) = 𝑐(𝑥, 𝑧, 𝑡) + 𝑏(𝑥, 𝑧, 𝑡) + 𝑛(𝑥, 𝑧, 𝑡), (1) 

 

where x is lateral position, z is axial position, t is time. To 

accurately assess the flow signal, the clutter and noise need to 

be removed from the signal mixture. However, only the 

observed mixture signal is available, both the mixing process 

and the source signals are unknown.  

Demené et al. [39] have implemented an SVD filter by 

rearranging the 𝑠(𝑥, 𝑧, 𝑡)  as a 2D Casorati matrix S where the 

dimension is (𝑛𝑥 × 𝑛𝑧, 𝑛𝑡 ). It was assumed that the tissue 

clutter has high internal spatiotemporal coherence and is 

uncorrelated with the flow signal. Therefore, clutter and 

microbubble signal are expected to be projected into separate 

singular vectors. The strong tissue clutter would be 

accumulated in the first few ranks. The microbubble flow signal 

then can be retrieved by adding the components above an 

estimated rank threshold. 

Although SVD works effectively when the tissue motion is 

not significantly faster than the flow speed, its performance 

drops off relatively proportional with tissue motion velocity and 

inversely proportional with flow velocity [39], [41]. In such 

case, the assumption of independent motion between tissue and 

flow is violated as they are temporally correlated. Since SVD 

maximizes the variance in the spatiotemporal domain, the 

projected components do not necessarily correspond to isolated 

signal sources (c, b, n). They could still consist of clutter and 

microbubble signal mixture, which makes SVD filtering by 

ranks removal ineffective. As a result, further filtering is needed 

to resolve flow signal, when it is significantly slower than the 

tissue motion velocity. 

Differently than SVD, ICA finds maximally independent 

components from linear signal mixtures. The principle lies in 

the central limit theorem, which states that the linear 

combination of independent components is closer to a Gaussian 

distribution than the components prior to the mixing process. 
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Accordingly, a measure of non-Gaussianity can be used as an 

objective to obtain maximally independent components; 

presuming that the sources are independent and have distinct 

non-Gaussian distribution. The pixel value in ultrasound 

images 𝑠(𝑥, 𝑧, 𝑡) is a linear summation of tissue, microbubbles 

and noise that are spatially independent and have different 

scatterer density, thus distinct spatial distribution. ICA then can 

be implemented in the spatial domain to retrieve these initial 

signal components, whereas subsequent images act as 

independent observations of the spatial distribution. Thus, 

motion should be less of a factor in spatial domain, compared 

to the SVD filter that operates in spatiotemporal domain.  

Normalized kurtosis (or fourth-order marginal cumulant of a 

distribution) is adopted as the ICA objective function as it is a 

measure of non-Gaussianity and has been employed to 

characterize ultrasound scatterers spatial density/sparsity [30], 

[47]. However, it is sensitive to other components that have 

sparse distribution such as strong specular reflections, and 

noise, in the image, which could be falsely detected as 

microbubble signal. To improve ICA detection robustness, we 

therefore propose to first remove the more coherent tissue 

components, and the incoherent noise, with SVD. This pre-

filtered data then will be processed by ICA to further separate 

the contrast signal from the residual tissue signal. The overview 

of the processing framework is shown in Fig. 2. 

 

i. SVD as a pre-filter 

The input of our ICA implementation is several observations 

of the signal mixtures that consist of similar spatial structure, 

i.e., a limited number of subsequently recorded images without 

coherent plane-wave compounding. High frame rate imaging 

with tilted plane wave transmissions assure that a similar 

underlying spatial structure is present in a short ensemble of 

images, and the SVD filtering [39] is separately performed on 

subsets of equal transmission angle. The ensemble length for 

this SVD pre-filtering is found by parametric testing (see 

Appendix). The noise threshold (nn) is found by the maximum 

acceleration of the normalized ordered singular values [49]. 

Additionally, this search starts after 20% of the total singular 

values number to avoid finding the clutter cutoff. After 

removing the noise components, the spatial covariance 

technique is employed to find the clutter cutoff (nc) [50]. 

Clutter filtering in this first step is described as: 

 

 

𝑆𝑏𝑐̃(𝑥, 𝑧, 𝑡, 𝛼) = ∑ 𝜆𝑖𝑈𝑖(𝑥, 𝑧, 𝛼)𝑉𝑖(𝑡, 𝛼)

𝑛𝑛

𝑖=𝑛𝑐

, 

 

(2) 

 

where 𝑆𝑏𝑐̃(𝑥, 𝑧, 𝑡, 𝛼) is the filtered images on each transmission 

angle α, λ are the singular values, U are the spatial singular 

vectors, and V are the temporal singular vectors. An example of 

the described rank selection is shown in Fig. 3. 

 

 
Fig. 3. An example of SVD rank selection. (a) The spatial singular vectors from 

rank 1 to 57.  Components 1 to 14 are deemed as clutter although some minor 
bubble signal is present, 15 to 42 are mixtures of bubble and clutter, and 43 

until 200 are noise. (b) Normalized singular values that were used to determine 

the noise subspace. (c) Correlation of spatial singular vectors. 

ii. ICA filtering 

ICA is then implemented on the output of the SVD filter in 

the first step to further separate microbubble signal and clutter.  

The algorithm was applied to an observation window (y) of an 

ensemble length (el), which arranged as a Casorati matrix with 

dimension (𝑛𝑥 × 𝑛𝑧, 𝑛𝛼 × 𝑛𝑒𝑙). The angled images (without 

coherent compounding) were used as input to provide different 

observations of the imaged object and to preserve framerate. 

Sequential observation windows were constructed from 𝑆𝑏𝑐̃. 

The ensemble length should be short to keep the stationarity of 

the superimposed signal but long enough to provide several 

observations of the mixture; we tested a range of ensemble 

lengths to find the reasonable trade-off, as reported in the 

Appendix. Both real and imaginary part of the signal were used. 

Fig. 2. Overview of the BSS filter framework. Example of regions of interest for calculating CBR. C (blue box) was used for contrast signal strength and Bg (red box) was 

used for background signal strength. Image is displayed with 40dB dynamic range. 
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Pre-whitening, which normalized the observed data to achieve 

faster convergence, is not performed because removing the 

eigenvalue of the components highlighted the clutter or noise 

components that were not removed by SVD. The robust ICA 

algorithm was chosen because it can process complex-valued 

signals and does not require pre-whitening to achieve fast 

convergence [51]. It is applied on each window to maximize the 

non-Gaussianity of the estimated sources:  

 

  𝑦 = 𝑊𝑆, (3) 

 

where W is the temporal mixing matrix and S is the maximally 

independent spatial components. Since no pre-whitening is 

applied, the resulting independent components are direct linear 

combination of the observation window. The components are 

then sorted by their normalized kurtosis value (𝑆𝑠𝑜𝑟𝑡). Since 

microbubble signals are sparser and thus have higher kurtosis 

than tissue, the approximated microbubble signal (𝑠𝑏̃) is 

retrieved from the mixture by adding the components (nk) that 

have kurtosis higher than a defined threshold: 

 

 

𝑠𝑏̃(𝑥, 𝑧) =  ∑ 𝑆𝑠𝑜𝑟𝑡(𝑥, 𝑧, 𝑖).

𝑛𝑘

𝑖=1

 

 

(4) 

The kurtosis threshold needs to be adjusted based on the 

distribution of the microbubbles that are present in the images. 

Empirically, we found kurtosis threshold of 45 worked well for 

our dataset and we used this value for all subsequent analysis. 

Since the noise has been reduced in the pre-filter step, only one 

threshold is needed. An example of the described rank selection 

is shown in Fig. 4. 

 
Fig. 4. An example of ICA ranking. (a) The kurtosis of all the calculated 

independent components. (b+c) B-mode images of some selected components 
in logarithmic scale and their respective normalized histogram of the pixel 

magnitude as inset.  (b) The independent component with highest kurtosis. (c) 

The independent component with lowest kurtosis. 

D. Post processing 

To perform quantitative analysis, regions of interest (ROIs) 

were manually drawn (Fig. 2.) on the tube (contrast) and PVA 

(background), which then automatically followed (by a global 

motion estimator via 2D cross correlation) the tube and PVA 

while the probe was moving. Contrast-to-background ratio 

(CBR) was then calculated to evaluate the filters’ performances 

to suppress clutter signal, defined as: 

 

 
𝐶𝐵𝑅 = 20 log10 (

𝑅𝑀𝑆𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡

𝑅𝑀𝑆̅̅ ̅̅ ̅̅
𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

) , 

 

 

(5) 

where 𝑅𝑀𝑆 is the time-averaged root-mean-square signal 

strength in a time interval (0.4 seconds) during which the probe 

velocity was constant. 

III. RESULTS 

A. Implementation of SVD and ICA filters 

Several SVD ensemble lengths were tested for different 

probe speeds but no significant differences were observed for 

the results with different ensemble lengths; see Appendix Fig. 

A. We chose an ensemble length of 200 frames for all 

subsequent analyses. Several ensemble lengths for the ICA 

implementation were also examined (see Appendix Fig. B). An 

ensemble length of 20 frames, which provided the optimal 

CBR, was chosen. 

 
Fig. 5. Effect of probe motion (a) CBR during 25mm/s probe axial motion 

experiment and sample images during constant nominal velocity (t=0.85s, cyan 

line) after processing, (b) Unfiltered beamformed image, (c) SVD, and (d) SVD 

+ ICA. 

An example of an acquisition analysis and the result of the 

filter implementations are shown in Fig. 5. The CBR in the 

filtered images correlated with the probe velocity, while the 

CBR in the unfiltered images was not influenced by the probe 
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motion, as expected. During the time interval when the probe 

was not moving, both SVD and SVD + ICA filter achieved 

similar CBR (~33 dB). However, SVD + ICA outperformed 

SVD alone during probe motion. When the probe speed exceeds 

10 mm/s (t = 0.5:1.15 s), the CBR of SVD + ICA improves up 

to 10.5 dB and 20.4 dB compared to SVD alone and the 

unfiltered signal, respectively. SVD performance declined 

proportionally with the probe velocity (24.5 dB difference 

between static and peak probe velocity), while SVD + ICA 

retained more stable performance during motion on average. 

Note, this experiment had a contrast flow speed of 6 mm/s, and 

thus the flow speed is significantly lower than the peak probe 

speed. As visible in Fig. 5, the curves showed a frame-to-frame 

variation. Twenty-frames moving average trend lines were 

calculated. The standard deviation compared to the trend line of 

the CBR of SVD + ICA line was 1.2 dB, SVD was 0.8 dB, and 

the non-filtered showed low frame-to-frame variations (0.15 

dB).   

B. Effect of probe motion 

The filters’ performance during various probe motion is 

shown in Fig. 6. In the static situation, simple SVD filter 

achieved 3 dB higher CBR. However, SVD + ICA consistently 

outperformed simple SVD during motion experiments, 

especially in the high velocity ranges (15-25 mm/s). The mean 

differences between the two filters in the high velocity ranges 

were 6.7 dB (axial), 6.9 dB (lateral), and 9.9 dB (diagonal). 

CBR for SVD declined proportionally with the probe speed 

across the motion direction (~3 dB per 5 mm/s probe speed 

increment), except for diagonal motion of 20 to 25 mm/s. This 

downward trend results in a significant CBR difference (9.1 dB 

in average) between the slowest and the fastest probe speed 

after SVD filtering. On the other hand, the CBR obtained by 

SVD + ICA at 25 mm/s probe speed was only marginally lower 

(3.2 dB on average) than the 5 mm/s probe speed. 

 

 
 

Fig. 6. Contrast-to-background values after processing by SVD and SVD + ICA 

for a range of probe velocities. The error bars represent the standard deviation 
from 3 repetitions (a) Axial probe motion, (b) Lateral probe motion, (c) 

Diagonal probe motion. 

 

C. Effect of Flow Speed 

The filters’ performance with varying flow speed while the 

probe was moving in high velocity (25 mm/s) is shown Fig. 7. 

The result of one acquisition (flow speed 2 mm/s) was removed 

from subsequent analysis because the microbubble 

concentration was significantly lower than in other acquisitions, 

which complicated the contrast-level calculations. Both filters’ 

performances were greatly influenced by the flow speed, where 

decreasing flow speed was proportional to CBR decline in both 

SVD and SVD + ICA. Although the SVD + ICA combination 

still exceeded SVD in all flow speed (6.8 dB on average), the 

CBR gain reduces with increasing flow speed approaching the 

probe speed. The CBR for both filters increased by ~4 dB from 

flow speed 6 mm/s to 8 mm/s; while the CBR only increased by 

2.7 dB and 1.3 dB for SVD and SVD + ICA, respectively, from 

flow speed 8 mm/s to 12 mm/s. The unfiltered data showed a 

mild increase of few dB of CBR with flow speed. 

 

 
Fig. 7. Contrast-to-background values after processing by SVD and SVD + ICA 

for a range of flow speeds, while the probe was moving (25 mm/s) diagonally. 

The contrast-to-background values while the probe was static is provided as 

baseline reference. 

IV. DISCUSSION 

In this study, we have shown that SVD+ICA improved the 

clutter suppression over SVD alone in case of slow flow during 

realistic velocities of cardiac motion, in an in vitro phantom 

experiment. Our proposed filter framework consistently 

achieved better contrast-to-background ratio than SVD during 

motion, especially in the fastest probe motion (25 mm/s) where 

ICA exceeded the CBR of the SVD filtered and unfiltered data 

by approximately 10 dB and 20 dB, respectively. In the static 

situation, ICA and SVD perform comparably, with slightly 

higher CBR with SVD alone than ICA. However, in the static 

condition where CBR is around 30dB, this difference does not 

have any impact on the contrast visibility. The CBR 

improvement during motion is presumably due to ICA 

resolving the output of SVD that still consists of clutter and 

microbubbles signal mixture. ICA utilizes the different spatial 

distribution statistics of clutter and microbubbles instead of 

spatiotemporal coherence like SVD. 

We performed an in vitro experiment where the probe motion 

velocities and directions were modified while keeping the flow 
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rate fixed. The results show that SVD performance to suppress 

background clutter signal degrades proportionally with probe 

speed, while the SVD+ICA retains relatively stable clutter 

suppression for increasing probe speeds. The trends are 

consistent across all the motion directions conducted in our 

experiments (axial, lateral, and diagonal). The ineffectiveness 

of the SVD filter during motion is consistent with reports  by 

Demené et al. [39] and Zhu et al. [41]. However, to our 

knowledge, systematic evaluation in the high tissue velocity 

ranges (up to 25 mm/s) has not been reported before. As 

opposed to SVD, ICA filtering is affected less by motion 

because it operates in a short time where motion is negligible, 

facilitated by high-framerate imaging. This stability of signal 

might be beneficial for cardiac vascular flow imaging where 

motion should not influence the readout of the contrast signal. 

The effect of different flow rates was assessed while the 

probe motion was kept constant at the highest velocity (25 

mm/s). Clutter suppression of the SVD filter diminished 

proportionally with lower flow speed, as the spatiotemporal 

correlation between microbubbles and tissue signals increases. 

Combination with ICA again improves the CBR over SVD 

alone by 5-8 dB across all flow speeds. However, this time ICA 

could not retain stable CBR through different flow rates 

because the differences between the probe and flow speed are 

more significant compared to the probe motion experiment. 

Another possible reason is microbubble disruption. A slower 

flow rate inherently provides slower microbubbles 

replenishment, which leads to more acoustically-induced 

deflation [52], resulting in lower CBR. The lower CBR with 

lower flow speed is visible in the unfiltered data in Fig. 7. By 

comparing the unfiltered and SVD-filtered results, it appears 

that the SVD filtering does not improve CBR at all upon high 

tissue motion and slow flow, whereas SVD+ICA does lead to 

higher CBR.  

Unlike conventional wall frequency-based wall filters that 

have real physical representation and thus a meaningful 

threshold selection, selecting a threshold for BSS methods is 

not straightforward. Although SVD component selection is a 

well-known problem, there is still no standardized way to 

perform it. Initially, Demené et al. [39] used a qualitative 

approach to obtain optimal SVD threshold selection. Several 

efforts to solve this issue were published [40], [50], [53], [54], 

but we did not find any method that worked robustly for our 

dataset. We found that denoising the matrix by singular values 

acceleration [54] and using spatial correlation to find the clutter 

cut-offs [40], [50] worked well for our dataset. Additionally, we 

manually re-checked all selected automated thresholds and 

adapted thresholds where necessary. Since the aim of this 

research was to investigate ICA filter performance, rather than 

finding a robust method to select the SVD components of the 

pre-filtering step, we manually adjusted the slow flow 

acquisitions. As such, we were able to fairly compare filters at 

their maximum attainable CBR. 

Component selection is a major issue for ICA filtering as 

well. In this study, we sorted the independent components by 

normalized kurtosis, with the assumption that the microbubble 

image intensity distribution is sparser than clutter signal. A 

threshold value that performed well for the dataset was 

empirically chosen and used for all analyses. The empirical 

approach means that the selected threshold was tuned 

specifically for the microbubble population in the channel of 

our phantom. As the kurtosis threshold defines the filtering 

outcome, adjusting the threshold is required for implementation 

on different imaging targets. This in practice might be solved 

by using imaging target pre-sets which already is customary in 

current clinical systems. Additionally, ensemble length also is 

a parameter that needs to be tuned since our ICA 

implementation presumes negligible displacement in an 

observation window. The optimal ensemble length would 

depend on the acquisition framerate and the motion velocity. It 

is a trade-off between providing spatial sample and retaining 

stationarity of underlying statistical structure, which hinges on 

the velocity of the tissue motion. The ensemble length we used 

for the analysis was chosen based on empirical evaluation. 

Although an in vitro setup is more controllable compared to 

an in vivo environment, there are still some experimental 

uncertainties that influence the quantitative results. 

Microbubble concentration variabilities is always a factor in 

quantitative CEUS imaging as it is directly related to the 

backscattering magnitude, and hence to the CBR ‘offset’. The 

size distribution, stability, and acoustic properties of the 

microbubbles might be altered because they were diluted and 

stored in a suspending fluid prior to infusion [55]. Distinct 

microbubble disruption-replenishment in the varying flow 

experiment also contributed to the observed CBR variability, 

especially in the low flow settings. We excluded 1 acquisition 

(repetition number 3 of flow 2mm/s) because of too low 

microbubble concentration. Yet, the CBRs of the filters were 

always obtained from the same initial dataset, thus they are 

mutually comparable. Lastly, assessment of CBR by calculating 

the mean of the pixel values in the ROIs might introduce some 

bias towards the contrast detection sensitivity because the tube 

is not always completely filled with microbubbles. Region-of-

interest locations that were drawn manually might have 

introduced some uncertainties to the CBR calculation. 

However, the comparison between different filters and 

unfiltered signal are not affected by this bias as the same ROIs 

in a single acquisition were used for all methods. 

It should be noted that the performance of ICA depends on 

SVD to remove the semi-static clutter and noise. In our 

implementation, ICA needs the contrast signal to be stronger 

than the tissue signal (positive CBR) to operate.  Since the pre-

filtering is an important step and SVD still has some concerns 

by itself (component selection and performance in motion); it is 

worth to consider other methods as a substitute for the pre-filter 

step in the future. A possible solution could be contrast-specific 

detection scheme like AM, PI, or PMPI that suppress tissue 

signal while retaining larger part of the contrast signal. The 

utilization of motion compensation before implementing the 

BSS filter is one of the possible improvements of the technique. 

However, to date, there is no standardized motion 

compensation algorithm that can be implemented 

straightforwardly. Several studies implemented various motion 

compensation algorithm and reported disparate improvements 

[41], [56], [57].  Since ICA will also benefit from a proper 

implementation of motion compensation, ICA should also be 

tested on the motion corrected images when making the 

comparison with only SVD filtering. Another direction of 

improvement would be a more robust ICA component 

selection. Instead of defining a fixed kurtosis threshold, fitting 
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the components to a specific distribution like the homodyned 

K-distribution that gives a physical meaning [58] or the 

Nakagami distribution that is proven to describe       in vivo data 

[59] might provide more stability compared to thresholding by 

normalized-kurtosis. Alternatively, algorithmically defined 

threshold like suggested by Tierney et al [45] yet adapted for 

high velocity case could be an option.  The 2-step processing 

induces extra computational cost. Although the computational 

time to perform SVD will be multiplied by the number of the 

transmission angles, the increase is not substantial since the 

time needed to process an ensemble of 200 frames is relatively 

short (~2 seconds). On the other hand, ICA requires more 

substantial time (15-20 minutes) in the current non-optimized 

implementation. However, we are trying to resolve the contrast 

detection and not aiming for real time or fast processing for 

now. In the future, more efficient operation could be 

implemented to reduce the computation time. 

Translation to clinical application needs a further validation 

since our in-vitro setup simplifies the in-vivo conditions in 

several aspects. First, the myocardium tissue scatterers are 

inhomogeneous, which might impair the bubble detection 

mechanism. However, the assumptions that microbubble and 

tissue (myocardium) have different spatial scatterers’ 

distribution should still be applicable. The fast-flowing 

microbubbles in the cardiac chamber, that are not relevant for 

perfusion imaging, can be removed by using a low pass filter to 

enhance the sparsity of the microbubble signals in the 

myocardium. Second, the size of the vessel determines the 

number of bubbles that are present, which affects the magnitude 

of the flow signal. The cavity diameter in our flow phantom (1 

mm) is in the range of the small coronary arteries sizes. On the 

other hand, likely the microcapillaries (~10 µm) could not be 

detected by ICA because they are small and densely populated 

(more than 2000 microvessels per mm2 [7]). The fully-

developed speckle contrast signal from the microcapillaries will 

have low kurtosis and will be rejected by the filter. However, 

we are aiming at visualizing the small vessels and not at 

resolving the sub-resolution capillary perfusion. Third, cardiac 

(phased array) probe image resolution is worse and have a 

substantial depth-dependent resolution, compared to the linear 

probe that was used in this study. A possible mitigation could 

be implementing the beamforming and the filtering algorithm 

in the polar domain in which the resolution will be relatively 

uniform with depth.  Fourth, if severe aberration changes the 

pixel location of the bubble in the images with different 

transmission angle, the assumption of our ICA implementation 

that the microbubbles signal location does not change within 

the underlying subset of images is violated and the aberration 

would lead to image deterioration. Fifth, the current 

measurements only emulate rigid motion and visualize single 

channel. The non-rigid myocardial motion should not bring a 

new problem to our ICA implementation that operates in spatial 

domain; as long as the framerate is high enough to assume 

stationarity of the underlying statistical structure. Multiple 

vessels inside the field of view also should not be an issue, 

provided they are still sparse (see Appendix Fig. C). Lastly, 

changing the ICA ensemble size did not show a big impact in 

our in-vitro data (Appendix Fig. B.), yet it might be necessary 

to re-investigate the optimal length ensemble for in-vivo 

application or eventually have that length being automatically 

tuned to the observed motion in the data. 

V. CONCLUSION 

We showed that ICA in combination with an SVD pre-filtering 

step provides better contrast detection, with CBR improvement 

of 7-10 dB, compared to SVD alone. It is more motion-

independent clutter suppression throughout various tissue 

motion (5 to 25 mm/s) and a range of flow perfusion velocity 

(1 to 12 mm/s). The improvement and stability of ICA filtering 

is an essential step for cardiac perfusion imaging, where high 

myocardial velocities are expected and stable contrast detection 

facilitates the interpretation. 

 

APPENDIX 

Ensemble length is an influential parameter for both SVD and 

ICA filter implementation. For this reason, we performed a 

quantitative evaluation (via CBR) to find the optimal ensemble 

length for both filters, which would be used for the results’ 

analysis. One repetition (400 frames) of the axial probe motion 

dataset was processed with a range of ensemble lengths and the 

resulting CBR was compared. The results of the axial probe 

experiment, processed with the SVD filter (50-400 frames) are 

shown in Fig. A. There was no optimal ensemble length that 

could drastically improve the resulting CBR when the probe 

was moving in different speeds. The shorter ensembles (50 and 

100 frames) had higher standard deviations than the longer 

ensembles (200 and 400 frames). Ensemble lengths of 200 

frames seemed to obtain optimal results and hence was chosen 

for the analysis. Subsequently, the same dataset was processed 

with SVD filter of 200 frames ensemble and ICA filter (10-25 

frames). The results are shown in Fig. B. Ensemble length of 10 

frames consistently performed worst, compared to the rest. 

Ensemble length of 20 frames was chosen as it provided good 

tradeoff between CBR and framerate. The ensemble lengths for 

SVD filter (200 frames) and ICA filter (20 frames) were used 

for all the Figs. in the results section. We performed an 

additional free hand scanning on a phantom with multiple 

channels inside the field of view (Fig. C.). The flow in the 

channels was on the order of 8, 3, and 5 mm/s, set by two 

independent syringe pumps and asymmetric flow splitting. ICA 

improves the SVD and unfiltered image data by 1.7 dB and 5 

dB, respectively. 
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Fig. A. SVD and B. ICA implementation for different ensemble lengths in 

varying probe speed. 

 

 
Fig. C. Phantom images during free hand scanning after different processing, 

(a)Unfiltered beamformed image, (b) SVD, and (c) SVD + ICA. 
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