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Abstract

Mycoplasma pneumoniae and Mycoplasma genitalium are important causative agents of infections in humans. Like all other
mycoplasmas, these species possess genomes that are significantly smaller than that of other prokaryotes. Moreover, both
organisms possess an exceptionally compact set of DNA recombination and repair-associated genes. These genes, however,
are sufficient to generate antigenic variation by means of homologous recombination between specific repetitive genomic
elements. At the same time, these mycoplasmas have likely evolved strategies to maintain the stability and integrity of their
‘minimal’ genomes. Previous studies have indicated that there are considerable differences between mycoplasmas and other
bacteria in the composition of their DNA recombination and repair machinery. However, the complete repertoire of activi-
ties executed by the putative recombination and repair enzymes encoded by Mycoplasma species is not yet fully understood.
In this paper, we review the current knowledge on the proteins that likely form part of the DNA repair and recombination
pathways of two of the most clinically relevant Mycoplasma species, M. pneumoniae and M. genitalium. The characterization
of these proteins will help to define the minimal enzymatic requirements for creating bacterial genetic diversity (antigenic
variation) on the one hand, while maintaining genomic integrity on the other.
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Introduction

Mycoplasma pneumoniae and Mycoplasma genitalium are
pathogenic bacteria that cause significant health problems in
the human population. These pathogens are genetically very
similar (Himmelreich et al. 1997), and belong to the Molli-
cutes class of bacteria. While the genome of M. pneumoniae
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M. pneumoniae causes both upper respiratory tract infec-
tions (RTIs), such as pharyngitis and tracheobronchitis, and
lower RTIs, such as pneumonia. M. pneumoniae infection
and transmission occurs during both endemic and epidemic
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as well as post-infectious, immune-mediated diseases, such
as Guillain—Barre syndrome (Meyer Sauteur et al. 2014a,
2016). Interestingly, M. pneumoniae can also be found in the
respiratory tract of asymptomatic children (Spuesens et al.
2016, 2013), challenging both the diagnosis and treatment
of M. pneumoniae infections in this patient group (Meyer
Sauteur et al. 2014b, 2018; Spuesens et al. 2014).

M. genitalium is an etiological agent of various diseases
of the human reproductive tract, such as non-gonococcal
urethritis (NGU) in men, and cervicitis, endometritis, pel-
vic inflammatory disease (PID) and tubal-factor infertil-
ity in women (Deborde et al. 2019; McGowin and Totten
2017). The prevalence of M. genitalium infections is about
1.3-3.9% in the general population and significantly higher
in specific groups such as female commercial sex workers
(15.9%) (Baumann et al. 2018). M. genitalium infections are
also relatively common in human immunodeficiency virus
(HIV)-infected patients (Deborde et al. 2019). Therefore,
it was considered to include M. genitalium screening and
treatment interventions as part of HIV prevention strategies
(Napierala Mavedzenge et al. 2015).

As human pathogens, Mycoplasma spp. continuously
evolve due to external pressures exerted by the host immune
system as well as the use of antibiotic drugs. Among the
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Fig. 1 Repetitive elements in the genome of Mycoplasma pneumo-
niae and Mycoplasma genitalium. a The P1 gene (ORF MPN141) of
M. pneumoniae contains two variable DNA elements, RepMP2/3 and
RepMP4. Multiple variants of RepMP2/3 and RepMP4 elements are
dispersed within the genome of M. pneumoniae. There are ten vari-
ants of RepMP2/3 and each variant is labeled ‘a’ to ‘j” in blue. For
RepMP4, there are eight variants and each variant is labeled ‘a’ to
‘h’ in red. The drawing is a modification of figures that were previ-
ously published by Spuesens et al. (Spuesens et al. 2009, 2011). b
The MgPa operon of M. genitalium contains two variable genes,
mgpB (ORF MG191) and mgpC (ORF MG192). There are three
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most common strategies employed by pathogenic microor-
ganisms to evade immune surveillance and control by the
host is antigenic variation. Antigenic variation is success-
fully employed by various bacterial pathogens, including
Neisseria spp., Mycoplasma spp., and Treponema pallidum
(Vink et al. 2012). It is also effectively used by viral patho-
gens, such as influenza virus (Shao et al. 2017). Antigenic
variation leads to continuous alterations or modifications of
the surface molecules that are mainly targeted by the host
immune systems. Consequently, the humoral (antibody)
response generated against the previous (“old”) surface mol-
ecules cannot effectively recognize and neutralize the mod-
ified (“new”) molecules, allowing the pathogen to persist
in the infected host for a prolonged period of time (Dehon
and McGowin 2017; Qin et al. 2019). Antigenic variation
is also hypothesized to be involved in the repeated epidem-
ics caused by M. pneumoniae (Dumke et al. 2008). In this
species, as well as in M. genitalium, this antigenic variation
is predicted to be generated through homologous recombi-
nation between specific, repetitive DNA elements that are
dispersed throughout their genomes (Rocha and Blanchard
2002). These repetitive elements encode the antigenic sur-
face molecules P1 and MgPa of M. pneumoniae and M. geni-
talium, respectively (Fig. 1).
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MgPar1 MgPar8
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MgPar homologous regions within the MG191 gene, indicated as
repeat regions B (orange), EF (yellow), and G (green), while there is
only one, large MgPar homologous region within the MG192 gene,
indicated as repeat region JKLM (light blue). Invariable, conserved
regions within each gene are indicated in black. Nine homologous
MgPar sequences, containing diverse copies of mgpB- and mgpC-
associated homologous regions, are present in the genome of M. geni-
talium. Homologous sequences are indicated in the same color. The
drawing is a modification of a figure that was previously published by
McGowin and Totten (2017)
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While antigenic variation through homologous recombi-
nation may be crucial for the propagation of Mycoplasma
species in human populations, a major issue for these organ-
isms is the maintenance of the integrity of their genomes, in
particular because these genomes are much more compact
than the genomes of most other bacterial taxa. Interestingly,
the DNA repair systems that are involved in maintaining
genome integrity in M. pneumoniae and M. genitalium
may also be involved in the aforementioned recombina-
tion between repetitive DNA elements. Consequently, the
DNA repair machinery of these organisms may be directly
involved in antigenic variation.

The aim of this paper is to review our current knowl-
edge on the genes and proteins that likely form part of the
DNA repair and recombination pathways of M. pneumoniae
and M. genitalium. Several previous studies have indicated
that considerable differences exist between mycoplasmas
and other bacteria in the composition of their sets of DNA
recombination and repair-related genes. Thus, characteri-
zation of these genes and the encoded proteins will help
to define the minimal enzymatic requirements for creating
bacterial genetic diversity (antigenic variation) on the one
hand, while maintaining genomic integrity on the other.

The role of homologous DNA recombination
between repetitive elements in antigenic
variation of M. pneumoniae and M.
genitalium

Mechanism of antigenic variation and the role
of repetitive element recombination

Mycoplasmas are the smallest known self-replicating
organisms, both regarding cellular dimensions and genome
size (Wilson and Collier 1976). As mentioned above, the
genomes of M. pneumoniae (strain M129) and M. geni-
talium (strain G-37 ") are only 816 kb and 580 kb in length,
respectively (Fraser et al. 1995; Himmelreich et al. 1996).
By comparison, the genome of ‘model’ bacterium Escheri-
chia coli strain K12 is 4,639 kb in length (Blattner et al.
1997). It is remarkable that, in spite of their limited sizes,
the genomes of M. pneumoniae and M. genitalium consist
of a significant portion of repeated DNA elements, which
constitute approximately 8% and 4% of the genome, respec-
tively (Himmelreich et al. 1996; Peterson et al. 1993). These
multiple repeated elements, which are dispersed throughout
the genome, display a high level of sequence similarity, but
are not identical. In M. pneumoniae, these are referred to as
Rep MP (RepMP2/3 and RepMP4) elements; while in M.
genitalium they are termed MgPa repeats (MgPars) (Fraser
et al. 1995; Peterson et al. 1995; Ruland et al. 1990; Su et al.
1988).

Interestingly, some of the copies of the repeated DNA ele-
ments were found to form part of genes encoding antigenic
surface proteins. Among these proteins are the cytadhesins
P1 of M. pneumoniae (Himmelreich et al. 1996) and MgPa
of M. genitalium (Aparicio et al. 2018; Fraser et al. 1995).
It has been demonstrated that the repeated DNA elements
(including those in the P1 and MgPa operon) can undergo
homologous DNA recombination, which may result in
sequence variation (i.e. antigenic variation) of the P1 and
MgPa proteins (Ma et al. 2007; Peterson et al. 1995; Ruland
et al. 1990; Spuesens et al. 2009).

Basic mechanisms of homologous DNA
recombination

For general DNA editing and repair, bacteria can employ
homologous DNA recombination, in which a stretch of DNA
is eventually exchanged with an identical (or almost iden-
tical) sequence that originates either from another site of
the genome or from extrachromosomal DNA. Much of our
knowledge of homologous recombination is derived from
studies performed in E. coli (Kowalczykowski et al. 1994).
However, the basic mechanisms as well as genes or proteins
involved in this process are conserved across eubacteria
(Kuzminov 1999).

The initial step of homologous recombination requires
single-stranded breaks or nicks at corresponding regions of
two homologous DNA sequences by a specific endonuclease
(Fig. 2). Subsequently, the two homologous single strands
from each DNA molecule exchange positions in a recip-
rocal manner, resulting in basepair formation between the
transferred (donor) and recipient DNA (heteroduplex forma-
tion). This reciprocal strand exchange produces a so-called
Holliday junction (or Chi structure), a point at which two
single DNA strands from two homologous double-stranded
(ds) DNA molecules exchange. Migration of the Holliday
junction (branch migration) allows further extension of the
stretch of heteroduplex DNA. As the final step, resolution
(cutting) of the Holliday junction by a resolvase enzyme, and
subsequent ligation of the remaining single-stranded nicks
by DNA ligase, will produce two intact, recombined DNA
molecules (Fig. 2a) (Bianco et al. 1998; Kowalczykowski
et al. 1994).

In E. coli, homologous recombination requires a coor-
dinated action of more than 20 different proteins. Of these,
RecA is involved in the initial step of pairing of the two
homologous DNA sequences and single-strand invasion onto
the other DNA template. While RuvA and RuvB are proteins
that are necessary for branch migration, the resolution of the
Holliday junction is executed by RuvC (Eggleston and West
1996; Kowalczykowski et al. 1994).

Although the aforementioned process of homolo-
gous recombination involves the reciprocal, bidirectional
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«Fig.2 The basic mechanism of homologous DNA recombination. a
Reciprocal homologous recombination. This process is initiated by
generation of single-strand breaks or nicks at corresponding regions
of two homologous sequences by a specific endonuclease. Subse-
quently, the two homologous single strands from each DNA molecule
exchange positions in a reciprocal manner (crossing over), resulting
in heteroduplex formation. This reciprocal strand exchange produces
a Holliday junction. Branch migration of the Holliday junction allows
further extension of the stretch of heteroduplex DNA. Resolution
of the Holliday junction is executed by a resolvase enzyme. As the
final step, ligation of the remaining single-strand nicks is performed
by DNA ligase, resulting in two intact, recombined DNA molecules.
b Non-reciprocal homologous recombination (gene conversion).
This process is initiated by the generation of a double-strand break.
The resulting 5’ ends are then resected, generating 3’ ssDNA tails.
In the example shown, one of the 3’ tails transfers to -and basepairs
with- another, homologous DNA molecule, forming a displacement
(D)-loop. The newly formed heteroduplex DNA is extended by DNA
polymerase. The invading strand, including the newly synthesized
stretch of DNA, is then displaced form the template strand and rean-
neals to the DNA strand it was originally attached to (strand transfer).
Remaining single-stranded gaps are subsequently filled by the com-
bined action of DNA polymerase I and DNA ligase

and are eventually lost from the bacterial genome (Fig. 2b)
(Bianco et al. 1998; Chen et al. 2007).

Evidence of homologous recombination-induced
antigenic variation in M. pneumoniae and M.
genitalium

For M. pneumoniae, it has been hypothesized that homolo-
gous recombination between RepMP elements may occur
through gene conversion-like processes. This hypothesis was
supported by analysis of the RepMP elements from a collec-
tion of 23 M. pneumoniae isolates. Sequence analysis of all
10 variants of RepMP2/3 and all 8 variants of RepMP4 from
these isolates indicated that one or more ‘donor’ RepMP
variants appeared to have been copied to other (‘recipient’)
RepMP variants, including those located within the P1
operon (Spuesens et al. 2009). The same phenomenon was
also observed among RepMP5 variants, resulting in amino
acid changes in another surface-exposed cytadhesin protein,
named P40 (Spuesens et al. 2011). In addition, analysis of
an additional set of 23 M. pneumoniae clinical isolates also
showed a significant rate of reorganization through recom-
bination events between these repetitive elements (Lluch-
Senar et al. 2015).

Sequence analysis of the M. genitalium mgpB and mgpC
genes (the second and third gene within the MgPa operon)
provided strong support for the hypothesis that recombina-
tion occurs between MgPar sequences, and results in anti-
genically distinct MgPa variants both in vitro and in clini-
cal isolates (Fookes et al. 2017; Iverson-Cabral et al. 2006,
2007; Ma et al. 2007, 2014). In an experimental chimpanzee
model of M. genitalium infection, sequence variation within
the mgpC gene initially occurred within five weeks post

infection and accumulated progressively (Ma et al. 2015).
Interestingly, in the majority of the cases, MgPa recombi-
nation events in M. genitalium were found to be caused by
reciprocal DNA recombination events, in contrast to the
homologous recombination events found in M. pneumoniae,
which all appeared to have resulted from gene conversion
events. Another difference between the recombination pro-
cesses in these mycoplasmas is that recombination events
occur at a significantly higher frequency in M. genitalium
than in M. pneumoniae (Vink et al. 2012).

Because both the M. pneumoniae P1 protein and the M.
genitalium MgPa protein are highly immunogenic (Razin
and Jacobs 1992), the recombination-induced antigenic vari-
ation of these proteins may play a crucial role in the patho-
genicity of both pathogens and their evasion from the host’s
immune system (Vink et al. 2012). Consequently, antigenic
variation may be a critical factor in allowing M. pneumo-
niae and M. genitalium to persist in infected humans for
prolonged periods of time (Atkinson et al. 2008; Hardy et al.
2002; Iverson-Cabral et al. 2006; Vink et al. 2012). In sup-
port of this notion, persistent infections with these bacteria
were observed in animal models of infection (Hardy et al.
2002; McGowin et al. 2010; Wood et al. 2017). In addition,
the antigenic variation of P1 and MgPa may facilitate adap-
tation of the bacteria to different host microenvironments,
because both P1 and MgPa proteins are surface-exposed pro-
teins that function in the attachment of the bacteria to host
cells (Ma et al. 2014).

The Mycoplasma genes and proteins involved
in DNA recombination

Due to the compact nature of all metabolic pathways in
mycoplasmas, it is likely that the enzymatic machinery that
governs recombination between repeated DNA elements
in M. pneumoniae and M. genitalium largely overlaps with
the machinery involved in general DNA recombination and
repair in these bacteria (Estevao et al. 2011). As shown in
Table 1, the predicted set of genes and proteins involved
in DNA recombination and repair in these mycoplasmas is
limited in number. Notably, M. pneumoniae and M. geni-
talium lack a significant number of enzymes known to be
involved in DNA repair in other bacterial classes. These
enzymes include LexA, Phrl, Phrll, RecBCD, AddAB,
RecFOR, RecQ and ReclJ, as well as proteins involved in
mismatch repair, such as MutS, MutL, and MutH (Carvalho
et al. 2005).

The functions of several of the proteins listed in Table 1
have been investigated. These proteins include SSB (Slui-
jter et al. 2008), RecA (Sluijter et al. 2009), RuvA (Ingles-
ton et al. 2002; Sluijter et al. 2012), RuvB (Estevao et al.
2011), and RecU (Sluijter et al. 2011, 2010). Remarkably, as
detailed below, some of these proteins showed significantly
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Table 1 M. pneumoniae and M. genitalium genes encoding proteins putatively involved in DNA recombination and repair

M. pneumoniae gene M.

Name and predicted function Name and established func-

E. coli orthologue References

genitalium  of the encoded proteins tion of the encoded proteins
ortholog
MPN229 MGO091 SSB Mge* & putative single- SSB Mpn' single-stranded SSBg,, (Sluijter et al. 2008)
stranded DNA binding DNA binding protein
protein
MPN490 MG339 - RecA,y,, and RecA,,: RecAg,, (Sluijter et al. 2009)
homologous DNA strand
transferase
MPN535 MG358 - RuvAMpn and RuvAMge: Hol- RuvAg, (Ingleston et al. 2002;
liday junction (HJ)-binding Sluijter et al. 2012)
proteins
MPN536 MG359 - RuvBy, RuvB,,;5, and RuvBg,, (Estevao et al. 2011)
RuvB,,.: DNA helicases
MPN528a MG352 - RecU,,,: a HJ resolvase; - (Sluijter et al. 2011, 2010)
RecUy,, is a non-functional
protein
MPN340 MG244 - PcrAly; 59 and PerAgy: UvrDg,, (Estevao et al. 2013)
DNA helicases with UvrD-
like activity
MPN341 MG244 - PcrA2y,,, and PerAy,,: DNA UviDg,, (Estevao et al. 2013)
helicases with UvrD-like
activity
MPN328 MG235 - Nfo,,,, and Nfo,,,: endonu-  Nfog,, (Estevao et al. 2014)
clease IV proteins
MPN619 MG421 UvrA: a putative ATP- - UvrAg,, This study
dependent DNA-binding
protein
MPN211 MGO073 UvrB: a putative DNA-bind- — UvrBg,, This study
ing protein
MPN125 MG206 UvrC: a putative excinu- - UvrCp,, This study

clease

The genes and their names were taken from Fraser et al. and Himmelreich et al. (Fraser et al. 1995; Himmelreich et al. 1996)

different activities than their homologs from other bacterial
classes.

55Buipn

The MPN229 ORF of M. pneumoniae encodes a single-
stranded DNA-binding protein (SSB,,,,) consisting of
166 amino acids. Functional characterization of this ~18-
kDa protein revealed that it possesses similar activities as
its counterpart from E. coli. SSB,,,, was reported to form
tetramers that efficiently and selectively bind to single-
stranded DNA (ssDNA) substrates. This activity was inde-
pendent of the presence of divalent cations, such as Mg>*
(Sluijter et al. 2008). Importantly, SSB,,,, efficiently sup-
ported E. coli Recombinase A (RecAg,,)-promoted homolo-
gous DNA recombination.

The M. genitalium counterpart of SSB,,,,, SSB,,,,, is
encoded by the MGO091 gene. Although SSB,,,, and SSB,,,
are 61% identical on the amino acid sequence level (Sluijter
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et al. 2008), the latter protein has not yet been subjected to
functional analyses.

RecA,,, and RecA,,

The MPN490 and MG339 ORFs of M. pneumoniae and M.
genitalium, respectively, were reported to encode homologs
of Recombinase A (RecA) proteins. These ~37-kDa pro-
teins, which were designated RecA,,, and RecA,,,, respec-
tively, were found to have a high similarity on the amino acid
sequence level (79% identity) (Sluijter et al. 2009). Func-
tional in vitro studies demonstrated that both RecA,,,, and
RecAy,, possess similar activities as their counterpart from
E. coli, by mediating recombination events between homolo-
gous DNA substrates in an ATP-, pH- and divalent cation
(Mg?*)-dependent manner. Also, the recombinase activity
of RecA,,,, and RecA,,, was found to be dependent on the
presence of SSB,,, (Sluijter et al. 2009). In vivo, it was
shown that RecA,,, efficiently mediates MgpB and MgpC
phase and antigenic variation in M. genitalium. However,
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this protein was not found to play a role in DNA repair (Bur-
gos et al. 2012).

RuvA,,,, and RuvA,.

Both M. pneumoniae and M. genitalium were also found to
encode homologs of RuvA and RuvB. The RuvA homologs
of these species are encoded by ORFs MPN535 and MG358,
and were named RuvA,,,, and RuvA,,,, respectively.
Although the sequence similarity between these ~23.7-kDa
proteins is high (68.8% identity), both proteins demonstrated
notably different in vitro activities. RuvA,,, exhibits a rela-
tively high binding affinity for both Holliday junction (HJ)
and ssDNA substrates, in contrast to both RuvA,,, and
RuvAg.,, which preferentially bind to HJs. Additionally,
while RuvA,,,, was not found to stimulate RuvB activity,
RuvA,,, was shown to stimulate the helicase and ATPase
activities of RuvB,,, (Ingleston et al. 2002; Sluijter et al.
2012).

RuvBy,, RuvBy;,e and RuvBy,,,

The ORFs MPN536 and MG359 have been shown to
encode RuvB homologs of M. pneumoniae and M. geni-
talium, respectively, with a molecular mass of ~35.0 kDa.
Interestingly, the two main subtypes of M. pneumoniae were
found to encode variants of RuvB that only differ at a single
amino acid position; subtype 1 strains were shown to encode
a RuvB homolog (termed RuvB,,,,,) carrying a tryptophan
residue at position 140, whereas subtype 2 strains have a leu-
cine residue at this position in the protein (RuvB ;) (Este-
vao et al. 2011). Interestingly, this sequence difference was
reported to have a major impact on the in vitro activities of
these proteins. While RuvB ,, was found to have significant
divalent cation- and ATP-dependent DNA helicase activity,
RuvB,,;,, only displayed marginal levels of DNA-unwind-
ing activity. The M. genitalium-encoded RuvB homolog
(RuvB,,,,), which shares 84.4% of its amino acid sequence
with its M. pneumoniae counterparts, also showed a rela-
tively low DNA-unwinding activity (Estevao et al. 2011).

RecUy,,, and RecUy,.

The MG352-encoded RecU protein of M. genitalium
(RecU,,,,) was found to be a potent HJ-resolving enzyme.
However, this protein has unique properties compared to
its homologs from other bacterial classes. Specifically, the
HJ-resolving activity of RecU,,,, was only detected in the
presence of Mn?* and not Mg®*. Remarkably, the RecU
protein encoded by the MPN528a ORF of M. pneumoniae
subtype 2 strains (RecU,,,,) did not possess any in vitro
HJ-binding or cleavage activities. It was demonstrated that
this inactivity was caused by the presence of a glutamic

acid residue at position 67 of the protein, which is not con-
served in RecU,,,. Even more striking was the finding that
the MPN528a gene of M. pneumoniae subtype 1 strains is
unable to encode a full-length RecU homolog, because it
contains a premature TAA translation termination codon
at position 181-183. Consequently, subtype 1 strains of
M. pneumoniae cannot produce a functional RecU protein
(Sluijter et al. 2010). Taken together, M. pneumoniae strains
may not encode functional homologs of RecU, which may
explain the relatively low level of recombination that is
observed within the M. pneumoniae genome (Sluijter et al.
2010).

In conclusion, functional studies of the various proteins
that are putatively involved in DNA recombination in Myco-
plasma spp. revealed significantly different in vitro activities
between these proteins and their homologs from other bacte-
rial classes. These findings emphasize the important notion
that functionalities or activities of certain genes or proteins
can not be based solely on sequence homology. Moreover,
these studies also showed that the DNA recombination
machineries of M. pneumoniae and M. genitalium differ
markedly from those of other bacteria (Sluijter et al. 2012).

Another important aspect of DNA recombination is its
regulation. In 2014, it was shown that MgPar recombina-
tion in M. genitalium was positively regulated by a novel
putative transcription factor encoded by ORF MG428 (Bur-
gos and Totten 2014). Notably, mutants lacking MG428
were defective in generating mgpBC gene variants (Burgos
and Totten 2014). Interestingly, overexpression of MG428
increased expression of ruvA, ruvB, recA, as well as other
genes, and was associated with increased mgpBC gene vari-
ation (Burgos and Totten 2014; Torres-Puig et al. 2015).
These findings highlight the complexity of the regulation of
recombination events in M. genitalium, and possibly in M.
pneumoniae, that should be extensively explored.

Additionally, it is important to note that homologous
recombination can be employed for experimental genome
alteration of mycoplasmas. Experimental gene modification
through homologous recombination has previously been per-
formed to analyze the function of specific genes or proteins
of M. pneumoniae and M. genitalium (Dhandayuthapani
et al. 1999; Krishnakumar et al. 2010).

The role of DNA repair machinery
to maintain genomic integrity
of Mycoplasma spp.

Because maintenance of the integrity of the genome is
essential for all living organisms, they all have DNA repair
systems in place that both detect and repair DNA lesions.
These DNA lesions can arise due to physical triggers
(e.g. UV light, extreme temperatures and desiccation) and
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various chemical agents (e.g. H,O, and cisplatin) causing
chemical modifications of the DNA structure. The most
important physical trigger of DNA damage is UV light,
which is able to induce the covalent linkage of two adja-
cent pyrimidines (pyrimidine dimers), including cyclobu-
tane pyrimidine dimers (CPD) and pyrimidine—pyrimidone
(6—4) photoproducts [(6—4)PP] (Goosen and Moolenaar
2008). Chemical damage to DNA can be caused by com-
pounds such as cisplatin (cis-platinum (II) diaminodichlo-
ride), methylmethanesulfonate, ethylmethanesulfonate,
N-ethyl-N-nitrosourea, leading to lesions like cisplatin
cross-links, thymine glycol products, psoralen monoad-
ducts, O%-methyl guanine, and abasic sites. For pathogenic
bacteria, including Mycoplasma spp., such lesions can also
be induced through immune responses of the host (e.g.,
through reactive oxygen species [ROS] generated by mac-
rophages) and the action of antibiotics.

In Mycoplasma spp., DNA repair is probably also
involved in the recombination-induced antigenic varia-
tion. As the recombining repeated elements are not iden-
tical (Spuesens et al. 2009), heteroduplex DNA formed
at the sites of homologous DNA recombination between
donor and recipient repeats will also include mismatched
base pairs which have to be corrected. Therefore, a DNA
repair system is required to correct mismatched bases after
each recombination event. This repair system may not only
be involved in the recombination of repeated DNA ele-
ments, but also in the maintenance of the integrity of the
Mycoplasma genomes (Carvalho et al. 2005). This main-
tenance is especially important for the mycoplasmas, as
their genomes (which are often designated as ‘minimal
genomes’) have a limited length and gene content, and do
not exhibit significant redundancy of gene or protein func-
tions (Fraser et al. 1995; Glass et al. 2006; Himmelreich
et al. 1996).

Various DNA repair systems have evolved in prokary-
otes. Of these, nucleotide excision repair (NER) and base
excision repair (BER) represent the major DNA repair
pathways. Another mechanism includes direct repair by a
photolyase (photoreactivation) and UV-damage endonu-
clease (UVDE) (Goosen and Moolenaar 2008; Hu et al.
2017).

A comparative analysis of the gene content of nine
different Mycoplasma species has indicated that both M.
pneumoniae and M. genitalium contain genes that are puta-
tively involved in NER. This pathway may be the only
’complete’ DNA repair pathway in these species. While
these species also have genes potentially involved in BER
and recombination repair, they do not encode the full set
of BER proteins, as found in other groups of prokaryotes.
These isolated genes could complement the NER activity
in the mycoplasmas (Carvalho et al. 2005).

@ Springer

The NER pathway in E. coli and Mycoplasma spp.

NER is a universal process that is involved in the repair of
a wide variety of DNA lesions produced by different DNA
damaging agents. These lesions include single-base modifi-
cations (caused by ionizing radiation, psoralen, etc.), intra-
and inter-strand cross-links (caused by UV irradiation, mito-
mycin C, cisplatin, etc.), mismatched bases, and backbone
modifications (Van Houten et al. 2005).

Basically, NER is a multi-step process, involving (1) dam-
age recognition, (2) dual incision of a damaged DNA-con-
taining oligomer, (3) removal of the incised oligomer, and
(4) repair DNA synthesis, followed by (5) ligation (Hu et al.
2017). In Homo sapiens, NER requires the participation of at
least 16 proteins (Mu et al. 1995). Prokaryotes, by contrast,
require only three proteins, UvrA, UvrB, and UvrC, which
are collectively termed the UvrABC system. The UvrABC
system of E. coli has been studied extensively and serves as a
model for NER (Van Houten 1990; Van Houten et al. 2005).

In E. coli, the DNA repair pathway is initiated through
the formation of a DNA damage-recognition protein com-
plex containing the UvrA and UvrB proteins (Cordone et al.
2011; Verhoeven et al. 2002) (Fig. 3). UvrA plays a key role
in damage recognition, since it preferentially binds to dam-
aged DNA in the absence of other NER components (Stracy
et al. 2016). UvrA seems to recognize the unwinding and
bending of the ‘damaged’” DNA, as well as aberrations of
the global conformation of the double helix, but does not
seem to probe the stability of the base interactions. This
mechanism allows UvrA to detect various DNA lesions and
achieves broad specificity (Jaciuk et al. 2011). UvrA is also
required for the loading of UvrB to form the preincision
complex at the site of a DNA lesion (Truglio et al. 2006).

After damage identification, the UvrAB complex unwinds
the DNA around the lesion, allowing direct access of UvrB
to the lesion (Zou and Van Houten 1999). UvrA then loads
UvrB onto the damaged DNA site (Stracy et al. 2016). Fol-
lowing dissociation of UvrA from the complex, UvrB forms
a stable UvrB-DNA preincision complex (Theis et al. 2000).
The pre-incision complex is subsequently bound by UvrC,
which makes incisions around the damaged DNA. It first
makes a cut at the fourth or fifth nucleotide from the 3’ side
of the damage, followed by incision at the eighth nucleotide
from the 5’ side of the damage (Verhoeven et al. 2000). The
resulting 12- to 13-nt fragment is ultimately removed by
UvrD (helicase II) and the resulting single-nucleotide gap
is filled by DNA polymerase I. In the final step, DNA ligase
joins the two ends of the nick (Fig. 3).

The importance of the proteins involved in NER was
previously shown in several studies using mutant bacte-
ria that were unable to express these proteins (LeCuyer
et al. 2010). Missing one component of the system causes
reduced survival rates in the bacteria that were exposed to
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Fig.3 Recognition and repair of damaged DNA by the UvrABC
system of E. coli. The DNA repair pathway is initiated through the
formation of a DNA damage-recognition protein complex contain-
ing the UvrA and UvrB proteins. After damage identification (in this
example, a thymine dimer), UvrA dissociates from the complex and
UvrB forms a stable UvrB-DNA preincision complex. The pre-inci-
sion complex is subsequently bound by UvrC, which makes incisions

DNA-damaging agents. For example, Mycobacterium tuber-
culosis strains that lack either uvrA or uvrB are more sensi-
tive than the wild-type strain to UV light and other DNA-
damaging agents, such as mitomycin C, reactive oxygen, and
nitrogen intermediates (Rossi et al. 2011). Similar results
were reported for a Mycobacterium smegmatis uvrA mutant
(Cordone et al. 2011). Furthermore, E. coli uvrA~, uvrB~ or
uvrC™ mutants were unable to excise UV-induced pyrimi-
dine dimers from their genomes, and were highly mutable
(Howard-Flanders and Boyce 1966; Ishii and Kondo 1975;
Kato 1972).

UvrA homologs from M. pneumoniae and M.
genitalium

The UvrA proteins belong to the ATP-binding cassette
(ABC) superfamily of ATPases (ABC-type ATPases).

ATP  ADP +P

around the damaged DNA. It first makes an incision at the fourth or
fifth nucleotide (nt) from the 3’ side of the damage, followed by inci-
sion at the eighth nt from the 5' side of the damage. The resulting
12- to 13-nt fragment is then removed by UvrD (helicase II). The
remaining single-stranded gap is then filled by the action of DNA
polymerase I and DNA ligase

Proteins that belong to this superfamily use energy derived
from ATP hydrolysis to catalyze a variety of biochemi-
cal reactions (Thomas et al. 1986; Wilkens 2015). ABC
ATPases share several conserved functional regions in
their structures, such as the Walker A/P loop, Q loop,
ABC signature, Walker B, D loop, and H loop (Hopfner
and Tainer 2003; Thomas et al. 1986; Wilkens 2015).
As shown in Fig. 4, those regions are highly conserved
among the predicted UvrA proteins from several bacterial
species, including the representatives from M. genitalium
and M. pneumoniae, UvrA,,, and UvrA,,, . respectively.
The latter two proteins are encoded by ORFs MG421 and
MPNG619, respectively (Fraser et al. 1995; Himmelreich
et al. 1996), and are 85% identical on the amino acid level.
To date, the functions of these predicted mycoplasma pro-
teins have not yet been determined.
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«Fig.4 Multiple alignment of UvrA(-like) amino acid sequences. The
multiple alignment was generated with the amino acid sequences
predicted to be encoded by the following ORFs [The code in paren-
theses represents the GenBank accession numbers (https:/www.
ncbi.nlm.nih.gov/)]:  Mycoplasma genitalium G37 (NP_073092),
Mycoplasma pneumoniae M129 (NP_110308.1), Mycobacterium
tuberculosis (P63380.1), Escherichia coli str. K-12 substr. MG1655
(NP_418482.1), Bacillus caldotenax (AAK29748.1), and Thermotaga
maritima (QOWYVO0.1). The program Clustal W (https://www.ebi.
ac.uk/Tools/msa/clustalw2) was used to generate a multiple align-
ment of the amino acid sequences. The program BOXSHADE, ver-
sion 3.21 (https://www.ch.embnet.org/software/BOX_form.html),
was used to generate white letters on black boxes (for residues that
are identical in at least four out of eight sequences) and white letters
on gray boxes (for similar residues). Secondary structure elements
are based on the crystal structure of UvrA from 7. maritima (Jaciuk
et al., 2011 [41]) and indicated as colored-lines above the sequences
(ATP-binding I, red; signature I, pink; UvrB binding, yellow; inser-
tion (DNA binding), purple; linker, black; ATP-binding II, blue; and
signature II, cyan)

UvrB homologs from M. pneumoniae and M.
genitalium

As explained above, E. coli UvrB is a specific DNA damage-
binding protein with helicase and strand-separating activities
that plays a central role in the multistep process of DNA
damage recognition and incision. It interacts first with UvrA,
then with UvrC, and finally with UvrD and DNA polymerase
I to complete the excision repair (Theis et al. 1999).

UvrB proteins contain five domains, termed la, 1b, 2,
3 and 4, with ATP-binding sites located between domains
la and 3. These proteins have six helicase motifs, three of
which [helicase motif I (Walker A), II (Walker B), and III]
are located within domain 1a, whereas the other three (heli-
case motif IV, V, and VI) are located within domain 3 (Lin-
ton 2007; Theis et al. 1999, 2000), indicating that UvrB is a
member of the helicase superfamily. As depicted in Fig. 5,
the six helicase motifs are more conserved among bacterial
species than are the other regions, indicating the important
functional role of these motifs. UvrB uses its helicase-like
activity to locally unwind DNA at the site of DNA damage
(Linton 2007; Machius et al. 1999). The multiple sequence
alignment shown in Fig. 5 also indicates the relatively con-
served P-hairpin region of UvrB proteins. It has been shown
for E. coli UvrB that this region is involved in DNA damage
recognition and UvrC-mediated incision (Gordienko and
Rupp 1997).

The MGO073 and MPN211 ORFs of M. genitalium of M.
prneumoniae, respectively, have previously been predicted
as genes that encode UvrB homologs (Fraser et al. 1995;
Himmelreich et al. 1996). These homologs, termed UviB,,,,
and UvrB,,,, respectively, display 76% identity, while the
similarity between UvrB,,,, and UvrBg,, is 45%. These
Mpycoplasma genes have not yet been subjected to functional
analyses.

UvrC homologs from M. pneumoniae and M.
genitalium

As described above, E. coli UvrC can produce single-strand
cuts on either side of a DNA lesion. These cuts are executed
by two endonuclease domains located at the N-terminal and
C-terminal parts of the protein. These domains are separated
by a highly variable linker region (Goosen and Moolenaar
2008). While UvrC can bind the DNA-containing lesions
alone, the binding efficiency is increased significantly in
complex with UvrB (Uphoff and Sherratt 2017).

Although M. genitalium MG206 was annotated as an
OREF that has the potential to encode a homolog of UvrC
proteins (Fraser et al. 1995), the MG206-derived amino acid
sequence demonstrated only 25% similarity with the UvrC
protein from E. coli (UvtCpg,,). A significantly higher simi-
larity was observed between UvrCp,, and the UvrC homolog
from M. pneumoniae M129 (59%) (Fig. 6). Interestingly,
a M. genitalium mutant with a deletion of MG206 was
reported to have a growth deficiency as well as an increased
sensitivity to UV-induced DNA damage (Burgos et al. 2012),
indicating that the MG206-encoded protein (UvrC,,,) has a
potential role in DNA repair in M. genitalium.

Functional UvrD homologs from M. pneumoniae
and M. genitalium

Interestingly, both M. pneumoniae and M. genitalium do
not possess obvious uvrD gene homologs in their genomes
(Table 1) (Carvalho et al. 2005). Instead, these bacteria pos-
sess ORFs (MPN340 and MPN341 of M. pneumoniae, and
MG244 of M. genitalium; Table 1) that encode PcrA heli-
cases that belong to the same family (superfamily 1, SF1)
as UvrD (Estevao et al. 2013). PcrA homologs are found in
all gram-positive bacteria, including Bacillus subtilis and
Staphylococcus aureus, as well as in bacteria belonging
to the Firmicutes and Mollicutes classes (Petit and Ehrlich
2002; Singleton et al. 2007).

M. genitalium MG244 encodes a single PcrA helicase
(PcrA,,,) that represents the ortholog of the M. pneumoniae
MPN341-encoded protein termed PcrA,,,. The second ORF
encoding a PcrA homolog in M. pneumoniae, MPN340, is
not found in other Mycoplasma spp. Interestingly, the length
of this ORF (1,590 bp) is considerably shorter than that of
MPN341 (2,148 bp). Sequence analysis of the MPN340-
encoded proteins (PcrA2,,;,9 and PcrA2, from subtype 1
and subtype 2 strains, respectively) showed that they lacked
a so-called 2B subdomain that is found in most SF1 DNA
helicases. Surprisingly, all four proteins were found to have
divalent cation- and ATP-dependent DNA helicase activ-
ity (Estevao et al. 2013). It is therefore possible that these
proteins may be involved in UvrD-like activities in NER in
both M. pneumoniae and M. genitalium.
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Fig.5 Multiple alignment of UvrB(-like) amino acid sequences. The
multiple alignment was generated with the amino acid sequences pre-
dicted to be encoded by the following ORFs [The code in parentheses
represents the GenBank accession numbers (https://www.ncbi.nlm.
nih.gov/)]: Mycoplasma genitalium G37 (AAC71291.1), Mycoplasma
pneumoniae M129 (NP_109899.1), Ureaplasma urealyticum serovar
13 str. (ZP_02931962.1), Bacillus caldotenax (2FDC_A), Staphylo-
coccus aureus subsp. aureus VRS4 (EIK14428.1), Lactobacillus vag-
inalis ATCC49540 (ZP_03959610.1), and Escherichia coli str. K-12

Although the E. coli UvrD protein only has functional
counterparts (but not orthologs) in both Mycoplasma spp.,
the conservation of the other actors of the UvrABC system
suggests that the NER pathway in the mycoplasmas may
function in a similar way as in E. coli (Carvalho et al.
2005).
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(POABFS.2). The program Clustal W (https://www.ebi.ac.uk/Tools/
msa/clustalw2) was used to generate the multiple alignment of amino
acid sequences. The program BOXSHADE, version 3.21 (https:/
www.ch.embnet.org/software/BOX_form.html), was used to generate
white letters on black boxes (for residues that are identical in at least
four out of seven sequences) and white letters on gray boxes (for sim-
ilar residues). The annotation of the helicase motifs I-VI (HM I-VI)
and B-hairpin (B-H) is based on the crystal structure of UvrB from B.
caldotenax (Theis et al. 1999)

The BER pathway in E. coli and Mycoplasma spp.

BER is a major pathway to repair DNA damage due to
nucleobase hydrolysis, alkylations, deaminations, or oxida-
tion processes (Wallace 2014). Due to its essential role in
maintaining the genomic integrity, BER pathway is highly
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Fig.6 Multiple alignment of UvrC(-like) amino acid sequences.
Multiple alignment was generated with the amino acid sequences
predicted to be encoded by the following ORFs [The code in paren-
theses represents the GenBank accession numbers (https:/www.
ncbi.nlm.nih.gov/)]: Mycoplasma genitalium G37 (AAC71424.1),
Mycoplasma pneumoniae M129 (NP_109813.1), Mycoplasma gal-
lisepticum str. F (YP_005880751.1), Mycoplasma putrefaciens KS1
(YP_004790386.1), Bacillus cereus ATCC 4342 (ZP_04286196.1),

conserved during evolution. BER fixes small base lesions
that do not induce large distortions in the DNA helix struc-
ture (Krokan and Bjoras 2013). In short, BER involves four
steps of repair: (1) recognition and incision at the abasic
site, (2) gap generation, (3) repair synthesis, and (4) DNA
ligation.

The pathway is initiated by the search of DNA lesions
by specific DNA glycosylases (for example, uracil DNA
glycosylase of E. coli). After recognition, damage-specific
DNA glycosylases remove the damaged bases by cleaving
the N-glycosyl bond between the base and the sugar, which

Bacillus mycoides Rock 3-17 (ZP_04158875.1) and Escherichia
coli str. K-12 (POA860.1). The program Clustal W (https://www.ebi.
ac.uk/Tools/msa/clustalw2) was used to generate multiple alignment
of amino acid sequences. The program BOXSHADE, version 3.21
(https://www.ch.embnet.org/software/BOX_form.html), was used to
generate white letters on black boxes (for residues that are identical in
at least four out of seven sequences) and white letters on gray boxes
(for similar residues)

results in an abasic or apurinic/apyrimidinic (AP) site in
the DNA. Generation of the gap at this specific lesion is
performed by class II AP endonucleases (endonuclease IV
and exonuclease III), which specifically cleave at abasic
sites, and RecJ protein, which excises a 5'-terminal deox-
yribose-phosphate residue. Class I AP lysases can also
participate in this process by making incisions at the 3’
side of AP sites. Finally, repair synthesis and ligation are
performed by DNA polymerase I and DNA ligase, respec-
tively (Dianov and Lindahl 1994; Kow 1994) (Fig. 7).
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Fig. 7 Recognition and repair of damaged DNA by the Base Excision
Repair (BER) system. The pathway is initiated by the recognition of a
damaged base by DNA glycosylases. Subsequently, the damaged base
is removed, resulting in an abasic or apurinic/apyrimidinic (AP) site
in the DNA. Then, the deoxyribosyl phosphate backbone is cleaved
by AP endonucleases, followed by repair synthesis and ligation (by
DNA polymerase I and DNA ligase, respectively)

Failure to remove AP sites in genomic DNA will result in
blockade of DNA replication or mutation of the genome.

Nfoy,, and Nfo,,,

In contrast to other bacterial classes, which are known to
harbor multiple enzymes coordinately involved in BER, M.
pneumoniae and M. genitalium were hypothesized to pos-
sess only a single BER-associated enzyme, i.e. a homolog of
Nfo (or EndolV) proteins (Fraser et al. 1995; Himmelreich
et al. 1996).

The best characterized Nfo protein is the one derived
from E. coli (Nfog,,). Nfog,,, is a multifunctional protein that
is known to participate in BER by recognizing and removing
AP sites at 5’ of damaged residues. It also has an intrinsic 3
— 5" exonuclease activity (Kerins et al. 2003). In addition to
BER, the Nfo protein has been demonstrated to be involved
in an alternative, overlapping pathway of DNA repair,

@ Springer

termed nucleotide incision repair (NIR). In this system, Nfo
functions in the initial incision step of various types of oxi-
dative stress-induced DNA damage to provide target sites for
DNA polymerase to finalize the repair process (Golan et al.
2010; Ischenko and Saparbaev 2002). Characterization of
Nfo homologs derived from other distantly related species,
such as Thermus thermophilus (Nfoy,,), Thermotoga mar-
itima (Nfog,,,), and Chlamydophila pneumoniae (Nfoc,,),
demonstrated that they all have similar activities as Nfog,,
(Back et al. 2006; Kerins et al. 2003; Liu et al. 2007).

The Nfo homologs from M. pneumoniae (Nfo,,,) and
M. genitalium (Nfo,,,) are encoded by ORFs MPN328 and
MG?235, respectively. Both proteins possess a high degree
of similarity (65% identity) and are capable of removing AP
sites at the phosphodiester bond immediately 5' to the dam-
aged DNA. Nfo,,,, and Nfo,,,, were also found to possess
3" — 5’ exonuclease activity in the presence of Mg**. In
addition, both proteins were shown to recognize and remove
larger DNA lesions, such as cholesteryl-modified bases in
the DNA (Estevao et al. 2014).

Conclusion and future perspectives

Antigenic variation in M. pneumoniae and M. genitalium
is likely generated through homologous recombination
between specific, repetitive DNA elements that are dis-
persed throughout the bacterial genomes. Characterization
of the complete set of proteins involved in homologous
DNA recombination in M. pneumoniae and M. genitalium
has indicated that the functional activities of at least some
of these proteins are different compared to those of other
bacteria.

Additionally, mycoplasmas have evolved strategies to
maintain the integrity of their ‘minimal’ genomes through an
efficient DNA repair system. Comparative genomic analysis
indicated that the NER pathway may be the only complete’
DNA repair pathway in these species. While both human
mycoplasmas also harbor genes potentially involved in BER,
they do not encode a full set of BER-associated proteins, as
found in other bacterial taxa.

Further characterization of the protein repertoire involved
in homologous DNA recombination and repair in M. pneu-
moniae and M. genitalium is important, as it will identify the
minimal enzymatic requirements for both generating bacte-
rial genetic diversity (antigenic variation) and maintaining
genomic integrity.
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