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A B S T R A C T

Objectives: Metamodeling can address computational challenges within decision-analytic modeling studies evaluating many
strategies. This article illustrates the value of metamodeling for evaluating colorectal cancer screening strategies while
accounting for colonoscopy capacity constraints.

Methods: In a traditional approach, the best screening strategy was identified from a limited subset of strategies evaluated
with the validated Adenoma and Serrated pathway to Colorectal CAncer model. In a metamodeling approach, metamodels
were fitted to this limited subset to evaluate all potentially plausible strategies and determine the best overall screening
strategy. Approaches were compared based on the best screening strategy in life-years gained compared with no screening.
Metamodel runtime and accuracy was assessed.

Results: The metamodeling approach evaluated .40 000 strategies in ,1 minute with high accuracy after 1 adaptive sam-
pling step (mean absolute error: 0.0002 life-years) using 300 samples in total (generation time: 8 days). Findings indicated
that health outcomes could be improved without requiring additional colonoscopy capacity. Obtaining similar insights using
the traditional approach could require at least 1000 samples (generation time: 28 days). Suggested benefits from screening at
ages ,40 years require adequate validation of the underlying Adenoma and Serrated pathway to Colorectal CAncer model
before making policy recommendations.

Conclusions: Metamodeling allows rapid assessment of a vast set of strategies, which may lead to identification of more
favorable strategies compared to a traditional approach. Nevertheless, metamodel validation and identifying extrapolation
beyond the support of the original decision-analytic model are critical to the interpretation of results. The screening strategies
identified with metamodeling support ongoing discussions on decreasing the starting age of colorectal cancer screening.
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Introduction

Health policy recommendations regarding the implementation
of screening or reimbursement of diagnostic tests or treatments
for a specific condition follow from a thorough assessment of its
expected impact in patient outcomes, healthcare outcomes, and
costs. Such analyses ensure effective and efficient care to be
delivered, and thereby support optimal use of healthcare re-
sources. Although impact assessments traditionally have been
performed based on randomized controlled trials (RCTs), such
trials are not always feasible given their typically high cost, short
duration (ie, inability to observe long-term outcomes), and limited
number of considered strategies (ie, study arms).

In particular, when considering multiple diagnostic or
screening strategies involving combinations of tests, procedures,
and their timing, a large number of different strategies can be
distinguished. Ideally, all relevant strategies would be compared
to determine the best strategy. Nevertheless, this is clearly not
15/$36.00 - see front matter Copyright ª 2020, ISPOR–The Professional So
feasible in RCTs, as demonstrated by the rarity of even simple
test 1 treatment RCTs.1 Therefore, in silico decision-analytic
impact studies are increasingly applied as a cheaper and more
efficient method to evaluate strategies, and also to guide the
design of RCTs.2,3 Such modeling studies can easily incorporate
multiple screening or diagnostic strategies for comparison. In
doing so, in silico models should adequately represent clinical
practice and disease progression. These models should also
properly reflect the (indirect) impact of test outcomes on treat-
ment decisions and resulting health outcomes and costs, for
incorrect test results, for different test cutoff values, for patient
stratification based on test outcomes, and other relevant aspects.4

To reflect these aspects, patient-level simulation models (ie,
microsimulations) are typically required, which may be more
computationally demanding compared to conventional cohort-
level models.5

Even with computationally demanding simulation models,
performing traditional model analyses, including a probabilistic
ciety for Health Economics and Outcomes Research. Published by Elsevier Inc.
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analysis to reflect uncertainty in the modeling outcomes,6 is often
feasible within acceptable time frames. Performing more
advanced analyses like Value of Information analysis, for example,
or applying optimization approaches with such models, however,
may not be feasible unless simulation code is parallelized and run
on high performance computing clusters (see Appendix A in
Supplemental Materials found at https://doi.org/10.1016/j.jval.202
0.08.2099 for a numerical example). Alternatively, approximation
methods can sometimes be applied to estimate outcomes of in-
terest within a feasible time frame, for example, in the context of
Value of Information analysis.7,8 Furthermore, specific algorithms
and operation research methods can be directly applied to
mathematical models to optimize health services accounting for
constraints (eg, in healthcare system characteristics or
budgets).9,10

For screening models, which are often complex micro-
simulation models, it may prove computationally challenging to
evaluate a large number of strategies to identify the best screening
strategy for a specific condition. This explains why typically only a
limited number of screening strategies are evaluated, for example,
between 2 and 25 strategies, and compared with a reference
strategy.11,12 Although limiting the number of strategies to be
evaluated improves the feasibility of the analysis, a direct conse-
quence is that the best screening strategy may not be included in
the set of evaluated strategies and, hence, will not be identified.
Given that typically tens of thousands to millions of strategies can
be identified (see Appendix B in Supplemental Materials found at
https://doi.org/10.1016/j.jval.2020.08.2099 for a numerical
example), the likelihood that the best screening strategy is actu-
ally identified may be very small.

Estimating the impact of all potential strategies or applying
optimization approaches may become feasible, however, when
approximating rather than evaluating the outcomes of a compu-
tationally demanding simulation model. Metamodels, also known
as surrogate models or emulators, can provide such approxima-
tions of (complex) simulation models, and can be used to perform
complex analyses, instead of using the original simulation
model.13,14 Metamodels have been used in different research
contexts, but their application in health economics is still
limited.15

In this article, metamodeling methods are used to address
computational challenges associated with a complex simulation
model, to enable optimization in a case study on colorectal cancer
(CRC) screening in The Netherlands, while accounting for colo-
noscopy capacity constraints.
Methods

Case Study on Colorectal Cancer Screening

Colorectal cancer accounts for 1.8 million cases and over
850 000 deaths worldwide, making it a major public health
issue.16 Colorectal cancer originates from colorectal polyps, that is,
adenomas and serrated lesions. These benign precursor lesions
and the long preclinical phase make CRC an excellent target for
screening. Indeed, several long-term RCTs have shown that CRC
screening can considerably decrease CRC mortality.17,18 As the
preventive impact of CRC screening is widely recognized, CRC
screening is now implemented in almost 60 countries.19 These
screening efforts vary widely in, among others, the type of
screening program (ie, organized population-based screening
versus opportunistic screening), type of test used, the age ranges
at which screening is offered, and the screening interval. This
diversity is mainly owing to differences in available healthcare
resources, with colonoscopy capacity being the most relevant
constraint. In The Netherlands, a population-based CRC screening
program was implemented in 2014.20 This program consists of
biennial fecal immunochemical testing (FIT) in individuals aged 55
to 75 years. Individuals with a positive FIT result are referred to get
a colonoscopy during which all detected colorectal polyps are
removed. This program was defined based on a maximum ca-
pacity of 550 colonoscopies over the lifetime of 1000 patients, and
is expected to reduce CRC mortality with at least 40% compared to
no screening in 2040.12

The original ASCCA simulation model
The Adenoma and Serrated pathway to Colorectal CAncer

(ASCCA) simulation model was designed and implemented to
reflect the development of CRC. The ASCCA model is calibrated to
Dutch adenoma and serrated polyp prevalence rates as well as
Dutch CRC incidence and mortality rates,21 and uses screening
adherence rates based on achieved adherence rates in The
Netherlands, as reported by the national monitor.20 Details of the
ASCCA model are presented in Appendix C (see Appendix C in
Supplemental Materials found at https://doi.org/10.1016/j.jval.2
020.08.2099), and extensive model descriptions have previ-
ously been published.22 ASCCA has been used, among others, to
evaluate the long-term impact of the Dutch national colorectal
screening program in cancer incidence, mortality, and colonos-
copy capacity requirement,12 and to assess the effectiveness and
cost-effectiveness of colonoscopy surveillance in FIT-based
screening.23 Although the ASCCA model is programmed in
C11, one of the fastest general programming environments,24 a
single simulation run to evaluate 1 strategy takes about 40 mi-
nutes on a modern desktop computer. This computational
burden is owing to the fact that (1) 10 million men and 10
million women need to be simulated to obtain stable results, and
(2) previous screening and surveillance results of individuals are
stored and used in the model to simulate future events. Despite
the model’s valuable ability to evaluate different screening
strategies, its computational cost makes it infeasible to identify
the optimal screening strategy by evaluating a comprehensive
set of thousands or more screening strategies within a reason-
able time frame (eg, a few days).

Approaches to optimize screening strategies
Potential FIT-based screening strategies were defined based on

a limited set of 4 parameters: start age (in years, range 30-90),
screening interval (in years, range 1-60), number of screening
rounds (range 1-31), and FIT cutoff for referral (discrete values: 50,
75, 100, or 150 ng/mL). When limiting the maximum age of
screening to 90 years, these combined ranges lead to a set
comprising 40864 unique screening strategies (see Appendix B in
Supplemental Materials found at https://doi.org/10.1016/j.jval.202
0.08.2099 for calculation). In all strategies, overall adherence to FIT
screening was set at 73%. Screen-positive individuals are referred
to diagnostic colonoscopy, for which compliance was set at 92%. In
individuals referred to the surveillance program based on findings
at the diagnostic colonoscopy, compliance was assumed to be 92%
as well.

We compared 2 approaches to identify the best screening
strategy from all potential strategies, that is, the traditional and
the metamodeling approach. Both approaches were used to
identify a best strategy, compared to no screening, in life-years
gained (LYG) and a best strategy in net monetary benefit (NMB),
satisfying a predefined maximum colonoscopy capacity constraint.
For the NMB a willingness-to-pay of V20 000 per life-year gained
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was used. Colonoscopy capacity was defined as the number of
colonoscopies available in the lifetime of 1000 patients.

In the traditional approach, the optimal strategy was deter-
mined by evaluating a fixed set of strategies using the original
ASCCA model and selecting the best strategy in LYG or NMB that
does not exceed the maximum colonoscopy capacity.

In the metamodeling approach, the exact same set of strategies
evaluated in the traditional approach was used to fit Gaussian
process metamodels. Gaussian process regression is a nonpara-
metric regression method also known as kriging, which uses
information on neighbor observations for new predictions.13,25

This metamodeling technique was selected because it is partic-
ularly suited for scenarios involving low number of observations
and input parameters, because the computational burden, both
in fitting and predicting, increases dramatically with increasing
numbers of observations and parameters. Based on the screening
parameters defined earlier, metamodels were fitted to estimate
(1) the number of LYG (primary outcome), (2) incremental costs,
(3) NMB of a screening strategy compared to no screening, and
(4) the number of colonoscopies required for a screening strat-
egy. These metamodels were then used to evaluate all possible
screening strategies to determine the overall best strategy in
predicted LYG or NMB that meets the colonoscopy capacity
constraint. The main benefit of the metamodeling approach is
that it enables a large number of screening strategies (ie, search
space) to be explored, rather than the limited set of strategies
that can be evaluated using the traditional approach, and thereby
may identify a better best screening strategy. As the metamod-
eling approach can be considered an approximation to the ASCCA
model, a feedback step (or iterative loop) to this original model
was implemented to check metamodel performance. Finally,
because searching through all possible screening strategies
might result in the evaluation of strategies beyond the bound-
aries of the evidence supporting the ASCCA model, we checked
to what extent the identified best strategies were based on
extrapolation.
Analysis and outcomes of the approaches
We performed 3 steps to illustrate the use and advantages of

the metamodeling approach, and assessed how its performance
varies with the size of the fixed set of strategies evaluated with the
ASCCA model. An overview of all steps is provided in Figure 1. In
the first step, the potential benefit of optimization using a meta-
model in LYG (ie, ignoring the NMB and costs) across a range of
colonoscopy capacity constraints was illustrated. Hence, the
optimization problem addressed was to maximize the LYG by
screening for CRC given a colonoscopy capacity of 550 in the
lifetime of 1000 patients. The process was as follows:

1.1. Different sets of 25, 50, 100, and 150 screening strategies that
each cover the search space as much as possible were
generated by sampling according to a Latin hypercube design.
A constraint to the sampling was applied to ensure only
strategies that do not exceed the maximum age of screening
of 90 years were included. A Latin hypercube design was
selected, because it has been used often for designing com-
puter experiments following its ability to efficiently cover the
full parameter space.26,27

1.2. Each of the 4 sets of screening strategies was evaluated with
the ASCCA model to obtain their corresponding outcomes in
LYG and number of colonoscopies required for each screening
strategy. For the traditional approach, the best strategy given
a certain colonoscopy capacity was identified within these
(limited) evaluated sets.
The traditional approach stopped here—metamodeling approach
continued.

1.3. Metamodels for the LYG and number of colonoscopies
required were fitted on each set of screening strategies
separately, resulting in 4 groups of 2 metamodels (1 group for
each set of 25, 50, 100 and 150 screening strategies).

1.4. For each group of metamodels separately, the metamodels
were used to estimate the LYG and number of colonoscopies
required for all 40 864 potential screening strategies.

1.5. For each group of metamodels separately, the best outcomes
in LYG from the traditional and metamodeling approach were
presented in an optimization frontier for different colonos-
copy capacities ranging from 25 to 900 (in steps of 25).

The second step investigated how accurate, and therefore
meaningful, outcomes of the LYG metamodels were, to illustrate
the validation process:

2.1. Based on the outcomes of the 40864 unique screening stra-
tegies estimated in step 1.4 and using the metamodel for LYG
fitted to 150 experiments in step 1.3, the 100 strategies with
outcomes corresponding to the 100 quantiles of LYG were
identified. Although LYG outcomes predicted by one of the
metamodels fitted to other (smaller) sets of strategies could
also have been used, the metamodel fitted to the largest
number of strategies (ie, 150) was expected to perform best
and, hence, the outcomes as predicted by that metamodel
were used to identify the quantiles.

2.2. The set of 100 strategies corresponding to the identified
quantiles were evaluated with the ASCCA model to obtain the
'true' outcomes.

2.3. For all LYG metamodels fitted to the differently sized sets of
strategies (step 1.3), outcomes predicted by the LYG meta-
models were compared with those from the ASCCA model in
calibration plots, and error values were calculated, to assess
the accuracy of the metamodels.

The third step concerned the identification of the CRC
screening strategy expected to be optimal for The Netherlands. For
this purpose, we used the group of metamodels fitted based on
the largest set of 150 experiments, because these metamodels
were most accurate based on the mean (absolute) relative error.

3.1. Based on the outcomes of all (remaining) screening strategies
predicted in step 1.4 using the group of metamodels fitted to
150 experiments in step 1.3, the top 150 strategies with the
highest predicted LYG were identified, across all strategies
complying with the capacity constraint. As will be discussed
below, outcomes of all screening strategies from step 1.4 are
used for the first iteration of this step 3.1.

3.2. These identified top 150 strategies were evaluated with the
ASCCA model to obtain their true outcomes.

3.3. The outcomes predicted by the metamodels were compared to
those from the ASCCA model to check for discrepancies. If
necessary, newmetamodelswerefittedon theASCCAoutcomes
of the top150strategiesandusedtorepeatsteps3.1and3.2.This
was an adaptive sampling step, to zoom in on the region with
strategies of interest and, thereby, obtain more accurate meta-
modelpredictions in that region. Inour illustration,not aimed to
directly informpolicy decisions, ameanabsolute errorof 0.01 in
LYG was assumed to be acceptable; larger discrepancies would
require zooming in and fitting new metamodels. Hence, when
repeating step 3.1 based on the outcomes of all potential
screening strategies as predicted by the newly developed met-
amodels, the strategies considered were limited to those



Figure 1. Overview of the steps performed and resulting objects.
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covered by the parameter ranges as observed in the top 150
strategies used to fit the newmetamodels.

3.4. When the metamodels were considered sufficiently accurate
based on the calibration plot and error measures, they were
used to evaluate all remaining strategies (ie, those covered by
the parameter ranges on which the metamodels were fitted)
and, thereby, identify the best strategy given a colonoscopy
capacity constraint.

Step 3 was also performed with NMB rather than LYG as pri-
mary outcome to address the optimization problem of maximizing
the NMB of screening for CRC given a colonoscopy capacity of 550
in the lifetime of 1000 patients. An overview of the analysis,
conforming to the The Professional Society for Health Economics
and Outcomes Research guidance on optimization methods,10 is
provided in Appendix E in Supplemental Materials found at
https://doi.org/10.1016/j.jval.2020.08.2099.
Results

Figure 2 shows the LYG optimization frontiers as a function of
the maximum colonoscopy capacity, for each group of meta-
models fitted based on screening strategy sets of different sizes
(step 1). Regardless of the number of included strategies, it is clear
that most strategies sampled for the traditional approach accord-
ing to a Latin hypercube design require limited colonoscopy ca-
pacity and yield only small health benefits. Most strategies are
located in the lower left corner, yielding between 0 and 0.03 LYG
per individual and requiring less than 250 colonoscopies lifelong
per 1000 individuals.

The potential benefit of using the metamodeling approach is
visible as the area between the metamodel frontier and the
traditional frontier. The latter represents experiments corre-
sponding to the best outcome as a function of the number of
colonoscopies. The benefit is observed across the entire range of
maximum colonoscopy capacity but varies in size, being highest in
the region where few strategies have been evaluated (ie, top
right). As expected, the benefit of using metamodels is smallest for
a set of 150 strategies. When the number of strategies evaluated
with the ASCCA model and used to fit metamodels increases, the
best strategies from both approaches will converge and, hence, the
added value of the metamodeling approach becomes smaller.

Looking only at the difference between the frontiers, however,
would ignore that the metamodels are approximations of the
ASCCA model and that predicted outcomes from the metamodels
may not accurately reflect outcomes of the ASCCA model. Figure 3
shows the results of assessing the accuracy of the LYG metamodel
(step 2): calibration plots for the different number of screening
strategies used to fit metamodels. The corresponding error values
are presented in Table 1. Clearly, calibration is relatively good for
low health benefits and relatively poor for high health benefits,
owing to the aforementioned distribution of strategies in the
lower-left corners of the plots in Figure 2. Although calibration
improves with an increasing number of strategies considered,
calibration for large health benefit values is still poor, even when
considering 150 strategies.

To identify the optimal screening strategy (step 3), the per-
formance of the LYG metamodel developed based on 150 strate-
gies (step 1.3) regarding the 150 best strategies (step 1.4) was
assessed. The mean absolute error of 0.0245 and mean relative
absolute error of 30.7% were deemed too large to accurately
identify the best strategy with the metamodel. Hence, an adaptive
sampling step to zoom in was performed: a new Gaussian process
metamodel was fitted on the ASCCA outcomes of these top 150
strategies. Figure 4A shows the calibration plot for the new met-
amodel for the 150 best strategies according this new LYG meta-
model (step 3.3, second iteration). Following this adaptive
sampling step, performance of this new metamodel was consid-
ered sufficient (mean absolute error 0.0002; mean relative abso-
lute error 0.2%).

The new metamodel was used to evaluate all scenarios within
the parameter ranges as covered in the top 150 strategies identi-
fied in step 3.1 (first iteration), because these were used to fit the
new metamodel in step 3.3. These parameter ranges after zoom-
ing in were start age (range 30-43), screening interval (range 1-3),
number of screening rounds (range 18-21), and FIT cutoff values
(50, 75, 100, and 150 ng/mL), resulting in 536 remaining feasible
strategies. The optimization frontier of these strategies is pre-
sented in Figure 4B.

All possible screening strategies (ie, 40 864 strategies) could be
evaluated with the metamodels in less than 1 minute, based on
150 1 150 generated samples (generation time ~8 days).
Conversely, the traditional approach required ~4 days of compu-
tation time to evaluate just 150 (predefined) screening strategies,
and is expected to require generation of at least 1000 samples
(generation time ~28 days) to provide similar insights.

Table 2 shows that for a maximum of 550 colonoscopies life-
long per 1000 individuals, which reflects current colonoscopy
capacity, the optimal screening strategy in LYG yields an expected
0.092 LYG per individual and starts at age 33 years, and has a
screening interval of 2 years, 21 screening rounds, and a FIT cutoff
of 150 ng/mL. In comparison, the best screening strategy identified
by the traditional approach yields 0.081 LYG and starts screening
at age 32, and has an interval of 3 years and 14 screening rounds
and also uses FIT cutoff of 150 ng/mL. The definition and outcomes
for the top 10 strategies according to the metamodel are shown in
Table 3. Clearly, both strategy definitions and outcomes are quite
similar for these top 10 strategies. When colonoscopy capacity
would be substantially lower, the screening interval decreases to 1
year (other aspects remain comparable). Conversely, when colo-
noscopy capacity would be substantially higher, the FIT cutoff
decreases to 75 ng/mL (other aspects remains comparable)
(Table 2). Results found when optimizing the NMB rather than LYG
did not provide additional insights, because the impact of costs is
limited compared to the impact of LYG (see Appendix D in Sup-
plemental Materials found at https://doi.org/10.1016/j.jval.2020.
08.2099).

These optimal strategies, however, are based on extrapolations
beyond the scope of the original ASCCA model. Colorectal polyp
incidence rates in the ASCCA model were calibrated against polyp
prevalence rates as reported by a Dutch study in which 1420
screening-naïve individuals aged 50 to 75 years underwent colo-
noscopy.28 For the ages 20 to 50 and 75 to 90, prevalence rates
reported by Rutter et al29 were used. As the confidence intervals in
this latter study were extremely wide, there is considerable un-
certainty regarding the ASCCA model predictions for screening at
ages below 50 and over 75 years. Consequently, even though the
metamodel is an accurate approximation of the ASCCA model, the
ASCCA model itself requires validation for younger ages before its
results can be used for policy recommendations concerning a
decrease in the starting age of screening.
Discussion

The computational burden of using complex, patient-level
simulation models for health economic analyses can be prob-
lematic. In this case study, metamodeling techniques were used to
negate computational challenges with the original ASCCA model,

https://doi.org/10.1016/j.jval.2020.08.2099
https://doi.org/10.1016/j.jval.2020.08.2099
https://doi.org/10.1016/j.jval.2020.08.2099


Figure 2. Optimization frontier for the LYG as function of maximum colonoscopy capacity. LYG, life-years gained.

Table 1. Mean absolute and mean relative absolute errors for the LYG metamodels.

100 quantiles (step 2.3)

ME MAE MRE (%) MRAE (%)

MM25 0.0014 0.0072 84.8 101.2

MM50 0.0018 0.0055 48.3 78.9

MM100 –0.0002 0.0044 –53.9 64.5

MM150 0.0039 0.0068 –37.2 55.0

LYG indicates life-years gained; MAE mean absolute error; ME, mean error; MRAE, mean relative absolute error; MRE, mean relative error.
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which allowed for identification of the optimal screening strategy
for The Netherlands given a maximum colonoscopy capacity.

In our metamodeling application, the feedback loop with the
ASCCA model to ensure accuracy of the predicted outcomes was
crucial, because the validation showed an adaptive sampling step
was necessary to improve metamodel performance. Clearly,
proper validation should be part of every metamodeling study,
which is straightforward when access to the original model is
available. Without metamodeling, only a potential set of dozens or
hundreds of strategies could have been evaluated with the ASCCA
model. It is highly unlikely that the optimal screening would have
been identified by such a traditional approach. The additional
insight gained from evaluating a much more comprehensive set of
strategies, within a single minute, is a clear advantage of



Figure 3. Calibration plots for the LYG metamodel. LYG, life-years gained.
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metamodeling, and enables better-informed decision making.
Although many strategies in this comprehensive set ultimately
may not be feasible or acceptable in practice, excluding them
beforehand (in the traditional approach, out of necessity) keeps
potentially relevant new insights from researchers and policy
makers. Beyond optimization based on population-level parame-
ters, there is the potential for metamodels to enable further
research into more personalized screening, for which even more
potential strategies exist. Such screening strategies may be, for
example, sex- and/or age-specific, or strategies in which the fre-
quency of screening is adapted on the basis of previous test
results.

Next to optimization, other applications of metamodeling in a
health economic context consist of performing a probabilistic
analysis,30 a value of information analysis,31,32 or a model cali-
bration procedure.33 Although different in goal, these applications
have in common that metamodeling is used to perform extensive
(repeated) analyses in the context of computationally demanding
simulation models. In general, applications of metamodeling in
which fewer associations need to be reflected, that is, the number
of relevant input parameters is limited, may be easier to perform.
For example, in our case study 4 input parameters were used,
whereas a probabilistic analysis of the ASCCA model would
require the use of more than 50 input parameters. Fitting meta-
models with many (eg,.25) input parameters is not feasible using
Gaussian processes, for which both the fitting time and calculation
time (for prediction) increase exponentially with the number of
input parameters. Fitting such metamodels with alternative
techniques, for example, generalized additive models or neural
networks, would be feasible in limited time, and predictions are
likely to be very fast, which may enable performing probabilistic
analysis in a matter of minutes.34 The main challenge would be to
obtain sufficient samples for fitting the metamodels from the
original model, because hundreds of samples may be required to
reach acceptable metamodel accuracy using neural networks, for
example. The number of samples required can be decreased by
performing parameter importance analysis,30 but a discussion of
those methods is beyond the scope of this study.

In our specific case study, the metamodeling approach sug-
gests that optimal screening under a colonoscopy capacity



Figure 4. Calibration plot* (A) and optimization frontier (B) for the LYG metamodel after 1 adaptive sampling step. *Note: range of
predicted LYG in this plot has been restricted to higher LYG values, as calibration was based on the top 150 strategies with highest
expected LYG. LYG, life-years gained.

Table 2. Definitions and outcomes of screening strategies expected to be optimal in LYG.

Constraint Screening strategy identified as optimal Predicted strategy outcomes*

Maximum
colonoscopy
capacity†

Start age
screening
(years)

Screening
interval
(years)

Number of
screening
rounds

FIT cutoff‡ for
referral (ng/mL)

Number of
colonoscopies†

LYG Incremental
costs (V)

NMB§

300 32 1 18 150 296 0.058 -266 1430

450 40 1 20 150 441 0.081 -316 1941

550 33 2 21 150 546 0.092 -361 2202

650 34 2 21 100 647 0.097 -363 2294

800 35 2 21 75 738 0.100 -380 2374

FIT indicates fecal immunochemical test; LYG, life-year gained; NMB, net monetary benefit.
*For the optimal screening strategy compared with no screening. No comparison between screening strategies was made, because their requirements in colonoscopy
capacity, which will determine feasibility in clinical practice, varies widely.
†Colonoscopy capacity in lifelong colonoscopies, per 1000 individuals.
‡Only discret-e cutoff values of 50, 75, 100, and 150 ng/mL were considered in the analysis.
§NMB determined using a willingness-to-pay of V20000 per life-year gained.
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constraint of 550 colonoscopies lifelong per 1000 individuals,
conforming to current Dutch colonoscopy requirements, should
start at much younger age than in the current Dutch screening
program with starting age 55 years (and 11 biennial screening
rounds, using a 75 ng/mL FIT cutoff). Although this might imply
that earlier screening potentially could save lives and decrease
costs, without requiring additional colonoscopy capacity, the best-
performing screening strategies identified in this study are large
extrapolations beyond the scope of the original ASCCA model.
Clearly, the ASCCA model itself requires validation for younger
ages, an extensive comparison of predicted and observed ade-
noma prevalence rates in younger individuals, before its results
can be used for policy recommendations concerning a decrease in
the starting age of screening. To enable such a validation, future
CRC screening studies should also include individuals aged ,50
years and report age-specific adenoma prevalence rates. Current
case study results may, therefore, stimulate further research on
CRC screening in The Netherlands. CRC incidence is rising in young
adults,35 and there is increasing interest in the optimal start age of
screening. This is underpinned by 2 recent studies evaluating
screening strategies starting at age 40.36,37
Our study has certain limitations. Results shown are, of course,
specific to the optimization problem addressed and the original
simulation model used. When other CRC screening simulation
models would have been used, results could have been different.38

Furthermore, we applied a single metamodeling technique,
Gaussian processes, to illustrate the potential advantages of meta-
modeling. Many alternative metamodeling techniques are available,
for example, linear regression, artificial neural networks, and
multivariate adaptive regression splines, each with their own (dis)
advantages.39,40 Nevertheless, rather than comparing these tech-
niques, this study focused on increasing general awareness of the
potential added value of metamodeling in a health economic
context. For the same reason, validation efforts and performance
checks for the cost and colonoscopy metamodels were limited, even
though assessing metamodel accuracy is crucial and a range of
resampling strategies is available.41 The impact of varying the
sample size for adaptive sampling was not studied, because this
would require a comprehensive simulation study to generate
generalizable results, which was beyond the scope of this article.
Although metamodels are ideally fitted to samples generated
through a probabilistic analysis for each strategy, this is currently



Table 3. Top 10 screening strategies in terms of LYG for a colonoscopy capacity of 550.

Screening strategy identified as optimal Predicted strategy outcomes*

Start age
screening (years)

Screening
interval (years)

Number of
screening rounds

FIT cutoff‡ for
referral (ng/mL)

Number of
colonoscopies†

LYG Incremental
costs (V)

NMB§

33 2 21 150 546 0.0920 -361 2202

34 2 20 150 545 0.0919 -348 2185

36 2 19 150 548 0.0917 -348 2183

35 2 19 150 541 0.0916 -361 2193

33 2 20 150 537 0.0914 -359 2186

32 2 21 150 538 0.0912 -343 2166

34 2 19 150 533 0.0911 -343 2166

37 2 18 150 543 0.0911 -361 2183

36 2 18 150 536 0.0910 -343 2163

38 2 18 150 549 0.0909 -347 2165

FIT indicates fecal immunochemical test; LYG, life-year gained; NMB, net monetary benefit.
*For the optimal screening strategy compared with no screening. No comparison between screening strategies was made, because their requirements in colonoscopy
capacity, which will determine feasibility in clinical practice, varies widely.
†Colonoscopy capacity in lifelong colonoscopies, per 1000 individuals.
‡Only discrete cutoff values of 50, 75, 100, and 150 ng/mL were considered in the analysis.
§NMB determined using a willingness-to-pay of V20000 per life-year gained.
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not supported by the ASCCA model. As discussed previously, met-
amodels can also be used to enable probabilistic analysis of
computationally demanding models like the ASCCA model,30 but
this is part of further research. Also, the number of screening
strategies considered to illustrate the benefit of the metamodeling
approach over the traditional approach and its impact on meta-
model accuracy is an arbitrary decision. Nevertheless, although
using different numbers of strategies might have resulted in
different optimization frontiers and accuracy estimates, this is not
expected to influence the final outcomes and conclusions owing to
the high accuracy of the final metamodel. Finally, the comparison of
the traditional andmetamodeling approach was based on use of the
same limited set of strategies generated using a Latin hypercube
design. Using such a design to cover the entire space of strategies
for the metamodeling approach is sensible. Nevertheless, when
only a very limited set of diagnostic strategies (eg, in range of 2 to
25) is evaluated with the traditional approach, strategies are often
not generated by design but defined by researchers. Such a manual
selection potentially could either increase or decrease the benefits
of metamodeling, depending on how close the strategies selected
for evaluation would be to the optimal strategy.
Conclusions

Metamodels can be used to address computational challenges
in complex, model-based health economic analyses and allow for
optimization rather than evaluation of strategies. This was illus-
trated for a CRC screening context, while accounting for practical
constraints regarding the maximum number of colonoscopies to
be performed. When applying metamodeling methods, validation
showed to be crucial, and an adaptive sampling step was neces-
sary to improve metamodel accuracy. Outcomes from the meta-
model indicated potential benefits of starting CRC screening at a
younger age than is currently considered. This raised questions
concerning the evidence base (ie, generalizability) of the original
model, may lead to additional validation efforts, and provides
insights beyond those that would have been obtained using only
the original simulation model.
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