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Abstract

After a hurricane, for example hurricane Irma in Sint-Maarten, the navy can provide aid by

bringing supplies, helping to clear roads and evacuating victims. If the destinations cannot be

reached over land via a port, resources can be transported using smaller ships and helicopters,

called connectors. This has to be done efficiently so that the supply provision can start as soon

as possible. Planning such an operation is known as the ship-to-shore problem, which is a com-

bination of a heterogeneous vehicle routing and a bin-packing problem, which we prove to be

an NP-hard problem. The aim is to schedule the connector trips to the shore and determine

what resources should be loaded onto the connectors for each of their trips while minimising

the duration of the operation. Connectors have different sizes, weight capacities, speeds and

(un)loading times. Scheduling such an operation is currently done manually, which we mimic

using a greedy heuristic. We aim to determine the quality of the greedy heuristic and determine

in what cases it performs well and in what cases improvements can be found. To determine

the quality, we solve the problem using a branch-and-price algorithm in which we take a set of

ways to feasibly load the connectors as input. We use data provided by the Royal Netherlands

Navy to construct 98 instances and find that the greedy heuristic can find an optimal solution

in the majority of the cases. However, when the problem is less constrained in terms of the

requirements regarding the order in which the resources should be delivered, the greedy heuris-

tic is more likely to choose a suboptimal trip and can result in a solution that is far from optimal.
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1 Introduction

After a natural disaster, such as a hurricane, the navy can provide aid by, for example, bringing

supplies, helping to clear roads, and evacuating victims. In case of coastal areas, the navy

provides support by transporting supplies using smaller ships and helicopters, called connectors.

This transport has to be done efficiently for the help on land to start as soon as possible. Also

the planning of such an operation has to be done fast because knowledge of the situation changes

quickly, changing what needs to be delivered where, requiring the plan to be altered on the fly.

In addition to humanitarian purposes, this problem can be encountered in other operations such

as assault, withdrawal, raid, or support of other operations (Maritime Warfare Centre, 2019).

Planning such an operation is known as the ship-to-shore problem. The aim is to minimise

the duration of the operation by scheduling connector round-trips to the shore and determining

what resources are transported in these trips. We assume the set of feasible loadings, sets of

resources that fit together on a connector, is given as input. This problem can be seen as a

pick-up and delivery vehicle routing problem in which a route containing trips to the shore and

back is assigned to each connector. Alternatively, it can be seen as a machine scheduling problem

in which each machine represents a connector and jobs correspond to the resource-transporting

trips.

Although the problem has been addressed by some researchers (Christafore Jr., 2017; Daniel-

son, 2018; Strickland, 2018; Villena, 2019), the existing formulations do not allow to determine

the optimal solution while integrating all constraints considered in this paper, for example, re-

lated to the order in which groups of resources are to be delivered. Examples of other problems

that are of a similar structure are evacuations and the installation of wind farms at sea. The

problem can also be linked to a pick-up and delivery problem.

In practice, these operations are planned manually by iteratively adding trips to the shore

for the connectors. However, since the previously-mentioned research does not cover all the

constraints in this problem, it is not known what the quality of these manually constructed

plannings are. Therefore, we are interested in the quality of these solutions and in what cases

significant improvements can be made.

We are the first to model a general and integrated model for the ship-to-shore problem that

includes constraints regarding the simultaneous delivery of sets of resources and the number of

available (un)loading spots. We provide two results related to the computational complexity of

this problem and develop an exact branch-and-price algorithm and a greedy heuristic that will

serve as a reflection of the manually-constructed schedules. We use 98 feasible instances from

the Royal Netherlands Navy to analyse the performance of the branch-and-price and greedy

algorithms. The results show that the greedy heuristic performs well in very constrained cases,

but is outperformed by the exact method in other cases.

The paper is organised as follows. The problem and its constraints are described in Section 2.

Section 3 gives an overview of the related literature. Section 4 presents a proof of NP-hardness

and a description of the greedy heuristic and the branch and price algorithm and Section 5 the

results. We end with a conclusion in Section 6.
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2 Problem Description

In the ship-to-shore problem, resources have to be transported from landing platform docks, the

sea base(s) (SB), to the shore, the landing area(s) (LA). To transport these resources, connectors,

smaller ships and helicopters, are used. A landing platform dock contains different locations at

which connectors can be loaded. Helicopters can be loaded at a landing spot on the deck of the

ship while the surface connectors can be loaded at either a dock or a davit. After a connector is

loaded, the resources are transported to the shore, where they are unloaded from the connector

and the connector can return for its next trip. An example of a landing platform dock is given

in Figure 1. This ship has a deck with landing spots on which helicopters can land, docks for

surface connectors that can be accessed through the opening at the rear and davits to load

surface connectors on the side.

Davit
Docks

Landing Spots

Figure 1: Zr. Ms. Johan de Witt (Maritime Warfare Centre, 2019)

Figure 2: Landing Craft Utility (Maritime War-
fare Centre, 2019)

Figure 3: Fast Raiding, Interception & Special
forces Craft (Maritime Warfare Centre, 2019)

There are several types of connectors, two examples of which are given in Figures 2 and 3. The

different types of connectors have different dimensions, fuel capacities, fuel consumption rates,

speeds and weight capacities. Furthermore, the locations that can be visited by each connector

type can differ. Namely, surface connectors can only reach the shore, whereas helicopters can

also reach destinations further land inwards. Also, large connectors, such as a Landing Craft

Utility (Figure 2), can only be loaded at a dock, whereas smaller connectors, such as a Fast

Raiding, Interception & Special forces Craft (Figure 3), can also be loaded at a davit. The

speed of a connector depends on its design speed, whether it is loaded or not and on the state

3



of the sea, i.e., the wind and the waves.

During the operation, the main goal is to transport the resources while minimising the

makespan (the total duration of the operation). However, the problem can include various

constraints.

Firstly, there is limited (un)loading capacity, as there is a limited number of landing spots,

docks and davits at a sea base and a limited number of spots to unload on land. Thus, only a

limited number of connectors can be (un)loaded at the same time.

Secondly, connectors have a fuel capacity. Hence, they may have to be refuelled at a sea

base during the operation to ensure they can complete their trips in the operation.

Thirdly, resources have to be delivered with a given priority to the landing area. Resources

with a lower priority can only be delivered when all items with a higher priority have already been

delivered. Our convention throughout the paper shall be that the lower the number, the higher

the priority, i.e., priority 1 has the highest priority. Additionally, it is not possible for resources

with different priority numbers to be transported on the same connector simultaneously. In

addition to priority levels, some resources have to be delivered to a landing area at the same

time or immediately after each other, for example supplies, vehicles to transport the supplies,

plus the required personnel to carry out the delivery. When resources belong together, we say

that they belong to the same resource set. The set of consecutive periods in which the resources

from a resource set are delivered is called a delivery wave for this resource set. There is no

ordering imposed between the different waves with the same priority and these delivery waves

can (partially) overlap.

Finally, the space on the connectors and their weight capacity is limited. Hence, a connector

can only be loaded with a set of resources that fit on the connector in terms of its weight

capacity and dimensions. We call such a set of resources that feasible fit together on a connector

a loading.

3 Literature Review

We first focus on the literature related to the ship-to-shore problem. Thereafter, we link it

to some other practical problems with similar characteristics and we describe how the ship-to-

shore problem can be interpreted as a special case of the Pick-up and Delivery Vehicle Routing

Problem.

3.1 Literature on the Ship-to-Shore Problem

The ship-to-shore problem has been addressed in some research. Villena (2019) solved the

ship-to-shore problem using an Integer Linear Programming model to minimise the makespan.

She considers the priority levels of the connectors, however, she does not consider (un)loading

capacities and the fact that some resources are complementary and should belong to the same

wave. She imposes fuel capacities by imposing a maximum distance that the connectors can

travel and thus, does not allow for refuelling.

Christafore Jr. (2017), Danielson (2018) and Strickland (2018) generate schedules for the

ship-to-shore problem using a three-phase approach. In the first phase, a quickest flow problem
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is considered. In this problem, the aim is to maximise the total demand satisfied given a fixed

number of time periods. If the actual demand is higher then the demand, the number of time

periods is increased. When the number of time periods is large enough for all demand to be

satisfied, the corresponding number of connector trips per connector type can be determined. In

this phase, capacity constraints are disregarded and hence no direct schedule can be constructed

from these trips. In the second phase, trips are assigned to connectors in an assignment problem

using a heuristic. Finally, in the last phase, a schedule is constructed from the output of

the assignment problem such that the makespan is minimised and (un)loading capacities are

satisfied. Christafore Jr. (2017) and Strickland (2018) only consider the transport of fuel, while

Danielson (2018) extends this framework to multiple commodities.

In the three-phase approach from Christafore Jr. (2017), Danielson (2018) and Strickland

(2018), (un)loading capacities are disregarded when the set of trips to be executed are determined

in the first phase. Therefore, this set of trips could be suboptimal compared to the set of trips

that result from an integrated approach. Furthermore, wave constraints are hard to impose as

the set of trips selected in the first phase could result in an infeasible solution in the second and

third phase.

3.2 Literature on Related Problems

There exist problems that have a similar structure as the ship-to-shore problem. First, two

specific examples are given. Second, its relation to the Pick-up and Delivery Vehicle Routing

Problem is explained.

An example of a problem with similar characteristics as the ship-to-shore problem is an

evacuation where people are located at one or multiple locations and have to be brought to one

or multiple shelter locations. Some locations might have to be evacuated first because they are

more in danger and hence have a higher priority. The question is then what trips the vehicles,

e.g., buses, have to make to evacuate the area as quickly as possible. As with the ship-to-shore

problem, the construction of an evacuation plan has to be done fast. Kulshrestha et al. (2014)

aim to minimise the evacuation time by determining which bus should be assigned to which pick-

up location, while incorporating uncertainty in the demand. They do not consider priorities,

resource sets, fuel capacities, and (un)loading capacity at the locations and assume that buses

only travel to a fixed pick-up point. Zhao et al. (2020) use a heuristic to determine the allocation

of buses to trips with the aim of minimising both the in-bus travel time and the waiting time of

the evacuees. They incorporate time-windows for the locations, i.e., the time intervals within

which the location should be visited to pick up the evacuees, which can be seen as a strict type

of priority constraints. They also do not consider resource sets, fuel capacities and (un)loading

capacities.

Another example of a problem with similar characteristics is the installation of a wind farm.

Components of the wind mills and the underlying wind farm infrastructure have to be trans-

ported from the shore to the sea using vessels. There are priorities because certain components

are required at the start, while others are only required later on. Resource sets can be inter-

preted as components that have to be used together to complete the next step in the installation

process. Vessels are rented and hence to minimise the costs, the installation of the wind farm
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has to be completed as fast as possible. The time to construct a schedule for this problem is

however less critical compared to the ship-to-shore problem and in evacuations, since this is a

project that can be planned in advance. Ursavas (2017) uses a Benders decomposition approach

to determine the time at which a particular vessel should start a certain building process and

what loading is selected in each tour. Weather predictions are included as the weather has a big

influence on the time that certain steps in the building process require.

More generally, the ship-to-shore problem can be linked to a Pick-up and Delivery Vehicle

Routing Problem (PDVRP). In this problem, for each item that should be transported, it should

first be collected at a pick-up location and then delivered to its delivery location. The decisions

in the PDVRP are however simpler compared to the ship-to-shore problem. Namely, in the

PDVRP, the location that is visited determines the resources that should be transported, while

in the ship-to-shore problem, the loading that should be transported has to be determined too.

Therefore, unless the general PDVRP is extended to a split delivery problem, each location is

visited exactly once as opposed to the ship-to-shore problem in which trips are made back and

forth between a limited set of locations (Nowak, 2005). In general, this problem does not contain

priorities, resource sets, refuelling constraints, and (un)loading capacities at the locations.

Time windows, which are a common extension of the basic PDVRP (Ticha et al., 2017), can

be seen as a type of priority ordering between the resources. However, the difference is that

there is no strict ordering, but only a partial ordering when using time windows. Furthermore,

the time windows impose the constraint that the pick-up and delivery occur during a certain

time window, which is not necessarily the case in the ship-to-shore problem.

Resource sets could be interpreted as requiring all items with the same pick-up and delivery

pair to be picked up and delivered at the same time, while allowing for split deliveries. Alter-

natively, a resource set could be defined as a set of items with the same pick-up location, but

different delivery locations, or vice versa. Synchronised customer visits in a vehicle routing prob-

lem with time windows can be solved using, e.g., a branch-and-price algorithm and an adaptive

large neighbourhood search (Bredstrom & Rönnqvist, 2007; Drexl, 2012; Liu et al., 2019).

Fuel is sometimes considered in transportation problems with the aim of minimising these

costs (Xiao et al., 2012) or the emissions (Behnke et al., 2021). However, we are interested

in incorporating the need to refuel during the operation. Due to the emergence of vehicles

using alternative fuel-powered vehicles, the green vehicle routing problem emerged. In this

problem, vehicles have a maximum driving range, which is incorporated in the construction of

the routes (Erdoğan & Miller-Hooks, 2012; Moghdani et al., 2021). Alternatively, charging of

electric vehicles is possible at recharging stations (Desaulniers et al., 2016; Hiermann et al., 2016;

Schneider et al., 2014), which is similar to the ship-to-shore problem, with the slight practical

difference that refuelling is done at the sea base while the connector is being loaded for its next

trip.

The (un)loading capacities are an essential aspect of the ship-to-shore problem, as disregard-

ing them can lead to infeasible schedules in which more connectors are scheduled to be (un)loaded

than there is space for. A limited number of (un)loading spots is realistic for routing problems,

as loading capacity might be limited at a depot. However, these are usually disregarded in the

basic vehicle routing problem. In practice, depots have a limited number of loadings bays at
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which vehicles can be loaded, resulting in the vehicle routing problem with docking constraints

(Rieck & Zimmermann, 2010).

4 Methodology

In this section, we present a greedy heuristic and a branch-and-price algorithm that can be used

to solve the ship-to-shore problem. Before the algorithms are introduced in Section 4.3 and 4.4,

the computational complexity of the problem is discussed in Section 4.1 and we describe how

the problem is defined using a time-space network in Section 4.2.

4.1 Problem Definition and Computational Complexity

In the ship-to-shore problem, the aim is to transport all resources from the sea base(s) to the

landing area(s) using (a) connector(s) while minimising the makespan, i.e., the duration of the

operation. Here, we take into account constraints regarding the number of (un)loading spots,

fuel levels, connector weight and space capacities, priority levels of the resources, and resource

waves. We identified two special cases of the ship-to-shore problem for which it can be shown

that they are NP-hard. First, the notation of the ship-to-shore problem is introduced. Second,

the computational complexity of the ship-to-shore problem is discussed by describing each of

the special cases and providing a proof of NP-hardness.

We thus have a set of sea bases P, landing areas D and connectors C. Let M be the set

of resource types, where each resource type m ∈ M refers to a set of identical resources with

the same priority level πm ∈ {1, . . . ,Π}, origin pm ∈ P, destination dm ∈ D, and resource set, if

assigned to any. The demand for each resource type m ∈ M is nm. For each connector c ∈ C,
Lc denotes the set of feasible loadings. A loading l ∈ Lc is a vector of length |M| representing

the number of resources of each type m ∈ M that can be transported together, i.e., they can

feasible fit together on connector c, belong to the same priority level, and have the same origin

and destination. Travel times between the locations are denoted by tijc for i, j ∈ P ∪ D and

c ∈ C. Here for a connector c ∈ C, tijc for i ∈ P and j ∈ D is determined using the speed

of connector c while it is loaded, and tijc for i ∈ D and j ∈ P is determined using the speed

of connector c while it is empty. The loading and unloading time for a connector c ∈ C at

location i ∈ P and j ∈ D, respectively, is denoted by t′ic For each connector c ∈ C we denote the

fuel capacity, fuel consumption rate, and refuelling rate by Qc, hc, and gc, respectively, for each

connector c ∈ C.
The aim is to transport all resources while minimising the makespan. Here we need to

adhere to all constraints. This implies that at each point in time at most one connector can be

located at each i ∈ P ∪D. The fuel level of a connector should be non-negative at each point in

time. All priority π ∈ {1, . . . ,Π} resource types should be delivered at their destination, before

the unloading of priority π + 1 resource types can start. Furthermore, we have a collection of

resource sets s ∈ S, where S is a partition of either M or a subset of M. The delivery of

resource types within a resource set should take place at the same time or directly after each

other. If a resource type is not assigned to any resource set, there is no requirement to link

the delivery of these resources to the delivery of other resources. If a resource type occurs as a
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singleton resource set, this means that the delivery of all the demand of that resource type must

occur subsequently. Finally, in the decision version of the problem, the question is whether all

resources can be transported in at most T periods while adhering to all previously mentioned

constraints.

First, we consider the special case in Theorem 1. In this case we have one sea base, one

landing area and one connector. We set all (un)loading times equal to 0 and all travel times

equal to 1. All resource types have the same priority level and do not belong to a resource set.

The fuel consumption rate equals 0, i.e., fuel capacity is disregarded. Note that minimising the

makespan is in this case equivalent to minimising the number of trips.

Theorem 1. The decision version of the ship-to-shore problem with |P| = 1, |D| = 1, |C| = 1,

tijc = 1 for all i, j ∈ P ∪ D and c ∈ C, t′ic = 0 for all i, j ∈ P ∪ D and c ∈ C, Π = 1, S = ∅ and

hc = 0 for all c ∈ C is strongly NP-complete.

Proof. This special case is in NP as it can be checked in polynomial time whether demand is

satisfied and the makespan is at most T .

We will use a reduction from Set Cover, which is known to be strongly NP−complete (Karp,

1972), to prove that this special case isNP-complete. In Set Cover, we are given a set of elements

E = {e1, . . . , en} and some subsets of those elements S1, . . . , Sm, where each Sj ⊆ E. We say

that an element is covered if at least one subset containing the element is chosen. The question

is whether we can cover all elements by choosing at most K subsets.

Given an instance of Set Cover, create a resource type for each element, and set its demand

equal to 1. Furthermore, create a loading for every subset, where the loading contains the

resource types corresponding to the elements from the subset. Finally, set T = 2K − 1.

If the instance of Set Cover is a yes-instance, we can use the loadings corresponding to

the chosen subsets. Therefore, the created instance of the ship-to-shore instance is also a yes-

instance. Similarly, if the ship-to-shore instance is a yes-instance, it naturally follows that the

instance of Set Cover is also a yes-instance. �

Second, consider the special case in Theorem 2. In this case we have one sea base. The

resource types that have to be transported only differ in the destination to which they have to

be transported, e.g., only fuel has to be transported from the sea base to different locations.

Connectors can have various capacities of transporting this resource, e.g., one connector can

transport 1000 gallons of fuel at a time, while another connector can transport 2000 gallons.

There is one priority level, i.e., the delivery of the resource at one location is not prioritised over

other locations, and there are no resource sets, i.e., it is not required to deliver the demand at

one location during consecutive periods of time. The fuel consumption rate for the connectors

equals 0, i.e., fuel capacity is disregarded. This problem can thus be interpreted as the delivery

of fuel to petrol stations from a central depot.

Theorem 2. The decision version of the ship-to-shore problem with |P| = 1, |M| = |D| where

each resource type only differs in the destination, tijc = 1 for all i, j ∈ P ∪D and c ∈ C, t′ic = 0

for all i, j ∈ P ∪ D and c ∈ C, Π = 1, S = ∅ and hc = 0 for all c ∈ C is strongly NP-complete.

Proof. This special case is in NP as it can be checked in polynomial time whether demand is

satisfied and the makespan is at most T .
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We will use a reduction from 3-Partition, which is known to be strongly NP−complete

(Garey & Johnson, 1979), to prove that this special case is NP-complete. In 3-Partition,

we are given 3m numbers, a1, . . . , a3m. Each number ai satisfies B/4 < ai < B/2, where

B = 1
m

∑3m
i=1 ai. The question is whether we can partition the numbers in subsets of size 3 with

equal sum. More formally, do there exist sets S1, . . . , Sm with |Sj | = 3 for all j, Sj ∩ Sj′ = ∅ for

all j, j′, and
∑

i∈Sj ai = B for all j?

Given an instance of 3-Partition, create 3m connectors, where connector i can ship ai units

of the resource per trip. Furthermore, create m landing areas, each with a demand of B. Finally,

set T = 1.

Suppose that the instance of 3-Partition is a yes-instance. If we send the connectors cor-

responding to the numbers in Sj to landing area j, all demand is satisfied within one time

unit. Therefore, the ship-to-shore instance is also a yes-instance. Conversely, suppose that the

ship-to-shore instance is a yes-instance. This means that all demand is satisfied within one time

unit. Therefore, the connectors visiting landing area j have a total capacity of B. Furthermore,

because B/4 < ai < B/2, we know that each landing area is visited by exactly 3 connectors.

Hence, the instance of 3-Partition is also a yes-instance. �

A similar reduction from Partition (Karp, 1972) shows that the problem is (weakly)NP-hard

for two landing areas.

Corollary 1 follows from Theorem 1 and Theorem 2, as the ship-to-shore problem is a gen-

eralisation of the special cases in Theorem 1 and Theorem 2. Thus, the ship-to-shore problem

is NP-hard.

Corollary 1. The ship-to-shore problem is strongly NP-hard.

4.2 The Time-Space Network

Due to (un)loading capacities, there is a maximum number of connectors that can be (un)loaded

at the same location simultaneously. Furthermore, as we are considering a heterogeneous fleet

of connectors that can reach different loading spots, the type of connectors (un)loading at a

location has to be taken into account. Moreover, it is possible that the same connector visits

the same location multiple times. Thus, we have to model the movement of connectors over

time and allow them to visit the same location multiple times. This can be modelled using a

time-space network (Chardaire et al., 2005).

In the time-space network, a node is added for each dock, davit, landing spot, and landing

area (this can be a beach or a landing zone further land inward) in each time period. Let P ′ be

the set of nodes representing the loading locations at the SBs and D′ the set of nodes representing

the (un)loading locations at the LAs. Arcs can then be added when a feasible transition though

time and space is possible, which we denote by the set A. As connectors execute trips between

a SB and a LA, it is not necessary to add arcs between different beaches or between different

docks, davits, and landing spots at the SBs.

It is possible that a connector does not proceed to the next location as soon as possible due

to the priority, wave, and capacity constraints. The connector can either wait for a spot to be

free, without occupying a (un)loading location, or move below maximum speed. This would
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imply that if, for example, ∆ time periods are required to travel from a SB to a LA, arcs have

to be added from time period t to t+ ∆ + 1, t+ ∆ + 2, t+ ∆ + 3, . . . , T , with T the total number

of time periods in the network. To avoid adding all possible transitions between the different

locations, we make use of waiting nodes. A waiting node is added for each connector at each

SB and LA. These can be used when the connector does not immediately proceed to the next

location, but either waits for an (un)loading spot to become free or moves below maximum

speed. With the use of these waiting nodes, we only have to add the shortest arc between SB

and LA locations. Hence, the number of arcs in the time-space network is linear in the number

of locations, connectors, and time periods.

Connectors can have different speeds depending on the weight of the load. Therefore two

different speeds are used for each connector type, one for when the connector is empty and one

for when the connector is loaded. Hence, since we are transporting resources from the landing

platform docks to the shore, the speed of the loaded connector is used for arcs between SB

locations and LA locations and the speed of the empty connector is used for arcs between LA

locations and SB locations. As the speeds are different for the different connector types, the

arcs that can be used by different connectors can be different.

Start location

End location

Dock (SB)

Waiting (SB)

Beach (LA)

Waiting (LA)

Time period 1 2 3 4 5 6 7 8 9 10

Figure 4: Example of a time-space network for one connector with one SB containing one dock and
one LA containing one beach. Here all possible arcs are given (the bold and dashed lines combined) for
a connector that takes two time periods to travel from the SB to the LA and one time period to travel
from the LA to the SB. The bold lines are an example of a path through the network.

Example 1. An example of a time-space network for one connector with one SB containing

one dock and one LA containing one beach is given in Figure 4. In this example, the connector

needs two time periods to travel from the SB to the LA and one time period to travel from the

LA to the SB. The dashed and thick lines represent all arcs and the thick lines correspond to

one feasible path through the network. We see that the connector is loaded with resources at the

SB in time period 1, travels to the beach during time periods 2 and 3 to arrive for unloading in
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time period 4. After visiting the beach, the connector does not immediately proceed to the SB,

but waits for one time period before proceeding. After loading at the SB in time period 7, the

connector ends its last trip in time period 10.

As time is discretised in this network, there is some loss in exactness unless the time period

length is set to the greatest common divisor of all (un)loading times and travel times (Boland

et al., 2019). However, when the time period length decreases, the number of required time

periods increases and so does the size of the network. Hence, there is a trade-off between the

running time and exactness. The distances between the SBs and LAs are quite large. Thus, the

travel times are relatively long compared to the (un)loading time. Therefore, the length of a

time period is chosen such that (un)loading can occur in one time period (Amrouss et al., 2017).

To construct the time-space network for an instance, an upper bound on the number of

required time periods is required. We will use the output from the greedy heuristic described in

Section 4.3 as this upper bound.

4.3 The Greedy Heuristic

The greedy heuristic described below aims to mimic the current scheduling procedure and will

also serve as an upper bound of the makespan for the purpose of constructing the time-space

network. Routes for the connectors are extended by iteratively adding new trips, i.e., a visit to

a dock, davit or landing spot at an SB to pick-up a specific set of resources, followed by a visit

to a beach or landing zone at a LA to deliver these resources.

In the greedy heuristic, the following steps are executed:

STEP 0: Let π = 1 be the current priority level and let T = 0 be the last delivery period.

STEP 1: For every connector determine the first possible delivery period t for a loading with

priority π resources that is not tabu. Here both the capacity constraints at the

different locations and the priority constraints are taken into account.

STEP 2: For each loading with priority level π, determine the total area of resources that

have not been delivered yet, let this area be a.

STEP 3: Select the connector-loading pair with minimum t−T
a , i.e., the minimum ratio of the

change in the makespan divided by the area of resources that are transported. Here,

ties are broken arbitrarily. Add this trip to the current schedule and set T = t.

STEP 4: When there is a resource set of which only part is delivered yet, the completion of

this delivery wave is prioritised. This is done by repeating versions of Steps 1-3 until

the waves are completed. In Step 1, besides the capacity and priority constraints, the

wave constraints now also have to be considered, i.e., only consecutive time periods

to the current (incomplete) wave are considered. In Step 2, only the area of the

resources that belong to the incomplete resource set are considered, as completion

of the wave is prioritised. If no feasible pair exists in Step 3, the last trip that was

added to the schedule is removed and marked as tabu.

STEP 5: If all priority π resources are delivered, π = π + 1.

STEP 6: If all resources are delivered, return T , else go to Step 1.
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4.4 The Branch-and-Price Algorithm

Given the time-space network as described in Section 4.2, we can define a route as a path through

the time-space network in which for each trip from a SB to an LA, a loading is assigned. The

ship-to-shore problem is then equivalent to assigning exactly one route to each connector such

that all resources are transported and all constraints regarding (un)loading capacities, wave

constraints, and priority levels are met. The complexity of this problem is dependent on the

number of possible routes that can be constructed, which can be exponential (even if there are

only two possible loadings).

Due to the huge number of possibilities, adding all possible routes to the model results

in a high running time. Therefore, to add only a subset of all possible routes that might be

beneficial for the solution, column generation can be used. This implies that we do not consider

all feasible routes, but generate routes that will improve the solution, i.e., that have negative

reduced costs, until no such routes exist anymore. We solve a problem containing part of all

the feasible routes, called the restricted master problem (RMP) and use the output of the LP-

relaxation of this problem to construct routes in the Pricing Problem (PP) until no more routes

with negative reduced costs can be found. To obtain an integer solution, this is embedded in a

branch-and-bound framework, called a branch-and-price algorithm (Barnhart et al., 1998). In

the algorithm, the solution space is restricted by continuously imposing integrality on fractional

variables.

First, the RMP and PP used in the column generation are given in Sections 4.4.1 and 4.4.2.

Thereafter, the branching strategies will be explained in Section 4.4.3. We conclude with some

ideas to strengthen the formulation in Section 4.4.4.

4.4.1 The Restricted Master Problem

The aim of the RMP is to assign a route to each connector such that the makespan is minimised

and all constraints are met. First, some notation is introduced in Table 1.
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Table 1: List of sets, variables and parameters for the Restricted Master Problem.

Set Explanation

C Set of connectors

D′ Set of landing area nodes

M Set of resource types

N Set of nodes

R Set of routes

S Set of resource sets

Variables Explanation

xrc A binary variable equal to 1 if route r ∈ R is assigned to connector c ∈ C, 0 otherwise

yπt A binary variable equal to 1 if priority π ∈ {1, . . . ,Π} resources are delivered in time period
t ∈ {1, . . . , T}

T startπ Time period at which the first priority π ∈ {1, . . . ,Π} resource is unloaded

T endπ Time period at which the last priority π ∈ {1, . . . ,Π} resource is unloaded

vst A binary variable equal to 1 if resources from set s ∈ S are delivered in time period t ∈ {1, . . . , T}
wstartst A binary variable equal to 1 if a wave of unloading resources from set s ∈ S starts in time period

t ∈ {1, . . . , T}
wendst A binary variable equal to 1 if a wave of unloading resources from set s ∈ S ends in time period

t ∈ {1, . . . , T}
tspan The makespan, i.e., the duration of the operation

Parameters Explanation

dr The last delivery period of route r ∈ R
nm The number of resources of type m ∈ M that have to be transported

nrm The number of resources of type m ∈ M that are transported in route r ∈ R
T The number of time periods

Π The number of priority levels

When parameters are given as input to a set, this implies that it concerns the subset of the routes

with those characteristics. For example, R(c, i) for c ∈ C and i ∈ N implies the set of routes

for connector c that visit node i and R(c, {π, t}) for c ∈ C, π ∈ {1, . . . ,Π} and t ∈ {1, . . . , T}
implies the set of routes for connector c that deliver priority π resources in time period t.

Now, the integer linear programming version of the RMP can be defined as follows:

min tspan (1)

s.t.
∑
c∈C

∑
r∈R(c,m)

nrmxrc ≥ nm m ∈M (2)

∑
r∈R(c)

xrc = 1 c ∈ C (3)

∑
c∈C

∑
r∈R(c,i)

xrc ≤ 1 i ∈ N (4)

∑
r∈R(c,{π,t})

xrc ≤ yπt c ∈ C, t ∈ {1, . . . , T}, π ∈ {1, . . . ,Π} (5)

Π∑
π=1

yπt ≤ 1 t ∈ {1, . . . , T} (6)

T startπ ≤ tyπt + T (1− yπt) t ∈ {1, . . . , T}, π ∈ {1, . . . ,Π} (7)
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T endπ ≥ tyπt t ∈ {1, . . . , T}, π ∈ {1, . . . ,Π} (8)

T startπ+1 ≥ T endπ π ∈ {1, . . . ,Π− 1} (9)∑
c∈C

∑
r∈R(c,{s,t})

xrc ≤ |D′|vst s ∈ S, t ∈ {1, . . . , T} (10)

vst ≤
∑
c∈C

∑
r∈R(c,{s,t})

xrc s ∈ S, t ∈ {1, . . . , T} (11)

vst − vs,t−1 = wstartst − wends,t−1 s ∈ S, t ∈ {2, . . . , T} (12)

wstartst + wends,t−1 ≤ 1 s ∈ S, t ∈ {2, . . . , T} (13)

T∑
t=1

wstartst ≤ 1 s ∈ S (14)

tspan ≥
∑

r∈R(c)

drxrc c ∈ C (15)

xrc ∈ B c ∈ C, r ∈ R(c) (16)

yπt ∈ B t ∈ {1, . . . , T}, π ∈ {1, . . . ,Π} (17)

T startπ , T endπ ∈ N+ π ∈ {1, . . . ,Π} (18)

vst ∈ B s ∈ S, t ∈ {1, . . . , T} (19)

wstartst , wendst ∈ B s ∈ S, t ∈ {1, . . . , T} (20)

tspan ∈ N+. (21)

The objective (1) is to minimise the makespan, i.e., the duration of the operation. This is set

by constraints (15). Constraints (2) ensure that all resources are transported from a sea base

to a landing area. Constraints (3) assign a route to each connector. To ensure the (un)loading

capacities are respected, constraints (4) are imposed. Constraints (5) force the decision variable

yπt equal to 1 if a route is selected that transports priority π ∈ {1, . . . ,Π} resources in time

period t ∈ {1, . . . , T}. Constraints (6) ensure that it is not possible to unload resource types

from different priorities in the same time period.

Constraints (7) and (8) set the start and end time of unloading resources from a certain

priority while constraints (9) ensure the ordering in the priorities. The term T (1− yπt) ensures

that no bound is imposed on T startπ when yπt equals 0, i.e., when no priority π resource types

are delivered in time period t.

All resources in a resource set s ∈ S have to be delivered in the same time period or in

consecutive time periods, i.e., in the same wave. Constraints (10), (11), (12) and (13) ensure

that wstartst and wendst denote whether a delivery wave of resource set s starts or ends in time

period t = 1, . . . , T , respectively. Constraint (14) ensure that there is only one wave for each

resource set.

Example 2. To illustrate, Figures 5 and 6 present the nodes of a beach in a time-space network.

The arcs in these figures correspond to the connectors trips to this beach that deliver resources

from resource set s ∈ S. In Figure 5, vs2, vs4, wstarts2 , wends2 , and wstarts4 are forced to one and

all other variables vst and wendst are forced to zero. This violates constraint (14) and hence is

infeasible. In Figure 6, vs2, wstarts2 and wends3 are forced to be equal to 1 and all other vst and
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wendst are forced to be equal to 0. This satisfies constraint (14) and thus forms a feasible wave for

resource set s.

Beach (LA)

Time period 1 2 3 4

Figure 5: Wave example 1 (infeasible)

Beach (LA)

Time period 1 2 3 4

Figure 6: Wave example 2 (feasible)

To ensure that a feasible solution can be found for any subset of routes, variables pm ∈ R+ are

introduced for each resource type m ∈M and added to the left hand side of constraints (2) and

variables pc ∈ R+ for each connector c ∈ C and added to the left hand side of constraints (3).

Assigning positive values to these variables is penalised in the objective such that all resources

are transported by the routes in an optimal solution, if possible. To ensure that the penalty

is high enough to avoid using them if possible, their costs are set to the upper bound on the

number of time periods in the time-space network.

4.4.2 The Pricing Problem

After solving the LP-relaxation of the RMP, the dual variables can be used to find new routes

that will improve the solution, if any remain. Thus, the objective of the PP is to find routes

with minimum reduced costs. From the RMP defined in Section 4.4.1, the reduced costs for a

route r by connector c ∈ C can be found as:

RC(xrc) = −
∑

m∈M(r)

nrmλ
(2)
m + λ(3)

c +
∑

i∈N (r)\{τ,τ ′}

λ
(4)
i

+

Π∑
π=1

∑
t∈T (π,r)

λ
(5)
ctπ +

∑
s∈S

∑
t∈T (s,r)

(
λ

(10)
s,t + λ

(11)
s,t

)
+ drλ

(15)
c (22)

where λ
(2)
m , λ

(3)
c , λ

(4)
i , λ

(5)
ctπ, λ

(10)
st and λ

(15)
c are the dual values of the LP-relaxation of the RMP

and T (i) corresponds to the set of time periods in which resource types with characteristic i are

delivered. Here it holds that λ
(2)
m , λ

(4)
i , λ

(5)
ctπ, λ

(10)
st , λ

(15)
c ∈ R+, while λ

(3)
c ∈ R as these correspond

to equality constraints.

Additionally to the notation introduced in Table 1, the following notation is used in the PP.
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Table 3: List of sets, variables and parameters for the Pricing Problem.

Set Explanation

A Set of arcs

D′ Set of landing area nodes

D′
w Set of waiting nodes for the landing areas

L Set of loadings

P ′ Set of sea base nodes

P ′
w Set of waiting nodes for the sea bases

T Set of time periods

Variables Explanation

aij A binary variable equal to 1 if arc (i, j) ∈ A is used, 0 otherwise

bm The number of resources of type m ∈ M transported

d The last delivery period

fi A binary variable equal to 1 if the connector refuels at node i ∈ P ′, 0 otherwise

ui The fuel level upon reaching node i ∈ N
zli A binary variable equal to 1 if loading l ∈ L is delivered to i ∈ D′, 0 otherwise

Parameters Explanation

gc The refuelling rate per time period for connector c ∈ C
hc The fuel consumption rate per time period for connector c ∈ C
kli A binary parameter equal to 1 if loading l ∈ L is available at/heading to location i ∈ N , 0

otherwise

plπ A binary parameter equal to 1 if loading l ∈ L has priority level π = {1, . . . ,Π}, 0 otherwise

Qc The fuel capacity of connector c ∈ C
τc The starting node of connector c ∈ C
τ ′c The ending node of connector c ∈ C

We can then define the PP as follows:

min −
∑
m∈M

λ(2)
m bm + λ(3) +

∑
i∈N (c)

∑
j∈N (c):(i,j)∈A(c)

λ
(4)
i aij

+

T∑
t=1

Π∑
π=1

∑
l∈L(c,π)

∑
i∈D′(c,t)

λ
(5)
ctπzli

+
∑
s∈S

∑
l∈L(c,s)

T∑
t=1

∑
i∈D′(c,t)

(
λ

(10)
st + λ

(11)
st

)
zli + λ(15)

c d (23)

s.t.
∑

j∈N (c):(τ,j)∈A(c)

aτj = 1 (24)

∑
i∈N (c):(i,τ ′)∈A(c)

aiτ ′ = 1 (25)

∑
i∈N (c):(i,j)∈A(c)

aij −
∑

i∈N (c):(j,i)∈A(c)

aji = 0 j ∈ N (c) \ {τ, τ ′} (26)

fi ≤
∑

j∈N (c):(i,j)∈A(c)

aij i ∈ P ′(c) (27)

uτ = Qc (28)

uj ≤ Qc − hc(tj − ti)aij (i, j) ∈ A(c) (29)
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uj ≤ ui + gcfi − hc(tj − ti)aij +Qc(1− aij) (i, j) ∈ A(c) (30)∑
l∈L(c)

zlj =
∑

i∈P ′(c)∪P ′
w(c):(i,j)∈A(c)

aij j ∈ D′(c) (31)

2zlj ≤ klj +
∑

i∈P ′(c)∪P ′
w(c):(i,j)∈A(c)

kliaij l ∈ L(c), j ∈ D′(c) (32)

bm ≤ nm m ∈M (33)

bm ≤
∑

l∈L(c,m)

∑
i∈D′(c)

nmlzli m ∈M (34)

∑
l∈L(c,π)

∑
j∈D′(c,t)

zlj ≤ yπt t ∈ {1, . . . , T}, π ∈ {1, . . . ,Π} (35)

Π∑
π=1

yπt ≤ 1 t ∈ {1, . . . , T} (36)

T startπ ≤ tyπt + T (1− yπt) t ∈ {1, . . . , T}, π ∈ {1, . . . ,Π} (37)

T endπ ≥ tyπt t ∈ {1, . . . , T}, π ∈ {1, . . . ,Π} (38)

T startπ+1 ≥ T endπ π ∈ {1, . . . ,Π} (39)∑
i∈D′(c)

∑
l∈L(c,s)

zli ≤ 1 s ∈ S (40)

∑
i∈D′(c,t)

∑
l∈L(c)

tzli ≤ d t ∈ {1, . . . , T} (41)

aij ∈ B (i, j) ∈ A(c) (42)

bm ∈ N+ m ∈M (43)

d ∈ N+ (44)

T startπ , T endπ ∈ N+ π ∈ {1, . . . ,Π} (45)

fi ∈ B i ∈ P ′(c) (46)

ui ∈ R+ i ∈ N (c) (47)

wstartst , wendst ∈ B s ∈ S, t ∈ {1, . . . , T} (48)

yπt ∈ B t ∈ {1, . . . , T}, π ∈ {1, . . . ,Π} (49)

zli ∈ B. l ∈ L(c), i ∈ D′(c) (50)

The aim is to minimise the reduced costs (22) as represented by the objective (23).

Constraints (24), (25) and (26) ensure that a connector departs from its starting location,

terminates at its ending location and ensure flow conservation throughout the network. The

connector can only be refuelled at a pick-up location if this location is visited (constraints (27)).

It is assumed that all connectors start with a full tank (constraint (28)). Constraints (29) and

(30) update the fuel level throughout the network. They ensure that the fuel level is set to

min {ui + gc, Qc} after refuelling at i ∈ P ′(c) and that no constraint is imposed on the fuel level

if the arc is not used, but decreased if an arc is used.

Constraints (31) and (32) ensure that the connector can only be assigned one loading for each

trip from a SB to a LA and that a loading can only be assigned when the loading is available at

the SB and the connector is heading to the LA corresponding to the destination of the loading.
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Constraints (34) set bm to the number of resources of type m ∈ M that are transported in the

selected loading. This variable is upper bounded by the number of resources of type m that

have to be transported in constraints (33) to avoid deducting the reduced costs of the resource

in the objective too much.

To satisfy the priority order, constraints (35)-(39) are imposed and to ensure that there is at

most one delivery for each resource set, constraints (40) are imposed. If within a route, multiple

deliveries with resource types from the same resource set occur, this route cannot be used as

this will violate the wave constraints. Imposing this constraint will avoid generating routes that

cannot be used in a feasible RMP solution. The last delivery period of the route is determined

in constraints (41).

4.4.3 The Branching Strategies

To complete the branch-and-price algorithm, branching strategies have to be defined that will

exclude the fractional solution we obtain at a branching node, but do not exclude any feasible

integer solutions in that branch.

In the RMP, the integer decision variables are xrc for r ∈ R, c ∈ C. A natural choice would

therefore be to branch on xrc, i.e., on a route for a connector c. Branching on a route implies

imposing a route in one child node and forbidding the route in the other child node. Imposing

a route is easy as this fixes the route for this connector c and hence only the routes of the

remaining connectors have to be optimised given this assignment. Forbidding a route, however,

implies that for that connector c we need to find a route that differs in at least one aspect (arc

or delivery) from the forbidden route r. This implies a disjunction constraint in the PP, making

it difficult to solve.

Therefore, branching is applied on the arcs aij and the deliveries zli used. We need to branch

on both variables as solely branching on one of them is not guaranteed to result in an integer

solution: branching on the arcs only can mean that a connector is assigned to a set of routes

that use the same arcs, but executes different deliveries in different routes; branching on the

deliveries only can mean that deliveries are split by the different connectors. We choose to first

branch on the arcs until a solution with integer aij ’s is found, whereafter we branch on the

deliveries.

When branching on an arc (i, j), one of the children nodes is not allowed to use this arc

whence all routes using (i, j) are removed from the corresponding RMP and (i, j) is removed

from the PP’s. In the other child node, the usage of arc (i, j) is imposed by which, all routes

that use arcs (i, j′) for j′ 6= j or (i′, j) for i′ 6= i are removed, and these arcs are removed from

the corresponding PP’s.

Branching on a delivery implies branching on a combination of a loading l ∈ L and a delivery

node i ∈ D′. When a combination (l, i) is forbidden, all routes that deliver loading l to node i

are removed from the RMP and the corresponding variable zli is removed from the PP’s. When

a combination (l, i) is obligatory, all routes that deliver loading l′ for l′ 6= l to node i are removed

from the RMP and the corresponding variables zl′i are removed from the PP’s.

For imposing an arc or a delivery, the above arc/loading removal operations are not sufficient

yet as they affect only variables aij/zli, and do not enforce the fact that in the RMP, only xrc
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decisions have to be allowed that respect the aij/zli impositions.

For this reason, in the corresponding child nodes we need to add constraints that would not

be needed, for example, in the classical vehicle routing problem. The role of these constraints

is that among the available routes, at least one is selected that respects the given arc/delivery

imposition:

∑
c∈C

∑
r∈R(c,{i,j})

xrc ≥ 1 (i, j) ∈ Ao (51)

∑
c∈C

∑
r∈R(c,{l,i})

xrc ≥ 1, (l, i) ∈ Lo (52)

where Ao is the set of arcs that should be used and Lo and set of obligatory loading and delivery

pairs.

Adding constraints (51) and (52) to the restricted master problem changes the objective

function of the pricing problem. Hence, the following terms are added to the objective in (23):

−
∑

(i,j)∈Ao
λ

(51)
ij aij −

∑
(l,i)∈Lo

λ
(52)
li zli, (53)

where λ
(51)
ij and λ

(52)
li are the dual variables corresponding to constraints (51) and (52), respec-

tively.

There are multiple ways to select which arc or delivery to branch on. Here, the highest,

i.e., closest to 1, and lowest, i.e., closest to 0, fractional arc or delivery rule will be used. To

compute the value for each arc and delivery, we will use the formulas
∑

c∈C
∑

r∈Rc(i,j) xrc and∑
c∈C
∑

r∈Rc(l,i) xrc, respectively. Ties are broken arbitrarily.

As with arc or loading selection, different methods exist to determine which node in the

branching tree to branch on next. Here, the breadth and depth first approaches are used.

Again, ties are broken arbitrarily.

4.4.4 The Makespan Objective

The objective for the ship-to-shore problem is to minimise the makespan. The makespan is

determined by constraints (15) in the RMP. However, in the branch-and-price algorithm, decision

variables can be fractional and hence constraints (15) bound the makespan by the weighted

average of the last delivery period of the assigned routes. Minimising this weighted average

gives incentives to combine long routes in which many resources are transported with very short

routes to reduce the bound on the makespan. This negatively affects the quality of the solution

at a node in the branching tree. Therefore, with the aim of strengthening the formulation,

bounds on both the length of routes and on the makespan will be used.

First, we can explicitly bound the lengths of routes. Very short routes cannot be prohibited

because it is possible for a connector to have a short route in an optimal solution. However,

routes longer than the current upper bound (makespan of the initial greedy solution or the best

integer solution so far) can be prohibited as we know these will not be chosen in an optimal

integer solution.
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Second, we can find a lower bound of the optimal makespan by relaxing the constraints on

the (un)loading capacities and resource waves. The problem then becomes a machine scheduling

problem which can be easily solved during the pre-processing phase. Because this lower bound

can be higher than the optimal solution at the root node of the branching tree, it can improve the

estimates of the optimality gaps of the integer solutions from the branch-and-price algorithm.

Secondly, we can add this bound explicitly in the RMP as a constraint on the makespan, which

will accelerate the solution time per node.

5 Computational Experiments

In this section we present the results of a computational experiment on instances constructed

using data from the Royal Netherlands Navy. In this experiment we aim to understand the

performance of the greedy heuristic by comparing its results to those of the branch-and-price

algorithm and analysing under which circumstances the greedy heuristic performs well. In order

to do so we will first analyse the effect of using the bounds explained in Section 4.4.4 in the

branch-and-price algorithm using small instances. Thereafter larger instances are used to make

a comparison of the solutions obtained by the greedy heuristic and those of the branch-and-price

algorithm. To determine under which circumstances the greedy heuristic finds good solutions,

operational constraints will be relaxed and the corresponding results compared to the solutions

obtained from the branch-and-price algorithm. Finally, as the running time is important, we

analyse the performance of the different branching rules described in Section 4.4.3.

In Section 5.1 we describe the data and instance construction, and in Section 5.2 the corre-

sponding results are presented.

5.1 Experimental Design

Instances are constructed using data from the Royal Netherlands Navy. Each instance consists

of the demand of resources on the shore and the supply in terms of the available capacity on

the amphibious ships and the number of connectors. Furthermore, an instance is characterised

by the operational constraints that are considered. We can then define the following naming

scheme for instances: d-s-c, where d denotes the demand set, s the supply set, and c the set of

operational constraints that are considered. We first discuss each of these three aspects of an

instance and then give an overview of the constructed instances.

The demand at the shore consists of a set of resources that have to be transported. For

each resource, it is defined what the start location of the resource is, in other words, at which

landing platform dock (SB) the resource is located, and what destination (LA) the resource has.

Furthermore, it is denoted what the priority number of the resource is and to what subunit the

resource belongs. If there are resources with the same subunit, then the resources belong to the

same resource set and should be delivered within the same wave.

To test the performance of the greedy heuristic for different sized instances, the demand

sets have different sizes, where it holds that iA ⊂ iB ⊂ iC, for i ∈ {1, 2, 3}. We thus define

nine demand sets d, of which the descriptive statistics are shown in Table 5. This includes the

number of SBs, LAs, priority levels, resource sets, and the distance between the SBs and LAs.
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The table shows that demand sets 1A and 2A contain one priority level, i.e., all resources have

the same priority level.

Table 5: Overview of demand sets.

Demand Set #SBs #LAs
Distance

SB - LA (nm)

# Priority

Levels

# Resource

Sets

1A 2 2 15 1 1

1B 2 2 15 2 2

1C 2 2 15 2 2

2A 2 3 15 1 1

2B 2 3 15 2 2

2C 2 3 15 2 2

3A 2 1 15 2 2

3B 2 1 15 2 3

3C 2 1 15 2 3

The supply consists of the number of available connectors and the (un)loading capacity at

both the SBs and LAs. There are different types of (un)loading spots that can be used by

different connector types. Namely, landing spots can only be used by helicopters, while docks

and davits can only be used by surface connectors. Furthermore, not all surface connectors can

access a davit. This can only be used by the smaller surface connectors. An overview of the

supply sets s is given in Table 6.

Table 6: Overview of the supply sets.

Supply

Set
# Connectors

# Connector

Types

# Docks

per SB

# Davits

per SB

# Landing Spots

per SB

# Landing Zones

per LA

1 4 2 1 2 1 2

2 6 2 1 2 1 2

3 12 2 2 4 2 2

4 16 4 2 4 2 2

5 8 3 2 2 2 2

The operational constraints consist of, amongst others, constraints regarding the order of the

delivery of the resources. As we are also interested in the circumstances under which the greedy

heuristic performs well, we vary for these operational constraints as these have an impact on

the feasible set of trips that are considered in each step of the greedy heuristic. The constraints

regarding the order of the delivery of resources are the priority constraints and resource set

constraints. If priority constraints are relaxed, this implies that all resources have the same

priority level. If resource set constraints are relaxed, this implies that we do not impose the

delivery of resources within the same subunit to be at the same time. When either or both

of these constraints are relaxed, there are thus fewer constraints regarding the ordering which

affects from which the greedy heuristic can choose in each step.

We define four options for c. Let N denote the case in which neither the priority nor the

resource set constraints are considered. Let P denote the case in which the priority constraints
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are added to case N, and let W denote the case in which the resource set constraints are added

to case N. The full and default model we consider contains both constraints, which cases are

denoted by F.

Using the demand sets, supply sets, and the set of operational constraints, we can construct

the instances. Large demand sets with low supply in terms of the number of available connectors

can result in feasibility issues due to the resource set constraints. Namely, it should be possible

to deliver all resources of the same resource set at the same time or shortly after each other.

Since travel times between the SBs and LAs are large, it is not possible to assign a connector to

multiple trips transporting resources of the same resource set, as this would lead to a violation

of the resource set constraint. Therefore, for each resource set in a combination of a demand

set and a supply set, we verify whether it is possible to assign loadings to the connectors such

that all resources of this set are transported and each connector is used at most once. If this is

not possible, the instance is not feasible when resource set constraints are imposed and hence

we only consider the instances with options P and N. On the other hand, small demand sets in

combination with a large supply set, are not realistic. Hence, not all combinations of demand

and supply sets are considered.

Taking both the feasibility as well as the realism of combinations of demand sets and supply

sets into account, this results in the instances as denoted in Table 6. Here ‘All’ implies that all

four options of the operational constraints are considered. The instances used for only options

P and N imply that these combinations of demand set and supply set are infeasible in terms of

the resource set constraints, e.g., for demand set 3C with supply set 5. Demand sets 1A and

2A have a single priority level, hence there is no difference between incorporating the priority

constraints or not. Therefore, for these demand sets only options W and N are considered. This

results in 98 instances in total.

Table 7: Overview of the instances where for each demand set and supply set combination that is used,
the corresponding set of operational constraints is denoted. In total, this results in 98 instances.

Supply Demand Set

Set 1A 1B 1C 2A 2B 2C 3A 3B 3C

1 W, N All W, N P, N All All

2 W, N All W, N All All All

3 All All All

4 P, N All All All P, N All

5 W, N P, N All W, N All All All All P, N

5.2 Results

In this section, the computational results are presented. The algorithms are implemented in

Java using CPLEX 12.10. The experiments are executed on the Dutch national SurfSARA Lisa

cluster consisting mostly of nodes with 16 core Intel Xeon 6130 processors and 96GB RAM.

While the greedy heuristic runs in almost no time, we choose a cut-off point of one hour for the

branch-and-price algorithm. First, the effect of using the upper and lower bound in the branch-

and-price algorithm is analysed using the smallest instances (instances iA for i ∈ {1,2,3}) in
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Section 5.2.1. Second, we will compare the performance of the greedy heuristic and branch-and-

price algorithm for the full instances in Section 5.2.2. In Section 5.2.3 we will analyse the effect

of the operational constraints on the performance of the greedy heuristic. Finally, in Section

5.2.4, the performance of the different branching rules is analysed.

5.2.1 Analysis of the Usage of Bounds in the Branch-and-Price Algorithm

To analyse the performance of the branch-and-price algorithm with and without the bounds

incorporated as explained in Section 4.4.4, we use the instances corresponding to the smallest

demand sets. Namely, instances 1A-1-W, 1A-2-W, 1A-5-W, 2A-1-W, 2A-2-W, 2A-5-W, 3A-1-F,

3A-2-F and 3A-5-F, where for demand sets 1A and 2A it holds that F is equivalent to W as no

priority levels exist. The instances are run with and without upper bound and lower bound and

run for all four branching rules. We compare the results of each instance corresponding to the

branching rule that yields the best solution. Here best solution implies the solution with the

lowest makespan. If one or more branching rules are tied, we choose the solution corresponding

to the branching rule that has the shortest running time. In case the branch-and-price algorithm

does not terminate within an hour, we first order the branching rules based on the time it took

to find the best integer solution, if applicable.

We analyse the effect of using the bounds by comparing the running time. Since we are

using a cut-off point of one hour, solutions obtained when the branch-and-price algorithm is

cut-off after one hour, are not (proven to be) optimal. Figure 7 shows the running times of the

instances with and without the bounds on a logarithmic scale. A table containing the results,

included potential gaps, can be found in Appendix A.
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Figure 7: Running time of the branch-and-price algorithm with and without an upper bound (UB) and
lower bound (LB). When the LB equals the UB, the branch-and-price is not run and hence the running
time is 0.

We observe that adding the upper bound significantly decreases the running time for all

instances except 3A-5-F, for which the running time is slightly worse. When the lower bound is

used, the effect is dependent on the instance. For some instances, the lower bound equals the

makespan of the greedy heuristic, hence the branch-and-price algorithm is not run. For the other

instances, the running times are approximately the same, with the exception of instance 1A-2-W,

where the running time is significantly lower when the lower bound is added. Using both bounds

reduces the running times compared to using neither of the bounds or solely the lower bound.
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Compared with solely using the upper bounds, running times are approximately the same, or

slightly lower. Hence, in the remainder of the results, both bounds will be incorporated.

5.2.2 The Greedy Heuristic vs the Branch-and-Price Algorithm

To test the performance of the greedy heuristic, we will now compare the solution of the greedy

heuristic with the solution of the branch-and-price algorithm. Here we consider the 19 instances

with both operational constraints, namely instances with with all operational constraints (c = F),

as these contain all constraints that are required in practical operations. The branch-and-price

algorithm is run for all four branching rules of which the results corresponding to the branching

rule that yields the best solution is reported. This implies the best solution determined by the

lexographic order of the lowest makespan, shortest run time and shortest time until the best

integer solution. The results for these instances are presented in Table 8, the complete results

for all four branching rules are presented in Table 11 in Appendix A. The table denotes for each

instance, the bounds, the number of available loadings, the size of the time-space network, and

information on the solution and corresponding branching rule, if applicable. The purpose of the

number of loadings and the time-space network is to illustrate the size of the instances. Namely,

they determine, together with the number of time periods defined by the upper bound from the

greedy solution, the number of SBs and LAs, the number of priority levels, and the number of

resource sets, the number of variables and constraints in the problem.

Table 8: Results of the greedy heuristic and branch-and-price algorithm for instances with c = F with
a cut-off point of one hour. Here the solutions correspond to the solution of the branching rule with the
best result in terms of makespan, running time, and number of nodes evaluated.

Branching TSN Size T (sec.) till

Instance Rule1 UB LB #Loadings #Nodes #Arcs Makespan T (sec.) Int. Sol. Gap (%)

3A-1-F2 41 41 18 132 4452 41 0

3A-2-F BH 27 25 18 82 1743 27 1.19

3A-5-F BL 26 11 33 146 4752 26 8.62

1B-1-F BH 42 41 38 308 12134 42 18.62

1B-2-F -3 27 25 38 192 4816 27 3600 7.41

2B-1-F2 42 42 16 374 16761 42 0

2B-2-F BL 41 25 16 366 16080 41 7.73

2B-4-F BH 8 6 62 164 2811 7 8.05 4.49

2B-5-F -3 32 25 53 428 22127 32 3600 28.00

3B-2-F DH 59 25 61 210 11151 59 629.61

3B-5-F BL 26 11 33 146 4752 26 8.62

1C-3-F BH 41 10 10 462 24224 41 34.20

1C-4-F BH 14 9 19 264 5608 14 3.67

1C-5-F BL 41 19 21 484 26204 41 458.01

2C-3-F BL 36 25 26 448 23933 36 25.76

2C-4-F DH 11 9 60 182 3649 10 3600 14.03 11.11

2C-5-F DL 26 19 51 344 14243 26 17.43

3C-3-F -3 54 26 154 288 18654 54 3600 107.69

3C-4-F BL 26 11 232 346 14876 26 469.98

1: B = breadth first, D = depth first, L = lowest fractional, H = highest fractional
2: UB = LB, hence the branch-and-price algorithm is not run
3: all branching rules have the same gap and running time
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We observe that there are four instances for which the branch-and-price algorithm does not

terminate within an hour. For three of these four instances no improvement is found compared

to the solution of the greedy heuristic. In total there are 2 out of 19 instances in which an

improvement is found and hence the solution of the greedy heuristic is known to be suboptimal.

In 14 out of 19 instances the greedy solution is proven to be optimal.

When considering the performance of the branch-and-price algorithm, we see that the per-

formance of the greedy heuristic is of importance. For example, consider instances 2B-5-F and

2C-5-F which have the same supply, but different demand, namely the demand of 2B is a subset

of the demand of 2C. One would thus expect 2B-5-F to be easier to solve compared to 2C-5-F.

However, 2B-5-F does not terminate within an hour, while 2C-5-F terminates within 18 seconds.

The difference in the running time for the branch-and-price algorithm is caused by the quality

of the upper bound obtained from the greedy heuristic which affects the size of the time-space

network and hence the number of variables and the size of the feasible region of the problem.

Namely, for instances 2C-5-F the greedy heuristic finds a solution with 26 time periods, while

it finds a solution of 32 time periods for 2B-5-F. The greedy heuristic iteratively adds trips to a

solution, thus it is possible for the heuristic to choose suboptimal trips that are the best option

at that moment but have a large, negative, effect on the makespan in the end.

Since the resources in demand set 2B are a subset of the resources in demand set 2C, it

should be possible to transport all resources in 2B-5-F in at most 26 time periods. In fact, when

the upper bound on 2B-5-F is set to 26, the branch-and-price algorithm is able to show within a

minute that 26 is the optimal makepan, implying that the greedy heuristic resulted in a solution

that is about 23% above the optimal solution for this instance. However, the branch-and-price

algorithm is not even able to improve on the makespan of 32 time periods, which is most likely

caused by the ability to combine unnecessarily long routes with very short routes resulting in a

very low lower bound, as explained in Section 4.4.4.

We also see that a toolbox with more connectors, although it results in a reduction in the size

of the time-space network, does not imply a smaller running time. This is shown by for example

instances 1B-1-F and 1B-2-F. This could be caused by the fact that now more routes should be

selected for each connector type. Another explanation is that the gap between the bounds is

larger in instance 1B-2-F as the lower bound does not consider the (un)loading capacity which

has a larger effect on the quality of the lower bound if there are more connectors.

5.2.3 The Effect of Operational Constraints on the Greedy Heuristic

The results in the previous section showed that in 14 out of 19 instances the greedy heuristic

found an optimal solution and in 17 out of 19 instances no improvement could be found within

an hour. This is an interesting result as it shows that a simple approach that takes from a few

milliseconds to a few seconds to solve, gives optimal solutions in many cases. In the greedy

heuristic, trips are iteratively added to the planning until a feasible solution is found. If a

problem is more constrained in terms of the priorities and resource sets, there are fewer trips

that can be added in each iteration of the greedy heuristic and hence the chance of choosing

suboptimal trip is lower.

To analyse the effect of the priority and resource set constraints on the performance of the
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greedy heuristic, we run each instance for the cases in which either or both of these constraints

are relaxed. The results of these instances can be found in Appendix A and a summary of the

results is given in Table 9. The number of instances for the different categories are different for

two reasons. Since demand sets 1A and 2A have a single priority level, for those instances there

is no case with priority constraints. Hence, there are six more instances for the cases with only

wave constraints and neither constraints compared to the cases with both constraints and only

priority constraints. Also, there are five combinations of demand set and supply set that are

infeasible due to the resource set constraints.

Table 9 shows the percentage of instances for which the greedy heuristic gave the optimal

solution. As not all instances could be solved within an hour, there are also instances for which

the solution of the greedy heuristic is the best solution found, but for which it is not known

whether this is optimal. For all instances for which improvements compared to the solution of

the greedy heuristic were found, the average gap between the solution of the greedy heuristic and

the best solution found, the running time to obtain this solution are given, and the percentage

of instances for which this best and/or optimal solution was found within five minutes.

We can see from the results in the table that the greedy heuristic also performs well in many

cases when there are no priority levels and resource sets. However, in the case where the branch-

and-price algorithm can find improvements, the improvements can be very large, especially in

case there are no resource set constraints (instances with c = P or c = N). Furthermore, these

improvements can be found quite fast, and in quite some cases within five minutes. Hence, the

usage of the branch-and-price algorithm can be beneficial to use in problems with few or no

priority levels and resource sets.

Table 9: The effect of priority level constraints and resource set constraints on the performance of the
greedy heuristic with a cut-off points of one hour for the branch-and-price algorithm. Here c denotes the
set of operational constraints regarding the order of the resources that are considered, namely either the
full set (F), only the priority constraints (P), only the resource set constraints (W), or neither of these
constraints (N). Note that there are no instances for which an improvement was found for the instances
with only resource set constraints (c = W).

Instances with Improvement

c # Instances
% Instances

Greedy Optimal

% Instances

Greedy Best

% Instances

with Improvement

Avg. Gap (%)

Greedy

Avg. T (sec.)

till Best Sol.

% within

5 min.

F 19 63.16 89.47 10.53 12.14 9.26 100.00

P 24 12.50 62.50 37.50 52.44 783.63 66.67

W 25 64.00 100.00 0 - - -

N 30 13.33 56.67 43.33 36.99 323.03 84.62

Total 98 35.71 75.51 24.49 40.71 469.60 79.17

5.2.4 The Performance of the Branching Rules

All instances are run for four different branching rules based on the search strategy through the

branching tree and the arc or delivery selection procedure. Namely, we use a breadth first (B)

or depth first (D) search and select the arc or delivery to branch on according to the highest

(H) or lowest (L) fractional value. To compare the performance of the different branching rules,

we first evaluate the quality of the solution found for each of the branching rules in terms of the
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makespan found and then the performance of the branching rule in terms of the running time

required.

First, we consider the quality of the branching rules in terms of the makespan. For the

branch-and-price algorithm a cut-off point of one hour is used. Hence, if for none of the branching

rules the algorithm terminates within an hour, the optimal makespan of the solution is unknown.

In those cases we compare the makespan for a branching rule with the best makespan found

for that instance. For each branching rule we can then determine the number of instances

for which the optimal/best makespan is found using that branching rule. In Figure 8a, the

number of instances, out of the 98 instances, for which the different branching rules found the

optimal/best makespan is given. We see that the different branching rules find the optimal/best

makespan approximately equally often, ranging between 89 and 92.

Second, we consider the quality of the branching rules in terms of the running time. First,

we determine how often each branching rule terminates the fastest. Here we only consider the

instances for which the branching rule finds the best makespan. Namely, if none of the branching

rules terminates within an hour, the running times are equal, however the makespan found using

the different branching rules can be different. We then only count the branching rules for which

the best makespan was found. Figure 8a shows the number of times a branching rule is the

fastest in finding the optimal/best makespan. We see that branching rule DH, while having a

high number of instances for which the optimal/best makespan is found, terminates fastest in

significantly fewer instances compared to the other three branching rules. These branching rules

approximately terminate fastest equally often, with a slightly higher number of instances for

branching rule DL.
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(b) Performance profile of the running times for the
different branching rules, where only instances for
which the optimal/best makespan is found are con-
sidered.

Figure 8: Performance of the four different branching rules, where a breadth first (B) or a depth first
(D) tree search and highest fractional (H) or lowest fractional (L) arc or delivery branching decision are
used.

Based on Figure 8a, it seems that branching rule DL performed the best. However, as

the number of times the optimal/best makespan was found are approximately equal for all
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branching rules, this judgement is based on the number of times the branching rule is the

fastest. A branching rule that is never fastest but often slightly slower can be be preferred over

a branching rule that is most often the fastest, but in other cases significantly slower compared to

other branching rules. Therefore, the running times of the different branching rules are ranked

and plotted in Figure 8b in a performance profile. This performance profile can be used to

analyse the distribution of the running times for the different branching rules.

We observe that until about 60% of the instances solved, the speed of the branching rules is

very close and that for about 50% of the instances, the running time is at most ten seconds. After

about 60% of the instances solved, DL manages to outperform the other branching rules as its

running time distribution lies close to or strictly below the distribution of the other branching

rules. Hence, branching rule DL is not only able to solve most instances the fastest, it also

outperforms the other branching rules based on the distribution of its running times based on

the instances we consider.

6 Conclusion

In this paper we consider the ship-to-shore problem, for which we provide a proof of NP-

hardness, even in very restricted special cases. We provide a general and integrated model

for the ship-to-shore problem including relevant practical constraints such as the limit on the

number of (un)loading spots and the simultaneous delivery of groups of resources. We construct

a greedy heuristic that mimics the current scheduling procedure and determine the quality of

these solutions by comparing them to the solutions obtained from a branch-and-price algorithm.

In the branch-and-price algorithm, we incorporate the usage of an upper and lower bound to

strengthen its formulation and reduce its running time significantly. Using data from the Royal

Netherlands Navy, we find that the greedy heuristic performs well in highly constrained cases.

However, when instances are less constrained, the value of the solution obtained by the greedy

heuristic can have a large optimality gap compared to the the solution found by the branch-

and-price algorithm.

As distances and therefore travel times are large compared to the (un)loading times in these

instances, we chose to set the time period length such that (un)loading for all connectors can

take place within one time period. Depending on the application, the loss in exactness can be

more significant and a shorter time period length is preferred. This requires small changes to the

model, namely, arcs should be added between a node for an (un)loading location in time period

t and the node corresponding to the same location in time period t + 1. Furthermore, when

(un)loading at a location takes n > 1 time periods, constraints should be added that require a

connector to remain at this location for n time periods if it is visited.

The results show that the greedy heuristic performs well in case the problem is very con-

strained. For less constrained problems, applying, e.g., a local search to the solution of the

greedy heuristic, or running the greedy heuristic multiple times with a randomisation parame-

ter, can result in better outcomes. To test whether a heuristic works well in another application,

the branch-and-price algorithm can be used as a benchmark.

By using discrete time periods, some slack occurs in the schedule. A potential benefit of this

slack is that it can serve as a buffer in case a delay occurs. However, the moments at which this
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slack occurs are not chosen and therefore accounting for delays while constructing the schedule

can result in a lower expected makespan. Hence, for future research, it would be interesting to

incorporate the uncertainty about the travel and (un)loading times to construct schedules with

a lower expected makespan.
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Appendices

A Results

Table 10: Results of the branch-and-price algorithm with and without upper bound (UB) and lower
bound (LB) for instance 1A-1-W, 1A-2-W, 1A-5-W, 2A-1-W, 2A-2-W, 2A-5-W, 3A-1-F, 3A-2-F and 3A-
5-F with a cut-off point of one hour. Here T denotes the makespan of the greedy heuristic and UB and
LB denote whether the bound is included and if so, the corresponding value of the bound.

Branching TSN Size T (sec.) till

Instance Rule1 T UB LB #Loadings #Nodes #Arcs Makespan T (sec.) Int. Sol. Gap (%)

1A-1-W -3 25 - - 5 164 3574 25 3600 69.95

1A-1-W2 25 - 25 5 164 3574 25 0

1A-1-W BL 25 25 - 5 164 3574 25 1.13

1A-1-W2 25 25 25 5 164 3574 25 0

1A-2-W BL 11 - - 5 64 632 11 41.25

1A-2-W BL 11 - 10 5 64 632 11 0.94

1A-2-W BH 11 11 - 5 64 632 11 0.14

1A-2-W BH 11 11 10 5 64 632 11 0.13

1A-5-W -3 9 - - 9 84 832 9 3600 39.97

1A-5-W2 9 - 9 9 84 832 9 0

1A-5-W BL 9 9 - 9 84 832 9 0.48

1A-5-W2 9 9 9 9 84 832 9 0

2A-1-W BH 25 - - 5 198 4762 25 4.67

2A-1-W2 25 - 25 5 198 4762 25 0

2A-1-W BL 25 25 - 5 198 4762 25 0.77

2A-1-W2 25 25 25 5 198 4762 25 0

2A-2-W BH 25 - - 5 206 5168 25 1898.12

2A-2-W BH 25 - 9 5 206 5168 25 1651.41

2A-2-W BL 25 25 - 5 206 5168 25 0.74

2A-2-W BH 25 25 9 5 206 5168 25 0.83

2A-5-W DL 10 - - 9 120 1667 10 141.38

2A-5-W DL 10 - 9 9 120 1667 10 202.57

2A-5-W DL 10 10 - 9 120 1667 10 0.34

2A-5-W BL 10 10 9 9 120 1667 10 0.22

3A-1-F DL 41 - - 18 132 4452 41 15.30

3A-1-F2 41 - 41 18 132 4452 41 0

3A-1-F BH 41 41 - 18 132 4452 41 4.44

3A-1-F2 41 41 41 18 132 4452 41 0

3A-2-F DL 27 - - 18 82 1743 27 46.47

3A-2-F DL 27 - 25 18 82 1743 27 78.43

3A-2-F BL 27 27 - 18 82 1743 27 1.56

3A-2-F BH 27 27 25 18 82 1743 27 1.19

3A-5-F DH 26 - - 33 146 4752 26 9.77

3A-5-F BL 26 - 11 33 146 4752 26 11.66

3A-5-F DH 26 26 - 33 146 4752 26 15.88

3A-5-F DH 26 26 11 33 146 4752 26 4.44

1: B = breadth first, D = depth first, L = lowest fractional, H = highest fractional
2: UB = LB, hence the branch-and-price algorithm is not run
3: all branching rules have the same gap and running time
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Table 11: Performance of the greedy heuristic and branch-and-price algorithm for instances with c = F
with a cut-off point of one hour.

Branching TSN Size T (sec.) till

Instance Rule1 UB LB #Loadings #Nodes #Arcs Makespan T (sec.) Int. Sol. Gap (%)

3A-1-F2 41 41 18 132 4452 41 0

3A-2-F BL 27 25 18 82 1743 27 1.20

BH 27 25 18 82 1743 27 1.19

DL 27 25 18 82 1743 27 1.27

DH 27 25 18 82 1743 27 1.43

3A-5-F BL 26 11 33 146 4752 26 8.62

BH 26 11 33 146 4752 26 9.00

DL 26 11 33 146 4752 26 9.03

DH 26 11 33 146 4752 26 9.49

1B-1-F BL 42 41 38 308 12134 42 19.05

BH 42 41 38 308 12134 42 18.62

DL 42 41 38 308 12134 42 19.65

DH 42 41 38 308 12134 42 18.82

1B-2-F BL 27 25 38 192 4816 27 3600 7.41

BH 27 25 38 192 4816 27 3600 7.41

DL 27 25 38 192 4816 27 3600 7.41

DH 27 25 38 192 4816 27 3600 7.41

2B-1-F2 42 42 16 374 16761 42 0

2B-2-F BL 41 25 16 366 16080 41 7.73

BH 41 25 16 366 16080 41 7.74

DL 41 25 16 366 16080 41 7.78

DH 41 25 16 366 16080 41 8.24

2B-4-F BL 8 6 62 164 2811 7 23.79 17.7

BH 8 6 62 164 2811 7 8.05 4.49

DL 8 6 62 164 2811 7 18.11 6.76

DH 8 6 62 164 2811 7 8.59 4.87

2B-5-F BL 32 25 53 428 22127 32 3600 28.00

BH 32 25 53 428 22127 32 3600 28.00

DL 32 25 53 428 22127 32 3600 28.00

DH 32 25 53 428 22127 32 3600 28.00

3B-2-F BL 59 25 61 210 11151 59 648.55

BH 59 25 61 210 11151 59 640.38

DL 59 25 61 210 11151 59 649.00

DH 59 25 61 210 11151 59 629.61

3B-5-F BL 26 11 33 146 4752 26 8.62

BH 26 11 33 146 4752 26 9.00

DL 26 11 33 146 4752 26 9.03

DH 26 11 33 146 4752 26 9.49

1C-3-F BL 41 10 10 462 24224 41 34.51

BH 41 10 10 462 24224 41 34.20

DL 41 10 10 462 24224 41 35.20

DH 41 10 10 462 24224 41 35.53

1C-4-F BL 14 9 19 264 5608 14 3.70

BH 14 9 19 264 5608 14 3.67

DL 14 9 19 264 5608 14 3.69

DH 14 9 19 264 5608 14 3.84

1C-5-F BL 41 19 21 484 26204 41 458.01

BH 41 19 21 484 26204 41 460.21

DL 41 19 21 484 26204 41 464.53

DH 41 19 21 484 26204 41 475.04

2C-3-F BL 36 25 26 448 23933 36 25.76

BH 36 25 26 448 23933 36 26.13

DL 36 25 26 448 23933 36 26.30

1: B = breadth first, D = depth first, L = lowest fractional, H = highest fractional

2: UB = LB, hence the branch-and-price algorithm is not run
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Table 11: Performance of the greedy heuristic and branch-and-price algorithm for instances with c = F
with a cut-off point of one hour.

Branching TSN Size T (sec.) till

Instance Rule1 UB LB #Loadings #Nodes #Arcs Makespan T (sec.) Int. Sol. Gap (%)

DH 36 25 26 448 23933 36 25.95

2C-4-F BL 11 9 60 182 3649 10 3600 17.73 11.11

BH 11 9 60 182 3649 10 3600 52.75 11.11

DL 11 9 60 182 3649 11 3600 22.22

DH 11 9 60 182 3649 10 3600 14.03 11.11

2C-5-F BL 26 19 51 344 14243 26 18.59

BH 26 19 51 344 14243 26 18.10

DL 26 19 51 344 14243 26 17.43

DH 26 19 51 344 14243 26 18.23

3C-3-F BL 54 26 154 288 18654 54 3600 107.69

BH 54 26 154 288 18654 54 3600 107.69

DL 54 26 154 288 18654 54 3600 107.69

DH 54 26 154 288 18654 54 3600 107.69

3C-4-F BL 26 11 232 346 14876 26 469.98

BH 26 11 232 346 14876 26 620.50

DL 26 11 232 346 14876 26 508.51

DH 26 11 232 346 14876 26 508.79

1: B = breadth first, D = depth first, L = lowest fractional, H = highest fractional

2: UB = LB, hence the branch-and-price algorithm is not run

Table 12: Performance of the greedy heuristic and branch-and-price algorithm for instances with c = P
with a cut-off point of one hour.

Branching TSN Size T (sec.) till

Instance Rule1 UB LB #Loadings #Nodes #Arcs Makespan T (sec.) Int. Sol. Gap (%)

1B-1-P2 41 41 12 292 10934 41 0

1B-2-P BL 26 25 12 184 4436 26 3.42

BH 26 25 12 184 4436 26 3.71

DL 26 25 12 184 4436 26 3.81

DH 26 25 12 184 4436 26 4.04

1B-4-P BL 17 9 41 338 9280 17 3600 88.89

BH 17 9 41 338 9280 17 3600 88.89

DL 17 9 41 338 9280 17 3600 88.89

DH 17 9 41 338 9280 17 3600 88.89

1B-5-P BL 33 25 77 388 16860 33 3600 32.00

BH 33 25 77 388 16860 33 3600 32.00

DL 33 25 77 388 16860 33 3600 32.00

DH 33 25 77 388 16860 33 3600 32.00

1C-3-P BL 39 25 9 438 21808 37 3600 3229.42 48.00

BH 39 25 9 438 21808 35 3600 3025.42 40.00

DL 39 25 9 438 21808 25 205.14 205.14

DH 39 25 9 438 21808 37 3600 87.42 48.00

1C-4-P BL 14 9 12 264 5608 11 3600 435.34 22.22

BH 14 9 12 264 5608 10 3600 2594.38 11.11

DL 14 9 12 264 5608 10 3600 254.70 11.11

DH 14 9 12 264 5608 9 107.04 107.03

1C-5-P BL 39 25 16 460 23676 34 3600 3350.49 36.00

BH 39 25 16 460 23676 37 3600 1653.88 48.00

DL 39 25 16 460 23676 39 3600 56.00

DH 39 25 16 460 23676 38 3600 90.94 52.00

2B-1-P2 42 42 11 368 16186 42 0

2B-2-P BL 26 25 11 216 5670 26 5.43

1: B = breadth first, D = depth first, L = lowest fractional, H = highest fractional

2: UB = LB, hence the branch-and-price algorithm is not run
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Table 12: Performance of the greedy heuristic and branch-and-price algorithm for instances with c = P
with a cut-off point of one hour.

Branching TSN Size T (sec.) till

Instance Rule1 UB LB #Loadings #Nodes #Arcs Makespan T (sec.) Int. Sol. Gap (%)

BH 26 25 11 216 5670 26 5.55

DL 26 25 11 216 5670 26 5.47

DH 26 25 11 216 5670 26 5.64

2B-4-P BL 8 6 37 164 2811 6 2039.66 2039.55

BH 8 6 37 164 2811 6 308.22 308.22

DL 8 6 37 164 2811 7 3600 8.15 16.67

DH 8 6 37 164 2811 8 3600 33.33

2B-5-P BL 26 25 31 344 14243 25 394.44 394.43

BH 26 25 31 344 14243 25 1031.91 1031.90

DL 26 25 31 344 14243 26 3600 4.00

DH 26 25 31 344 14243 25 42.20 42.20

2C-3-P2 25 25 14 280 9304 25 0

2C-4-P BL 11 9 35 182 3649 9 325.49 325.48

BH 11 9 35 182 3649 9 297.76 297.75

DL 11 9 35 182 3649 10 3600 183.36 11.11

DH 11 9 35 182 3649 9 2174.85 2174.85

2C-5-P BL 25 19 29 330 13097 19 2678.07 2678.05

BH 25 19 29 330 13097 25 3600 31.58

DL 25 19 29 330 13097 25 3600 31.58

DH 25 19 29 330 13097 25 3600 31.58

3A-1-P2 41 41 13 132 4452 41 0

3A-2-P BL 26 25 13 78 1581 26 176.13

BH 26 25 13 78 1581 26 2781.73

DL 26 25 13 78 1581 26 64.95

DH 26 25 13 78 1581 26 3600 4.00

3A-5-P BL 25 11 22 140 4368 11 1161.93 1161.93

BH 25 11 22 140 4368 11 2187.96 2187.96

DL 25 11 22 140 4368 11 31.88 31.88

DH 25 11 22 140 4368 25 3600 127.27

3B-1-P2 74 74 116 264 17586 74 0

3B-2-P2 57 57 58 196 9732 57 0

3B-4-P BL 19 11 96 248 7652 19 3600 72.73

BH 19 11 96 248 7652 19 3600 72.73

DL 19 11 96 248 7652 19 3600 72.73

DH 19 11 96 248 7652 19 3600 72.73

3B-5-P BL 25 11 22 140 4368 11 1161.93 1161.91

BH 25 11 22 140 4368 11 2187.96 2187.96

DL 25 11 22 140 4368 11 31.88 31.88

DH 25 11 22 140 4368 25 3600 127.27

3C-3-P BL 41 26 146 210 9970 41 3600 57.69

BH 41 26 146 210 9970 41 3600 57.69

DL 41 26 146 210 9970 41 3600 57.69

DH 41 26 146 210 9970 41 3600 57.69

3C-4-P BL 26 11 212 346 14876 26 3600 136.36

BH 26 11 212 346 14876 26 3600 136.36

DL 26 11 212 346 14876 26 3600 136.36

DH 26 11 212 346 14876 26 3600 136.36

3C-5-P BL 41 39 205 236 12432 41 3600 5.13

BH 41 39 205 236 12432 41 3600 5.13

DL 41 39 205 236 12432 41 3600 5.13

DH 41 39 205 236 12432 41 3600 5.13

1: B = breadth first, D = depth first, L = lowest fractional, H = highest fractional

2: UB = LB, hence the branch-and-price algorithm is not run

35



Table 13: Performance of the greedy heuristic and branch-and-price algorithm for instances with c =
W with a cut-off point of one hour.

Branching TSN Size T (sec.) till

Instance Rule1 UB LB #Loadings #Nodes #Arcs Makespan T (sec.) Int. Sol. Gap (%)

1A-1-W2 25 25 5 164 3574 25 0

1A-2-W BL 11 10 5 64 632 11 0.14

BH 11 10 5 64 632 11 0.13

DL 11 10 5 64 632 11 0.15

DH 11 10 5 64 632 11 0.21

1A-5-W2 9 9 9 84 832 9 0

1B-1-W2 41 41 136 292 10934 41 0

1B-2-W BL 26 25 136 184 4436 26 9.40

BH 26 25 136 184 4436 26 9.67

DL 26 25 136 184 4436 26 9.80

DH 26 25 136 184 4436 26 10.57

1C-3-W BL 25 9 28 270 8480 25 3.09

BH 25 9 28 270 8480 25 3.10

DL 25 9 28 270 8480 25 3.09

DH 25 9 28 270 8480 25 3.61

1C-4-W2 9 9 30 108 1124 9 0

1C-5-W BL 25 18 46 292 9564 25 6.84

BH 25 18 46 292 9564 25 7.01

DL 25 18 46 292 9564 25 6.83

DH 25 18 46 292 9564 25 7.56

2A-1-W2 25 25 5 198 4762 25 0

2A-2-W BL 25 9 5 206 5168 25 0.84

BH 25 9 5 206 5168 25 0.83

DL 25 9 5 206 5168 25 0.85

DH 25 9 5 206 5168 25 0.96

2A-5-W BL 10 9 9 120 1667 10 0.22

BH 10 9 9 120 1667 10 0.27

DL 10 9 9 120 1667 10 0.23

DH 10 9 9 120 1667 10 0.30

2B-1-W BL 41 25 29 364 15881 41 4.64

BH 41 25 29 364 15881 41 4.89

DL 41 25 29 364 15881 41 4.63

DH 41 25 29 364 15881 41 5.02

2B-2-W BL 40 25 29 356 15218 40 1.65

BH 40 25 29 356 15218 40 1.71

DL 40 25 29 356 15218 40 1.78

DH 40 25 29 356 15218 40 2.02

2B-4-W BL 7 6 68 142 2073 7 3600 16.67

BH 7 6 68 142 2073 7 3600 16.67

DL 7 6 68 142 2073 7 3600 16.67

DH 7 6 68 142 2073 7 3600 16.67

2B-5-W BL 31 18 62 414 20693 31 99.42

BH 31 18 62 414 20693 31 99.38

DL 31 18 62 414 20693 31 212.75

DH 31 18 62 414 20693 31 99.58

2C-3-W BL 11 9 32 98 1187 11 3.71

BH 11 9 32 98 1187 11 12.08

DL 11 9 32 98 1187 11 2.75

DH 11 9 32 98 1187 11 7.42

2C-4-W BL 10 9 66 164 2915 10 3600 11.11

BH 10 9 66 164 2915 10 3600 11.11

DL 10 9 66 164 2915 10 3600 11.11

DH 10 9 66 164 2915 10 3600 11.11

1: B = breadth first, D = depth first, L = lowest fractional, H = highest fractional

2: UB = LB, hence the branch-and-price algorithm is not run
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Table 13: Performance of the greedy heuristic and branch-and-price algorithm for instances with c =
W with a cut-off point of one hour.

Branching TSN Size T (sec.) till

Instance Rule1 UB LB #Loadings #Nodes #Arcs Makespan T (sec.) Int. Sol. Gap (%)

2C-5-W BL 25 18 60 330 13097 25 14.44

BH 25 18 60 330 13097 25 15.20

DL 25 18 60 330 13097 25 15.26

BL 25 18 60 330 13097 25 15.43

3A-1-W2 41 41 219 132 4452 41 0

3A-2-W BL 27 25 219 82 1743 27 12.96

BH 27 25 219 82 1743 27 12.71

DL 27 25 219 82 1743 27 13.00

DH 27 25 219 82 1743 27 13.47

3A-5-W BL 25 11 274 140 4368 25 22.87

BH 25 11 274 140 4368 25 21.24

DL 25 11 274 140 4368 25 21.99

DH 25 11 274 140 4368 25 21.88

3B-2-W BL 43 41 266 146 5423 43 46.59

BH 43 41 266 146 5423 43 46.43

DL 43 41 266 146 5423 43 46.55

DH 43 41 266 146 5423 43 46.90

3B-5-W BL 25 11 274 140 4368 25 22.87

BH 25 11 274 140 4368 25 21.24

DL 25 11 274 140 4368 25 21.99

DH 25 11 274 140 4368 25 21.88

3C-3-W BL 53 25 1021 282 17890 53 3600 112.00

BH 53 25 1021 282 17890 53 3600 112.00

DL 53 25 1021 282 17890 53 3600 112.00

DH 53 25 1021 282 17890 53 3600 112.00

3C-4-W BL 26 11 1204 346 14876 26 492.98

BH 26 11 1204 346 14876 26 492.01

DL 26 11 1204 346 14876 26 493.01

DH 26 11 1204 346 14876 26 526.67

1: B = breadth first, D = depth first, L = lowest fractional, H = highest fractional

2: UB = LB, hence the branch-and-price algorithm is not run

Table 14: Performance of the greedy heuristic and branch-and-price algorithm for instances with c =
N with a cut-off point of one hour.

Branching TSN Size T (sec.) till

Instance Rule1 UB LB #Loadings #Nodes #Arcs Makespan T (sec.) Int. Sol. Gap (%)

1A-1-N2 25 25 3 164 3574 25 0

1A-2-N BL 11 10 3 64 632 11 0.10

BH 11 10 3 64 632 11 0.10

DL 11 10 3 64 632 11 0.13

DL 11 10 3 64 632 11 0.12

1A-5-N2 9 9 5 84 832 9 0

1B-1-N2 41 41 13 292 10934 41 0 0

1B-2-N BL 26 25 13 184 4436 26 3600 3.85

BH 26 25 13 184 4436 26 3600 3.85

DL 26 25 13 184 4436 26 3600 3.85

DH 26 25 13 184 4436 26 3600 3.85

1B-4-N BL 15 9 75 246 5688 15 3600 66.67

BH 15 9 75 246 5688 14 3600 66.67

DL 15 9 75 246 5688 9 241.00 241.00

DH 15 9 75 246 5688 9 110.79 110.79

1: B = breadth first, D = depth first, L = lowest fractional, H = highest fractional

2: UB = LB, hence the branch-and-price algorithm is not run
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Table 14: Performance of the greedy heuristic and branch-and-price algorithm for instances with c =
N with a cut-off point of one hour.

Branching TSN Size T (sec.) till

Instance Rule1 UB LB #Loadings #Nodes #Arcs Makespan T (sec.) Int. Sol. Gap (%)

1B-5-N BL 33 25 77 388 16860 32 3600 1596.69 28.00

BH 33 25 77 388 16860 33 3600 32.00

DL 33 25 77 388 16860 26 202.51 143.62

DH 33 25 77 388 16860 33 3600 32.00

1C-3-N BL 11 9 24 102 1376 11 2.05

BH 11 9 24 102 1376 11 1.96

DL 11 9 24 102 1376 11 2.14

DH 11 9 24 102 1376 11 2.74

1C-4-N BL 10 9 28 156 2192 9 0.80 0.80

BH 10 9 28 156 2192 9 0.81 0.81

DL 10 9 28 156 2192 9 0.92 0.92

DH 10 9 28 156 2192 9 1.04 1.04

1C-5-N2 18 18 38 192 4144 18 0

2A-1-N2 25 25 4 198 4762 25 0

2A-2-N BL 10 9 4 56 462 10 0.06

BH 10 9 4 56 462 10 0.06

DL 10 9 4 56 462 10 0.05

DH 10 9 4 56 462 10 0.06

2A-5-N2 9 9 7 96 1124 9 0

2B-1-N BL 41 25 12 364 15881 26 39.24 29.92

BH 41 25 12 364 15881 26 26.78 21.22

DL 41 25 12 364 15881 26 15.76 12.29

DH 41 25 12 364 15881 26 17.56 14.28

2B-2-N BL 26 25 12 216 5670 25 1.35 1.35

BH 26 25 12 216 5670 25 1.73 1.73

DL 26 25 12 216 5670 25 1.25 1.25

DH 26 25 12 216 5670 25 1.87 1.87

2B-4-N BL 8 6 31 164 2811 6 2.85 2.85

BH 8 6 31 164 2811 6 34.32 34.32

DL 8 6 31 164 2811 6 4.74 4.74

DH 8 6 31 164 2811 6 7.29 7.29

2B-5-N BL 25 17 28 330 13097 18 704.58 323.89

BH 25 17 28 330 13097 18 1908.71 1632.71

DL 25 17 28 330 13097 18 226.39 202.92

DH 25 17 28 330 13097 20 3600 1512.61 17.65

2C-3-N BL 11 9 13 98 1187 11 3600 22.22

BH 11 9 13 98 1187 11 3600 22.22

DL 11 9 13 98 1187 11 3600 22.22

DH 11 9 13 98 1187 11 3600 22.22

2C-4-N BL 11 9 29 182 3649 9 42.42 42.42

BH 11 9 29 182 3649 9 20.36 20.36

DL 11 9 29 182 3649 9 7.76 7.76

DH 11 9 29 182 3649 9 3600 22.22

2C-5-N2 18 18 26 222 5912 18 0

3A-1-N2 41 41 75 132 4452 41 0

3A-2-N BL 11 9 75 30 202 11 341.26

BH 11 9 75 30 202 11 1055.12

DL 11 9 75 30 202 11 183.48

DH 11 9 75 30 202 11 1227.81

3A-5-N BL 18 11 102 98 2128 11 20.50 20.50

BH 18 11 102 98 2128 11 119.12 119.11

DL 18 11 102 98 2128 11 17.29 17.29

DH 18 11 102 98 2128 11 45.93 45.93

1: B = breadth first, D = depth first, L = lowest fractional, H = highest fractional

2: UB = LB, hence the branch-and-price algorithm is not run
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Table 14: Performance of the greedy heuristic and branch-and-price algorithm for instances with c =
N with a cut-off point of one hour.

Branching TSN Size T (sec.) till

Instance Rule1 UB LB #Loadings #Nodes #Arcs Makespan T (sec.) Int. Sol. Gap (%)

3B-1-N2 57 57 109 196 9732 57 0

3B-2-N2 41 41 109 132 4452 41 0

3B-4-N BL 18 11 153 234 6812 18 3600 63.64

BH 18 11 153 234 6812 17 3600 2763.90 54.55

DL 18 11 153 234 6812 12 3600 76.38 9.09

DH 18 11 153 234 6812 12 3600 78.54 9.09

3B-5-N BL 18 11 102 98 2128 11 21.50 21.50

BH 18 11 102 98 2128 11 119.12 119.12

DL 18 11 102 98 2128 11 17.29 17.29

DH 18 11 102 98 2128 11 45.93 45.93

3C-3-N BL 27 25 437 126 3642 27 3600 8.00

BH 27 25 437 126 3642 27 3600 8.00

DL 27 25 437 126 3642 26 861.03 497.75

DH 27 25 437 126 3642 26 952.88 669.71

3C-4-N BL 25 11 1030 332 13700 25 3600 120.66

BH 25 11 1030 332 13700 25 3600 120.66

DL 25 11 1030 332 13700 18 3600 3108.34 58.88

DH 25 11 1030 332 13700 21 3600 2721.64 85.36

3C-5-N BL 41 32 525 236 12432 41 3600 28.125

BH 41 32 525 236 12432 41 3600 28.125

DL 41 32 525 236 12432 41 3600 28.125

DH 41 32 525 236 12432 41 3600 28.125

1: B = breadth first, D = depth first, L = lowest fractional, H = highest fractional

2: UB = LB, hence the branch-and-price algorithm is not run
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