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Schizophrenia patients show signs of accelerated aging in cognitive and physiological domains. Both schizophrenia
and accelerated aging, asmeasured byMRI brain images and epigenetic clocks, are correlatedwith increasedmor-
tality. However, the association between these agingmeasureshave not yet been studied in schizophrenia patients.
In schizophrenia patients and healthy subjects, accelerated agingwas assessed in brain tissue using a longitudinal
MRI (N = 715 scans; mean scan interval 3.4 year) and in blood using two epigenetic age clocks (N = 172).
Differences (‘gaps’) between estimated ages and chronological ages were calculated, as well as the acceleration
rate of brain aging. The correlations between these aging measures as well as with polygenic risk scores for
schizophrenia (PRS; N = 394) were investigated.
Brain aging and epigenetic aging were not significantly correlated. Polygenic risk for schizophrenia was signifi-
cantly correlated with brain age gap, brain age acceleration rate, and negatively correlated with DNAmAge gap,
but not with PhenoAge gap. However, after controlling for disease status and multiple comparisons correction,
these effects were no longer significant. Our results imply that the (accelerated) aging observed in the brain
and blood reflect distinct biological processes. Our findings will require replication in a larger cohort.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Schizophrenia is a debilitating psychiatric disorder where the pa-
tients' expected lifespan is decreased on average by 15 to 20 years com-
pared to the general population (Laursen et al., 2014; Hjorthøj et al.,
2017). This shortened lifespanmay be explained in terms of accelerated
aging of the body (Kirkpatrick et al., 2008). In two separate studies we
have previously reported on accelerated aging of the brain (Schnack
et al., 2016) and epigenetic aging in blood (Ori et al., 2021) for schizo-
phrenia patients. However, whether or not these different biomarkers
of aging act in concert has not yet been investigated.

Despite progress in our understanding of neuropsychiatric disorders,
the etiology of schizophrenia remains largely unknown. There are sev-
eral indications of aberrant brain development as early as the fetal pe-
riod (Debnath et al., 2015; Kim et al., 2015; Faa et al., 2016), with
progressive changes of the brain even after the onset of psychosis
(van Haren et al., 2008; Hulshoff Pol and Kahn, 2008), which is charac-
teristic for a progressive aging disorder (Olabi et al., 2011). Accelerated
biological aging occurs when the rate of biological aging is increased as
.V. This is an open access article und
compared to chronological aging, and may in part explain the increase
in mortality rate already observed at young adult ages within the pa-
tient population (Kirkpatrick et al., 2008; Shivakumar et al., 2014;
Nguyen et al., 2018; Laursen et al., 2014). Quantitative assessment of bi-
ological aging can be performed using advanced statistical techniques
such as machine learning algorithms. These algorithms are trained to
discover aging-related patterns in the properties of tissue from a subject
or donor (Bzdok, 2017; Cole and Franke, 2017; Jylhävä et al., 2017).
Using neuroimaging, the biological age of the brain can be predicted
from gray matter distributions (Cole and Franke, 2017; Cole et al.,
2017; Valizadeh et al., 2017), white matter properties (Mwangi et al.,
2013), or brain-activity related properties (Dosenbach et al., 2010).
For patients with schizophrenia, accelerated aging of the brain occurs
around the onset of psychosis (Koutsouleris et al., 2014; Schnack et al.,
2016; Nenadić et al., 2017; Kaufmann et al., 2019; Jonsson et al., 2019;
Kolenic et al., 2018; Chung et al., 2018; Hajek et al., 2019; Shahab
et al., 2019) before stabilizing several years after onset (Schnack et al.,
2016). Accelerated brain age predicts all-cause mortality (Cole et al.,
2018), is highly heritable and has a genetic overlap with common
brain disorders, including schizophrenia (Cole et al., 2017; Kaufmann
et al., 2019). For biological tissue samples, severalmolecular and pheno-
typic biomarkers of aging have been reported from research into
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1.Overviewof all subjectswith their age at illness onset (not always available for older
schizophrenia patients), and age at MRI scans and blood sample acquisition for DNA and
epigenetics.
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proteomic, transcriptomics, metabolomics, telomere length, and DNA
methylation levels (Jylhävä et al., 2017; Nguyen et al., 2018). The age
of a tissue donor can be reliably estimated based on epigenetic methyl-
ation of DNA (Horvath et al., 2012; Horvath, 2013; Hannum et al., 2013;
Levine et al., 2018). While no significant accelerated epigenetic aging
has previously been observed for schizophrenia, neither in post-
mortem brain nor blood tissue (Viana et al., 2017; Voisey et al., 2017;
McKinney et al., 2017; McKinney et al., 2018), a recent large-scale
DNA methylation study now robustly demonstrated that epigenetic
age is accelerated in whole blood samples and is strongly correlated
with mortality risk (Ori et al., 2021; Higgins-Chen et al., 2020). The
study furthermore reports that a subset of cases who carry high poly-
genic risk for schizophrenia are presented with the fastest age accelera-
tion (Ori et al., 2021). This raises two intriguing questions; (i) do cases
who carry high schizophrenia polygenic risk also present with faster
brain age acceleration?And (ii) is aging in the brain correlatedwith epi-
genetic aging in blood? Previously, no significant correlation between
brain aging and epigenetic aging was reported in a population study
of typical aging elderly subjects (Cole et al., 2018). However, little is
known about the interplay between genetics, epigenetics, and brain
morphology with regard to accelerated aging in schizophrenia patients.
In particular the association between the aging measures based on the
brain and blood of schizophrenia patients has not yet been studied.

1.1. Current study

Here we investigated the correlation between brain aging, epige-
netic aging, and polygenic risk for schizophrenia within a dataset of
schizophrenia patients and healthy control subjects. MRI-derived
brain ages were estimated from structural MRI scans using a brain age
predictor (Schnack et al., 2016), and epigenetic ages were estimated
from whole-blood array-based DNA samples profiles for the DNAmAge
clock (Horvath et al., 2012) and thePhenoAge clock (Levine et al., 2018).
Genotype-based polygenic risk for schizophrenia was estimated using
the schizophrenia GWAS summary statistics of the Psychiatric Genome
Consortium (Ripke et al., 2014).

2. Materials and methods

2.1. Cohort and sample description

Subjects included in this study were part of two longitudinal schizo-
phrenia cohorts (van Haren et al., 2007; Boos et al., 2012). Brain age in
these cohorts has been described before (Schnack et al., 2016), and
these cohorts were part of a study on epigenetic aging in schizophrenia
(Ori et al., 2021). Here, we included unrelated subjects that had imaging
data and either epigenetic or genetic data available (Fig. 1; Table 1),
resulting in a dataset of 411 unrelated subjects (193 cases and 218
controls; 36% female) of European descent spanning a wide range of
the adult lifespan (mean age = 32.7 years; range = [16.7–67.5] years
at baseline). For the majority of subjects (57%) longitudinal imaging
data was available (up to five scans), with a mean scanning interval
of 3.4 years (range [0.9–7.0] years). All patients met DSM-IV criteria
for a nonaffective psychotic disorder (including schizophrenia,
schizophreniform disorder or schizoaffective disorder). Most patients
were on antipsychotic medication (Schnack et al., 2016). Incidence
rate of smoking was significantly higher in patients (~70%) than con-
trols (~25%); p < 4.56e−8. Written informed consent was obtained
from all subjects, and both studies were approved by theMedical Ethics
Committee for Research in Humans (METC) of the University Medical
Center Utrecht.

2.2. MRI brain age

Structural magnetic resonance imaging (MRI) scans were acquired
on a 1.5 T Philips scanner with a voxel resolution of 1 × 1 × 1.2 mm3.
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Images were processed using a validated in-house image-processing
pipeline to produce gray matter density maps in standardized space
and used to predict individuals' brain age. In brief, the predictor uses a
model that predicts chronological age based on the weighted sum of
whole brain voxel-wise gray matter densities. The model was trained
on a sample of healthy control subjects and applied on schizophrenia
patients. See (Schnack et al., 2016) for details.

2.3. Blood-based epigenetic aging markers

DNA methylation data was obtained from whole-blood DNA sam-
ples using the Illumina InfiniumHumanMethylation Beadchip technol-
ogy according tomanufacturer's guidelines. A total of 172 samples were
assayedwith either the 27 K (n=108 samples) or 450 K (N=64 sam-
ples) platform, which interrogate 27,578 and 485,512 CpG sites across
the genome, respectively. These data are a subset of previously pub-
lished DNAm cohorts (Gene Expression Omnibus (GEO) ID: GSE41037
and GSE41169) for which brain age estimates from MRI scans were
available. Blood-based DNAm age was estimated using two different
clocks: DNAmAge (Horvath, 2013) and PhenoAge (Levine et al., 2018).
These two epigenetic clocks were designed for use with both the 27 K
and 450 K platform allowing us to maximize our sample size. See Sup-
plementary Methods for details.

2.4. Polygenic risk for schizophrenia

Whole-blood DNA samples were processed on Illumina's
HumanOmniExpressExome-8 v1.2 and Illumina's 550 K platform.
After quality control (see Supplementary Methods for details), SNPs
were imputed on the Michigan server (Das et al., 2016) using the HRC
r1.1 2016 reference panel with European samples after phasing with

ncbi-geo:GSE41037
ncbi-geo:GSE41169


Table 1
Demographics table for individuals with data from the three modalities.

Measure Population Subjects with MRI brain agea Subjects with epigenetic ages Subjects with polygenic risk scores

Subjects
(count)

Total
Controls
Patients

411 [715]
218 [345]
193 [370]

172
63
109

394
212
182

Age at baselineb (mean ± SD) (year) Total
Controls
Patients

32.72 ± 11.41
34.92 ± 12.10
30.24 ± 10.05

32.31 ± 13.01
32.62 ± 15.17
32.13 ± 11.65

35.46 ± 12.47
37.55 ± 13.17
33.02 ± 11.16

Sexc (female:male) Total
Controls
Patients

149:262
115:103
34:159

57:115
37:26
20:89

142:252
110:102
32:150

Smokingd (yes:no) Total
Controls
Patients

108:107
19:64
89:43

75:62
13:40
62:22

99:99
18:59
81:40

Abbreviations (in alphabetical order): MRI = magnetic resonance imaging; SD = standard deviation from the mean.
a Longitudinal imaging data is available for 57% of the subjects. Total number of scans between brackets.
b Controls were on average slightly older than patients for MRI brain age and polygenic risk scores (p < 2.51e−4), but not for epigenetic ages (p= 0.825).
c Proportion of males in the patients group is significantly greater than in the controls group (p < 1.50e−7).
d Smoking has a significantly higher incidence rate in the patient population than the control population (p < 4.56e−8).
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Eagle v2.3. Polygenic risk for schizophreniawas calculated from the SNP
data using the schizophrenia GWAS summary statistics of the
Psychiatric Genome Consortium excluding Dutch subjects (Ripke et al.,
2014). Polygenic scores were calculated using PLINK's score function
at ten GWAS p-value thresholds of significance of the correlation: p <
5e10−8, 10−6, 10−4, 10−3, 0.01, 0.05, 0.10, 0.20, 0.5, and 1.0.

Polygenic risk scores were then harmonized to reduce the variation
due to acquisition on different platforms through principal component
analysis on the full sample. The first principal component contained
the majority of the differential disease risk. This component was stan-
dardized and used for subsequent analyses, as previously described
(Bergen et al., 2019). See Supplementary Methods for details.

2.5. Data preparation

Weused a linearmixed-effects regressionmodels to correct theMRI
brain age and epigenetic age estimates for regression towards themean
(Le et al., 2018) and differences in acquisition platformwithin the non-
psychiatric controls (Supplementary Table S1; Supplementary
Fig. S1). Age gaps were defined as the difference between the corrected
age estimates and the chronological age, and brain age acceleration as
the annual rate of change in corrected brain age estimates between con-
secutive scans. The effects of sex were removed from all age measures
by linear regression regardless of statistical significance and prior to fur-
ther statistical analyses (Supplementary Table S2; Supplementary
Fig. S2).

2.6. Statistical analysis

First, linear mixed-effects regressionmodels were applied with each
of the corrected aging measures as the dependent variable and diagno-
sis status as fixed effect independent variable to test for differences
between the healthy control and schizophrenia patient groups. The
models included random intercepts to account for the repeated mea-
sures of the longitudinal MRI scans. In a post-hoc analysis, tobacco
Table 2
Group-differences between schizophrenia patients and non-patient controls in brain aging, ep

Measure Healthy controls (Mean ± SD) SCZ patient

MRI brain age gap (years) −0.06 ± 6.23 +3.98 ± 7.
MRI brain age acceleration (years/year) 1.01 ± 1.38 2.01 ± 2.26
DNAmAge gap (years) +0.00 ± 3.56 −0.52 ± 5.
PhenoAge gap (years) +0.00 ± 6.95 +2.27 ± 6.
Polygenic risk for schizophrenia (Z-score) +0.00 ± 1.00 +0.83 ± 0.

Nominal p-values are reportedwith a significance threshold of p=0.05 inboldface. Differences
alphabetical order): SCZ = schizophrenia; SD = standard deviation from the mean.
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smoking behavior was added as covariate to test for the effect of
smoking on accelerated aging.

Secondly, the correlations between brain aging (age gap and age ac-
celeration), epigenetic aging (DNAmAge gap and PhenoAge gap), and
polygenic risk for schizophrenia (PRS SCZ) were determined using
Spearman's correlation for all ten pairwise combinations. Since the
MRI scans and the blood samples may have been acquired at different
visitations, partial correlations were computed between brain age and
epigenetic age measures while accounting for the difference in age of
the participant at which the samples were acquired. No interval correc-
tionwas applied for correlations involving the polygenic risk for schizo-
phrenia. To assess whether potential correlations were driven by mean
differences between patients and controls for both traits, we repeated
these analyses while correcting for disease status.

For most subjects, more than oneMRI scanwas available. In the cor-
relation analyses, the brain age gap from the last MRI scan and the lon-
gitudinal brain age acceleration of the first two MRI scans were used.
This choicewasmade based on previous results that show brain age ac-
celeration for schizophrenia patients is maximal around the time of
onset (i.e. typically around the acquisition date of the earliest MRI
scan) and that its cumulative effect results in a maximal brain age gap
for schizophrenia patients 5 years later before stabilizing (Schnack
et al., 2016).

A Bonferroni correctionwas used to account formultiple testing. The
corrected significance threshold was set at p=0.05/5= 0.01 for group
differences and p = 0.05/10 = 0.005 for the tests of pairwise
correlations.

3. Results

Linearmixed-effectsmodelswith random intercepts revealed statis-
tically significant effects of disease status for the MRI-derived brain age
gap, longitudinal brain age acceleration, PhenoAge gap, and polygenic
risk scores for schizophrenia indicating accelerated age or increased
risk for schizophrenia patients, but not for DNAmAge gap (Table 2;
igenetic aging, and polygenic risk scores for schizophrenia.

s (Mean ± SD) Effect of disease status (years) Post-hoc effect of smoking (years)

24 +4.03 (p = 2.69e−9)* +0.20 (p = 0.847)
+1.00 (p = 7.58e−5)* +0.02 (p = 0.948)

69 −0.52 (p = 0.510) +0.91 (p = 0.307)
74 +2.27 (p = 3.54e−2) +0.37 (p = 0.791)
96 +0.83 (p = 6.18e−16)* −0.00 (p = 0.972)

that survive Bonferroni correction formultiple testing aremarkedwith *. Abbreviations (in



Fig. 2. Status effect on the means for MRI-derived brain age gap and acceleration, epigenetic age gaps (DNAmAge and PhenoAge), and polygenic risk for schizophrenia (PRS SCZ). Violin
plots show an approximation of the distribution of scores within a subpopulation where density is smoothed by a Gaussian kernel andmax height scaled to unit value. Abbreviations (in
alphabetical order): PRS = polygenic risk score; SCZ = schizophrenia.
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Fig. 2). A post-hoc analysis revealed no significant effect of smoking
behavior on any of the aging measures, and did not affect the signifi-
cance of the disease status effects except for the PhenoAge gap where
the disease status effect was no longer significant (+1.77 years; p =
0.120).

The correlations between aging measures from the three modalities
revealed statistically significant positive correlations between polygenic
risk for schizophrenia and MRI-derived brain age gap and brain age ac-
celeration, and a negative correlation between polygenic risk for schizo-
phrenia and DNAmAge gap (Table 3A; Fig. 3). Within the modalities,
there were significant positive correlations between the MRI-derived
brain age gap and brain age acceleration, and between the DNAmAge
and PhenoAge gaps (Table 3A; Fig. 3).

After including disease status as a covariate in the partial correlation,
the correlation between theMRI-derived brain age gap and acceleration
with polygenic risk for schizophrenia were no longer significant
(Table 3B).

4. Discussion

We investigated the correlations between different biological aging
markers andwith polygenic risk for schizophrenia.We found suggestive
evidence of correlations between polygenic risk for schizophrenia with
MRI-derived brain aging and with DNAmAge, but not between poly-
genic risk for schizophrenia and PhenoAge or between brain aging and
the epigenetic aging clocks.

4.1. Brain aging in schizophrenia and its correlation with polygenic risk for
schizophrenia

Disease status (schizophrenia vs. healthy) had a highly significant ef-
fect on brain aging. The age gap, i.e. the difference between estimated
age and chronological age, was +4 years in patients, and the brain age
acceleration rate was double the rate of healthy controls, consistent
with the previously reported results for the broader sample (Schnack
et al., 2016) and with other studies reporting accelerated aging of the
192
brain in schizophrenia patients (Koutsouleris et al., 2014; Nenadić
et al., 2017; Kaufmann et al., 2019; Jonsson et al., 2019) and in subjects
at clinically high-risk for psychosis and first-episode patients (Kolenic
et al., 2018; Chung et al., 2018; Hajek et al., 2019; Shahab et al., 2019).

Polygenic risk for schizophrenia (PRS), as expected, was significantly
higher in the patients as compared to the control subjects. We found
nominal significant correlations between polygenic risk for schizophre-
nia and MRI-derived brain age gap (rho = +0.10) and longitudinal
acceleration (rho=+0.15). These correlations were largelymoderated
by disease status, indicating that cases who carry higher polygenic risk
for schizophrenia display faster brain age acceleration. Our results are
in line with recent work that observed an overlap between common
genetic variants associated with brain aging and common variants
associated with schizophrenia in the population (Kaufmann et al.,
2019). Here, we observe a direct correlation between brain aging and
schizophrenia polygenic risk within individuals. While these findings
provide evidence for a shared mechanism between genetic risk of
schizophrenia and aging in the brain, replication and further work in a
larger sample should be a first priority for future work. This study
nevertheless reports the first efforts and value of such analyses. Struc-
tural brain aging could thus be used as an intermediate phenotype for
psychosis (Palaniyappan et al., 2017; Dukart et al., 2017) and may
show promise in predicting transition to psychosis in at-risk popula-
tions (Koutsouleris et al., 2014).

4.2. Epigenetic aging in schizophrenia and its correlations with polygenic
risk for schizophrenia

We found that epigenetic age was significantly accelerated by +2.3
year in schizophrenia patients as compared to healthy controls for the
PhenoAge clock, but not for the DNAmAge clock. Previous reports sug-
gested no accelerated epigenetic aging or association with premature
mortality for schizophrenia in blood or post-mortem brain samples
(McKinney et al., 2017; Voisey et al., 2017; McKinney et al., 2018;
Kowalec et al., 2019), with some exceptions (Okazaki et al., 2019; Ori
et al., 2021; Higgins-Chen et al., 2020). Methodological differences,



Table 3
Bivariate analysis between MRI-derived brain age gap, brain age acceleration, epigenetic ages, and polygenic risk scores for schizophrenia.

A

Correlations MRI brain age gap MRI brain age acceleration DNAmAge gap PhenoAge gap SCZ PRS

MRI brain age gap – +0.36
(p = 1.68e−8)*

−0.08a

(p = 0.319)
+0.02a

(p = 0.839)
+0.10
(p = 0.048)

MRI brain age acceleration HC: 109
SCZ: 126

– +0.02a

(p = 0.874)
+0.03a

(p = 0.747)
+0.15
(p = 2.58e−2)

DNAmAge gap HC: 63
SCZ: 109

HC: 39
SCZ: 68

– +0.42
(p = 1.01e−8)*

−0.20
(p = 1.29e−2)

PhenoAge gap HC: 63
SCZ: 109

HC: 39
SCZ: 68

HC: 63
SCZ: 109

– +0.08 (p = 0.326)

SCZ polygenic risk scores HC: 212
SCZ: 182

HC: 105
SCZ: 121

HC: 57
SCZ: 98

HC: 57
SCZ: 98

–

B

Partial correlations accounting for disease status MRI brain age gap MRI brain age acceleration DNAmAge gap PhenoAge gap SCZ PRS

MRI brain age gap – +0.31
(p = 1.29e−6)*

−0.05a

(p = 0.533)
−0.04a

(p = 0.574)
−0.01
(p = 0.778)

MRI brain age acceleration HC: 109
SCZ: 126

– +0.04a

(p = 0.700)
+0.03a

(p = 0.846)
+0.06
(p = 0.347)

DNAmAge gap HC: 63
SCZ: 109

HC: 39
SCZ: 68

– +0.45
(p = 1.07e−9)*

−0.17
(p = 3.13e−2)

PhenoAge gap HC: 63
SCZ: 109

HC: 39
SCZ: 68

HC: 63
SCZ: 109

– +0.03
(p = 0.755)

SCZ polygenic risk scores HC: 212
SCZ: 182

HC: 105
SCZ: 121

HC: 57
SCZ: 98

HC: 57
SCZ: 98

–

Spearman's correlation coefficients and their significant values are reported in the upper right triangle. Samples sizes are reported in the lower left triangle. Statistically significant corre-
lations (nominal p < 0.05) are printed in boldface. Correlations that survive Bonferroni correction are marked with *.

a Correlations between MRI brain age gap or age acceleration and epigenetic age gaps were corrected for interval between acquisition of MRI scan and blood sample using partial
correlations. Abbreviations (in alphabetical order): HC = healthy controls; PRS = polygenic risk score; SCZ = schizophrenia (patients); SD = standard deviation from the mean.
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such as which epigenetic clock was used to measure accelerated aging
(Belsky et al., 2018), but also tissue source and sample size (Jaffe and
Kleinman, 2016), may explain inconsistencies in the results of these
studies. Several epigenetic clocks have been constructed that eachmea-
sure overlapping and distinct aspects of aging (Horvath and Raj, 2018).
A distinction can be made between predictors of chronological or bio-
logical age (Bell et al., 2019; Horvath and Raj, 2018). Where chronolog-
ical age (e.g. pan-tissue DNAmAge; Horvath, 2013) can benefit forensic
sciences, it may not accurately reflect biological aging (e.g. PhenoAge or
GrimAge; Levine et al., 2018; Lu et al., 2019). This distinction is present
in a comprehensive comparison of biomarkers for measuring acceler-
ated aging in schizophrenia, where biomarkers that measure biological
aging are accelerated in schizophrenia but measures of chronological
age are not (Higgins-Chen et al., 2020). However, there is no gold stan-
dard tomeasure biological age (Bell et al., 2019), and several factors can
influence the apparent biological age, including lifestyle factors such as
smoking (Gao et al., 2016; Ryan et al., 2019). In this study, accelerated
PhenoAge in schizophrenia patients can be partially explained by to-
bacco smoking, as has previously been reported for biological aging
(Levine et al., 2018; Higgins-Chen et al., 2020; Lu et al., 2019). However,
the increased incidence of smoking in schizophreniamakes it difficult to
disentangle the effect of disease status from smoking status. In addition,
the use of antipsychoticmedicationmay have a protective effect against
accelerated aging (Schnack et al., 2016; Higgins-Chen et al., 2020;
Janssens et al., 2019). Most patients in this study were on antipsychotic
medication, which may explain the absence of accelerated epigenetic
aging in schizophrenia reported here.

In addition, we found a significant negative correlation (rho =
−0.20) between polygenic risk for schizophrenia and DNAmAge gap
regardless of diagnosis status, but not for PhenoAge gap (rho =
+0.08; [n.s.]). However, the negative correlation for DNAmAge gap
did not survive correction for multiple testing and the correlation was
not significant in our previous analysis in a much larger sample from
multiple cohorts (Ori et al., 2021). Moreover, the previous analysis in
the broader sample did find a significant correlation between polygenic
193
risk for schizophrenia and PhenoAge gap that was age- and sex-specific,
with female patients above age 36 showing an increase in PhenoAge gap
of+3 years (Ori et al., 2021). However, the current sample is a relatively
younger population (mean age = 32 years) compared to the
multicohort sample in our previous study (mean age = 40), and too
small to stratify by age group or sex. Findings from our previous study
should take precedence over what we report here; the previous results
were consistent with another study with a large sample size that
reported an association between polygenic risk for schizophrenia and
mortality predictions based on the PhenoAge clock and suicidal behavior
(Laursen et al., 2017). The inconsistent results in the current study em-
phasizes the need for large samples in studies investigating epigenetic
aging. Although epigenetic aging is a compound score based onmultiple
indicators, its margin of error is large compared to the effect sizes typi-
cally reported, leading to potential false positive reports due to sampling
bias in smaller samples. In addition, epigenetic aging may be more dy-
namic across the lifespan, as we have previously shown the existence
of age- and sex-specific effect (Ori et al., 2021), that requires not only
large sample sizes, but also calls for longitudinal studies.

Accelerated epigenetic aging is heritable (Marioni et al., 2015; Li
et al., 2015),with an important role for the TERT locus related to telome-
rase and aging, and nine other loci related to metabolism and immune
system pathways (Lu et al., 2018; Gibson et al., 2019). No overlap be-
tween genetic variants identified for schizophrenia and epigenetic
aging is reported in a relatively small sample (Lu et al., 2018). There is
an indication for colocalization of genetic and epigenetic loci implicated
in schizophrenia (Hannon et al., 2016), however, epigenetic loci used to
predict epigenetic age do not overlapwith known epigenetic loci impli-
cated in schizophrenia (Mill et al., 2008; Hannon et al., 2016). Instead, it
is possible that the correlation between epigenetic age and polygenic
risk for schizophrenia is mediated by other factors, e.g. a shared path-
way that increases risk of early mortality (Marioni et al., 2015; Levine
et al., 2018; Laursen et al., 2014) such a genetic predisposition to
smoking (Boardman et al., 2010) or stressful life events (Wolf et al.,
2018).



Fig. 3. Statistically significant correlations between MRI brain aging, epigenetic aging, and polygenic risk for schizophrenia. Abbreviations (in alphabetical order): HC= healthy controls;
SCZ = schizophrenia.
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4.3. Brain aging and its correlation with epigenetic aging

Wedid not find any significant correlation between theMRI-derived
brain age gap or age acceleration with the DNAmAge or PhenoAge gap
(range of rho = [−0.08; +0.03]; nominal p > 0.319 [n.s.]). An absence
of a correlation between the MRI-derived brain age gap and DNAmAge
194
gap in blood samples has previously been reported in elderly subjects
(Cole et al., 2018). Here we complement the previous finding by not
only replicating the null result for the DNAmAge clock (that is a reliable
predictor of chronological age regardless of tissue type or disease), but
also investigating the correlation between MRI brain aging and the
PhenoAge clock in blood – which might be more sensitive to aberrant
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biological aging due to the inclusion of extrinsic factors more repre-
sentative of apparent phenotypic aging (Levine et al., 2018). How-
ever, the correlations remained absent despite the effects of disease
status and the correlations with polygenic risk for schizophrenia in
the individual aging measures. As previously reported in broader
samples, epigenetic aging in schizophrenia shows an age- and sex-
specific effect in a larger study that included this cohort (Ori et al.,
2021), and accelerated aging of the brain is already present in the
first years following the onset of psychosis before it stabilizes several
years afterward (Schnack et al., 2016). The absence of a correlation
between these two aging measures might be due to distinct aging
processes. Epigenetic aging, in particular the DNAmAge clock, is a
measure of cellular aging rather than cellular senescence (Lowe
et al., 2016; Kabacik et al., 2018). In contrast, the aging of the brain,
in our study reflecting decreases in gray matter tissue, is likely due
to cell senescence rather than cellular aging (Fernandez-Egea and
Kirkpatrick, 2017), and it reflects changes in the morphology of the
cells or composition of the neuropil. This argument is used to explain
the absence of accelerated epigenetic aging in post-mortem samples
of the brains of schizophrenia patients (McKinney et al., 2017; Voisey
et al., 2017; McKinney et al., 2018). The possibility of two indepen-
dent aging processes was previously suggested given the lack of cor-
relation between the MRI-derived and epigenetic age gaps and the
fact that combining information from the two clocks improved mor-
tality predictions (Cole et al., 2018). The absence of a correlation
with PhenoAge gap, one that takes into account extrinsic factors of
typical aging, from our results affirms the conclusion that aging of
the brain and epigenetic aging in blood might be two distinct pro-
cesses in the etiology of schizophrenia, despite their commonality
in predicting mortality (Cole et al., 2018; Marioni et al., 2015; Chen
et al., 2016). A similar conclusion on the dissociation between brain
aging and epigenetic aging can be concluded for related psychiatric
disorders based on the reports from several independent studies.
For bipolar disorder, accelerated epigenetic aging (Nenadić et al.,
2017) but not aging of the brain (Fries et al., 2017; Shahab et al.,
2019; Nenadić et al., 2017) has been reported, although lithium use
may have confounded these results, since patients who were not
treated with lithium have been found to show increased brain age
(Van Gestel et al., 2019). For major depressive disorder, a large
(N = 1689) international multicenter study (Han et al., 2020) has
found accelerated aging of the brain, but results are inconclusive
within smaller samples (Koutsouleris et al., 2014; Besteher et al.,
2019; Kaufmann et al., 2019). Epigenetic aging in blood (Han et al.,
2018) but not epigenetic aging in post-mortem brain samples (Li
et al., 2018) has been reported. These studies suggest the possibility
for distinct aging processing for brain tissue and blood across psychi-
atric disorders.

4.4. Limitations and future directions

There are a few limitations to this study that should be taken into ac-
count. First, the sample size of this study, while large for a longitudinal
neuroimaging study, is very modest for a genetic or epigenetic study.
Secondly, due to limited availability of information on antipsychotic
drug usage, we could not disentangle medication effects on the aging
measures. Finally, the cross-sectional design for epigenetics limits our
ability to detect a possible age acceleration rate in the blood and its cor-
relation to accelerating brain age (Nelson et al., 2019; Marioni et al.,
2019). Depending on the time lag between illness onset and accelerated
epigenetic aging, and because of the fact that most of the blood sample
were acquired at baseline, the effects of the disease onDNAmethylation
may have yet to occur, especially in the younger adolescent population
when onset of psychosis typically occurs (Paus et al., 2008). Future
studies, measuring both brain aging and epigenetic aging in large longi-
tudinal studies should further elucidate the possible (dynamic) rela-
tionships between these different measures of biological aging.
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