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Abstract
Purpose: Accurate segmentation of the pulmonary arteries and aorta is impor-
tant due to the association of the diameter and the shape of these vessels with
several cardiovascular diseases and with the risk of exacerbations and death in
patients with chronic obstructive pulmonary disease. We propose a fully auto-
matic method based on an optimal surface graph-cut algorithm to quantify the
full 3D shape and the diameters of the pulmonary arteries and aorta in noncon-
trast computed tomography (CT) scans.
Methods: The proposed algorithm first extracts seed points in the right and
left pulmonary arteries, the pulmonary trunk, and the ascending and descend-
ing aorta by using multi-atlas registration. Subsequently, the centerlines of the
pulmonary arteries and aorta are extracted by a minimum cost path tracking
between the extracted seed points,with a cost based on a combination of lumen
intensity similarity and multiscale medialness in three planes. The centerlines
are refined by applying the path tracking algorithm to curved multiplanar refor-
matted scans and are then smoothed and dilated nonuniformly according to
the extracted local vessel radius from the medialness filter. The resulting coarse
estimates of the vessels are used as initialization for a graph-cut segmentation.
Once the vessels are segmented, the diameters of the pulmonary artery (PA)
and the ascending aorta (AA) and the PA : AA ratio are automatically calcu-
lated both in a single axial slice and in a 10 mm volume around the automat-
ically extracted PA bifurcation level. The method is evaluated on noncontrast
CT scans from the Danish Lung Cancer Screening Trial (DLCST). Segmenta-
tion accuracy is determined by comparing with manual annotations on 25 CT
scans. Intraclass correlation (ICC) between manual and automatic diameters,
both measured in axial slices at the PA bifurcation level, is computed on an
additional 200 CT scans.Repeatability of the automated 3D volumetric diameter
and PA : AA ratio calculations (perpendicular to the vessel axis) are evaluated
on 118 scan–rescan pairs with an average in-between time of 3 months.
Results: We obtained a Dice segmentation overlap of 0.94 ± 0.02 for pul-
monary arteries and 0.96 ± 0.01 for the aorta, with a mean surface distance
of 0.62 ± 0.33 mm and 0.43 ± 0.07 mm, respectively. ICC between manual and
automatic in-slice diameter measures was 0.92 for PA, 0.97 for AA, and 0.90
for the PA : AA ratio, and for automatic diameters in 3D volumes around the PA
bifurcation level between scan and rescan was 0.89,0.95,and 0.86, respectively.
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Conclusion: The proposed automatic segmentation method can reliably extract
diameters of the large arteries in non-ECG-gated noncontrast CT scans such
as are acquired in lung cancer screening.
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1 INTRODUCTION

Cardiovascular diseases and chronic obstructive pul-
monary disease (COPD) are among the major lead-
ing causes of death globally.1 In the search for early
identification of individuals at risk of cardiovascular dis-
ease in COPD,2,3 imaging-based assessments of the
shape and size of the pulmonary artery (PA) and aorta
have rapidly gained interest.Changes in these two large
arteries may indicate cardiovascular diseases, includ-
ing pulmonary hypertension,4,5 aortic dilatation and aor-
tic aneurysm,6 and coarctation of the aorta.7 The PA
to ascending aorta (AA) diameter ratio (PA : AA) at the
level of PA bifurcation is shown to be associated with
the presence of pulmonary arterial hypertension5 and
is associated with poorer health status8 increased risk
of severe exacerbations,9,10 and increased mortality11

in patients with COPD.
Performing diameter measurements manually is

labor-intensive and time-consuming, and has high intra
and interobserver variability. Diameter measurements
derived from 3D segmentations are more reliable but are
even more time-consuming to obtain manually. To accu-
rately assess the pulmonary arteries and aorta, auto-
matic 3D segmentation is, therefore, desirable.

With the growing use of low-dose noncontrast tho-
racic computed tomography (CT) scans for lung cancer
screening,12–14 there is an opportunity to measure the
pulmonary arteries and aorta in these scans in order
to investigate the presence of early-stage cardiovascu-
lar disease and/or predict complications in patients with
COPD. However, in noncontrast CT, segmentation of the
aorta and especially the PA is challenging due to their
proximity to other structures with similar intensity values.
In nonelectrocardiography (ECG)-gated CT as is com-
monly used in lung screening, additional challenges are
motion artifacts and unclear vessel boundaries at the
regions close to the heart.

In the literature, automated segmentation methods of
the pulmonary arteries and aorta have been presented
mainly for magnetic resonance imaging15 and contrast-
enhanced CT angiography (CTA),16–18 which have high
contrast between vessels, fat, and surrounding muscles.
However, these methods do not translate well to non-
contrast CT, where the vessel boundaries are not well
defined in many places.Even though MRI and CTA have
high contrast,CT is widely used in clinical practice.Com-
pared to MRI, CT has a faster acquisition time, bet-
ter isotropic spatial resolution, convenience, and easier

access. Furthermore, the iodinated contrast material in
CTA can produce undesired side effects, such as aller-
gic reactions and kidney damage.Therefore, it is desired
to avoid contrast when the vasculature is likely to be
visible on noncontrast-enhanced CT. Many patients with
COPD or at risk of developing cardiovascular disease
undergo a low-dose, non-ECG-gated, noncontrast tho-
racic CT for lung cancer screening.The ECG gating pro-
cess requires highly overlapping slices, which exposes
patients to a higher radiation dose. Therefore, to reduce
the risk of radiation exposure, it is common to perform
low-dose, non-ECG-gated, noncontrast CT for lung can-
cer screening.

Despite the widespread use of noncontrast CT in clin-
ical practice, relatively fewer studies can be found on
these scans, on the segmentation of the aorta19–31 and
especially the PA containing the pulmonary trunk, left
and right pulmonary arteries.30,32,33

Among existing segmentation methods, those using
a shape prior20,27,28,33 generally obtain good segmen-
tation results on noncontrast CT scans. Xie et al.27,33

employed a cylinder matching method to extract the
centerline of the PA trunk and aorta. To segment the
vessels, they used geometric constraints from adja-
cent organs obtained from a precomputed anatomy
label map. Although the obtained results are good, an
anatomy map is not always available.

Another approach is to use graph-cut methods with
shape priors. Graph cuts can achieve a global opti-
mum with low processing times and it is possible to
incorporate shape constraints in the graph structure.
In the approach presented in Ref. 34, Boykov et al.
showed that a convex cost function of a combinato-
rial problem described as a graph, an optimal solu-
tion is obtained by a graph-cut. As an optimal surface
graph is a type of Boykov style graph, then the condition
holds, and as the graph is constructed to be convex,35

then optimality should be guaranteed. Graph-cut meth-
ods have been applied to different imaging modalities
for artery segmentation36,37 and have obtained promis-
ing results in many tasks. Deng et al.36 proposed a
graph-cut method using random forest-based discrimi-
native features on noncontrast CT for aorta segmenta-
tion.They achieved a high segmentation performance in
the abdominal aorta;however,they have not applied their
method to the PA,which is more challenging to segment.

Deep learning-based techniques are being used
widely recently and have shown satisfying results.
Noothout et al.22 proposed a dilated convolutional neural
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network (CNN) for aorta segmentation that classifies the
voxels into axial, coronal,and sagittal CT slices and sub-
sequently obtains the final segmentation result by aver-
aging the resulting probabilities over the three directions.
Haq et al.30 trained a multilabeled network based on the
DeepLab architecture and segmented both the PA and
aorta on noncontrast CT scans.For improved segmenta-
tion results on noncontrast CT,Bruns et al.31 and Lartaud
et al.21 trained their multilabel (heart and large arter-
ies) deep learning-based method with virtual noncon-
trast CT scans generated from dual-energy CTA scans.
Bruns et al. segmented the AA and pulmonary trunk by
using a CNN architecture, and Lartaud et al. segmented
the thoracic aorta by using a six-label U-Net. Despite
the high per-voxel accuracy of the deep learning-based
methods, preserving the vessel topology is a challenge
in these methods.Therefore,deep learning-based meth-
ods are not guaranteed to result in smooth structures
with vessel topology.

In this paper, we present an optimal surface graph
cut-based method that enforces topology constraints
and incorporates a shape prior in the graph struc-
ture to segment the pulmonary arteries and aorta.
We adopt the optimal surface graph-cut approach by
Petersen et al.,35 originally proposed for airway segmen-
tation, which incorporates a shape prior via construct-
ing the graph based on flow lines traced from an ini-
tial, smoothed segmentation. The nonintersecting flow
lines guarantee nonself -intersecting surfaces and make
it possible to segment high curvature areas, such as the
bifurcation of the PA and the aortic arch while guaran-
teeing a shape that is similar to the initialization shape.

A preliminary version of this work is presented in Ref.
38. In the current work, the proposed method is fully
automated and includes a multi-atlas registration tech-
nique to automatically extract seed points and a land-
mark for the level of the PA bifurcation. At the level of
the extracted landmark, the PA and AA diameters and
PA : AA ratio are automatically extracted.The main con-
tribution of the current work is in the extensive valida-
tion of the accuracy, robustness, and reproducibility of
the optimal surface graph-cut method in the challenging
segmentation problem of the PA and aorta segmenta-
tion in noncontrast CT using a large dataset. An addi-
tional contribution is in fully automating the process of
seed point, centerline, diameter measurement, and PA :
AA ratio extraction. Unlike our previous work focusing
on aorta segmentation,39 in this paper,we segment both
the PA and aorta with a more robust landmark detection
technique.

2 METHODS

The main steps of our proposed method are (1) prepro-
cessing; (2) automatic seed point and landmark extrac-
tion with multi-atlas registration; (3) centerline extraction

for vessel localization; (4) vessel segmentation using
an optimal surface graphcut algorithm; (5) 3D diameter
measurement and biomarker extraction. An overview of
our method is shown in Figure 1.

2.1 Preprocessing

To reduce the unnecessary computational cost, a
bounding box is calculated around the lungs. The lungs
are segmented using thresholding and morphological
smoothing similar to Lo et al.40 Thereafter, the scans
are cropped using a bounding box around the lungs Fig-
ure 2a. Then, low- and high-intensity values are clipped,
to prevent the centerline extraction and vessel segmen-
tation attracting to the heart–lung or bone–lung borders,
which often have a higher gradient than the boundary
of the vessels of interest. Truncating intensities higher
than 150 HU, such as presented in bones, or lower
than –150 HU, generally presented in lungs, makes the
vessel borders relatively stronger and easier to detect.
The gradient magnitude of an axial slice shown in
Figure 2b–e illustrates the effect of preprocessing on
enhancing the edges of the pulmonary arteries and
aorta.

2.2 Seed point extraction

Seed points are obtained with a multi-atlas registration
method similar to the one presented in Tang et al.41 A set
of N atlas images Ai,i = 1, 2, … , N and their correspond-
ing label images Lai

, Lsi
are used. Lsi

includes man-
ual seed points at the left and right pulmonary arteries
before the secondary bifurcations, PA trunk, PA bifurca-
tion point,AA at the sinotubular junction,and descending
aorta at the diaphragm level. To address the large vari-
ation in the shape and size of these arteries, N is set to
25 atlases.

The multi-atlas registration approach consists of
three stages. First, each of the atlas images Ai is regis-
tered to the target image T using an affine transforma-
tion followed by a nonrigid registration using a B-spline
transformation model. Normalized mutual information is
used as the similarity metric. The 10 registered atlas
images with the highest similarity (also defined by nor-
malized mutual information) to T are selected, and the
corresponding transformations are applied to Lsi

images
to propagate the seed points to T . Finally, deformed
Lsi

images are combined and the final seed points
are obtained by averaging the seed point locations per
label.

The seed points of the aorta, left, right, and the trunk
of the PA are used in the next step to initialize the center-
line extraction.The seed point of the PA bifurcation level
is the landmark level for measuring the PA and aorta
diameters as well as the PA : AA ratio.
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F IGURE 1 An overview of the method. Abbreviations: AA, ascending aorta; DA, descending aorta; LPA, left pulmonary artery; PABIFL,
pulmonary artery bifurcation level; PAT, pulmonary artery trunk; RPA, right pulmonary artery

F IGURE 2 An axial view of a CT scan with the bounding box in red is in (a), zoomed in view of the original scan in (b), and the
preprocessed scan in (d). The corresponding gradient magnitude of the original scan is in (c) and the gradient magnitude of the pre processed
scan is in (e). Strong edges at lung and bone borders (b, c) are removed during preprocessing (d, e). In the second row (f–i), images are overlaid
with the manual PA (green) and aorta (yellow) annotations

2.3 Centerline extraction

We applied a minimum path tracking algorithm to
extract the vessel centerlines between the automatically
extracted seed points. For the cost function, we used a
weighted combination of a medialness filter,42m(x), and
a lumen intensity similarity filter s(x), similar to Tang
et al.41 Medialness, m : Ω → [0, 1], is a multiscale fil-
ter which uses the circularity assumption and accumu-
lates edge responses along different circle sizes, within
a defined radius range of [Rmin, Rmax]. This gives strong
responses in the voxels in the center of the vessel and
drops rapidly toward the vessel boundary. Simultane-
ously, we extracted an estimate of the vessel radius at
each voxel, r(x) : Ω → [Rmin, Rmax] by extracting the
radius of the circle with the strongest edge response
at each voxel location. We applied the medialness fil-

ter in the axial, coronal, and sagittal planes, with a dif-
ferent radius range for the pulmonary arteries and the
aorta. The medialness for the pulmonary arteries is
defined to be the maximum medialness of axial, coro-
nal, and sagittal medialness filters and for the aorta,
it is defined to be the maximum medialness of axial
and coronal medialness filters. Due to the anatomical
orientation of the aorta, the descending and AA are
mainly circular in the axial plane, and the aortic arch
is mainly circular in the coronal plane. Therefore, only
the axial and coronal medialness filters are used for
the aorta, and the sagittal plane is discarded from the
computation.

In regions with unclear vessel boundaries,medialness
alone is not sufficient to ensure correct centerlines. To
prevent the vessel centerline from moving outside the
vessel lumen,we added a lumen intensity similarity term
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s : Ω → [0, 1] defined as:

s (x) =

⎧⎪⎨⎪⎩
1, (𝜇 − 𝛿) ≤ I (x) ≤ (𝜇 + 𝛿)

e
−

(
I(x)− 𝜇√

2𝛿

)2

, elsewhere
(1)

where I is the intensity of the voxel at position x. Tang
et al.41 defined 𝜇 and 𝛿 as the mean and standard devia-
tion of intensity in small regions around the seed points.
In our case, they are selected as the mean and stan-
dard deviation of intensity in the manual annotations of
the pulmonary arteries and aorta in 25 CT scans, which
is 𝜇 = 25 HU and 𝛿 = 46 HU. The lumen intensity sim-
ilarity makes the structures with higher intensity, such
as bones, or lower intensity, such as lungs, get a low
response. Although selecting a fixed value for 𝜇 and 𝛿

based on the intensities of the manual annotations may
make the method more dependent on the training scan
protocol, it ensures that the centerline will stay in the
vessel even if the seed point is extracted close to the
boundary of the vessel. In cases where the seed points
are extracted close to the vessel boundary, calculating 𝜇
and 𝛿 in a local region around the seed point as in Tang
et al.41 can result in wrong estimates and might misdirect
the centerline to adjacent structures with slightly differ-
ent intensities.

From both m(x) and s(x), high responses were
obtained in the vessel center and low responses in the
background. The cost function C(x) was defined by an
inverted combination of weighted m(x) and s(x), where
the factors 𝛼 and 𝛽 control the importance of each term,
respectively, (C(x) =

1

𝜀+m(x)𝛼s(x)𝛽
). From the constructed

cost function, the minimum cost path C(x) was obtained
by applying Dijkstra’s algorithm between the automati-
cally extracted seed points for each vessel, that is, one
path between the endpoints of the aorta and two paths
between the two endpoints of the left and right pul-
monary arteries and its trunk.

Finally, to improve centerline accuracy in areas with
high curvature, the centerlines were smoothed with a
Gaussian filter with standard deviation 𝜎c and then
were refined by recomputing the minimum cost path
after curved multiplanar reformatting (CMPR) perpen-
dicular to the previous centerline.41 An improved esti-
mate of vessel radius r(x) was extracted from medial-
ness at CMPR step.The centerline for the entire PA was
obtained as the union of centerlines for the right and left
pulmonary arteries.

2.4 Vessel segmentation

To segment the vessels, we applied an optimal surface
graph-cut algorithm35 that finds a globally optimal solu-

tion of a given cost function. By using nonintersecting
columns based on flow lines from a predefined initial
shape, (self)intersecting surfaces can be avoided and
the topology of the prior shape is preserved.This makes
segmentation of high curvature surfaces possible.

To construct a graph with nodes and edges, an ini-
tial coarse segmentation is used to generate the graph
columns. We used a nonuniform morphological dila-
tion of the vessel centerlines as the initial segmenta-
tion. Each centerline point was dilated with a spher-
ical structuring element, with a radius extracted from
the radius map r(x). This nonuniform centerline dila-
tion provides information about the shape of the ves-
sel and results in a more accurate vessel surface than
the uniform centerline dilation used in Arias et al.37 In
the rest of the paper, we will refer to this dilatation as
the coarse initial segmentation. Once we computed the
coarse initial segmentation, we converted it to a mesh
and constructed graph columns based on flow lines. To
ensure sufficient boundary accuracy and to help make
the graph smoothness penalties work evenly across the
surface,the resolution of the initial mesh was set isotrop-
ically and at higher resolution than the original image
to 0.5 mm × 0.5 mm × 0.5 mm. The flow lines were
obtained by tracing the gradient of a smoothed version
of the initial segmentation. A Gaussian kernel with a
standard deviation 𝜎 was used to smooth the initial seg-
mentation. The flow lines were traced from each mesh
node, inward in the gradient direction and outward in the
negative gradient direction. Graph nodes were sampled
in graph columns, at regular arc length intervals along
the flow lines with a sampling interval set to 0.3 mm.The
graph nodes represent the possible image positions the
vessel surface can take.A set of edges,which represent
the association between nodes, connects the nodes in
the graph. The two consecutive nodes in the same col-
umn are connected by directed edges named intracol-
umn edges. The cost of these edges represents local
image information associated with the border location
and is chosen as the first-order derivative of the image
intensity along the graph column. In CT scans, the ves-
sels have a higher image intensity than the background,
therefore, the intensity transitions from high to low and
the cost gets to its minimum in the border.

To encourage a smooth segmentation similar in
shape to the initialization, “smoothness penalty” edges
(penalizing nonsmoothness) were added as in Ref. 35.
These intercolumn edges connect the nodes in adja-
cent columns with a constant cost P, penalizing solu-
tions that deviate from the original shape. A minimum
graph cut, minimizing the total cost of edges being cut
and separating the graph vertices into vessel and back-
ground, provided the final segmentation. This minimiza-
tion was solved with a min-cut/max-flow optimization
algorithm.34 Details of the optimal surface graph seg-
mentation approach can be found in Petersen et al.35
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2.5 Diameter measurement and PA:AA
ratio

In clinical practice, the diameter of the PA and AA, and
the PA : AA ratio are measured manually, usually in an
axial slice in the level of PA bifurcation. This level is
defined as the axial slice where the pulmonary trunk
bifurcates, ideally where the right and left pulmonary
arteries appear to be of similar size. The selected slice
may be one of a few axial slices that fit this crite-
rion, which is likely to lead to inconsistent measure-
ments between annotators and also between baseline
and follow-up scans. Therefore, to ensure a consistent
measurement, we calculated the diameters from a 3D
vessel segment of 10 mm length from the segmented
PA and aorta. The segment is selected perpendicular to
the vessel centerline from 5 mm before to 5 mm after
the automatically extracted landmark for the level of the
PA bifurcation. Assuming a circular cross-section and a
negligible curvature, the average diameter is computed

from this segment as Diameter = 2

√
0.1 ×volume

𝜋
, where

the 0.1 factor is applied to average the diameter of the
cylindrical shape with 10 mm height. Subsequently, from
the average diameters, the PA : AA ratio is calculated. A
3D view of the segmented pulmonary arteries and aorta
with the 10 mm segment and the cross-sections in the
extracted landmark level is shown in Figure 1.

For a meaningful comparison with diameters that
were measured manually in axial slices, the automatic
diameters were also calculated in the axial slice at the
same level and in the same direction as the manual
diameter measurement. Subsequently, the automati-
cally extracted PA : AA ratio in the axial view was com-
pared to the manually measured PA : AA ratio in the
same view.

3 EXPERIMENTS

3.1 Dataset and manual annotation

The 471 CT scans used in this study are from the Dan-
ish Lung Cancer Screening Trial (DLCST).12 The study
was approved by the Ethical Committee of Copenhagen
County and funded by the Danish Ministry of Interior
and Health. A multidetector CT scanner (M × 8000 IDT
16 row scanner, Philips Medical Systems) was used to
acquire scans at 120 kV∕ 40 mAs at maximum inspira-
tion breath-hold and without cardiac gating. The scans
have an in-plane isotropic resolution of 0.781 × 0.781
and 1 mm slice thickness. Participants were current or
former smokers between 50 and 70 years of age. Base-
line CT scans of 235 participants, randomly selected,
were used for parameter optimization, method devel-
opment, and method evaluation. In addition, to assess
the repeatability of the proposed method,118 additional

TABLE 1 Number of CT scans used for each experiment

Experiments CT scans
CT in
atlas

Manual
annotation

Centerline
parameter
optimization

10 – Centerline and
seed points

Method validation
with full 3D
annotations

25 24 3D volume and
centerline

Qualitative
assessment with
visual inspection

436 25 –

In-slice diameter
and PA:AA ratio
assessment

200 out of 436 25 2D in-slice
diameter

Repeatability and
3D diameter
assessment

236 out of 436
(118
scan–118
rescan)

25 –

Note: In total, 471 CT scans are used for this study.

participants were selected who had a baseline scan and
a repeat scan after on average 3 months [minimum 2,
maximum 5]. Table 1 describes the data used for each
experiment.

Manual annotations of the centerline and contours of
the pulmonary arteries and aorta were made using an
in-house annotation tool developed in MeVisLab* with
a similar framework as was described previously for
carotid artery segmentation.43

With this tool, first, the centerline of the vessels was
drawn manually using the axial, coronal, and sagittal
views, to compute a CMPR. Then, the centerlines were
checked and modified if needed in the axial view of the
CMPR generated every 1 mm along the centerline. In
longitudinal views at six different angles,equally spaced
every 30◦, longitudinal contours of the vessel were
drawn manually. Subsequently, cross-sectional contours
were computed using spline interpolation through the
intersection points of the longitudinal contours with the
cross-sectional planes. Finally, after checking the cross-
sectional contours in all cross-sections and adjusting
them if required, the contours were converted to a 3D
binary image using variational interpolation.44 For all
cases, the window level/width for annotation was set to
200 HU/600 HU.

For the pulmonary arteries, a centerline and binary
segmentation image were first created for the pul-
monary trunk + left PA and trunk + right PA individ-
ually. The segmentation for the entire pulmonary was
obtained as the union of these two segmentations.

With this tool, centerlines of 35 CT scans (10 for opti-
mizing the parameters of the centerline extraction and
25 for full manual segmentation) and volumes of 25
CT scans were annotated by an experienced observer

* https://www.mevislab.de/

https://www.mevislab.de/
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(ZSG). Besides, an experienced physician (DB) indi-
cated the diameter of the PA and AA at the level of the
PA bifurcation in an additional 200 CT scans. This was
done in the axial view, in the slice where both the right
and left pulmonary arteries appear to be of similar size
at the axial view.

3.2 Parameter optimization

The centerline extraction parameters were optimized in
a grid search on 10 CT scans with manually drawn cen-
terlines.The objective was to minimize the mean center-
line distance (MCD) between the manual and automatic
centerlines.The radius range of the medialness filter, the
cost function weights 𝛼 and 𝛽, and the sigma 𝜎c for cen-
terline smoothing were optimized. From radius range of
[5 mm, 30 mm], we obtained a medialness radius range
of [8 mm, 16 mm] for pulmonary arteries and [12 mm,
24 mm] for the aorta which agreed well with the radius
range reported for these vessels in the literature.6,45

Medialness filter searches for circular structures in the
defined radius range. Although the method is not very
sensitive to the radius range, selecting the range exactly
as the average range of the vessel can result in missing
vessels with abnormalities, such as aneurysm or dilata-
tion.

From range [1, 15], the weights 𝛼 = 4 for pulmonary
arteries and 𝛼 = 10 for the aorta and 𝛽 = 2 for both ves-
sels were obtained, with smoothing of 𝜎c = 9 mm for
pulmonary arteries and 𝜎c = 11 mm for the aorta. The
extracted values for 𝛼 and 𝛽 show that medialness has
a higher effect on the centerline accuracy than lumen
intensity similarity since it is more accurate for localizing
the vessel, especially the vessel center. Since the cen-
terline is extracted at the center of a circular shape, the
centerline can be irregular in regions where a vessel
branches off, such as in the arch. A reasonable value
for 𝜎c smooths out these jagged areas. Although we
applied a grid search to fine-tune the parameters, with
our experience, the proposed method is not very sen-
sitive to slightly changed settings of these parameters.
Relatively good segmentation results can be achieved
after a few trial and error runs of different parameter
sets.

A five-fold cross-validation on 25 CT scans (indepen-
dent of those used for centerline parameter tuning) was
performed in which the best parameters determined
from 20 CT scans were used to segment the five left
out scans. In this, the best parameter set was selected
as the parameter set giving the maximum average Dice
similarity coefficient (DSC). The parameters to optimize
were 𝜎 of the Gaussian Kernel used to smooth the
initial segmentation, and the smoothness penalty P of
the optimal surface graph cuts. From the five parameter
sets extracted in the cross validation, the most frequent
parameter set was selected for the rest of the experi-
ments.The obtained optimal parameter set was 𝜎 of 4.4

and 2.4 mm and P of 32 and 40 for the pulmonary arter-
ies and aorta, respectively.

3.3 Seed point and centerline
extraction

The centerline and the seed point extraction were vali-
dated on 25 CT scans using MCD. MCD is the average
symmetric Euclidean distance of all points of the auto-
matically extracted centerline to the manual centerline.

Seed point extraction was assessed by computing
the MCD between the automatic centerlines traced
from manually placed seed points with those traced
from automatically extracted seed points. Seed points
that were placed on the border or outside the vessel
resulted in a centerline with large MCD compared to
the centerlines traced from manual seed points.We also
used nonparametric Mann–Whitney U test to assess
whether there is a significant difference between the
MCD computed between the manual centerlines and
the automatic centerlines traced from manually placed
seed points and MCD between the manual centerlines
and the automatic centerlines traced from automati-
cally extracted seed points. Note that to prevent bias
in extracting seed points of the validation set (25 CT
scans), in the multi-atlas registration method, the test
scan is excluded from the atlases, and only a maximum
of 24 atlases are used.

Failure in the centerline extraction in all cases (471
CT scans) could be automatically detected as follows.
For the aorta, centerlines that never reached above the
automatically extracted PA bifurcation point,or that went
through the coarse initial PA segmentation,were consid-
ered as failed extractions.

For the pulmonary arteries, an additional centerline
for only the pulmonary trunk was traced between the
seed points at the PA trunk and the PA bifurcation point.
Subsequently, the MCD between this centerline and the
main centerlines was extracted and the centerlines that
had a large MCD, or the ones which went through the
coarse initial aorta segmentation, were considered as
failed extractions.

3.4 Segmentation

The segmentation accuracy was assessed on 25 CT
scans by comparing it with manual segmentations. The
DSC was computed to assess the degree of spatial
overlap of the automatic segmentation with the manual
segmentation. The mean symmetric surface distance
(MSD) was computed in millimeters between the man-
ual and automatic segmentation surfaces.

For a larger scale, qualitative assessment, the pul-
monary arteries and aorta were segmented on 436
additional CT scans, which had no manual annotations
of the full volume. The quality of the segmentations was
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inspected visually by overlaying the segmentation of
each vessel on the original CT scan. In the regions with
boundary inaccuracy, the maximum distance between
the segmentation surface and the vessel boundary was
manually measured in the axial plane by ZSG. Then,
based on visual inspection, the segmentations were
separated into three groups: high-quality segmentation
(without significant boundary inaccuracy); segmentation
with minor errors (max 3 mm SD); and segmentation
requiring correction (more than 3 mm SD).

3.5 Repeatability, diameters, and
PA:AA ratio

The automatic diameter of the PA and AA at the level of
the PA bifurcation as well as the PA : AA ratio were com-
puted on 436 CT scans. Out of 436 CT scans, the accu-
racy of the in-slice diameters and the PA : AA ratio were
assessed on 200 CT scans by comparing them with the
in-slice manual diameters and manual PA : AA ratio.

In the remaining 236 CT scans, the average volumet-
ric diameters and the PA : AA ratio extracted from the 10
mm segment around the landmark level were computed.
These 118 short-term repeat scan pairs (236 scans)
were used for assessing the repeatability of the method.
Changes of the main PA diameters and the aortic diam-
eters within the 3-month period are expected to be neg-
ligible since the changes in the main PA diameter within
8 months are 0.5 ± 0.18 mm46 and the annual change
in aortic diameters is 0.1–0.2 mm.47

The diameters were expressed as mean ± stan-
dard deviation (range). The repeatability and the agree-
ment between the manual and automatic diameter
and the PA : AA ratio were assessed by the intra-
class correlation (ICC) [95% confidence interval], based
on a single-rating, absolute-agreement, two-way mixed-
effects model.48 The quality of the vessel segmentation
on all 436 CT scans was assessed quantitatively with
the visual inspection as explained in Section 3.4.

4 RESULTS

MCDs between the manual and automatic centerlines,
for both manual and automatically extracted seed points,
are shown in Table 2. The centerlines were always
extracted inside the vessel and close to the vessel cen-
ter.The average distance was less than 0.5 mm between
the automatic centerlines traced from the automatically
extracted seed points and the ones traced from the man-
ually placed seed points.The nonsignificant difference in
MCD to the manual centerlines between these two sets
infers the reliability of the seed point extraction method.

Out of all 461 CT scans used in this study, centerline
extraction failed in only 17 cases (17 out of 922 ves-
sels including the PA and aorta [1.8%]) and all failure
cases were detected automatically as described in Sec-

TABLE 2 MCD (mm) between automatic and manual
centerlines, in 25 CT scans for the left (LPA) and right pulmonary
arteries (RPA) starting from pulmonary trunk (PAT), and for the aorta
from both manual and automatically extracted seed points

PAT to RPA PAT to LPA Aorta

Manual SP 2.14.±.0.63 2.38.±.0.66 1.59.±.0.51

Automatic SP 2.46.±.0.81 2.77.±.1.41 1.54.±.0.33

p-value 0.06 0.27 0.35

Abbreviation: SP, seed point.
Note: p-values are compared using nonparametric Mann–Whitney U test.

TABLE 3 Qualitative assessment of the PA and aorta
segmentation of 419 CT with visual inspection

Visual inspection Aorta PA

High quality 394 (94%) 387 (92%)

Minor error 18 (4%) 24 (6%)

Correction required 7 (2%) 8 (2%)

Note:Segmentations are with no obvious error (high quality),with max 3 mm SD
(minor error), or with more than 3 mm SD (correction required).

tion 3.3. In five cases, the centerline failure was due to
wrong seed point extraction in which the seed points
were extracted in the border or outside of the vessel. In
four cases,the aortic centerline made a shortcut through
the PA, and in the remaining eight cases, the PA center-
line was either at the border of the vessel or made a
shortcut through the background. These failures were
mainly due to unclear vessel borders where the PA is
adjacent to the aorta or other structures. Scans with
failed centerlines were excluded from subsequent anal-
ysis.

The vessel segmentation of the 436 CT scans with
no manual annotation was quantitatively assessed with
visual inspection.Table 3 shows the assessed quality of
the aorta and pulmonary arteries segmentation of the
419 CT scans with no failure in the centerline extraction.

Box plots of segmentation DSC and MSD, for the pul-
monary arteries and aorta obtained in five-fold cross-
validation on 25 CT scans with manual segmentation,
are shown in Figure 3, with an average DSC = 0.94 ±

F IGURE 3 Box plots of the DSC and MSD between the manual
and automatic PA and aorta segmentation. The plot shows the
median (green), interquartile range (boxes), 99.3% coverage of the
data (whiskers), and the outliers (+ symbol in red)
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F IGURE 4 Scatter plots and ICC of the manual and automatic diameters measured at the axial slice at the level of PA bifurcation (first
row), and of the automated average volumetric diameter estimates in scan and short-term rescans (second row) for, from left to right, the PA,
aorta, and PA:AA ratio

0.02 and average MSD = 0.62 ± 0.33 mm for pulmonary
arteries and DSC = 0.96 ± 0.01 and MSD = 0.43 ± 0.07
mm for the aorta. Figure 5 illustrates three examples of
segmentation results overlaid with manual annotations.

From 200 CT scans used to compare manual and
automatic in-slice diameters, 11 scans failed the center-
line or seed point extraction. High agreement between
the diameters was obtained on the remaining 189 CT
scans. The scatter plots of these diameters are illus-
trated in the first row of Figure 4. The first three rows in
Table 4 present the diameters, diameter difference, and
ICC between the automatic and manual measurements.

From 118 subjects used to assess the repeatability,
six subjects had failed centerline or seed point extrac-
tion. For the remaining 112 subjects (224 CT scans), the
automatic average diameter extraction from 3D volume
showed a high correlation between scan and rescan of
each subject with an ICC of 0.89, 0.95, and 0.86 for the
PA, aorta, and the PA : AA ratio, respectively. The diam-
eters, diameter difference, and ICC between the scan–
rescan pairs of 112 subjects (224 CT scans) are shown
in the last three rows of Table 4 and the scatter plots are
illustrated in the second row of Figure 4.

5 DISCUSSION

In this study, we presented a fully automatic segmen-
tation and diameter measurement method to segment
the pulmonary arteries and aorta and to measure their
diameters in non-ECG-gated, noncontrast CT scans.
Automatic extraction of the level of the PA bifurcation
allowed automatic measurement of the PA : AA ratio.
We verified the quality of the segmentations on 25 CT
scans by comparing them with full 3D manual annota-
tions. The segmentation algorithm performed well with
an average Dice overlap of 0.93 and 0.96 and mean
surface distance of 0.62 and 0.43 mm, less than the in-
plane voxel size, for the pulmonary arteries and aorta,
respectively.

Visual inspection indicated that 92% of pulmonary
arteries and 94% of the aorta were segmented with
high quality and with no obvious error. In the remaining
almost 6–8%, segmentation errors mainly occurred
in regions close to the heart. In this region, the PA
trunk and the aortic root are adjacent and have similar
intensity. This makes the vessel boundaries unclear,
which results in segmentation errors. Furthermore,



7846 PULMONARY ARTERY AND AORTA SEGMENTATION

F IGURE 5 Examples of the obtained segmentations. First row is a good segmentation with DSC = 0.95 for PA and DSC = 0.97 for the
aorta. The next two rows are the two cases with the largest segmentation errors (lowest DSC) for the PA and aorta, respectively, with
DSC = 0.90, DSC = 0.96 for row 2, and DSC = 0.92, DSC = 0.95 for row 3. Column (a) shows an axial slice close to the heart and column (c)
shows a slice at pulmonary artery bifurcation level. In columns (b) and (d), the manual PA (green) and aorta (yellow) are overlaid with the
automatic segmentation of the PA (blue) and aorta (red). The 3D segmentation of the aorta (e) and PA (f) is shown together with the 3D view of
the CT scan in (g)

TABLE 4 Diameters, diameter difference, and ICC between manual and automated measurements (first three rows) and between the
short-term scan–rescan pairs (last three rows), of the pulmonary artery, ascending aorta, and PA:AA ratio

Method Diameter (mm) Difference ICC [95% CI]
Manual Automatic

2D Axial n = 189 PA 26.39 ± 3.28 (18.32, 36.19) 25.79 ± 3.53 (18.06, 36.72) 0.60 ± 1.36 0.92 [0.89−0.94]

Aorta 34.83 ± 3.63 (25.55, 44.53) 34.39 ± 3.74 (25.21, 43.81) 0.44 ± 0.96 0.97 [0.95−0.97]

PA:AA 0.76 ± 0.09 (0.51, 1.01) 0.76 ± 0.10 (0.50, 1.09) 0.01 ± 0.04 0.90 [0.87−0.93]

Scan (baseline) Rescan

3D Volume n = 112 PA 28.24 ± 3.37 (21.58, 38.14) 28.40 ± 3.41 (21.66, 38.48) 0.16 ± 1.45 0.89 [0.87−0.93]

Aorta 34.72 ± 3.34 (27.65, 44.22) 34.76 ± 3.35 (27.28, 45.37) 0.04 ± 0.97 0.95 [0.93−0.97]

PA:AA 0.82 ± 0.10 (0.60, 1.12) 0.82 ± 0.09 (0.61, 1.14) 0.01 ± 0.05 0.86 [0.82−0.90]

Abbreviation: CI, confidence interval.

motion artifacts caused by the motion of the heart
during the cardiac cycle increase the ambiguity of the
vessel boundaries and make the segmentation difficult,
even for experienced radiologists. Figure 5 shows the
three cases, where the cases at rows 2 and 3 have
the largest segmentation errors. Segmentation errors
with respect to the manual segmentation are visible in
an axial slice close to the heart (column b), whereas
the segmentation has high accuracy at the level of the
pulmonary bifurcation (column d).

Table 5 presents comparative segmentation results
on the methods proposed in the literature to segment
the PA and aorta on noncontrast CT scans. Compared
to our previous work,39 in this study, besides segment-
ing the pulmonary arteries, we evaluate the method on
a larger region for the aorta, from the diaphragm level
at the descending aorta to the aortic root. Although

results are not directly comparable due to differences
in datasets, our method achieved higher Dice overlap
and lower mean surface distance than was reported
for all previous methods for both vessels. The advan-
tage of the presented optimal surface graph-cut method
is incorporating the topology constraints into the graph
structure and defining “smoothness-penalty” edges to
encourage a smooth segmentation similar in shape to
the initialization.These constraints and penalties restrict
the final segmentation to plausible vessel surfaces. In
contrast, since in the deep learning-based methods,30,21

no prior information on the geometry of the vessels and
no explicit shape constraints have been incorporated to
the network, in regions with very unclear boundaries,
unrealistic/incorrect surfaces can be produced.

The running time of our presented method is about
60 min, where the seed point extraction process
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TABLE 5 Segmentation results compared with literature

Method DSC MSD

PA Xie et al.33 0.88 –

Haq et al.30 0.80 ≤ DSC ≤

0.91
--

Presented method 0.94 ± 0.02 0.62 ± 0.33

Aorta Išgum et al.20 0.87 ± 0.03 –

Avila-Montes et al.24 0.88 ± 0.05 –

Dasgupta et al.25 0.88 ± 0.06 –

Tahoces et al.26 0.95 –

Xie et al.27 0.93 ±0.01 1.39 ± 0.19

Kurugol et al.28 0.92 ± 0.01 0.62 ± 0.09

Trullo et al.29 0.89 ± 0.04 –

Noothout et al.22 0.91 ± 0.04 1.32 ± 0.85

Haq et al.30 0.75 ≤ DSC ≤

0.94
–

Lartaud et al.21 0.92 ± 0.02 1.25 ± 0.78

He et al.23 0.95 –

Sedghi Gamechi
et al.39

0.95 ± 0.01 0.56 ± 0.08

Presented method 0.96 ± 0.01 0.43 ± 0.07

takes about 20 min. Therefore, although our presented
method’s high accuracy and reliability make it suit-
able for clinical study, the relatively long processing
time could limit the uptake of the method in clin-
ical practice. However, this processing is still sub-
stantially faster than full manual annotation and may
reduce human errors without requiring any manual
interaction.

We achieved a high agreement between the auto-
matic and manual diameters for the PA, aorta, and PA :
AA ratio in axial slices, with an ICC of 0.92, 0.97, and
0.90, respectively. This is higher than the interobserver
agreement reported by Terzikhan et al.11 of 0.91 and
0.94 for the PA and aorta diameter.Table 4 indicates that
the manual diameters are slightly (on average 0.5 mm)
larger than automatic diameters for both PA and aorta.
This may be explained by the fact that observers do not
necessarily choose the point of maximum intensity gra-
dient as the boundary. The difference between the auto-
mated method and observer annotations is similar to the
interobserver bias of 0.4 mm reported by Tonelli et al.46

for PA diameter on noncontrast CT scans, and interob-
server bias of 0.5 mm reported by Quint et al.49 for mid-
AA diameter on CTA scans.

The manual PA : AA diameter measurements,such as
presented in Refs.5,8,9,and 11,are subjective based on
slice location. Measurements that are further away from
the bifurcation show smaller diameters than those close
to the pulmonary bifurcation.Linguraru et al.17 show that

a small shift along the PA centerline can lead to diame-
ter changes up to 20%. Moreover, the orientation of the
vessels with respect to the patient and with respect to
the axial plane may vary, leading to variability in axial
diameter measurements. Also, determining the bifurca-
tion level is difficult and is prone to variability. The 3D
volumetric average diameter measurement in segments
perpendicular to the vessel centerlines as proposed in
section 2.5 is less subjective and is a more robust and
reproducible technique than diameter measurement in
2D axial slices, which potentially decreases discordant
measurements. The diameters extracted by the pre-
sented 3D method showed high scan-rescan repeata-
bility (Figure 4). This improved robustness and repro-
ducibility may lead to better association with pulmonary
hypertension; however, this requires further investiga-
tion.

Considering that lung cancer screening with noncon-
trast CT is becoming more common, our method can
be used to screen for (mild) PA and aortic dilatation as
biomarkers of cardiovascular disease in the same pop-
ulations. A limitation of this study is that the method is
evaluated on data from a single scan protocol and a rel-
atively healthy screening population. For application in
data from very different scan protocols,parameters may
need to be adjusted.

6 CONCLUSION

A fully automatic method is presented to segment the
pulmonary arteries and aorta and quantify their diam-
eters on non-ECG-gated, noncontrast CT scans. Qual-
itative and quantitative analysis demonstrates that our
method provides robust, accurate, and reproducible
measurements of the PA and aorta diameters and
the PA : AA ratio. Automatically extracting a full 3D
shape and size of the vessel, the vessel diameters, and
biomarkers with high accuracy, in non-ECG-gated non-
contrast CT scans such as are acquired in lung cancer
screening,can provide important prognostic information
and enable the early-stage diagnosis of cardiovascu-
lar disease and provide factors for risk assessment in
patients with COPD.
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