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Abstract

In this paper, we study a service parts inventory management system for a single product
at a parts distribution center serving two priority-demand classes: critical and non-criti-
cal. Distribution center keeps a common inventory pool to serve the two demand classes,
and provides differentiated levels of service by means of inventory rationing. We assume
a continuous review one-for-one ordering policy with backorders and Poisson demand
arrivals. Only one demand class provides advance demand information whose orders are
due after a deterministic demand lead time, whereas the orders of the other demand class
need to be satisfied immediately. The problem has been studied before, but remained
a challenging problem. The quality of the existing heuristic for estimating the critical
class service levels can diminish significantly in some settings and the search routine
for the service level optimization model relies on a brute force approach. Our contribu-
tion to the literature is twofold. For the given class of inventory replenishment and allo-
cation policies, first we determine the form of the optimal solution to the service level
optimization model, and then we derive an exact optimization routine to determine the
optimal policy parameters provided the steady-state distribution is available. The compu-
tation of steady-state probabilities is needed only once. Second, we propose an alterna-
tive approach to estimate steady-state probabilities. By analyzing the limiting behavior
of transition probabilities during infinitesimal time intervals, we are able to characterize
the relationships between the steady-state probabilities, which satisfy nicely formed bal-
ance equations under the so-called Independence Assumption. In the numerical study
section, we show that our approach provides superior performance in estimating service
levels than the existing heuristic for all the examples considered. We also compare the
performance of using the critical class service levels computed according to our method
against the service levels computed by the existing heuristic, and show that our method
can provide inventory savings up to 16.67%.
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1 Introduction

To better manage customer classes with different service level requirements,
managers are constantly seeking new ways to improve system performance. For
the last two decades, in addition to incorporating inventory rationing strategy in
demand pooling, there is also a growing literature in integrating advance demand
information (ADI) into inventory allocation and replenishment decisions. Numer-
ous studies show that ADI improves system performance when used effectively
and it may be possible to reduce the need for inventory or excess capacity.

Two types of ADI have been studied in the literature. In the “perfect ADI”,
customers provide exact information about their orders. The orders are to be
delivered at a certain time in the future. Therefore, the time between order place-
ment and due date, which is called demand lead time (DLT), is deterministic.
There are no variations in the size of the order, and cancelations are not allowed.
On the other hand, in the “imperfect ADI”, early signals (or estimates) about
prospective future orders are provided. Order sizes and due dates are subject to
change, and cancelations might also be allowed.

Continuous advancements in information technology make it easier and inex-
pensive to collect and process prospective demand information in a timely man-
ner, which leads to higher availability of advance demand information. Addition-
ally, with increased cooperation between suppliers and customers, customers are
more willing to share their advance demand information with suppliers in return
for lower costs and higher service levels, which also leads to potential improve-
ments in supply chain performance. However, the availability of advance demand
information raised important managerial and research questions in the literature
such as: How to incorporate ADI into the current policy? How beneficial is per-
fect/imperfect advance demand information for suppliers and customers? How
do the system parameters affect the value of perfect/imperfect ADI? What is the
optimal strategy to allocate inventory among different customer classes under
perfect/imperfect ADI? How does the availability of ADI affect operation deci-
sions and supply chain performance?

There may be several reasons why customers differ in their ADI structures. For
example, only one of the customer classes might have the ability to accurately
plan for repairs and scheduled maintenance. The customer knows exactly the time
when that service part will be used in the repair/maintenance, and inform the ser-
vice parts supplier as soon as this information is available. For another exam-
ple, due to the information technologies in use, one of the customer classes can
quickly diagnose the failed part via sensors and inform the supplier in advance
before the actual repair/maintenance starts.

In this paper, we are motivated by a generic problem in incorporating perfect
advance demand information into the threshold level based inventory rationing
within the framework of continuous review one-for-one ordering policy (also
known as the (S — 1, 5) policy), and aim to find its effect on system stock levels
and performance measures. We study a service parts inventory management sys-
tem for a single product at a parts distribution center serving two priority-demand
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classes: critical and non-critical. We assume that both customer classes have long
term relations with the service provider and therefore both customer classes are
willing to wait for the backordered demands. However, minimum service level
requirements are imposed through the existing contracts. According to the service
level agreements, the critical demand class has contracted for a higher service
level than the non-critical demand class. The distribution center keeps a com-
mon inventory pool to serve the two demand classes, and provides differentiated
levels of service by means of inventory rationing. A reserve level of inventory is
held for use by critical demand class only, in anticipation of future demands. The
two demand classes also differ in terms of their ADI structures. Only one demand
class provides ADI whose orders are due after a deterministic demand lead time,
whereas the orders of the other demand class need to be satisfied immediately.
According to our model setting, the demand class, which provides the perfect
ADI, does not accept early deliveries and wants to receive the part as soon as it
is needed in a just-in-time fashion. (The same assumption is also used by, i.e.,
Hariharan and Zipkin (1995), Wang et al. (2002), Kog¢aga and Sen (2007), Ben-
jaafar et al. (2011).) Hence, early fulfillment of orders before due dates are not
allowed. We consider both cases. In the first one, critical demands are due imme-
diately, whereas non-critical demands are due after a fixed DLT. In the second
one, we consider the opposite case in which non-critical demands are due imme-
diately while critical demands are due after a fixed DLT. Both priority classes
exhibit mutually independent, stationary, Poisson demand processes. Whenever a
demand of any type occurs, immediately a replenishment order is given through
the supplier, which will be received after a constant lead time. Existing back-
orders are cleared according to the priority clearing mechanism.

Our objective is to find the optimal policy parameters (base-stock and threshold
levels) that minimize the system stock (base-stock level) while satisfying service
level constraints for both demand classes.

This model setting has also a practical importance, which has been studied before
by Kocaga and Sen (2007) but remained a challenging problem. Their research orig-
inated from their real life experience with a leading capital equipment manufacturer
which is at the top of the supply chain for many high technology products. The com-
pany has an extensive spare parts network (with more than 50,000 active parts need
to be managed) which consists of more than 70 company owned distribution centers
and depots across the world. The depots and regional distribution centers face two
types of demand streams as down orders which that need to be satisfied immedi-
ately, and lead time orders which need to be satisfied at a future date.

The exact analysis for computing the steady-state probabilities seems intracta-
ble for this model. Even for the “DLT = 0” model, Vicil and Jackson (2016) show
the difficulty of the exact analysis indicating that to predict the system state after
a lead time, both the current system state information and the knowledge of the
sequence of events over the lead time become relevant, which tremendously increase
the complexity of the solution. In addition, the standard inventory balance equa-
tions do not hold: The physical stock and backorders can exist at the same time. To
estimate service levels for this model, Kocaga and Sen (2007) use the same strong
assumption as Dekker et al. (1998): A lead time ago, there are no existing orders and
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on-hand inventory is equal to the base-stock level. To determine the critical demand
class service level, Kogaga and Sen (2007) use a similar hitting time approach as
employed by Dekker et al. (1998). However, as we show in the numerical study sec-
tion, the absolute errors for the critical demand class service level can be significant
in this approach in some settings (as high as 34.65%).

To improve the quality of approximation, we choose an unorthodox method and
base our analysis on the limiting behavior of state transition probabilities during
infinitesimal time intervals (rather than the traditional approaches used in the inven-
tory theory and control literature, i.e., choosing an arbitrary point in time and predict
the system state after a lead time). Then conditioned on being at a certain state, by
relaxing the dependency of both the age-of-pipeline vector and the age-of-order-due
date vector to the number of non-critical backorders (the so-called Independence
Assumption), we are able to characterize the relationships between the steady-state
probabilities. We show that the steady-state probabilities satisfy nicely formed bal-
ance equations, which can be easily solved via numerical methods. Furthermore,
after establishing several structural properties regarding the properties of the steady-
state distribution and service levels, we are able to provide a computationally effi-
cient optimization routine which requires the computation of steady-state probabili-
ties only once.

The remainder of the paper is organized as follows. In Sect. 2, we review the
literature on related inventory systems and summarize our main contributions. In
Sect. 3, we study the service level optimization model for the system setting in which
critical demands are due immediately, whereas non-critical demands are due after a
fixed DLT. In Sect. 4, we propose a method to estimate the steady-state probabilities
and the critical demand class service level. In Sect. 5, we study the alternate model
in which non-critical demands are due immediately, whereas critical demands are
due after a fixed DLT. In the numerical study section, Sect. 6, we compare the per-
formance of our method with the existing heuristic using simulation.

2 Literature review

This study is related to two streams of work. The first one consists of operations
management papers which study the use of ADI/DLT in inventory and production
decisions. The second one consists of inventory management papers that study the
inventory allocation and replenishment decisions among different priority customers
via demand pooling and inventory rationing.

Hariharan and Zipkin (1995) are among the first to study DLT in inventory/dis-
tribution systems. They demonstrate that demand lead times improve performance,
in precisely the same way the replenishment lead times degrade it. Donselaar et al.
(2001) consider two types of demand as regular demand from small orders, and very
irregular lumpy demand from infrequent, large orders. They analyze the inventory
reduction that could be achieved if the advance demand information could be pro-
vided to the manufacturer. Gallego and Ozer (2001) consider the portfolio of cus-
tomers with different demand lead times. They show that state-dependent (s, S) and
base-stock policies are optimal for stochastic inventory systems with and without
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fixed costs in a finite-horizon setting in which customers place advance orders. They
also determine conditions under which advance demand information has no oper-
ational value. Karaesmen and Buzacott (2002) investigate the structure of optimal
control policies for a discrete-time-make-to-stock queue with advance demand infor-
mation. They propose a heuristic policy based on an extension of the base-stock that
integrates advance demand information through a release lead time parameter. Ozer
and Wei (2004) consider a periodic-review, stochastic, capacitated, finite and infinite
horizon production system, and show how advance demand information can be a
substitute for capacity and inventory. Wang and Toktay (2008) analyze an inventory
management with advance demand information and flexible delivery. Their model
is closely related to the discrete-time, uncapacitated, advance demand information
model of Gallego and Ozer (2001), except that they allow for delivery flexibility. In
a two-period setting, Tan et al. (2009) investigate the impact of using imperfect ADI
in a production/inventory system with two priority-demand classes and inventory
rationing. They aim to minimize the expected total costs, under the assumption that
unmet demand is lost. Boyact and Ozer (2010) study a profit-maximization model
in which a manufacturer collects advance sales information periodically prior to the
regular sales season for a capacity decision. Benjaafar et al. (2011) analyze a pro-
duction-inventory systems with imperfect advance demand information. Customers
are allowed to update the status of their orders and may request an order fulfillment
prior to or later than the expected due date. Bernstein and DeCroix (2015) study the
impact of different types of advance demand information on optimal capacities and
profit. According to their model, the firm receives information revealing either the
total volume of demand across products or the mix of demand between products.
Topan et al. (2018) examine a single-item, single-location, periodic-review lost sales
inventory model with a general representation of imperfect ADI. Their model allows
for returning excess stock built up due to imperfections to the upstream supplier.

In the continuous review inventory management framework, there are numer-
ous studies in the literature which consider static rationing models for differentiated
demand classes. For the (Q,R) models, Nahmias and Demmy (1981) are among the
first to consider rationing. They consider a critical level policy with Poisson demand
processes and constant lead times for two priority demand classes. Demands can
be backordered. They provide approximations for the expected number of back-
orders under the assumption that at most one order is outstanding. Their model is
extended by Moon and Kang (1998) to a compound Poisson demand process. Mel-
chiors et al. (2000) study the same model as Nahmias and Demmy (1981), but with
the lost sales assumption. They present an exact formulation of the average inven-
tory cost and then provide a simple optimization procedure. Deshpande et al. (2003)
study a model similar to Nahmias and Demmy (1981) but allow multiple outstand-
ing orders in the pipeline, which increases the complexity of the analysis. They pro-
pose approximations on the expected number of backorders and provide an efficient
algorithm for computing the optimal policy parameters. Arslan et al. (2007) analyze
a similar model as Deshpande et al. (2003), but allow multiple demand classes that
are characterized by different shortage costs or service requirements. They show that
there is sample-path equivalence between their backorder clearing rule and the serial
inventory system. For the (S — 1, S) backorder models, Dekker et al. (1998) study a
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critical level policy within the framework of one-for-one inventory model with two
demand classes and backorders. The demand process is a Poisson process and order
lead times are constant. They provide approximations for estimating the service
level for the critical demand, while the analysis for non-critical demand is exact.
Wang et al. (2002) study distribution systems that provide two classes of service
that differ in their demand lead times. An emergency service demand is to be filled
immediately upon its arrival, while a non-emergency demand is to be filled after a
deterministic demand lead time. Vicil and Jackson (2016) study a similar model as
Dekker et al. (1998) but allow general lead time distributions. By exploring the lim-
iting behavior of state transitions during infinitesimal time intervals, under the cer-
tain approximation assumption, they show that the steady-state distributions of the
model is identical to the steady-state distributions of the model with exponentially
distributed lead times with the same mean. Vicil and Jackson (2018) study the same
model as Vicil and Jackson (2016) but include class-specific expected waiting-time
requirements in addition to the fill-rate constraints. They characterize the form of the
optimal solution in this model setting and propose a simple two step solution strat-
egy to determine optimal base-stock and threshold levels. In a recent work, Gabor
et al. (2018) consider a similar inventory system as Dekker et al. (1998) but differs
in terms of the service level measures. Their model assumes that the service level of
low-priority customers is measured by a response time guarantee, while the service
level of the high-priority customers is measured by the fill rate. For the lost sales
models within the continuous review (S — 1, S5) framework, Dekker et al. (2002),
Kranenburg and van Houtum (2007), and Isotupa (2015) all study a critical level
policy for multiple demand classes with Poisson demand processes.

In the stream of the literature that consider both ADI/DLT and differentiated cus-
tomer classes in terms of their priority, Kocaga and Sen (2007) is the first study to
simultaneously consider demand lead times and rationing. They provide an approxi-
mation for the critical service level while the service level for the non-critical
demand class is exact. Recently, Basten and Ryan (2019) consider a periodic review
inventory system with zero replenishment lead times and two demand classes. They
study the impact of maintenance delay flexibility on the optimal inventory control
policies.

The problem we consider in this article is identical to the model studied by
Kogaga and Sen (2007), and closely related to the models described in Dekker et al.
(1998), Wang et al. (2002), and Vicil and Jackson (2016, 2018). We simultaneously
consider inventory rationing and demand lead times. The exact analysis for comput-
ing the steady-state probabilities seems intractable. To overcome this obstacle, we
use a similar approach employed by Vicil and Jackson (2016) and base our analy-
sis on the limiting behavior of state transition probabilities during infinitesimal time
intervals under the certain approximation assumption. Our main contributions are
summarized as follows:

e We provide structural results for the steady-state distribution and performance
measures of the original model setting studied in this article. Kocaga and Sen
(2007) provide structural results (with limited scope compared to ours) based on
their proposed approximation for the service level measures.
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e We are able to determine the form of the optimal solution to the service level
optimization model for the given class of inventory replenishment and allocation
policies. We also provide an exact search algorithm to determine optimal policy
parameters which requires the computation of steady-state probabilities only
once. In their study, Kocaga and Sen (2007) found the optimal policy param-
eters through the brute force search approach (though, they were able to limit the
number of possible policy parameters to consider).

e QOur optimization search routine can be used with any approach; it doesn’t matter
whether the steady-state probabilities are determined via our proposed approxi-
mation, simulation study or any other heuristic. These (approximated) steady-
state probabilities can be used as an input to our optimization algorithm, then the
algorithm provides the optimal policy parameters as an output for the heuristic
being used.

¢ Since our method allows us to determine the limiting distribution of being at any
given system state, other performance measures such as expected on-hand stock,
and expected number of critical and non-critical class backorders can be easily
estimated. This information would be useful especially in cost optimization mod-
els.

¢ In the numerical study section, we show that our approach provides superior per-
formance in estimating the critical class service level than the existing heuristic
for all the examples considered. In the numerical study, we show that the average
absolute errors of the existing heuristic are 2.30% (the non-critical class has a
DLT) and 3.50% (the critical class has a DLT), while the average absolute errors
are 0.38% and 0.09%, respectively, for our approach. Furthermore, the maximum
absolute errors of the existing heuristic are 19.46% and 34.64% for the two cases,
while they are limited to 4.79% and 0.52% in our approach.

e In the optimization study, we also compare the performance of using the critical
class service levels computed according to our method against the service levels
computed by the existing heuristic, and show that our method can provide inven-
tory savings up to 16.67%.

As a final remark, incorporation of the DLT into the current threshold ration-
ing policy imposes fundamental challenges in the analysis. Although both inventory
systems may seem to be similar at first sight, the DLT model is not a simple exten-
sion to the “DLT = 0” model. This is mainly because the demand process and the
due date process are not identical in the DLT model. As a result, the evolution of
changes in system states in both models differ from each other. This in turn affects
the system dynamics, and consequently the steady-state probabilities. Therefore,
the structural results of the Vicil and Jackson (2016, 2018) studies, which are valid
for the “DLT = 0” model, cannot be directly used in the DLT model. The struc-
tural properties should be defined and proved for the DLT model with the neces-
sary changes in expressions and definitions. Furthermore, Vicil and Jackson (2016)
proved that under the so-called independence assumption, the steady-state distribu-
tion of system states with deterministic or stochastic lead time distribution satisfies
the same balance equations as the system with an exponential lead time distribution
with the same mean. On the other hand, under a similar independence assumption,
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the balance equations we derived in this paper are different than would be the bal-
ance equations of the system with exponential lead times. This also shows that the
model we study in this paper has different dynamics than the model studied by Vicil
and Jackson (2016).

3 Service level optimization model

We consider two priority-demand classes: critical and non-critical. Critical demand
class requires a higher service level than the non-critical demand class. Both prior-
ity classes exhibit mutually independent, stationary, Poisson demand processes, with
rates A" and A°. We assume a continuous review one-for-one policy with a base-stock
level S. Whenever a demand of any type occurs, immediately a replenishment order
is given through the supplier, which will be received after a constant lead time of L.

Distribution center keeps a common inventory pool to serve the two demand
classes, and provides differentiated levels of service by means of inventory rationing.
A reserve level of inventory, denoted by S, is held for use by critical demand class
only, in anticipation of future demands. According to the model, critical demands
are due immediately, whereas non-critical demands are due after a deterministic
DLT of H. At their due dates, orders of non-critical class are backordered if on-
hand stock is at or below a certain threshold level S., while critical class orders are
backordered only if on-hand stock is zero. We assume that H < L, so that the DLT is
not quoted longer than the replenishment lead time. In our model, service levels are
measured in terms of fill rate, which is defined as the percentage of demands satis-
fied immediately from on-hand stock at their “due dates”.

So, the proposed policy works as follows: an incoming critical demand (which
is due immediately at the time of its arrival) is satisfied as long as there is physical
stock. Otherwise, it is backordered. A non-critical class order is accepted upon its
arrival, which is due after H time units. At its due date, the non-critical demand is
satisfied only if on-hand stock is above the threshold level S.. Otherwise, it is back-
ordered. Since a one-for-one policy is followed, the arrival of any demand, either
by a critical or a non-critical class, triggers an immediate replenishment order of
size 1, which will be received after a constant lead time of L. Existing backorders
are cleared according to the priority clearing mechanism. Incoming replenishment
orders are first used to clear critical class backorders, if there exists any. Otherwise,
they are used to restore the reserve stock as long as on-hand stock is less than the
threshold level S... Existing non-critical backorders are only cleared if on-hand stock
is at the threshold level S, at the delivery times. Only after all non-critical back-
orders are cleared, deliveries are used to increase on-hand stock beyond §..

At any time ¢, let OH(f) denote the number of units on-hand, R(f) denote the
number of units in resupply, B°(¢) denote the number of outstanding critical back-
orders, B"(f) denote the number of outstanding non-critical backorders, and Y” be
the number of non-critical class orders that have been accepted but not yet due.
Under the one-for-one replenishment and threshold level based raioning and back-
order clearing policy, the following relations hold:
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S = OH(t) + R(t) — B°(t) — B"(t) — Y"(2). (1)
0mmﬂ&ww+mm+w@* )
B(t) = [R() - B"(1) - Y"(1) - S| ™. 3)

These relations are also valid for the steady-state distribution of these quanti-
ties, denoted by OH, R, B¢, B", and Y". Therefore, it is sufficient to capture the
stationary distribution of (R, B", Y").

Note that although the one-for-one replenishment policy is in use, inventory
position can be higher than the base-stock level S in this model due to the demand
lead time effect. For example, for a given (S, S,) pair, if there are exactly two
non-critical demands during [0, H), at time H on-hand stock will be S while the
inventory position will be S + 2. This property also adds to the complexity of the
steady-state analysis.

Furthermore, at any point ¢ in time, the difference [R(f) — Y" ()] has an effect on
the net inventory level. Y"(¢) represents the number of non-critical demands arrived
during (¢t — H, tf] and whose order due dates have not yet come by time 7. Since a one-
for-one replenishment policy is implemented, each demand arrival triggers a replen-
ishment order of size 1. Therefore, Y"(¢) portion of the R(7) does not affect the net
inventory level at time ¢. This result also leads to the following implicit conditions:

Y*(1) < R(), 4

B'(0) < [R®) - Y"(1) = (S =S ™. )

Our objective is to determine the optimal policy parameters (S, S.) that minimize
the total inventory investment (base-stock level) S while satisfying all service level
constraints for each demand class.

Let p"(S., S,) (respectively (S, S.)) denote the fill rate achieved for the non-crit-
ical (respectively critical) class demands as functions of (S, S,). Due to the Poisson
Arrivals See Time Averages principle, arriving demands face the steady-state dis-
tribution of on-hand inventory (see, e.g., Tijms 1986). At their corresponding due
dates, non-critical class demands are served if and only if on-hand stock is greater
than S, and critical class demands are served if and only if on-hand stock is non-
zero. Hence, if we denote P (-) as the steady-state probability distribution of a ran-
dom process, then the provided fill rates will be as follows:

p"(S,S.)=1-P_(OH <S.|(S,S,)), 6)
and

p'(S.5,) = 1 = P, (OH = 0| 5.5,)). %
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The optimization problem can be written as:

min S

S.t.
B(S.S) = B"
Be(S,S,) = B¢
S>S. >0,

for contractually-specified service levels f and g, f¢ > " > 0.

Although the one-for-one replenishment policy is implemented and the model is
a pure backorder model, computing accurate service levels is still a challenging task
due to the effects of inventory rationing and demand lead times. The steady-state
analysis is very difficult, if not impossible. Even if the knowledge of a system state
at any point ¢ in time is known, it is still very difficult to probabilistically determine
the system state after an order lead time L. This is because, not only the number
of demand arrivals and deliveries over a lead time affect the system state at time
t+ L, but also the sequence of those demand arrivals and deliveries have effect.
Furthermore, the demand lead time has also an effect on the system state since
non-critical class orders are due H time units later upon their occurrence. Those
dynamics contribute significantly to the complexity of the analysis. To show this, let
us consider a model with policy parameters (S, S,) = (4,2), order lead time L = 2,
and demand lead time H = 0.5. At a random point ¢ in time, let the system state
be OH =2,R=3,B"=1,B°=0,Y" =0, and consider the following four scenarios
with the corresponding event lists. Timings of events are also indicated within the
parentheses. In each scenario, there are exactly two critical demand arrivals, two
non-critical demand arrivals and three deliveries. However, we change the sequence
and/or timings of events while keeping number of demand arrivals of each type and
deliveries unchanged.

Scenario I: Event List = {non-critical demand (¢ + 0.1), critical demand (¢ + 0.2),
delivery (z+ 0.3), delivery (t+ 0.4), delivery (¢t+ 1.2), critical
demand (¢ + 1.3), non-critical demand (¢ + 1.6) }. The resulting sys-
tem state at time t + L willbe OH = 1,R=4,B"=0,B  =0,Y" = 1.

Scenario II: ~ Event List = {non-critical demand (¢ + 0.1), critical demand (¢ + 0.2),
delivery (¢4 0.3), critical demand (¢ + 1.3), non-critical demand
(t + 1.6), delivery (¢t + 1.7), delivery (¢ + 1.9)}. The resulting system
state at time t + L willbe OH =2,R=4,B"=1,B° =0,Y" = 1.

Scenario III:  Event List = {non-critical demand (¢ + 0.1), critical demand (¢ + 0.2),
delivery (¢+ 0.3), non-critical demand (r + 1.3), critical demand
(t + 1.6), delivery (¢t + 1.7), delivery (¢ + 1.9)}. The resulting system
state at time t + L willbe OH =2,R=4,B"=2,B° =0,Y" = 0.

Scenario IV:  Event List = {delivery (t + 0.1), delivery (¢ + 0.2), delivery (¢ + 0.3),
non-critical demand (¢ + 1.3), non-critical demand (¢ + 1.4), critical
demand (¢ + 1.6), critical demand (¢ + 1.7)}. The resulting system
state at time t + L willbe OH =2,R=4,B"=2,B° =0,Y" = 0.

@ Springer



Optimizing stock levels for service-differentiated demand... 391

As can be observed from those examples, depending on the sequence of events
and their timings, the resulting system state after an order lead time may differ
greatly. Although this is a pure backorder model, keeping track of every possible
permutation of events enormously increases the complexity of the solution. How-
ever, to overcome this obstacle, we are going to adapt a similar approach used by
Vicil and Jackson (2016, 2018), and then base our analysis on the limiting behavior
of state transitions over an infinitesimal time interval.

First, we establish structural properties for the steady-state distribution and ser-
vice level measures, which hold regardless of the lead time distribution. Then,
provided a method for computing stationary probabilities is available, we present
a computationally efficient optimization algorithm to determine optimal policy
parameters (S, S,.) which requires the computation of steady-state probabilities only
once. And finally we present a method to compute the steady-state probabilities. Our
approach is exact for the calculation of the non-critical class service level, while it is
a high quality approximation for the critical class service level.

3.1 Structural results and properties of the steady-state distribution

For given (S,S,) pair and system parameters A", A°,L, and H, beginning from a
regeneration point in which there is no unit in the resupply system, let (m,T,,, E,,)
describe the mth event in the system: 7,, is the time of the mth event, and E,, is
the type of event where E,, € {“v”, “n”, “c”, “y”} representing events “delivery”,
“non-critical demand arrival”, “critical demand arrival”, and “non-critical order
due date”, respectively. After the mth event, let R, denote the number of units in
resupply, B! denote the number of non-critical backorders, and ¥ denote the num-
ber of non-critical orders received but not yet due. Clearly at the regeneration point

m=0,R,=0,B;=0and Y =0.

Proposition 1 The dynamics of (R,,, B",Y") can be described completely in terms
of the sample path {(m, T,.E,);m=1,2,3, } :

R, +1,E, ="“n"or“”,
— o
R =1 Rm—l_l’ Em— v,
o
Rm—l’ Em_ Y.

L
-

B  +1E,=%"R,_,—Y'_ >S-5,

m—1

B:; =4 B:‘VH -LE, =%,R, | — Y;’H >8-S, B:"Fl =R, — Y”:H - (S-S,
B! otherwise.

Y'  + 1, E, =“n",

m—

Yn =4 Y::l_l _ 1’ Em — uy”’

Yo otherwise.
Proof See “Appendix 1”. O
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Proposition 2 For a fixed S, the following relations hold for all S! > S

p"(S.S.) =p"(S.S)),
B(S.S,) <PS.S)).

Proof See “Appendix 2”. O

Let Z, = {0,1,2, ...}, the set of non-negative integers and &, = (r,b",y") € F
denote the system state at time 7, 7 > 0, where F ¢ , represents the set of feasible states
when the policy parameters are given by (S, S,.). Clearly,

Fiss) = {(r, Py s Y < b < [r=y" = (S =S)I, (r,b",y") € Zy X Z, XZO}.

Let g pn (S, S0), (0", y") € Fg ), denote the steady-state distribution of
(R(?), B"(t), Y"(t)). The following proposition establishes an important invariance
result.

Proposition 3 The steady-state probabilities 7, . . (r,b",y") € Fs 5 ), are invari-
ant to changes in S provided A = S — S_ is constant.

Proof See “Appendix 3”. O

A similar invariance result has been previously established by Vicil and Jackson
(2016) for the “DLT = 0” model.

Let ¢, (S, S.) denote the stationary distribution of on-hand inventory when policy
parameters are given by (S, S,):

0(S.8,) = P, (OH(t) = h|(S,S.)), h=0,1,....S.

Then, using (2), we have

2 (r,0,y") € Fss,) 7(r0m(S> Se)» S, <h<S,

) (r,b",y") € Ky, Ty ym) (S5
S—r+b"+y)=h

Z (r,b",y") € [F(S,S(.) ”(r,b",y")(S’
S—r+b"+y)<0

S)0<h<S,

@4 (S.5.) =1 (8)

S), h=0.

L

At a random point ¢ in time, let us suppose R(f) =i and Y"(t) = j; that is there
are i replenishment orders outstanding, and there are j non-critical orders out-
standing that are not due yet. Let uy, denote the age of the kth oldest replenish-
ment order and (u[l],u[z],...,u[i]) denote the age-of-pipeline vector. Similarly,
let v, denote the age of the kth oldest non-critical order that is not due yet, and
(v[ 105 Viaps -+ ,Vm) denote the age of non-critical order due date vector. Furthermore,
let U(r) = {um,um, ,u[i]} denote the set of age of replenishment orders in the
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resupply and V(¢) = {v[l],vm, ’V[i]} denote the set of age of non-critical out-
standing orders that are not yet due. Let P(4) denote the Poisson probability distri-
bution with mean A, and let p(k;A) = e~*A*/k!. Then, the cardinality of the differ-
ence of these two sets has Poisson distribution with mean A°L + A*(L — H)

[UO\VD| ~ R(@®) = Y"(1) ~ P(A°L+ A"(L — H)). )

The reasoning is as follows. Replenishment orders, which are originated from
the demand arrivals before ¢ — L, should have already arrived by ¢. Therefore at any
point ¢ in time, U(?) represents the set of timings of all the demand arrivals during
(t — L, t]. Since total demand process is a Poisson process, |U(#)| is Poisson distrib-
uted with mean (A¢ + A")L. Similarly, V() represents the set of timings of non-criti-
cal demand arrivals during (¢t — H, t], and therefore |V(¢)| is Poisson distributed with
mean A"H. Hence, U(¢)\ V() represents the order process excluding the non-critical
orders that are not due yet, but has impact on the net inventory level. Therefore,
|U(®)\V(7)| has the same distribution as R(f) — Y"(¢), which is Poisson distributed
with mean A°L + A"(L — H). It is also important to note that the events represented
in U(#)\V(¢) are independent of the events in V(¢). (Note: R(f) and Y"(t) are depend-
ent Poisson random variables. If they were to be independent, the difference of these
two random variables would be a Skellam distribution. See e.g., Skellam (1946) for
more information.)

Using (8) and summing over all possible (r,y") pairs, we can immediately cal-
culate g, (S, SL.) forh > S,

on(S.8,) = D 0.4 (S5 5¢)
(r,0, y") € [F(s,sc)
r=y'=S-h

= p(S — hA°L + A(L — H)), forS, <h <.

(10)

Therefore, we can determine the achieved fill rate exactly for the non-critical
demand class

S

p(S.5) = ) @(s.8,)

h=S,+1

c

5-5.-1 (11

= ), pkAL+ AL - H)).
k=0

This result has also been established by Kocaga and Sen (2007), but they fol-
lowed a different approach.
One immediate result of (11) is the following corollary.

Corollary 1 The non-critical demand class fill rate " (S, SC) is invariant to changes
in S provided A = S — S, is constant.
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This corollary establishes that under the proposed rationing policy, the non-crit-
ical demand class service level is a function of A, and therefore can be calculated
without the knowledge of S... This significant result will be exploited during the opti-
mization procedure in Sect. 3.2.

However, the challenge is to determine the steady-state distribution of states for
which OH < S, (equivalently R — Y” > § — S,), which we need them to determine
the critical demand class fill rate. In Sect. 4, we will develop an approximation pro-
cedure to compute these probabilities based on the limiting behavior of an infinitesi-
mal analysis.

Let y,(S. S, ) denote the steady-state marginal distribution of the number of criti-
cal backorders excluding the cases for which on-hand inventory is positive. Defining
the distribution this way will be useful later in the optimization routine.

Wu(S.S.) =P (B°(t) = u, OH(1) = 0] (S.5,))

= > (S5 S
(r,0",y") € Fggs,)
S—r+b"+ynt=0
r=b"—y'=S)" =u

(12)

The next two lemmas will be used to reduce the computational complexity of the
search routine for finding the optimal (S, S,) pairs. For fixed A, the following lemma
allows us to determine steady-state probabilities for different (S, S,.) pairs directly
from the knowledge of v, (A, 0) probabilities.

Lemma 1 Forfixed A,k =1,2,...,andu=0,1,...,
V(A + K K) = v, (A, 0).

Proof See “Appendix 4”. O
The next lemma establishes very useful property for the optimization search rou-
tine. As long as A is fixed, critical class service levels at different policy parameters

(S,S,) can be computed from the knowledge of v, (A, 0) without any further compu-
tation of steady-state probabilities.

Lemma 2 For fixed A,andk = 1,2, ...,

k—1
BEA+ kK = A, 0) + ) w,(A,0).
u=0
Proof See “Appendix 5. O
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3.2 Optimization algorithm

Let A* be the smallest value of A = § — S, that satisfies the required non-critical
demand class fill rate:

A-1
A = argmin{A e{l,2,...}: Zp(k;/ch+/1”(L—H)) > ﬂ_”}. (13)

k=0

By Corollary 1, (13) also implies that for any (S, S,) pair to satisfy the non-critical
demand class service level constraint, S — S, should be at least A*.

Let S7 be the smallest value of S, that satisfies the required critical demand class
fill rate under the condition that §* = §* + A* :

S* = argmin {S. € {0,1,...} : p°(S. + A*,S.) > f}. (14)

Theorem 1 The parameters (S, SC) = (S*, SZ‘) are optimal for the fill rate optimiza-
tion model.

Proof Suppose there exists another solution (', S’ ) that is feasible such that §' < §*.
In order this solution to be feasible with respect to the non-critical class fill rate
constraint, we must have §' — S’ > A*. Let us consider the solution (S’,S’ - A*).
Due to Corollary 1, this solution satisfies the non-critical demand class fill rate
requirement. Since the critical demand class fill rate is nondecreasing in S, for fixed
S (by Proposition 2), and since S’ — A* > ', we should have ﬁ"(S’,S’ — A*) > pe.
But this implies §" — A* > §* by the definition of S¥ which in turn implies
S > A + §* = §*, a contradiction. Therefore, there cannot be another feasible solu-
tion with a smaller value of S than S*. O

Note that we are not omitting the possibility that there may be multiple optimal
solutions (S*, Sé ) such that Sé #* S:‘. However, none of the optimal solutions can have
S’ < S$*. The theorem guarantees to find one of the optimal (S*, SC) pairs.

Next, in Table 1 we present a computationally efficient approach to determine the
optimal (S*, Sj) pairs that requires the computation of steady-state probabilities only
once. For now, we assume there is a method to compute stationary probabilities for
states OH < S,. In the next section, we will present a method to approximate those
probabilities.

4 Estimating steady-state probabilities and determining the service
level for the critical demand class
For states (r,0,y") € Fgg,, r—y'<S—S. we can immediately determine the

steady-state probabilities. Because the knowledge of R() — Y"(¢) and Y"'(¢) fully rep-
resent the system state at any point ¢ in time, provided R(f) — Y"(f) < §—S,: for a
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Table 1 Optimization algorithm

for the two demand class Compute A* using (13), and "(A*,0) using (11)

Compute 7, . ) (A%, 0), for all (r, 5", y") € Fis. )

Compute y,(A*,0) foru =0, 1, ... using (12)

(a) Set p° = p"(A*,0)

(b) Setu =0

(c) While ¢ < f¢
Set f¢ = ¢ + y,(A*, 0) using Lemma 2
Setu=u+1

(d) SetS¥ =u

(e) Set §* = 8% + A*

(f) Set

pr(s 8 =

B (8%, 8%) = pr(A*,0)

Return (S* s S"j)

7. Return " (S, 8*), p°(S*, %)

Bowoe =

given (r,y") pair there is only one possible system state, (r,0,y"). Hence, steady-
state probabilities for these states are given by

T 0y (S5 Se) = p(r = y5A°L+ AL — H)).p(y";A"H), r =y" < S =S..  (15)

However, this is not the case for states (7, b",y") € [F(S,Sr) such that r —y" > § - §_.
Because the knowledge of only R(#) — Y"(¢) and Y"(¢) is not sufficient to determine
the system state at a random point # in time: For a given (7, y") pair, there are multi-
ple states (r, b",y") with different on-hand inventory, critical and non-critical back-
order levels. Therefore, for these cases, we can only write the the left-hand side of
(15) as the sum of the steady-state probabilities:

> Tty (8582) = plr = Y AL+ AL — H)).p(y' ;" H),
(rs bn, )’") € IF(S,SF)
r=y"—S-S)=u
yt=v
(16)
u=12,...;v=0,1,....

But unfortunately individual stationary probabilities 7, ;. (S, S.) in (16) are not
readily available and, therefore we need a method to determine these probabilities,
which is a challenging task.

In the literature, regarding the backorder models with rationing in the continuous
review framework, the hitting time approach is often used to estimate the station-
ary probabilities. This approach is based on conditioning on the time that on-hand
inventory first hits the threshold level S, but generally requires the strong assump-
tion that there are no existing orders in the pipeline at the beginning of time interval
in consideration. For the model studied in this article, Kocaga and Sen (2007) also
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use this assumption in the hitting time approach to estimate the critical class service
levels. However, as shown by Vicil and Jackson (2016) for the “DLT = 0” model,
this approach does does not necessarily work under a variety of arrival rates and
lead time values. Furthermore, even if the system state information is known at a
random point ¢ in time, it is still very difficult to determine the system state after
a lead time. As we have shown in the previous section that not only the number of
class-specific demand arrivals have impact on the system state a lead time later, but
also the sequence of those demand arrivals, pipeline vector and non-critical order
due date vector have impact. Hence, every possible permutation of events should be
taken into account to analyze the system behavior over a lead time. Therefore, the
classical approach in which only the number of demand arrivals over a lead time is
taken into account would be misleading for this model setting.

To overcome those obstacles, we exploit another approach with the aim of
decreasing the complexity of the analysis and providing more accurate results. To do
so, starting from the initial system state (0, 0, 0) in which there are no orders in the
resupply and on-hand inventory is equal to S, by conditioning on the system state at
a random point ¢ in time, we analyze the limiting behavior of transition probabilities
for this process during an infinitesimal time interval z. This infinitesimal analysis
greatly reduces the number of events that can happen during (¢, ¢ + 7], and hence the
analysis becomes much tractable.

But first, we need establish some background knowledge regarding the stochastic
behavior of a general unit in the resupply system. At a random point ¢ in time, sup-
pose exactly one order has occurred during (# — L, ¢], which has an impact on the net
inventory level. Clearly this event belongs to the set U(r)\V(¢), and R(¢) — Y"(¢) = 1.
Given that this order has occurred, let us establish the distribution of the time at
which this order has occurred. Let T be the elapsed time from ¢ — L until this order
occurs, and N(s, s + u) be the number of orders € U(¢)\V(¢) that has been received in
(s,s + u]. Then, fort < L — H,

P[T < 7;N(t — L,1) = 1]
P[N(t—L,1) = 1]
_PINt—Lt—L+7)=LNt—L+7,0)=0]
- PIN(t—L,1)=1]
_PIN¢-Lit—-L+7)=1].P[N¢—-L+17,1)=0]
- PIN(t—L,1)=1] '

PI[T<t|Nt—-L=1]=

a7
Since t<L—H,(t—L,t—L+t]n (- H,t] =@. Therefore, all demand arriv-
alsin (t — L,t — L + 7] belong to the set U(#)\ V(). Therefore,

PINt—L,t—L+17)=1]= A"+ A)re"*"+47 (18)

Furthermore, if we consider the interval (t — L + 7, t], all the critical demand arriv-
als in (t — L + 7, 1] belongs to the set U(¥)\V(r). However, among the non-critical
demands, only the ones occurred in (t — L + 7,7 — H] belongs to the set U(r)\ V().
Therefore, N(t — L + 7,t) = 0 if and only if there is no critical demand arrival in
(t = L + t,t] and there is no non-critical demand arrival in (t — L + 7,t — H]. Hence,
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PIN(t—L+1,t) = 0] = e ¥ L77) =#"L-H=T) (19)
Using the results (18) and (19) in (17), we have

P[T< TlN(f_[ﬂf) _ 1] _ (/1"%‘&6)1'6 (A +A)-re AS(L .r)e A (L-H-7)
(AL + (L — H)) e~ (A L+2"(L~H))
(/1" + /10)7’. e—(/l"L+/l"(L—H))
- (AL + An(L — H)) e~ (AL+a"(L—H))
M+ 97
AL+ AL —-H)

(20)

Let p(z) be the common probability that any replenishment order in the resupply
at a random point ¢ in time, which belongs to the set U(¢)\V(?), is still in the resupply
system at time ¢+ 7, 7 < L — H. This order will be in the resupply at time 7 + 7 if
and only if it arrived during (t — L + 7, t], since all arrivals prior to t + 7 — L should
have arrived by ¢ + 7. Therefore, p(r) is given by:

pir)=1=-P[T<t|Nt-L,t)=1]

a9 Q1)
L+ (L - H)’

which is independent of time ¢. Note that p(z) represents the probability for unor-
dered replenishment orders in the resupply.
Let

q,.(x|n) = P[x of those n units remain in the resupply att + = | N(t — L, 1) = n].

Each replenishment order occurred during (¢ — L, t] belongs to the set U(#)\V(¢), and
has a probability p(z) that it is still in the resupply at time 7 + z. Therefore, the prob-
ability that x of the n replenishment orders, which belong to the set U()\V(¢), will
remain in the resupply at time ¢ + 7 is given by

g, (xln) = < " ) p@* [1-p@)]"", 22)

which is also independent of time 7.

Similarly, let us derive system dynamics for the non-critical replenishment
orders belonging to the set V(f). At a random point ¢ in time, suppose exactly one
non-critical order has occurred during (f — H, t], which has an impact on the set
of non-critical orders that are not yet due. This event belongs to the set V(¢), and
therefore Y"(t) = 1. Given that this event has occurred, let us establish the dis-
tribution of the time at which this order has occurred. Let T be the elapsed time
from ¢ — H until this order occurs, and N(s, s + u) be the number of orders € V(r)
that has been received in (s, s + u]. Clearly N(s, s + u) has a Poisson distribution
with mean A"u. Then, forr < H,
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PIT <t;N(t-—H,1) =1]

PIN(t—H,f) = 1]
_PIN¢—H,t-H+1)=LNGt-H+7,1)=0]
B PIN(t—H,t) = 1]
_PINt—-H,t—-H+7)=1].PINt—H+17,1) = 0]
B PIN(t— H,1) = 1]

An,z.e—i”r e—/l"(H—r)

- AtHe=#'H

PIT<t|N¢-Ht=1]=

l
7R

(23)
Hence, the time at which the non-critical order belonging to the set V(¢) occurs is
uniformly distributed over the interval (¢ — H, ¢].

Let p(z) be the common probability that any order that is “not yet due” at a
random point ¢ in time, which belongs to the set V(¢), is still “not yet due” at
time ¢ + 7, 7 < H. This order will be “not yet due” at time ¢+ 7 if and only if it
occurred during (¢t + ¢ — H, ], since all the non-critical orders prior tot+ 7 — H
should have been due by ¢ + 7. Therefore, p(r) is given by:

p(r)=1=P[T <7|N@t—H,1) =1]

_1_= (24)
H b
which is independent of time .
Let
4, .(x|n) = P[x of those n units remain “not yet due” at  + 7 | N(@t =L, t) =n]

G, (xln) = < ! ) B [1-po)]"

(25)
Since class-specific demands are Poisson processes and a one-for-one policy is
followed, both the resupply process and the due date process are mirror reflections
of the demand realizations during the last L time units. In addition, resupply pro-
cesses and due date processes are also independent of the demand processes after
time ¢. Hence, during an infinitesimal time interval dt, the probability of more than
one event to occur is o(dt) due to the Poisson nature of the processes. Furthermore,
conditioned on being at state (r, b",y") at time ¢, the delivery process over the next
dt time units only depends on the elements of set U(¢)\V(¢), because dt < H and no
orders in the resupply that belongs to the set V(#) could be received by time ¢ + d.
Hence, probability of a delivery process is determined by (22).
The brief summary of our approach for determining the steady-state probabilities
is as follows. Starting from the initial state (0, 0, 0) at time # = 0, let

P o sy iy & 1) = P&, = (r, B, ") | & = (0,0,0), & = (7, b".5")].
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By conditioning on the state of the system at time #:
P(O’(),(J)’(r’hn,yn)(o, 1+ T)

= Z P(O,O,O),(?,i)“,}’”)(o’ t) . P(;’[_)nJ}n)’(r’brl’yn)(t, t+ T). (26)
(70", 5" € Ky,

Since 7 is an infinitesimal time duration, the states (7, 5", ") are chosen such that the
state (r, b",y") can be reached by at most one transition over the next infinitesimal
7 time duration. Then we explore the limiting behavior of above transitions. There-
fore, first we need to determine one-step transition probabilities over an infinitesimal
7 time duration.

At a random point ¢ in time, since a one-for-one policy is implemented for the
replenishment process, the system state information (R(?), B"(f), Y"(t)) contains
essential information about what has happened over (t — L,t] and (¢ — H, t] time
intervals. From the system state information, first we can understand that a a total
of R(f) number of replenishment orders have been placed over the last L periods
which have been triggered by both class demand processes. Second, among those
R(?) replenishment orders Y"(¢) of them has been triggered by the non-critical cus-
tomer class demands realized during (t — H, f]. Both R(f) and Y"(¢) are Poisson dis-
tributed. However, conditioned on being at the system state (R(¢), B"(t), Y"(¢)), the
placements of replenishment orders during (¢ — L, t] or (¢t — H, t] are no longer Pois-
son processes. This is because, due to the implemented rationing policy, there is a
dependency between the B"(f) and the demand process over the past L periods (Note
that this wouldn’t be the case for the simple one-for-one policy without customer
differentiation. The knowledge of R(f) would be sufficient to characterize the order
replenishment process, which is still a Poisson process). This in turn affect the deliv-
ery and due date processes after time 7.

Therefore, to solve the one-step transition probabilities we relax the dependency
of both the age-of-pipeline vector and the age-of-order-due date vector to the num-
ber of non-critical backorders, and make the following approximation assumption:

Independence Assumption Conditioned on being at state (R(¢), B"(¢), Y'(r)) at a
random point ¢ in time, both the age-of-pipeline vector (u[l],u[z], ,u[,-]) and the
age-of-non-critical-order-due date vector (V[1 1 Vips -5 Vi) are independent of the
number of non-critical backorders B"(z).

The Independence Assumption allows us to probabilistically determine the deliv-
ery process and the due date process from the knowledge of R(¢) and Y"(¢). After
solving the one-step transition probabilities, we take the limits as ¢ — 0 and t — oo
and achieve the results in the following theorem. For notational simplicity, we use
(o gy InStEAA OF 7, 1) (S, S,)-

Theorem 2 Let

(A" + 49

P %L+ @ -H) @7

and
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9= (28)

Under the Independence Assumption, for a given (S, S,) pair, the steady-state distri-
bution of (R, B", Y") satisfies the following balance equations:
r=0,0"=0,y"=0;
AT (00.0) = HT(10,0)-
r>1,r—y"=0,0"=0;
A+ Y' N7 0 = Ay gyngy + (=Y + DUmy gy
O0<r<ADb =0,y"=0;
A+rwm, o0 = A To_100) + 701 + O+ Dumg00)
1<r=y'<Ab' =0,y">1;
[), + (r - yn)ﬂ + ynlg]ﬂ'(r’(),yn) = Anﬂ(r—l,o,y”—l) + ﬂcﬂ(r_l,o!yn)
+ 0"+ D70 y0pyy + (r =Y+ Dz oy
r=Ab"=0,y"=0;
(A+ D700 = A 7100 F % 00) + (A + DUy 09) + (A + Dz 0y
r—=y'=A0"=0,y">0;
(A + A/l + ynlg)ﬂ'(r’(),yn) = Acﬂ(r_l’(),yn) + Anﬂ(r—l,o,y”—l) + (yn + 1)'97[(r,0,y”+l)
+ (A+ Dpmpq gy + (A + Dumgq -
r=>b"=A0">0,y"=0;
(). + rﬂ)ﬂ(r!bnyo) = 8”(r,b”—l,l) + (r + 1)/"”(r+l,b”+l,0) + (r + 1)”ﬂ(r+1’bn,0).
r=>b"—y"=A,b">0,y">0;
[A + (r - yn)ﬂ + yng]ﬂ(r’bn,yn) = Anﬂ-(r—l,b”,y”—l) + (yn + 1)19][(r’bn_l!yn+l)
+ (r =YY"+ DUy g gy + (0 =Y+ DUz oy
r>Ab =0,y"=0;
(), + rﬂ)ﬂ(,’oqo) = }-Cﬂ'(r_ly[)_()) + (}" + 1)/"”(!‘-{-1,0,0)'
r—=y'">Ab"=0,y">0;
A+ =Y+ Y Nx 0 = A 71 001y + A Tm1 0,0,
+ (r=Y"+ Dum 0,4
r=>0">A0">0,y"=0;
(A + r,u)ﬂ(,’bn’o) = }'C”(r—l,b",o) + 197[(r,bn_1,1) + (r + 1)/’{7[(r+l,b”,0)'
r=>b"—y">Ab">0,y">0;
[), + (r - yn)ﬂ + yng]ﬂ(r,bny:) = Anﬂ(r—l,b”,y”—l) + )‘Cﬁ(r—l,b”,y")
+ (yn + l)gﬂ(r,bn—l,y"i-l) + (r - yn + l)l’lﬂ(r-f-l,b",y")'

Proof See “Appendix 6”. O
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The balance equations in Theorem 2 show the in and out flows from a state in
the steady-state. Depending on the system state in consideration, the inflows show
the rates in steady-state from the adjacent neighbors from which one-step transitions
are possible. The outflow shows the total rate of leaving the state in consideration.
Those balance equations are linear system of equations and thus can be easily solved
numerically, i.e., via the method of LU factorization. We also have a valid reference
checking point since we can compute the stationary probabilities exactly for states
(r,0,y") € Fgg ) r—y' < 85— by (15).

Now, the question is how strong or weak is the dependence of age-of-pipeline
vector and age-of-due date vector on the number of non-critical backorders. The
quality of the approximation will depend on this answer. In the numerical study sec-
tion, we explore how well the Independence Assumption performs under a variety of
lead time values, and show the quality of our approximation.

Another important contribution of this study is to allow us to estimate other per-
formance measures such as expected on-hand stock, and expected number of critical
and non-critical class backorders, through the knowledge of x, ;. ,.,. This is because
our approximation permits us to capture full information for the steady-state prob-
abilities of system states (r, b", y") rather than only estimating a certain performance
measure, such as fill rate.

S
E[OH] =) h,(S.S,), using (8).
h=0

E[B‘] = Z uwy,(S,S.), with reference to (12).
u=0

E[B'|=) b" > Ty (. 50).
br=1 r yn
(0" y") € Fss,)

5 Alternate model: critical class orders are due after a demand lead
time

With minor modifications, similar ideas can easily be applied to the model in which
critical demand class orders are due after a demand lead time of H, while non-criti-
cal class orders are due immediately. The optimization model and the fill rate equa-
tions remain the same as in the original model. We leave the rest of the derivations
and analysis to the online supplement. There, we first present the modified defini-
tions and equations according to the alternate model. We then show that the struc-
tural results offered by Proposition 2, Proposition 3, Lemmas 1, 2, and Corollary 1
remain valid in this alternate model. We also provide the balance equations for this
alternate model in Theorem 3 in the online supplement.
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6 Numerical study

Since there is no exact solution yet in the literature for computing the steady-state
probabilities, we compare the performance of our method with the only heuristic
in the literature, Kocaga and Sen (2007), against the simulation results. Therefore,
for comparison we use the same examples and results provided in their study. This
section is divided into three subsections. In Sect. 6.1, we compare the performance
of our method with the Kocaga and Sen (2007) heuristic in terms of service level
approximations for the critical demand class (since service level for the noncritical
demand class can be computed exactly using (11)). In Sect. 6.2, for the fill rate opti-
mization model we compare the optimal policy parameters (§*,S”) found by using
the critical class service levels calculated via our method against the Kogaga and
Sen (2007) heuristic and the simulation study. In Sect. 6.3, we investigate the benefit
of integrating DLT into the threshold rationing policy.

6.1 Service level calculations

First, we compare the performance of both heuristics at high service level require-
ments for the critical demands class. As mentioned in Kogaga and Sen (2007), such
high service levels are quite common in the industry. In Table 2, the parameters are
chosen such that the critical class service level is around 99%. The replenishment
lead time L is 0.5 and the demand lead time H is 0.1 for all the instances. In columns
5-10, we study the case in which the non-critical demand class has a DLT. In col-
umns 11-16, we study the case where the critical demand class a DLT. In column 5
and column 11, exact service levels for the non-critical demand class are computed
according to (11). Absolute errors with respect to the simulation results are provided
in columns 8 and 14 for the Kocaga and Sen heuristic, and in columns 10 and 16 for
our method. We observe that although the Kogaga and Sen heuristic seems to work
well for these scenarios, our method considerably provides better quality approxima-
tions for all the instances. For the Kocaga and Sen heuristic, the average absolute
errors are 1.09% and 1.18% for the two cases, while the average absolute errors are
0.10% and 0.06% for our method. We also observe that, for the last seven instances,
as the non-critical class service level decreases while the critical class service level
is kept around 99%, the quality of both approximations are negatively affected. How-
ever, the maximum absolute errors for the Kocaga and Sen heuristic can be as high
as 5.53% and 5.89% for the two cases, while the maximum absolute errors for our
method are limited to 0.53% and 0.25%. We also note that the Kogaga and Sen heu-
ristic consistently underestimates the achieved (simulated) critical class service level
while our method consistently overestimates.

The situation is similar in Table 3, in which the analysis is repeated for ten dif-
ferent instances. But this time the parameters are chosen such that the critical class
service level is between 90 and 99%. Although the performance of approxima-
tions for both methods are not as good as for the 99% service level scenarios, the
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Independence Assumption holds well and our method still considerably provides
better quality approximations for all the instances. For the Kocaga and Sen heuristic,
the average absolute errors are 1.34% and 3.36% for the two cases, while the average
absolute errors are 0.35% and 0.13% for our method. The maximum absolute errors
are achieved when the non-critical service levels are very low: g7 = 18.51%
(“DLT: non-critical” option), and f = 28.54% (“DLT: critical” option). For the
Kocaga and Sen heuristic, the absolute errors can be as high as 3.69% and 8.44% for
the two cases, while they are limited to 1.56% and 0.50% for our method. We also
observe that, as in Table 2, the quality of the Kog¢aga and Sen heuristic for the “DLT:
non-critical” option is better than the quality of the Kogaga and Sen heuristic for the
“DLT: critical” option. The situation is opposite for our method.

Next, the performance of the approximations are tested against the varying sys-
tem parameters. The results are provided in Table 4. There are four different parts.
In each part, a single parameter is varied at a time among the following list while
keeping other system parameters fixed: base stock level, the arrival rate for the criti-
cal demand class, the arrival rate for the non-critical demand class and the DLT, in
sequential order. In the first part, as in line with previous results, we observe that
as both demand class service levels increase, the quality of both approximations
gets better. But again, our method provides better approximations for all the exam-
ples. The absolute error for the Kocaga and Sen heuristic can be as high as 2.61%
and 4.20% while for our method they are limited to 0.31% and 0.18% for the two
cases. On the other hand, in the second part, we observe that the lower service lev-
els significantly affect the quality of the Kocaga and Sen heuristic. As the critical
service level decreases below 90%, we observe that the Kocaga and Sen heuristic
deviates significantly from the simulation results for both cases. For the “DLT: non-
critical” option, the maximum absolute error is 19.46%, which is extremely high
for an approximation. However, our approach still provides reasonable approxima-
tions: The maximum absolute error is 4.79%. Furthermore, we see that the quality
of the Kocaga and Sen heuristic diminishes even more in the case of “DLT: critical
option”. The maximum absolute error is 34.65%. On the other hand, our approach
provides superb performance and the maximum absolute error is only 0.52%. From
these results, we can conclude that the Independence Assumption holds quite well
when the critical demand class has a DLT option, and therefore even for the very
low service levels, our approach provides high quality approximations. In the third
part, although the critical service levels are higher than the 98%, the absolute errors
for the Kocaga and Sen heuristic continue to be considerably high. The low lev-
els of non-critical service levels seems to affect the quality of their heuristic and
the absolute errors can be as high as 8.49% and 8.75% for the two cases. On the
other hand, our approach again provides high quality approximations for all the
examples and the maximum absolute errors are 0.18% and 0.26% for the two cases.
It is also interesting to note that although the non-critical demand rate increases
while keeping other system parameters fixed, we observe that the critical demand
class is not affected much and still receives high levels of service. This might be
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counter-intuitive because the total demand rate increases. One possible explanation
is that non-critical class demands might be frequently in backorder situation and
most of the replenishment orders due to the non-critical class orders are used to
restore reserve stock up to S., which are used to satisfy the critical class demands.
This situation might offset the negative effect of an increase in the total demand
rate on the critical class service level (Remark: We couldn’t replicate the results of
Table 3 of the Kogaga and Sen (2007) article for the “DLT: critical” option regard-
ing the second (simulation) and third (heuristic) parts. Therefore, in this study we
performed the numerical analysis for the simulation and Kocaga and Sen heuristic
for these parts rather than directly using their results, and used the correct values
in Table 4). In the fourth part, the effect of the DLT is studied. We observe that
as DLT increases, both demand classes receive higher services. The parameters are
chosen such that both demand class service levels are high. Therefore, as we might
expect, both methods perform high quality approximations. The absolute error for
the Kogaga and Sen heuristic are 0.37% and 0.47% while they are limited to 0.03%
and 0.01% for the two cases.

Considering Tables 2, 3 and 4, we can conclude that the Independence Assump-
tion holds well for most of the scenarios. The quality of our approximation is more
significant especially for the scenarios with " > 70%, the levels which are no less
than what we would expect in practice. For those, we observe that the average abso-
lute errors are only 0.04% and 0.04% for our approach for the two cases (“DLT: non-
critical” and “DLT: critical” options, respectively) compared to 0.53% and 1.35% for
the existing heuristic; while the maximum absolute errors for our approximation are
limited to only 0.17% and 0.18% compared to 1.18% and 4.20% for the existing heu-
ristic. On the other hand, based on the empirical results, we may conclude that the
quality of the Independence Assumption diminishes as the non-critical class service
level gets lower, and therefore the overall effect on the system of balance equations
is more pronounced. Consequently, this leads to higher absolute errors in estimating
the critical class service levels.

6.2 Optimization study

In this subsection, we compare the optimal policy parameters (S*, S¥) found by using
the critical class service levels calculated via our method againsf the Kogaga and
Sen heuristic and the simulation study. In their study, Kocaga and Sen (2007) found
the optimal policy parameters through the brute force search approach (though, they
were able to limit the number of possible (S, S,) pairs to consider). However, for both
our method and the simulation study, we implement the optimization algorithm pre-
sented in Table 1, which requires the computation of steady-state probabilities only
once. This is one of the main strengths of our algorithm. As in the previous subsec-
tion, we study two cases: “non-critical class has a DLT” and “critical class has a
DLT”. The results are provided in Tables 5 and 6. In their study, Kocaga and Sen
(2007) showed that inventory rationing can result in significant inventory savings
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(up to 30%) compared to one without rationing. Therefore, in order to prevent any
repetition, we don’t include the relative savings due to inventory rationing in these
tables. Readers may refer to their study for a more detailed discussion.

In both tables, columns 5 and 9 show the relative percentage savings in inventory
investment S due to using our method over the Kocaga and Sen heuristic for calcu-
lating the critical class service levels. For all the examples presented in Tables 5 and
6, the optimal policy parameters found by using our approach are identical to the
ones found by the simulation studies.

In Table 5, we first fix A°=1,L=0.5 H=0.1, " =0.80, f=0.99 and
vary the non-critical demand rate A" between 1 and 10. For each case, ten differ-
ent scenarios are considered. We observe that out of ten instances, our method pro-
vides considerable amount of savings in six instances for the first case, and in five
instances for the second case. We also observe that although the pattern is not regu-
lar, there is a tendency that percentage savings decreases as A” increases.

Next, we fix A°=5, A"=10,L =2, H=0.5, " =0.80 and vary f° between
0.90 and 0.995. The results are provided in Table 6. We see that in all the instances,
our approach achieves the optimal policy parameters correctly and provides inven-
tory savings over the Kogaga and Sen heuristic. As /¢ increases, we also observe
that the percentage savings of using our method tends to increase in both cases, and
can be as high as 10.81% for the first case, and 7.69% for the second case. From these
results, we may conclude that as the gap between the required service levels of the
two demand class increases, the quality of Kocaga and Sen heuristic diminishes con-
siderably, while our method continues to provide high quality approximations.

It is important to note that since there is no exact solution yet in the literature for
computing the steady-state probabilities, we have to rely on approximation methods.
Therefore it should be kept in mind that there may be cases of infeasibility due to
not meeting the service level requirements for the critical customer class. Hence, at
the end of the optimization routine, it may be essential to compare the gap between
the estimated service level and the fill rate constraint for the critical customer class.
However, as shown in the numerical study of the previous section, our proposed
approximation provides high quality approximation for the majority of the instances.
Apart from the extreme cases such that non-critical class experiences very low
service levels, the absolute errors are considerably very low for many instances
for the critical customer class. When Tables 2, 3 and 4 are combined, if we con-
sider the cases with " > 70% (the levels which are no less than what we would
expect in practice), we see that the maximum absolute errors for our approximation
are limited to 0.17% and 0.18% for the two cases (“DLT: non-critical” and “DLT:
critical” options, respectively). As a result, we may conclude that unless the gap
between the estimated service level and the fill rate constraint for the critical cus-
tomer class is very close, our proposed approximation may be used conveniently in
the optimization routine. Otherwise, a single simulation study might be performed
to determine the optimal policy parameters (S*, S”) using our optimization routine,
which also requires the computation of steady-state probabilities only once (note
that our optimization algorithm is provided for the general case, independent of the
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approximation method being used. It can be used with any other heuristic, assuming
the computed steady-state probabilities are accurate).

6.3 Benefit of integrating DLT into the threshold rationing policy

In this part of the numerical study, we investigate the benefit of integrating DLT into
the threshold rationing policy. For comparison, we use the same examples studied in
Tables 5 and 6. The results are provided in Tables 7 and 8 . In the second columns of
both tables, we provide the optimal policy parameters found by the simulation study
for the inventory system without incorporating the DLT into the current inventory
rationing policy. None of the priority-demand classes shares advance demand infor-
mation, therefore the distribution center is able to see demand realizations only at
their corresponding due dates.

In Table 7, we observe that the benefit is realized in six instances for the “DLT:
non-critical” option, which can be as high as 16.67%. On the other hand, we don’t
observe any benefit for the for the “DLT: critical” option. However, the situation
changes in Table 8. In all the instances and both cases, we observe that integrating
DLT into the current policy provides considerable savings. The average savings for
the “DLT: non-critical” and “DLT: critical” options are 15.57% and 7.62%, respec-
tively. Furthermore, although the pattern is irregular, the associated savings tend to
decrease for both cases as f° increases.

7 Conclusion

We have numerically demonstrated that our approach provides superior performance
in estimating service levels than the existing heuristic for all the examples consid-
ered. When Tables 2, 3 and 4 are combined, the average absolute errors of the exist-
ing heuristic are 2.30% and 3.50% for the two cases (“DLT: non-critical” and “DLT:
critical” options, respectively), while the average absolute errors are 0.38% and
0.09% for our approach. Furthermore, the maximum absolute errors of the existing
heuristic are 19.46% and 34.64% for the two cases, while they are limited to 4.79%
and 0.52% in our approach. On the other hand, when we consider the settings with
p" > 70% (the levels which are no less than what we would expect in practice), we
observe that the average absolute errors are only 0.04% and 0.04% for our approach
for the two cases compared to 0.53% and 1.35% for the existing heuristic; while the
maximum absolute errors for our approximation are limited to only 0.17% and 0.18%
compared to 1.18% and 4.20% for the existing heuristic.

In the service level optimization study, we show that our method can provide
considerable inventory savings over the existing heuristic in most of the examples,
which can be as high as 16.67% and 14.29% for the two cases. The overall effect of
savings may even be more pronounced in practice, especially in environments (such
that manufacturing industry or retail businesses) where hundreds to tens of thou-
sands of stock units are being managed.
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Table 7 Optimal policy parameters: with/without DLT (A =1, L = 0.5, H = 0.1, £ =0.80, < =0.99)

A Without DLT DLT: non-critical DLT: critical
(8%, 8%) (8%,8%) % Saving (8%, 8%) % Saving

1 4,1) 4,1 - 4,1) -
2 (5,2) 5,2) - (5,2) -
3 (6,2) 5,0 16.67 (6,2) -
4 6,1) 6,2) - 6,1) -
5 (7,2) 6,1) 14.29 (7,2) -
6 (7,1) (7,2) - (7,1) -
7 8,1) (7,1) 12.50 (8,2) -
8 8,1) (7,1) 12.50 8,1) -
9 9,1) (8,1) 11.11 9,1 -
10 9,1 8.,1) 11.11 9,1) -

Table 8 Optimal policy parameters: with/without DLT (1 =5, A* = 10, L=2, H = 0.5, " = 0.80)

p¢ Without DLT DLT: non-critical DLT: critical
(5*,8%) (5*,8%) % Saving (5*,5%) % Saving

0.900 37,1) 3L, 16.22 (34,1) 8.11
0.925 37,1 3L1) 16.22 (34,1) 8.11
0.950 (37.1) 3L1) 16.22 (34,1) 8.11
0.970 (382) (32,2) 15.79 (35,2 7.89
0.980 (38,2) (32,2) 15.79 (35,2) 7.89
0.985 (38,2) (32,2) 15.79 (35,2) 7.89
0.990 (38,2) (33,3) 13.16 (36,3) 5.26
0.995 (39,3) (33,3) 15.38 (36,3) 7.69

The limiting behavior of an infinitesimal probabilistic analysis has not caught
much attention in the literature. However, as shown in this study, it allows us to
study complex system dynamics which arose due to inventory rationing and demand
lead times. Therefore, for the continuous review one-for-one policies, studying the
limiting behavior of an infinitesimal analysis may open new research possibilities in
the future.

One possible extension of the model would be to consider the case in which both
priority demand classes have their own demand lead times, which might lead to
additional savings in inventory management costs. Although the dimensionality of
the state space will increase, our analysis can be directly extended to this setting as
well. As suggestions for future research, it would be useful to extend the model to
generally distributed lead times, and/or allow flexible delivery (early fulfillment of
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orders before due dates). Furthermore, since the quality of our approach for estimat-
ing the steady-state probabilities is promising, this might further enable us to study
the cost optimization model as well, which also has a practical importance.

Appendix 1: Proof of Proposition 1

Since a one-for-one policy is implemented, whenever a demand of any type occurs,
it triggers a replenishment order of size one, and therefore R is incremented by one.
If there is a delivery, number of units in the resupply is decremented by one. If it is a
due date of the non-critical order, then R is unaffected and hence remains the same.

The dynamics for Y” are also straightforward. Whenever a non-critical demand
occurs, Y” is incremented by one. On the other hand, Y” is decremented by one only
if it is a due date of the non-critical order. For all other cases, Y” is unaffected.

For the non-critical backorders, the only situation in which B" can be decremented
is with the arrival of a delivery (E,, = “v”’) when on-hand inventory prior to the deliv-
ery is S, and there is at least one non-critical backorder. If on hand inventory equals
S, then, by (1), S=S.+R,,_, — B =Y . From this equation, by rearranging
the terms we have B | =R,,_, Y” - (S SC). Since the number of non-critical
backorders should be at least one, we also have R, =Y >8-S, On the other
hand, when a due date of a non-critical order comes (E,, = 2 y”") and on-hand inven-

tory just prior to the due date is less than or equal to S,, then B" is mcremented
by one. On-hand inventory in this case is given by [S R, +B | +Y" 1] <SS,

due to (2); which is also equivalent to stating S—R,,_; +B) |, +Y’ | 5 S.. Rear-
ranging the terms, we have R,,_, =Y’ | >S§—S,+ B . But B/ | is anon-nega-
tive variable. Hence we should have R,,_; =Y > 8§—S,. O

Appendix 2: Proof of Proposition 2

The result (S, S,) > (S, S)) is immediately follows from (11).

To prove f.(S,S.) < f.(S,S)), let us consider two systems with identical event
sequences {(m, T,.E,)m=1, 2 3,. } In the first system the policy parame-
ters are (S, S.) and the resulting states are given by {(R T Yl)m=1,2,3,. }
In the second system, the policy parameters are (S,S’) w1th S’ > S, and the
resulting states are given by {(R',B",Y");m=1,2,3,...}. We con]ecture that
R =R, Y" =Y"and BY > B" for all m. With reference to Proposition 1, we
can 1mmed1ately establish R’ = R and Y = Y" for all m. We will prove B" > B"
by induction. For m=1,...,5 =S, it is clear that B"' = B" = 0. For mductron
we first assume that B;’{ > B;; is true for some m, and then validate the result for
m+ 1. Since (S — 1, 5) policy is followed, the number of backorders can change
at most by one unit per event. Therefore, if B)) > B/, B > B  is imme-
diate. Else, B), = B} and it is left to prove B} > B" . It suffices to show that

BZ’ .1 <B ., is not possible. First, let us suppose B} , = B, + 1. This can only
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happen if R, - Y >S—S, and E, ., =*y” (the non-critical due date comes).
Since S’ > S, we have Rl —Y" =R, —Y' >SS~ Since E, | =“y”, we will
have B;;+l =B + 1=B) +1=8B" . Now let us suppose B | =.B"m’ — 1. This
is possible only if B” =R/ —Y" —(S—S') and E,,, =“v” (a delivery occurs).

But this would imply B" =B" =R/ —Y" —(S-8)>R, —Y" —(S—S,). How-
ever, the condition B! > R, — Y — (S —S,) is not possible due to (5). Therefore
we should have B .1 = B, - Proof by induction is completed. Furthermore, con-
ditioned on B? > B", by (2), at any point in time on-hand inventory in the second
system will always be greater than or equal to the on-hand inventory in the second
system. Hence, the critical class fill rate for the second system must be at least as
high as for the first system. O

Appendix 3: Proof of Proposition 3

Let us consider two cases with (S,S,) and (', 5) such that A=S§-S5, =5 -5
For any given sample path {(m, T,.E,)m=17273, }, (Rm,BZ, YZ) will always
be identical to (R/ , B, Y") for an arbitrary m. This is because, due to Proposition
1 the sample path dynamics depend only on A, the difference between the target
inventory S and the threshold level S.. Therefore, at any point ¢ in time, system
state & will be identical to &/. Since this is also true for all sample paths, we have
Ty (85 82) = 7y gy (7, S0, (r, 0", Y") € Zy X Zy X Z. m|

Appendix 4: Proof of Lemma 1

By definition,

W (A +k, k) = D Ty (A + ke K)

(r,0",y") € Faskp
A+k—r+b"+y)" =0
r=b0"—y'"—A—-kt=u

= > T (4, 0) (by Proposition 3),

(r,b"y") € [F(A,o)
A+k—r+b"+yH)t =0
r=b0"—=y"—A-kt=u

= Z ﬂ-(r,b”,y")(A7 O)
(r, b”,y”) € F(A,o)
A-=r+b"+yH)t =0
(r=b"—y"— A" =u+k

=y, (A,0).
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Appendix 5: Proof of Lemma 2

By definition,

PA+k k) =1—@y(A + k, k) (with reference to Egs.(7) and (8))

=1- Zy/u(A+k,k)
u=0

=1- ) y,4(A,0) (by Lemma 1),

u=0
) k—1
=1- D v (8.0) + D v,(8.0)
u=0 u=0
k-1
=1-0y(A,0) + ) w,(A,0)
u=0

k-1

=f(A,0) + )y, (4,0).
u=0

Appendix 6: Proof of Theorem 2

Starting from the initial state (0, 0, 0) at time ¢ = 0, let

P gy rim gy 1) = P[E, = (r, 0",y | €y = (0,0,0), & = (7, D", 5")].

One-step transition probabilities will be solved for a general system state
(r,b",y") € Fiss,) with »* > 1, y* > 1, and r — 0" —y" > § =S, (hence, OH < S,).
Other system states can be solved similarly. By conditioning on the state of the sys-
tem at time ¢, there are five possible ways to reach state (r,b",y") in at most one
transition over the next infinitesimal = time units: a non-critical demand occurs, a
critical demand occurs, a delivery is received from the resupply, a due date of a non-
critical order comes, or nothing happens. Probabilities of two or more events hap-

pening during (¢, t + 7] are captured within the term o(7).
(a) A non-critical demand occurs:

P(r_l’bn’yn_1)’(r’bn’yn)(t, t+ T)

= P[only a non-critical demand occurs during (¢,7 + z]; all » — 1 units in

the resupply at time ¢ are still in the resupply at time ¢ + 7;

all y" — 1 orders that are “not yet due” at time ¢

are still “not yet due” at time t+ 7 | &, = (r — 1,b",y" — 1),

& =(0,0,0)] + o(2).
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By the Independence Assumption and using (22) and (25), right-hand side of (29)
becomes

P(r_l’bn,yn_])’(r’bn’yn)(t, r+ T)

= Mre G (r=y"1r=y9q.,0"=11y"=1 + o(r)

=iree (20 ) oo [1pee

- <§ o )ﬁ(r)y"-l [1-5)]° + o(@)

= N7e 7 p(r) ™ p(zy' "' + o(7).

(30)

Note that we used g, ,(r —y" | r — y") rather than g, ,(r — 1| r — 1). This is because
as discussed earlier, conditioned on being at state &, = (r, b",y"), delivery process
over the next 7 time units is determined by the elements of the set U(7)\V(2).
(b) A critical demand occurs:
P(r—l,b”,y"),(r,b”,y")(t’ r+ T)
= P[only a critical demand occurs during (¢, ¢ + 7]; all  — 1 units in

the resupply at time ¢ are still in the resupply at time ¢ + 7;

all y" orders that are “not yet due” at time ¢ (D

are still “not yet due” at time t + 7 | &, = (r — 1, 5",y"),

£ =1(0,0,0)] + o(z).
By the Independence Assumption and using (22) and (25), right-hand side of (31)
becomes

P(r_1’brl’yu)’(r’bn’yn)(t, 1+ T)

= N°re " g r=y"=1lr=y"=1 q,.0"Y") + o(r)

_ gC. —AT r_yn -1 r—y"—1 _ 0

= i°te <r_yn_1>p(f) [1-p()] 32
: < ﬁ: ) P [1=p@)]° + o(x)

= 12e™ " p(r) " p(z)" + o(7).

(c) The delivery from the resupply:
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P(r+l’bn,yn)’(r’hrl’yu)([, r+ T)

= P[no demand occurs during (¢, ¢ + 7]; among the r 4 1 units in
the resupply at time ¢, only one of them is received during
(t,t + t];all y" orders that are “not yet due” at time ¢ (33)
are still “not yet due” at time t + 7 | &, = (r + 1, 5",)"),
& =(0,0,0)] + o(2).

By the Independence Assumption and using (22) and (25), right-hand side of (33)
becomes

P(r+l’bn’yn)’(,«’bn’yn)(t, t+ T)
=T =Y T =Y+ D) g, 0" 1Y) + o(2)

—nae =Y+ 1 -
= < riyn )p(r) Y1 = po)]

- (§ )ﬁ(r)y" [1-5@)]° + o(@)

= "W (r =y Dp(e) ™ [1 = p(@)] pe)” + o(2).

(34)

Note that 5" has not changed because OH(f) < S, and therefore none of the existing
non-critical backorders are cleared, if any.

(d) The non-critical order is due:
P(r’bn_l,yn+]),(r,bn’yn)(t, r+ T)
= P[no demand occurs during (¢, ¢ + z]; all r units in the
resupply at time ¢ are still in the resupply at time ¢ + 7;

. 35
among the y" + 1 orders that are “not yet due” at time f, (35)
y" of them are still “not yet due” at ¢ +

[&=@rb" =1,y +1), & =(0,0,0)] + o(z).

By the Independence Assumption and using (22) and (25), right-hand side of (35)
becomes

P(r’bn_1’yn+1)’(r’bn,yn)(t, t+ T)
= g~ W+ qm(r —yY' —1|r=y'=1) qm(yn [y'+1) + o(z)

= (L0 e el
: < g ";,S 1 > P [1=p@)]" + o(2)
= e FH py " (4 DR [1 = (@) + o(D).
(¢) Nothing happens:

(36)
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Pl ym rin (-1 +7)
= P[no demand occurs during (¢, t + 7]; all r units in
the resupply at time ¢ are still in the resupply at t + 7
units; all y* orders that are “not yet due” at time ¢ (37)
are still “not yet due” at time t + 7 | &, = (r,b",y"),

£ =(0,0,0)] + o(r).
By the Independence Assumption and using (22) and (25), right-hand side of (37)
becomes

TEEOT g =y P =Y §,.0" V) + o(z)

_ e (T r—y" 0
—e(*')<r_w>p@)y[1—Mﬂ]

P(r’bn’yn)’(r’bn’yn)(t, r+ T) =e

) (38)
-<§>ﬂnfh—ﬂm°+dﬂ

=e W7 () B2y + o().

By conditioning on the state of the system at time #:

Py (0, 8) = > P0.00y.559(0: D) * Pisor 3y r oy (1 ).
7, 0",5") € Fs)
(39
Then using (39), the probability of being at system state (r,b",y") at time
' =t + 7 can be written as

P.0,0),rpr (05 1+ 7)
= P0,0,0),r- 1537105 1) = Py gy 1) g yoy (61 + 7)
+ P0,.0.0).—1,6n31) 05 1) = Py pn gy (. yy (B T+ T)
+ P00y, r+1,0y1) (05 1) = Py gy gy (1 + T) (40)
+ P0.0.0).rpr—1,+1) 05 D) = Py g1y oy (&, T+ T)
+ P 0.0.0).ny) (05 1) < Py gy (851 4 T)
+ o(7).
Under the Independence Assumption, each of the one-step transition probabili-
ties on the right-hand side of (40) can be determined using the results in (30),

(32), (34), (36), and (38).

Subtracting P ) (. y(0, ) from both sides and taking the limits as 7 — 0:

2
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lim P(O,(),O),(r,b",y")(o’ t+ T) - P((),O,()),(r,b",y”)(o’ t)

=0 T

P(r—l,b“,y"—1),(}',b",y”)(t’ r+ T)

= P.00)¢-140y-1)(0, 1) - lim -

P(r_]’brl’yn)’(r’bn’yn)(t, 1+ T)

+ P(O,O,O),(r—l,b",y")(o’ t) N ll_l;r(l) 7

P(r+l,b",y”),(r,b”,y”)(t’ t+ T) (41)

+ P00 r+14my (0, 1) - lim "

P(r’hn_]’yn+1)’(r’bn’yn)(t, t+ T)

+ P(O,O,O),(r,b”—l,y"+1)(0’ R 11_1;1(1) T

(1 - P(r’bn’yn)’(r’bn’yn)(t, t+ T))

T

- P(O,O,O),(r,b”,y")(07 t) * 1i_1;%

The left-hand side of Eq. (41) is

hm P(O,O,O),(r,b",y”)(o’ t+ T) - P(Oqoyo),(r,bn‘yn)(O, t)

70 T

_ p/
- P(O,O,O),(r,b”,y”)(o’ t) (42)

To determine the right-hand side, first we need to determine the limits as 7 — 0.
Limits as 7 — 0:

(a) Using (30),
1' P(r—l,b”,y”—l),(r,b”,y")(t’ t+ T) . A"Te_’lf p(‘[)r_y” ﬁ(T)y“—l . O(T)
im =lim + lim —,
=0 T 7—0 T =0 T
substituting values of p(z) from (21) and p(z) from (24),
An,[e—ﬂr [1 _ a9 ]r—y” [1 _ i]y”—l
. JeL+i(L—H) H
= lim (43)
T T
="
(b) Using (32),
fim Lo BT e @y R o)
7—0 T =0 T =0 T
substituting values of p(z) from (21) and p(z) from (24),
oo M]"”‘l [1 _ z]y"
. JeL+ A7 (L—H) H
= lim (44)
T T
=A°.

(c) Using (34),

@ Springer



Optimizing stock levels for service-differentiated demand... 421

P(r+1’bn’yn)’(r’hn,yn)(t, t+ T)
m
70 T
—( )T n " 0
. e r=y'"+ Dp) 7 [1-p Ty .oo(r
— lim (r=y"+ Dp(z)™[1 = p()] p(7) + Tim ( )’
=0 T =0 T

substituting values of p(r) from (21) and p(z) from (24),

. - Y
—(H AT (e _ _ o " A+ _z
. € r=y"+1 [1 AL+ A"(L—H) AL+ (L-H) ! H
= lim ’
70 T

n

replacing the corresponding terms with g from (27) and 9 from (28),

e W7 (r =y 4+ D[ = pr) ™ pr [1 = 97

= lim
=0 T
=(r ="+ Dulim e @7 lim [1 = pe] ™" lim [1 - 9} (45)
=(r=Y"+Dpu.
(d) Using (36),
. P(r’bn_l7yn+1)7(r7bn!yn)(t, t+ T)
lim
=0 T
W@y T + D@ [ - ()] o(r)
= lim + lim —=,
=0 T =0 T
substituting values of p(r) from (21) and p(z) from (24),
- Vv
e [ oo Y n e
i ¢ 1 /1“L+M(L—H)] 0"+1D [1 H] (H)
g T .
replacing the corresponding terms with u from (27) and 9 from (28),
i T = e 0 4+ DI = 971 9
7—0 T
= (" + DI lim e lim [1 - pr)™" lim [1 - 97" (46)
=0"+13J.
(e) Using (38),
hm (1 - P(r’bn’yn),(r,bn’yn)(t, r+ T))
7—0 T
1— —(A"+ AT r=y" > V"
i L PO D@ ofm)
=0 T 70 T

substituting values of p(z) from (21) and p(z) from (24),
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| = gmrioye [ — _Gewae 170 2]

i AL+ A"(L—H)

= 11m )
7—0 T

replacing the corresponding terms with u from (27) and & from (28),

PO Bl e 5 W L ek

=0 T

Since there is no point of discontinuity, we can apply the L’'Hdpital’s rule. Then
the right-hand side becomes

= m%(/l” + A9)e” WO 1 — ™Y (1 - 977
+ lim —e™ O = Y1 = e T =l - 97

+ OO =P (=PI — pr)™"}
=(/ln+ﬂc) + (r_yn)” + yn19

(47)

Plugging the values of these limits into Eq. (41), we have

Plo00yraym 0D = P0,0.0) 1.7 y1-1)(0, ) A"
+ Poo0ir—1mym (0,0 A°
+ P00 r+1myn 0 D) (r =y" + D (48)
+ P00 pr-1ym41(0: 0 0" + 1)9
— P00y 00 [(X 4+ 2) + (r =y + y'9).

Assuming the steady-state distributions exist, taking the limits as t — oco:
fim P
= 1im {P00.0)(r-1.6n-1)(0: ) 4"
+P0.0,0), -1,y (0, 1) A
+ P0,0.0).¢+1,0yn 0, D) (r =y + D
+ P00y -1,y (0, D) ¢ + 1)I (49)
— P00y 0D [(A" + 4 + (r =y + ¥'9] }
= Ty gty A+ Tpog pn gy A
+ gty T =Y+ D+ 7 g gy 07+ DI
— gy [(A"+A) + (r =y + 9]

0,0,0),(7‘,[)”,_\"‘)(0’ t)

P00 iy, is bounded by O and 1 for all 7 Hence, if
lim,_, P;O 0.0).(r-b" yn)(O, 1) converges, it must converge to 0. But as shown, the right-

hand side of (49) has a fixed value. Hence the left-hand side of (49) is zero. Rear-
ranging the terms, we have

@ Springer



Optimizing stock levels for service-differentiated demand... 423

[(A" + 29 + (r =Y + Y| 7w o)

— )n c
= ATy T ATy

+ (r — yn + 1)”ﬂ(r+1’bn’yn) + (yn + 1)197r(r,b"—1,y”+1)'
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