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Abstract
In this paper, we study a service parts inventory management system for a single product 
at a parts distribution center serving two priority-demand classes: critical and non-criti-
cal. Distribution center keeps a common inventory pool to serve the two demand classes, 
and provides differentiated levels of service by means of inventory rationing. We assume 
a continuous review one-for-one ordering policy with backorders and Poisson demand 
arrivals. Only one demand class provides advance demand information whose orders are 
due after a deterministic demand lead time, whereas the orders of the other demand class 
need to be satisfied immediately. The problem has been studied before, but remained 
a challenging problem. The quality of the existing heuristic for estimating the critical 
class service levels can diminish significantly in some settings and the search routine 
for the service level optimization model relies on a brute force approach. Our contribu-
tion to the literature is twofold. For the given class of inventory replenishment and allo-
cation policies, first we determine the form of the optimal solution to the service level 
optimization model, and then we derive an exact optimization routine to determine the 
optimal policy parameters provided the steady-state distribution is available. The compu-
tation of steady-state probabilities is needed only once. Second, we propose an alterna-
tive approach to estimate steady-state probabilities. By analyzing the limiting behavior 
of transition probabilities during infinitesimal time intervals, we are able to characterize 
the relationships between the steady-state probabilities, which satisfy nicely formed bal-
ance equations under the so-called Independence Assumption. In the numerical study 
section, we show that our approach provides superior performance in estimating service 
levels than the existing heuristic for all the examples considered. We also compare the 
performance of using the critical class service levels computed according to our method 
against the service levels computed by the existing heuristic, and show that our method 
can provide inventory savings up to 16.67%.
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1  Introduction

To better manage customer classes with different service level requirements, 
managers are constantly seeking new ways to improve system performance. For 
the last two decades, in addition to incorporating inventory rationing strategy in 
demand pooling, there is also a growing literature in integrating advance demand 
information (ADI) into inventory allocation and replenishment decisions. Numer-
ous studies show that ADI improves system performance when used effectively 
and it may be possible to reduce the need for inventory or excess capacity.

Two types of ADI have been studied in the literature. In the “perfect ADI”, 
customers provide exact information about their orders. The orders are to be 
delivered at a certain time in the future. Therefore, the time between order place-
ment and due date, which is called demand lead time (DLT), is deterministic. 
There are no variations in the size of the order, and cancelations are not allowed. 
On the other hand, in the “imperfect ADI”, early signals (or estimates) about 
prospective future orders are provided. Order sizes and due dates are subject to 
change, and cancelations might also be allowed.

Continuous advancements in information technology make it easier and inex-
pensive to collect and process prospective demand information in a timely man-
ner, which leads to higher availability of advance demand information. Addition-
ally, with increased cooperation between suppliers and customers, customers are 
more willing to share their advance demand information with suppliers in return 
for lower costs and higher service levels, which also leads to potential improve-
ments in supply chain performance. However, the availability of advance demand 
information raised important managerial and research questions in the literature 
such as: How to incorporate ADI into the current policy? How beneficial is per-
fect/imperfect advance demand information for suppliers and customers? How 
do the system parameters affect the value of perfect/imperfect ADI? What is the 
optimal strategy to allocate inventory among different customer classes under 
perfect/imperfect ADI? How does the availability of ADI affect operation deci-
sions and supply chain performance?

There may be several reasons why customers differ in their ADI structures. For 
example, only one of the customer classes might have the ability to accurately 
plan for repairs and scheduled maintenance. The customer knows exactly the time 
when that service part will be used in the repair/maintenance, and inform the ser-
vice parts supplier as soon as this information is available. For another exam-
ple, due to the information technologies in use, one of the customer classes can 
quickly diagnose the failed part via sensors and inform the supplier in advance 
before the actual repair/maintenance starts.

In this paper, we are motivated by a generic problem in incorporating perfect 
advance demand information into the threshold level based inventory rationing 
within the framework of continuous review one-for-one ordering policy (also 
known as the (S − 1, S) policy), and aim to find its effect on system stock levels 
and performance measures. We study a service parts inventory management sys-
tem for a single product at a parts distribution center serving two priority-demand 
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classes: critical and non-critical. We assume that both customer classes have long 
term relations with the service provider and therefore both customer classes are 
willing to wait for the backordered demands. However, minimum service level 
requirements are imposed through the existing contracts. According to the service 
level agreements, the critical demand class has contracted for a higher service 
level than the non-critical demand class. The distribution center keeps a com-
mon inventory pool to serve the two demand classes, and provides differentiated 
levels of service by means of inventory rationing. A reserve level of inventory is 
held for use by critical demand class only, in anticipation of future demands. The 
two demand classes also differ in terms of their ADI structures. Only one demand 
class provides ADI whose orders are due after a deterministic demand lead time, 
whereas the orders of the other demand class need to be satisfied immediately. 
According to our model setting, the demand class, which provides the perfect 
ADI, does not accept early deliveries and wants to receive the part as soon as it 
is needed in a just-in-time fashion. (The same assumption is also used by, i.e., 
Hariharan and Zipkin (1995), Wang et al. (2002), Koçaǧa and Şen (2007), Ben-
jaafar et  al. (2011).) Hence, early fulfillment of orders before due dates are not 
allowed. We consider both cases. In the first one, critical demands are due imme-
diately, whereas non-critical demands are due after a fixed DLT. In the second 
one, we consider the opposite case in which non-critical demands are due imme-
diately while critical demands are due after a fixed DLT. Both priority classes 
exhibit mutually independent, stationary, Poisson demand processes. Whenever a 
demand of any type occurs, immediately a replenishment order is given through 
the supplier, which will be received after a constant lead time. Existing back-
orders are cleared according to the priority clearing mechanism.

Our objective is to find the optimal policy parameters (base-stock and threshold 
levels) that minimize the system stock (base-stock level) while satisfying service 
level constraints for both demand classes.

This model setting has also a practical importance, which has been studied before 
by Koçaǧa and Şen (2007) but remained a challenging problem. Their research orig-
inated from their real life experience with a leading capital equipment manufacturer 
which is at the top of the supply chain for many high technology products. The com-
pany has an extensive spare parts network (with more than 50,000 active parts need 
to be managed) which consists of more than 70 company owned distribution centers 
and depots across the world. The depots and regional distribution centers face two 
types of demand streams as down orders which that need to be satisfied immedi-
ately, and lead time orders which need to be satisfied at a future date.

The exact analysis for computing the steady-state probabilities seems intracta-
ble for this model. Even for the “ DLT = 0 ” model, Vicil and Jackson (2016) show 
the difficulty of the exact analysis indicating that to predict the system state after 
a lead time, both the current system state information and the knowledge of the 
sequence of events over the lead time become relevant, which tremendously increase 
the complexity of the solution. In addition, the standard inventory balance equa-
tions do not hold: The physical stock and backorders can exist at the same time. To 
estimate service levels for this model, Koçaǧa and Şen (2007) use the same strong 
assumption as Dekker et al. (1998): A lead time ago, there are no existing orders and 
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on-hand inventory is equal to the base-stock level. To determine the critical demand 
class service level, Koçaǧa and Şen (2007) use a similar hitting time approach as 
employed by Dekker et al. (1998). However, as we show in the numerical study sec-
tion, the absolute errors for the critical demand class service level can be significant 
in this approach in some settings (as high as 34.65%).

To improve the quality of approximation, we choose an unorthodox method and 
base our analysis on the limiting behavior of state transition probabilities during 
infinitesimal time intervals (rather than the traditional approaches used in the inven-
tory theory and control literature, i.e., choosing an arbitrary point in time and predict 
the system state after a lead time). Then conditioned on being at a certain state, by 
relaxing the dependency of both the age-of-pipeline vector and the age-of-order-due 
date vector to the number of non-critical backorders (the so-called Independence 
Assumption), we are able to characterize the relationships between the steady-state 
probabilities. We show that the steady-state probabilities satisfy nicely formed bal-
ance equations, which can be easily solved via numerical methods. Furthermore, 
after establishing several structural properties regarding the properties of the steady-
state distribution and service levels, we are able to provide a computationally effi-
cient optimization routine which requires the computation of steady-state probabili-
ties only once.

The remainder of the paper is organized as follows. In Sect.  2, we review the 
literature on related inventory systems and summarize our main contributions. In 
Sect. 3, we study the service level optimization model for the system setting in which 
critical demands are due immediately, whereas non-critical demands are due after a 
fixed DLT. In Sect. 4, we propose a method to estimate the steady-state probabilities 
and the critical demand class service level. In Sect. 5, we study the alternate model 
in which non-critical demands are due immediately, whereas critical demands are 
due after a fixed DLT. In the numerical study section, Sect. 6, we compare the per-
formance of our method with the existing heuristic using simulation.

2 � Literature review

This study is related to two streams of work. The first one consists of operations 
management papers which study the use of ADI/DLT in inventory and production 
decisions. The second one consists of inventory management papers that study the 
inventory allocation and replenishment decisions among different priority customers 
via demand pooling and inventory rationing.

Hariharan and Zipkin (1995) are among the first to study DLT in inventory/dis-
tribution systems. They demonstrate that demand lead times improve performance, 
in precisely the same way the replenishment lead times degrade it. Donselaar et al. 
(2001) consider two types of demand as regular demand from small orders, and very 
irregular lumpy demand from infrequent, large orders. They analyze the inventory 
reduction that could be achieved if the advance demand information could be pro-
vided to the manufacturer. Gallego and Özer (2001) consider the portfolio of cus-
tomers with different demand lead times. They show that state-dependent (s, S) and 
base-stock policies are optimal for stochastic inventory systems with and without 
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fixed costs in a finite-horizon setting in which customers place advance orders. They 
also determine conditions under which advance demand information has no oper-
ational value. Karaesmen and Buzacott (2002) investigate the structure of optimal 
control policies for a discrete-time-make-to-stock queue with advance demand infor-
mation. They propose a heuristic policy based on an extension of the base-stock that 
integrates advance demand information through a release lead time parameter. Özer 
and Wei (2004) consider a periodic-review, stochastic, capacitated, finite and infinite 
horizon production system, and show how advance demand information can be a 
substitute for capacity and inventory. Wang and Toktay (2008) analyze an inventory 
management with advance demand information and flexible delivery. Their model 
is closely related to the discrete-time, uncapacitated, advance demand information 
model of Gallego and Özer (2001), except that they allow for delivery flexibility. In 
a two-period setting, Tan et al. (2009) investigate the impact of using imperfect ADI 
in a production/inventory system with two priority-demand classes and inventory 
rationing. They aim to minimize the expected total costs, under the assumption that 
unmet demand is lost. Boyacı and Özer (2010) study a profit-maximization model 
in which a manufacturer collects advance sales information periodically prior to the 
regular sales season for a capacity decision. Benjaafar et al. (2011) analyze a pro-
duction-inventory systems with imperfect advance demand information. Customers 
are allowed to update the status of their orders and may request an order fulfillment 
prior to or later than the expected due date. Bernstein and DeCroix (2015) study the 
impact of different types of advance demand information on optimal capacities and 
profit. According to their model, the firm receives information revealing either the 
total volume of demand across products or the mix of demand between products. 
Topan et al. (2018) examine a single-item, single-location, periodic-review lost sales 
inventory model with a general representation of imperfect ADI. Their model allows 
for returning excess stock built up due to imperfections to the upstream supplier.

In the continuous review inventory management framework, there are numer-
ous studies in the literature which consider static rationing models for differentiated 
demand classes. For the (Q,R) models, Nahmias and Demmy (1981) are among the 
first to consider rationing. They consider a critical level policy with Poisson demand 
processes and constant lead times for two priority demand classes. Demands can 
be backordered. They provide approximations for the expected number of back-
orders under the assumption that at most one order is outstanding. Their model is 
extended by Moon and Kang (1998) to a compound Poisson demand process. Mel-
chiors et al. (2000) study the same model as Nahmias and Demmy (1981), but with 
the lost sales assumption. They present an exact formulation of the average inven-
tory cost and then provide a simple optimization procedure. Deshpande et al. (2003) 
study a model similar to Nahmias and Demmy (1981) but allow multiple outstand-
ing orders in the pipeline, which increases the complexity of the analysis. They pro-
pose approximations on the expected number of backorders and provide an efficient 
algorithm for computing the optimal policy parameters. Arslan et al. (2007) analyze 
a similar model as Deshpande et al. (2003), but allow multiple demand classes that 
are characterized by different shortage costs or service requirements. They show that 
there is sample-path equivalence between their backorder clearing rule and the serial 
inventory system. For the (S − 1, S) backorder models, Dekker et al. (1998) study a 
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critical level policy within the framework of one-for-one inventory model with two 
demand classes and backorders. The demand process is a Poisson process and order 
lead times are constant. They provide approximations for estimating the service 
level for the critical demand, while the analysis for non-critical demand is exact. 
Wang et  al. (2002) study distribution systems that provide two classes of service 
that differ in their demand lead times. An emergency service demand is to be filled 
immediately upon its arrival, while a non-emergency demand is to be filled after a 
deterministic demand lead time. Vicil and Jackson (2016) study a similar model as 
Dekker et al. (1998) but allow general lead time distributions. By exploring the lim-
iting behavior of state transitions during infinitesimal time intervals, under the cer-
tain approximation assumption, they show that the steady-state distributions of the 
model is identical to the steady-state distributions of the model with exponentially 
distributed lead times with the same mean. Vicil and Jackson (2018) study the same 
model as Vicil and Jackson (2016) but include class-specific expected waiting-time 
requirements in addition to the fill-rate constraints. They characterize the form of the 
optimal solution in this model setting and propose a simple two step solution strat-
egy to determine optimal base-stock and threshold levels. In a recent work, Gabor 
et al. (2018) consider a similar inventory system as Dekker et al. (1998) but differs 
in terms of the service level measures. Their model assumes that the service level of 
low-priority customers is measured by a response time guarantee, while the service 
level of the high-priority customers is measured by the fill rate. For the lost sales 
models within the continuous review (S − 1, S) framework, Dekker et  al. (2002), 
Kranenburg and van Houtum (2007), and Isotupa (2015) all study a critical level 
policy for multiple demand classes with Poisson demand processes.

In the stream of the literature that consider both ADI/DLT and differentiated cus-
tomer classes in terms of their priority, Koçaǧa and Şen (2007) is the first study to 
simultaneously consider demand lead times and rationing. They provide an approxi-
mation for the critical service level while the service level for the non-critical 
demand class is exact. Recently, Basten and Ryan (2019) consider a periodic review 
inventory system with zero replenishment lead times and two demand classes. They 
study the impact of maintenance delay flexibility on the optimal inventory control 
policies.

The problem we consider in this article is identical to the model studied by 
Koçaǧa and Şen (2007), and closely related to the models described in Dekker et al. 
(1998), Wang et al. (2002), and Vicil and Jackson (2016, 2018). We simultaneously 
consider inventory rationing and demand lead times. The exact analysis for comput-
ing the steady-state probabilities seems intractable. To overcome this obstacle, we 
use a similar approach employed by Vicil and Jackson (2016) and base our analy-
sis on the limiting behavior of state transition probabilities during infinitesimal time 
intervals under the certain approximation assumption. Our main contributions are 
summarized as follows:

•	 We provide structural results for the steady-state distribution and performance 
measures of the original model setting studied in this article. Koçaǧa and Şen 
(2007) provide structural results (with limited scope compared to ours) based on 
their proposed approximation for the service level measures.
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•	 We are able to determine the form of the optimal solution to the service level 
optimization model for the given class of inventory replenishment and allocation 
policies. We also provide an exact search algorithm to determine optimal policy 
parameters which requires the computation of steady-state probabilities only 
once. In their study, Koçaǧa and Şen (2007) found the optimal policy param-
eters through the brute force search approach (though, they were able to limit the 
number of possible policy parameters to consider).

•	 Our optimization search routine can be used with any approach; it doesn’t matter 
whether the steady-state probabilities are determined via our proposed approxi-
mation, simulation study or any other heuristic. These (approximated) steady-
state probabilities can be used as an input to our optimization algorithm, then the 
algorithm provides the optimal policy parameters as an output for the heuristic 
being used.

•	 Since our method allows us to determine the limiting distribution of being at any 
given system state, other performance measures such as expected on-hand stock, 
and expected number of critical and non-critical class backorders can be easily 
estimated. This information would be useful especially in cost optimization mod-
els.

•	 In the numerical study section, we show that our approach provides superior per-
formance in estimating the critical class service level than the existing heuristic 
for all the examples considered. In the numerical study, we show that the average 
absolute errors of the existing heuristic are 2.30% (the non-critical class has a 
DLT) and 3.50% (the critical class has a DLT), while the average absolute errors 
are 0.38% and 0.09% , respectively, for our approach. Furthermore, the maximum 
absolute errors of the existing heuristic are 19.46% and 34.64% for the two cases, 
while they are limited to 4.79% and 0.52% in our approach.

•	 In the optimization study, we also compare the performance of using the critical 
class service levels computed according to our method against the service levels 
computed by the existing heuristic, and show that our method can provide inven-
tory savings up to 16.67%.

As a final remark, incorporation of the DLT into the current threshold ration-
ing policy imposes fundamental challenges in the analysis. Although both inventory 
systems may seem to be similar at first sight, the DLT model is not a simple exten-
sion to the “ DLT = 0 ” model. This is mainly because the demand process and the 
due date process are not identical in the DLT model. As a result, the evolution of 
changes in system states in both models differ from each other. This in turn affects 
the system dynamics, and consequently the steady-state probabilities. Therefore, 
the structural results of the Vicil and Jackson (2016, 2018) studies, which are valid 
for the “ DLT = 0 ” model, cannot be directly used in the DLT model. The struc-
tural properties should be defined and proved for the DLT model with the neces-
sary changes in expressions and definitions. Furthermore, Vicil and Jackson (2016) 
proved that under the so-called independence assumption, the steady-state distribu-
tion of system states with deterministic or stochastic lead time distribution satisfies 
the same balance equations as the system with an exponential lead time distribution 
with the same mean. On the other hand, under a similar independence assumption, 
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the balance equations we derived in this paper are different than would be the bal-
ance equations of the system with exponential lead times. This also shows that the 
model we study in this paper has different dynamics than the model studied by Vicil 
and Jackson (2016).

3 � Service level optimization model

We consider two priority-demand classes: critical and non-critical. Critical demand 
class requires a higher service level than the non-critical demand class. Both prior-
ity classes exhibit mutually independent, stationary, Poisson demand processes, with 
rates �n and �c . We assume a continuous review one-for-one policy with a base-stock 
level S. Whenever a demand of any type occurs, immediately a replenishment order 
is given through the supplier, which will be received after a constant lead time of L.

Distribution center keeps a common inventory pool to serve the two demand 
classes, and provides differentiated levels of service by means of inventory rationing. 
A reserve level of inventory, denoted by Sc, is held for use by critical demand class 
only, in anticipation of future demands. According to the model, critical demands 
are due immediately, whereas non-critical demands are due after a deterministic 
DLT of H. At their due dates, orders of non-critical class are backordered if on-
hand stock is at or below a certain threshold level Sc , while critical class orders are 
backordered only if on-hand stock is zero. We assume that H ≤ L , so that the DLT is 
not quoted longer than the replenishment lead time. In our model, service levels are 
measured in terms of fill rate, which is defined as the percentage of demands satis-
fied immediately from on-hand stock at their “due dates”.

So, the proposed policy works as follows: an incoming critical demand (which 
is due immediately at the time of its arrival) is satisfied as long as there is physical 
stock. Otherwise, it is backordered. A non-critical class order is accepted upon its 
arrival, which is due after H time units. At its due date, the non-critical demand is 
satisfied only if on-hand stock is above the threshold level Sc . Otherwise, it is back-
ordered. Since a one-for-one policy is followed, the arrival of any demand, either 
by a critical or a non-critical class, triggers an immediate replenishment order of 
size 1, which will be received after a constant lead time of L. Existing backorders 
are cleared according to the priority clearing mechanism. Incoming replenishment 
orders are first used to clear critical class backorders, if there exists any. Otherwise, 
they are used to restore the reserve stock as long as on-hand stock is less than the 
threshold level Sc . Existing non-critical backorders are only cleared if on-hand stock 
is at the threshold level Sc at the delivery times. Only after all non-critical back-
orders are cleared, deliveries are used to increase on-hand stock beyond Sc.

At any time t,   let OH(t) denote the number of units on-hand, R(t) denote the 
number of units in resupply, Bc(t) denote the number of outstanding critical back-
orders, Bn(t) denote the number of outstanding non-critical backorders, and Yn be 
the number of non-critical class orders that have been accepted but not yet due. 
Under the one-for-one replenishment and threshold level based raioning and back-
order clearing policy, the following relations hold:
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These relations are also valid for the steady-state distribution of these quanti-
ties, denoted by OH,  R,  Bc, Bn , and Yn . Therefore, it is sufficient to capture the 
stationary distribution of (R,Bn, Yn).

Note that although the one-for-one replenishment policy is in use, inventory 
position can be higher than the base-stock level S in this model due to the demand 
lead time effect. For example, for a given (S, Sc) pair, if there are exactly two 
non-critical demands during [0, H), at time H on-hand stock will be S while the 
inventory position will be S + 2 . This property also adds to the complexity of the 
steady-state analysis.

Furthermore, at any point t in time, the difference [R(t) − Yn(t)] has an effect on 
the net inventory level. Yn(t) represents the number of non-critical demands arrived 
during (t − H, t] and whose order due dates have not yet come by time t. Since a one-
for-one replenishment policy is implemented, each demand arrival triggers a replen-
ishment order of size 1. Therefore, Yn(t) portion of the R(t) does not affect the net 
inventory level at time t. This result also leads to the following implicit conditions:

Our objective is to determine the optimal policy parameters ( S, Sc) that minimize 
the total inventory investment (base-stock level) S while satisfying all service level 
constraints for each demand class.

Let �n(S, Sc) (respectively �c(S, Sc) ) denote the fill rate achieved for the non-crit-
ical (respectively critical) class demands as functions of ( S, Sc ). Due to the Poisson 
Arrivals See Time Averages principle, arriving demands face the steady-state dis-
tribution of on-hand inventory (see, e.g., Tijms 1986). At their corresponding due 
dates, non-critical class demands are served if and only if on-hand stock is greater 
than Sc , and critical class demands are served if and only if on-hand stock is non-
zero. Hence, if we denote P∞( ·) as the steady-state probability distribution of a ran-
dom process, then the provided fill rates will be as follows:

and

(1)S = OH(t) + R(t) − Bc(t) − Bn(t) − Yn(t).

(2)OH(t) =
[
S − R(t) + Bn(t) + Yn(t)

]+

(3)Bc(t) =
[
R(t) − Bn(t) − Yn(t) − S

]+
.

(4)Yn(t) ≤ R(t),

(5)Bn(t) ≤
[
R(t) − Yn(t) − (S − Sc)

]+
.

(6)�n(S, Sc) = 1 − P∞(OH ≤ Sc | (S, Sc)),

(7)�n(S, Sc) = 1 − P∞(OH = 0 | (S, Sc)).
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The optimization problem can be written as:

for contractually-specified service levels 𝛽c and 𝛽n , 𝛽c > 𝛽n > 0.
Although the one-for-one replenishment policy is implemented and the model is 

a pure backorder model, computing accurate service levels is still a challenging task 
due to the effects of inventory rationing and demand lead times. The steady-state 
analysis is very difficult, if not impossible. Even if the knowledge of a system state 
at any point t in time is known, it is still very difficult to probabilistically determine 
the system state after an order lead time L. This is because, not only the number 
of demand arrivals and deliveries over a lead time affect the system state at time 
t + L , but also the sequence of those demand arrivals and deliveries have effect. 
Furthermore, the demand lead time has also an effect on the system state since 
non-critical class orders are due H time units later upon their occurrence. Those 
dynamics contribute significantly to the complexity of the analysis. To show this, let 
us consider a model with policy parameters (S, Sc) = (4, 2) , order lead time L = 2 , 
and demand lead time H = 0.5 . At a random point t in time, let the system state 
be OH = 2,R = 3,Bn = 1,Bc = 0, Yn = 0 , and consider the following four scenarios 
with the corresponding event lists. Timings of events are also indicated within the 
parentheses. In each scenario, there are exactly two critical demand arrivals, two 
non-critical demand arrivals and three deliveries. However, we change the sequence 
and/or timings of events while keeping number of demand arrivals of each type and 
deliveries unchanged. 

Scenario I:	� Event List = {non-critical demand (t + 0.1) , critical demand (t + 0.2) , 
delivery (t + 0.3) , delivery (t + 0.4) , delivery (t + 1.2) , critical 
demand (t + 1.3) , non-critical demand (t + 1.6) }. The resulting sys-
tem state at time t + L will be OH = 1,R = 4,Bn = 0,Bc = 0, Yn = 1.

Scenario II:	� Event List = {non-critical demand (t + 0.1) , critical demand (t + 0.2) , 
delivery (t + 0.3) , critical demand (t + 1.3) , non-critical demand 
(t + 1.6) , delivery (t + 1.7) , delivery (t + 1.9) }. The resulting system 
state at time t + L will be OH = 2,R = 4,Bn = 1,Bc = 0, Yn = 1.

Scenario III:	� Event List = {non-critical demand (t + 0.1) , critical demand (t + 0.2) , 
delivery (t + 0.3) , non-critical demand (t + 1.3) , critical demand 
(t + 1.6) , delivery (t + 1.7) , delivery (t + 1.9) }. The resulting system 
state at time t + L will be OH = 2,R = 4,Bn = 2,Bc = 0, Yn = 0.

Scenario IV:	� Event List = {delivery (t + 0.1) , delivery (t + 0.2) , delivery (t + 0.3) , 
non-critical demand (t + 1.3) , non-critical demand (t + 1.4) , critical 
demand (t + 1.6) , critical demand (t + 1.7) }. The resulting system 
state at time t + L will be OH = 2,R = 4,Bn = 2,Bc = 0, Yn = 0.

min S

s.t.

𝛽n(S, Sc) ≥ 𝛽n

𝛽c(S, Sc) ≥ 𝛽c

S > Sc ≥ 0,
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As can be observed from those examples, depending on the sequence of events 
and their timings, the resulting system state after an order lead time may differ 
greatly. Although this is a pure backorder model, keeping track of every possible 
permutation of events enormously increases the complexity of the solution. How-
ever, to overcome this obstacle, we are going to adapt a similar approach used by 
Vicil and Jackson (2016, 2018), and then base our analysis on the limiting behavior 
of state transitions over an infinitesimal time interval.

First, we establish structural properties for the steady-state distribution and ser-
vice level measures, which hold regardless of the lead time distribution. Then, 
provided a method for computing stationary probabilities is available, we present 
a computationally efficient optimization algorithm to determine optimal policy 
parameters (S, Sc) which requires the computation of steady-state probabilities only 
once. And finally we present a method to compute the steady-state probabilities. Our 
approach is exact for the calculation of the non-critical class service level, while it is 
a high quality approximation for the critical class service level.

3.1 � Structural results and properties of the steady‑state distribution

For given (S, Sc) pair and system parameters �n, �c, L, and H, beginning from a 
regeneration point in which there is no unit in the resupply system, let (m,Tm,Em) 
describe the m th event in the system: Tm is the time of the m th event, and Em is 
the type of event where Em ∈  {“v”, “n”, “c”, “y”} representing events “delivery”, 
“non-critical demand arrival”, “critical demand arrival”, and “non-critical order 
due date”, respectively. After the m th event, let Rm denote the number of units in 
resupply, Bn

m
 denote the number of non-critical backorders, and Yn

m
 denote the num-

ber of non-critical orders received but not yet due. Clearly at the regeneration point 
m = 0,R0 = 0,Bn

0
= 0 and Yn

0
= 0.

Proposition 1  The dynamics of (Rm,B
n
m
, Yn

m
) can be described completely in terms 

of the sample path 
{
(m,Tm,Em);m = 1, 2, 3,…

}
∶

Proof  See “Appendix 1”. 	�  ◻

Rm =

⎧
⎪⎨⎪⎩

Rm−1 + 1, Em = “n” or “c”,

Rm−1 − 1, Em = “v”,

Rm−1, Em = “y”.

Bn
m
=

⎧⎪⎨⎪⎩

Bn
m−1

+ 1, Em = “y”,Rm−1 − Yn
m−1

≥ S − Sc,

Bn
m−1

− 1, Em = “v”,Rm−1 − Yn
m−1

> S − Sc, B
n
m−1

= Rm−1 − Yn
m−1

− (S − Sc),

Bn
m−1

, otherwise.

Yn
m
=

⎧⎪⎨⎪⎩

Yn
m−1

+ 1, Em = “n”,

Yn
m−1

− 1, Em = “y”,

Yn
m−1

, otherwise.
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Proposition 2  For a fixed S,  the following relations hold for all S ′
c
> Sc:

Proof  See “Appendix 2”. 	�  ◻

Let Z0 = {0, 1, 2,…}, the set of non-negative integers and �t = (r, bn, yn) ∈ �(S,Sc)
 

denote the system state at time t,  t ≥ 0 , where �(S,Sc) represents the set of feasible states 
when the policy parameters are given by (S, Sc) . Clearly,

Let �(r,bn,yn)(S, Sc), (r, b
n, yn) ∈ �(S,Sc)

, denote the steady-state distribution of 
(R(t),Bn(t), Yn(t)) . The following proposition establishes an important invariance 
result.

Proposition 3  The steady-state probabilities �(r,bn,yn), (r, bn, yn) ∈ �(S,Sc)
, are invari-

ant to changes in S provided Δ = S − Sc is constant.

Proof  See “Appendix 3”. 	�  ◻

A similar invariance result has been previously established by Vicil and Jackson 
(2016) for the “ DLT = 0 ” model.

Let �h

(
S, Sc

)
 denote the stationary distribution of on-hand inventory when policy 

parameters are given by (S, Sc):

Then, using (2), we have

At a random point t in time, let us suppose R(t) = i and Yn(t) = j ; that is there 
are i replenishment orders outstanding, and there are j non-critical orders out-
standing that are not due yet. Let u[k] denote the age of the k th oldest replenish-
ment order and 

(
u[1], u[2],… , u[i]

)
 denote the age-of-pipeline vector. Similarly, 

let v[k] denote the age of the k th oldest non-critical order that is not due yet, and (
v[1], v[2],… , v[j]

)
 denote the age of non-critical order due date vector. Furthermore, 

let �(t) =
{
u[1], u[2],… , u[i]

}
 denote the set of age of replenishment orders in the 

�n(S, Sc) ≥ �n(S, S �
c
),

�c(S, Sc) ≤ �c(S, S �
c
).

�(S,Sc)
=
{
(r, bn, yn) ∶ yn ≤ r, bn ≤ [r − yn − (S − Sc)]

+, (r, bn, yn) ∈ Z0 × Z0 × Z0
}
.

�h

(
S, Sc

)
= P∞

(
OH(t) = h | (S, Sc)

)
, h = 0, 1,… , S.

(8)𝜑h

�
S, Sc

�
=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
(r, 0, yn) ∈ �(S,Sc)

(S − r + yn) = h

𝜋(r,0,yn)(S, Sc), Sc < h ≤ S,

∑
(r, bn, yn) ∈ �(S,Sc)

(S − r + bn + yn) = h

𝜋(r,bn,yn)(S, Sc), 0 < h ≤ Sc,

∑
(r, bn, yn) ∈ �(S,Sc)

(S − r + bn + yn) ≤ 0

𝜋(r,bn,yn)(S, Sc), h = 0.
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resupply and � (t) =
{
v[1], v[2],… , v[j]

}
 denote the set of age of non-critical out-

standing orders that are not yet due. Let P(�) denote the Poisson probability distri-
bution with mean � , and let p(k;�) = e−��k∕k! . Then, the cardinality of the differ-
ence of these two sets has Poisson distribution with mean �cL + �n(L − H)

The reasoning is as follows. Replenishment orders, which are originated from 
the demand arrivals before t − L , should have already arrived by t. Therefore at any 
point t in time, �(t) represents the set of timings of all the demand arrivals during 
(t − L, t] . Since total demand process is a Poisson process, |�(t)| is Poisson distrib-
uted with mean (�c + �n)L . Similarly, � (t) represents the set of timings of non-criti-
cal demand arrivals during (t − H, t] , and therefore |� (t)| is Poisson distributed with 
mean �nH . Hence, �(t)⧵� (t) represents the order process excluding the non-critical 
orders that are not due yet, but has impact on the net inventory level. Therefore, 
|�(t)⧵� (t)| has the same distribution as R(t) − Yn(t) , which is Poisson distributed 
with mean �cL + �n(L − H) . It is also important to note that the events represented 
in �(t)⧵� (t) are independent of the events in � (t) . (Note: R(t) and Yn(t) are depend-
ent Poisson random variables. If they were to be independent, the difference of these 
two random variables would be a Skellam distribution. See e.g., Skellam (1946) for 
more information.)

Using (8) and summing over all possible (r, yn) pairs, we can immediately cal-
culate �h

(
S, Sc

)
 for h > Sc

Therefore, we can determine the achieved fill rate exactly for the non-critical 
demand class

This result has also been established by Koçaǧa and Şen (2007), but they fol-
lowed a different approach.

One immediate result of (11) is the following corollary.

Corollary 1  The non-critical demand class fill rate �n
(
S, Sc

)
 is invariant to changes 

in S provided Δ = S − Sc is constant.

(9)|�(t)⧵� (t)| ∼ R(t) − Yn(t) ∼ P(�cL + �n(L − H)).

(10)

𝜑h

(
S, Sc

)
=

∑
(r, 0, yn) ∈ �(S,Sc)

r − yn = S − h

𝜋(r,0,yn)(S, Sc)

= p(S − h;𝜆cL + 𝜆n(L − H)), for Sc < h ≤ S.

(11)

�n
(
S, Sc

)
=

S∑
h=Sc+1

�h

(
S, Sc

)

=

S−Sc−1∑
k=0

p(k;�cL + �n(L − H)).
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This corollary establishes that under the proposed rationing policy, the non-crit-
ical demand class service level is a function of Δ , and therefore can be calculated 
without the knowledge of Sc . This significant result will be exploited during the opti-
mization procedure in Sect. 3.2.

However, the challenge is to determine the steady-state distribution of states for 
which OH ≤ Sc (equivalently R − Yn ≥ S − Sc ), which we need them to determine 
the critical demand class fill rate. In Sect. 4, we will develop an approximation pro-
cedure to compute these probabilities based on the limiting behavior of an infinitesi-
mal analysis.

Let �u

(
S, Sc

)
 denote the steady-state marginal distribution of the number of criti-

cal backorders excluding the cases for which on-hand inventory is positive. Defining 
the distribution this way will be useful later in the optimization routine.

The next two lemmas will be used to reduce the computational complexity of the 
search routine for finding the optimal (S, Sc) pairs. For fixed Δ , the following lemma 
allows us to determine steady-state probabilities for different (S, Sc) pairs directly 
from the knowledge of �u(Δ, 0) probabilities.

Lemma 1  For fixed Δ, k = 1, 2,… , and u = 0, 1,… ,

Proof  See “Appendix 4”. 	�  ◻

The next lemma establishes very useful property for the optimization search rou-
tine. As long as Δ is fixed, critical class service levels at different policy parameters 
(S, Sc) can be computed from the knowledge of �u(Δ, 0) without any further compu-
tation of steady-state probabilities.

Lemma 2  For fixed Δ, and k = 1, 2,… ,

Proof  See “Appendix 5”. 	�  ◻

(12)

�u

(
S, Sc

)
=P∞

(
Bc(t) = u, OH(t) = 0 | (S, Sc)

)

=
∑

(r, bn, yn) ∈ �(S,Sc)

(S − r + bn + yn)+ = 0

(r − bn − yn − S)+ = u

�(r,bn,yn)(S, Sc).

�u(Δ + k, k) = �u+k(Δ, 0).

�c(Δ + k, k) = �c(Δ, 0) +

k−1∑
u=0

�u(Δ, 0).
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3.2 � Optimization algorithm

Let Δ∗ be the smallest value of Δ = S − Sc that satisfies the required non-critical 
demand class fill rate:

By Corollary 1, (13) also implies that for any (S, Sc) pair to satisfy the non-critical 
demand class service level constraint, S − Sc should be at least Δ∗.

Let S∗
c
 be the smallest value of Sc that satisfies the required critical demand class 

fill rate under the condition that S∗ = S∗
c
+ Δ∗ ∶

Theorem 1  The parameters 
(
S, Sc

)
=
(
S∗, S∗

c

)
 are optimal for the fill rate optimiza-

tion model.

Proof  Suppose there exists another solution 
(
S′, S′

c

)
 that is feasible such that S� < S∗. 

In order this solution to be feasible with respect to the non-critical class fill rate 
constraint, we must have S� − S�

c
≥ Δ∗. Let us consider the solution 

(
S�, S� − Δ∗

)
. 

Due to Corollary  1, this solution satisfies the non-critical demand class fill rate 
requirement. Since the critical demand class fill rate is nondecreasing in Sc for fixed 
S (by Proposition 2), and since S� − Δ∗ ≥ S�

c
, we should have 𝛽c

(
S�, S� − Δ∗

)
≥ 𝛽c. 

But this implies S� − Δ∗ ≥ S∗
c
 by the definition of S∗

c
 ; which in turn implies 

S� ≥ Δ∗ + S∗
c
= S∗ , a contradiction. Therefore, there cannot be another feasible solu-

tion with a smaller value of S than S∗ . 	�  ◻

Note that we are not omitting the possibility that there may be multiple optimal 
solutions 

(
S∗, S�

c

)
 such that S�

c
≠ S∗

c
 . However, none of the optimal solutions can have 

S� < S∗ . The theorem guarantees to find one of the optimal 
(
S∗, Sc

)
 pairs.

Next, in Table 1 we present a computationally efficient approach to determine the 
optimal 

(
S∗, S∗

c

)
 pairs that requires the computation of steady-state probabilities only 

once. For now, we assume there is a method to compute stationary probabilities for 
states OH ≤ Sc . In the next section, we will present a method to approximate those 
probabilities.

4 � Estimating steady‑state probabilities and determining the service 
level for the critical demand class

For states (r, 0, yn) ∈ �(S,Sc)
 , r − yn ≤ S − Sc , we can immediately determine the 

steady-state probabilities. Because the knowledge of R(t) − Yn(t) and Yn(t) fully rep-
resent the system state at any point t in time, provided R(t) − Yn(t) ≤ S − Sc : for a 

(13)Δ∗ = argmin

{
Δ ∈ {1, 2,…} ∶

Δ−1∑
k=0

p(k;𝜆cL + 𝜆n(L − H)) ≥ 𝛽n

}
.

(14)S∗
c
= argmin

{
Sc ∈ {0, 1,…} ∶ 𝛽c

(
Sc + Δ∗, Sc

)
≥ 𝛽c

}
.
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given (r, yn) pair there is only one possible system state, (r, 0, yn) . Hence, steady-
state probabilities for these states are given by

However, this is not the case for states (r, bn, yn) ∈ �(S,Sc)
 such that r − yn > S − Sc . 

Because the knowledge of only R(t) − Yn(t) and Yn(t) is not sufficient to determine 
the system state at a random point t in time: For a given (r, yn) pair, there are multi-
ple states (r, bn, yn) with different on-hand inventory, critical and non-critical back-
order levels. Therefore, for these cases, we can only write the the left-hand side of 
(15) as the sum of the steady-state probabilities:

u = 1, 2,… ; v = 0, 1,… .

But unfortunately individual stationary probabilities �(r,bn,yn)(S, Sc) in (16) are not 
readily available and, therefore we need a method to determine these probabilities, 
which is a challenging task.

In the literature, regarding the backorder models with rationing in the continuous 
review framework, the hitting time approach is often used to estimate the station-
ary probabilities. This approach is based on conditioning on the time that on-hand 
inventory first hits the threshold level Sc , but generally requires the strong assump-
tion that there are no existing orders in the pipeline at the beginning of time interval 
in consideration. For the model studied in this article, Koçaǧa and Şen (2007) also 

(15)�(r,0,yn)(S, Sc) = p(r − yn;�cL + �n(L − H)).p(yn;�nH), r − yn ≤ S − Sc.

(16)

∑
(r, bn, yn) ∈ �(S,Sc)

r − yn − (S − Sc) = u

yn = v

�(r,bn,yn)(S, Sc) = p(r − yn;�cL + �n(L − H)).p(yn;�nH),

Table 1   Optimization algorithm 
for the two demand class 1. Compute Δ∗ using (13), and �n(Δ∗, 0) using (11)

2. Compute �(r,bn ,yn)(Δ∗, 0), for all (r, bn, yn) ∈ �(Δ∗ ,0)

3. Compute �u(Δ
∗, 0) for u = 0, 1,… using (12)

4. (a) Set �c = �n(Δ∗, 0)

(b) Set u = 0

(c) While 𝛽c < 𝛽c

    Set �c = �c + �u(Δ
∗, 0) using Lemma 2

    Set u = u + 1

(d) Set S∗
c
= u

(e) Set S∗ = S∗
c
+ Δ∗

(f) Set
�c
(
S∗, S∗

c

)
= �c

�n
(
S∗, S∗

c

)
= �n(Δ∗, 0)

6. Return 
(
S∗, S∗

c

)
7. Return �n

(
S∗, S∗

c

)
, �c

(
S∗, S∗

c

)
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use this assumption in the hitting time approach to estimate the critical class service 
levels. However, as shown by Vicil and Jackson (2016) for the “ DLT = 0 ” model, 
this approach does does not necessarily work under a variety of arrival rates and 
lead time values. Furthermore, even if the system state information is known at a 
random point t in time, it is still very difficult to determine the system state after 
a lead time. As we have shown in the previous section that not only the number of 
class-specific demand arrivals have impact on the system state a lead time later, but 
also the sequence of those demand arrivals, pipeline vector and non-critical order 
due date vector have impact. Hence, every possible permutation of events should be 
taken into account to analyze the system behavior over a lead time. Therefore, the 
classical approach in which only the number of demand arrivals over a lead time is 
taken into account would be misleading for this model setting.

To overcome those obstacles, we exploit another approach with the aim of 
decreasing the complexity of the analysis and providing more accurate results. To do 
so, starting from the initial system state (0, 0, 0) in which there are no orders in the 
resupply and on-hand inventory is equal to S, by conditioning on the system state at 
a random point t in time, we analyze the limiting behavior of transition probabilities 
for this process during an infinitesimal time interval � . This infinitesimal analysis 
greatly reduces the number of events that can happen during (t, t + �] , and hence the 
analysis becomes much tractable.

But first, we need establish some background knowledge regarding the stochastic 
behavior of a general unit in the resupply system. At a random point t in time, sup-
pose exactly one order has occurred during (t − L, t] , which has an impact on the net 
inventory level. Clearly this event belongs to the set �(t)⧵� (t) , and R(t) − Yn(t) = 1 . 
Given that this order has occurred, let us establish the distribution of the time at 
which this order has occurred. Let T be the elapsed time from t − L until this order 
occurs, and N(s, s + u) be the number of orders ∈ �(t)⧵� (t) that has been received in 
(s, s + u] . Then, for 𝜏 < L − H,

Since 𝜏 < L − H , (t − L, t − L + �] ∩ (t − H, t] = � . Therefore, all demand arriv-
als in (t − L, t − L + �] belong to the set �(t)⧵� (t) . Therefore,

Furthermore, if we consider the interval (t − L + �, t] , all the critical demand arriv-
als in (t − L + �, t] belongs to the set �(t)⧵� (t) . However, among the non-critical 
demands, only the ones occurred in (t − L + �, t − H] belongs to the set �(t)⧵� (t) . 
Therefore, N(t − L + �, t) = 0 if and only if there is no critical demand arrival in 
(t − L + �, t] and there is no non-critical demand arrival in (t − L + �, t − H] . Hence,

(17)

P[T < 𝜏 |N(t − L, t) = 1] =
P[T < 𝜏;N(t − L, t) = 1]

P[N(t − L, t) = 1]

=
P[N(t − L, t − L + 𝜏) = 1;N(t − L + 𝜏, t) = 0]

P[N(t − L, t) = 1]

=
P[N(t − L, t − L + 𝜏) = 1] .P[N(t − L + 𝜏, t) = 0]

P[N(t − L, t) = 1]
.

(18)P[N(t − L, t − L + �) = 1] = (�n + �c)�e−(�
n+�c)� .



398	 O. Vicil 

1 3

Using the results (18) and (19) in (17), we have

Let p(�) be the common probability that any replenishment order in the resupply 
at a random point t in time, which belongs to the set �(t)⧵� (t) , is still in the resupply 
system at time t + � , 𝜏 < L − H . This order will be in the resupply at time t + � if 
and only if it arrived during (t − L + �, t] , since all arrivals prior to t + � − L should 
have arrived by t + � . Therefore, p(�) is given by:

which is independent of time t. Note that p(�) represents the probability for unor-
dered replenishment orders in the resupply.

Let

Each replenishment order occurred during (t − L, t] belongs to the set �(t)⧵� (t) , and 
has a probability p(�) that it is still in the resupply at time t + � . Therefore, the prob-
ability that x of the n replenishment orders, which belong to the set �(t)⧵� (t) , will 
remain in the resupply at time t + � is given by

which is also independent of time t.
Similarly, let us derive system dynamics for the non-critical replenishment 

orders belonging to the set � (t) . At a random point t in time, suppose exactly one 
non-critical order has occurred during (t − H, t] , which has an impact on the set 
of non-critical orders that are not yet due. This event belongs to the set � (t) , and 
therefore Yn(t) = 1 . Given that this event has occurred, let us establish the dis-
tribution of the time at which this order has occurred. Let T̃  be the elapsed time 
from t − H until this order occurs, and Ñ(s, s + u) be the number of orders ∈ � (t) 
that has been received in (s, s + u] . Clearly Ñ(s, s + u) has a Poisson distribution 
with mean �nu . Then, for 𝜏 < H,

(19)P[N(t − L + �, t) = 0] = e−�
c(L−�) e−�

n(L−H−�).

(20)

P[T < 𝜏 |N(t − L, t) = 1] =
(𝜆n + 𝜆c)𝜏e−(𝜆

n+𝜆c)𝜏 e−𝜆
c(L−𝜏) e−𝜆

n(L−H−𝜏)

(𝜆cL + 𝜆n(L − H)) e−(𝜆cL+𝜆n(L−H))

=
(𝜆n + 𝜆c)𝜏 e−(𝜆

cL+𝜆n(L−H))

(𝜆cL + 𝜆n(L − H)) e−(𝜆cL+𝜆n(L−H))

=
(𝜆n + 𝜆c)𝜏

𝜆cL + 𝜆n(L − H)
.

(21)
p(𝜏) = 1 − P[T < 𝜏 |N(t − L, t) = 1]

= 1 −
(𝜆n + 𝜆c)𝜏

𝜆cL + 𝜆n(L − H)
,

qt,�(x|n) = P[x of those n units remain in the resupply at t + � |N(t − L, t) = n].

(22)qt,�(x|n) =
(
n

x

)
p(�)x

[
1 − p(�)

]n−x
,
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Hence, the time at which the non-critical order belonging to the set � (t) occurs is 
uniformly distributed over the interval (t − H, t].

Let p̃(𝜏) be the common probability that any order that is “not yet due” at a 
random point t in time, which belongs to the set � (t) , is still “not yet due” at 
time t + � , 𝜏 < H . This order will be “not yet due” at time t + � if and only if it 
occurred during (t + � − H, t] , since all the non-critical orders prior to t + � − H 
should have been due by t + � . Therefore, p(�) is given by:

which is independent of time t.
Let

Since class-specific demands are Poisson processes and a one-for-one policy is 
followed, both the resupply process and the due date process are mirror reflections 
of the demand realizations during the last L time units. In addition, resupply pro-
cesses and due date processes are also independent of the demand processes after 
time t. Hence, during an infinitesimal time interval dt, the probability of more than 
one event to occur is o(dt) due to the Poisson nature of the processes. Furthermore, 
conditioned on being at state (r, bn, yn) at time t, the delivery process over the next 
dt time units only depends on the elements of set �(t)⧵� (t) , because dt < H and no 
orders in the resupply that belongs to the set � (t) could be received by time t + dt . 
Hence, probability of a delivery process is determined by (22).

The brief summary of our approach for determining the steady-state probabilities 
is as follows. Starting from the initial state (0, 0, 0) at time t = 0 , let

(23)

P[T̃ < 𝜏 | Ñ(t − H, t) = 1] =
P[T̃ < 𝜏; Ñ(t − H, t) = 1]

P[Ñ(t − H, t) = 1]

=
P[Ñ(t − H, t − H + 𝜏) = 1; Ñ(t − H + 𝜏, t) = 0]

P[Ñ(t − H, t) = 1]

=
P[Ñ(t − H, t − H + 𝜏) = 1] .P[Ñ(t − H + 𝜏, t) = 0]

P[Ñ(t − H, t) = 1]

=
𝜆n𝜏e−𝜆

n𝜏 e−𝜆
n(H−𝜏)

𝜆nHe−𝜆
nH

=
𝜏

H
.

(24)
p̃(𝜏) = 1 − P[T̃ < 𝜏 | Ñ(t − H, t) = 1]

= 1 −
𝜏

H
,

(25)

q̃t,𝜏(x|n) = P[x of those n units remain “not yet due” at t + 𝜏 | Ñ(t − L, t) = n]

= q̃t,𝜏(x|n) =
(
n

x

)
p̃(𝜏)x

[
1 − p̃(𝜏)

]n−x
.

P(r̄,b̄n,ȳn),(r,bn,yn)(t, t
�) =P

[
𝜉t� = (r, bn, yn) | 𝜉0 = (0, 0, 0), 𝜉t = (r̄, b̄n, ȳn)

]
.
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By conditioning on the state of the system at time t:

Since � is an infinitesimal time duration, the states (r̄, b̄n, ȳn) are chosen such that the 
state (r, bn, yn) can be reached by at most one transition over the next infinitesimal 
� time duration. Then we explore the limiting behavior of above transitions. There-
fore, first we need to determine one-step transition probabilities over an infinitesimal 
� time duration.

At a random point t in time, since a one-for-one policy is implemented for the 
replenishment process, the system state information (R(t),Bn(t), Yn(t)) contains 
essential information about what has happened over (t − L, t] and (t − H, t] time 
intervals. From the system state information, first we can understand that a a total 
of R(t) number of replenishment orders have been placed over the last L periods 
which have been triggered by both class demand processes. Second, among those 
R(t) replenishment orders Yn(t) of them has been triggered by the non-critical cus-
tomer class demands realized during (t − H, t] . Both R(t) and Yn(t) are Poisson dis-
tributed. However, conditioned on being at the system state (R(t),Bn(t), Yn(t)) , the 
placements of replenishment orders during (t − L, t] or (t − H, t] are no longer Pois-
son processes. This is because, due to the implemented rationing policy, there is a 
dependency between the Bn(t) and the demand process over the past L periods (Note 
that this wouldn’t be the case for the simple one-for-one policy without customer 
differentiation. The knowledge of R(t) would be sufficient to characterize the order 
replenishment process, which is still a Poisson process). This in turn affect the deliv-
ery and due date processes after time t.

Therefore, to solve the one-step transition probabilities we relax the dependency 
of both the age-of-pipeline vector and the age-of-order-due date vector to the num-
ber of non-critical backorders, and make the following approximation assumption:

Independence Assumption Conditioned on being at state (R(t),Bn(t), Yn(t)) at a 
random point t in time, both the age-of-pipeline vector 

(
u[1], u[2],… , u[i]

)
 and the 

age-of-non-critical-order-due date vector 
(
v[1], v[2],… , v[j]

)
 are independent of the 

number of non-critical backorders Bn(t).
The Independence Assumption allows us to probabilistically determine the deliv-

ery process and the due date process from the knowledge of R(t) and Yn(t) . After 
solving the one-step transition probabilities, we take the limits as � → 0 and t → ∞ 
and achieve the results in the following theorem. For notational simplicity, we use 
�(r,bn,yn) instead of �(r,bn,yn)(S, Sc).

Theorem 2  Let

and

(26)

P(0,0,0),(r,bn,yn)(0, t + 𝜏)

=
∑

(r̄, b̄n, ȳn) ∈ �(S,Sc)

P(0,0,0),(r̄,b̄n,ȳn)(0, t) ⋅ P(r̄,b̄n,ȳn),(r,bn,yn)(t, t + 𝜏).

(27)� =
(�n + �c)

�cL + �n(L − H)
,
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Under the Independence Assumption, for a given (S, Sc) pair, the steady-state distri-
bution of (R,Bn, Yn) satisfies the following balance equations:

 
Proof  See “Appendix 6”. 	�  ◻

(28)� =
1

H
.

r = 0, bn = 0, yn = 0;

𝜆𝜋(0,0,0) = 𝜇𝜋(1,0,0).

r ≥ 1, r − yn = 0, bn = 0;

(𝜆 + yn𝜗)𝜋(r,0,yn) = 𝜆n𝜋(r−1,0,yn−1) + (r − yn + 1)𝜇𝜋(r+1,0,yn).

0 < r < Δ, bn = 0, yn = 0;

(𝜆 + r𝜇)𝜋(r,0,0) = 𝜆c𝜋(r−1,0,0) + 𝜗𝜋(r,0,1) + (r + 1)𝜇𝜋(r+1,0,0).

1 ≤ r − yn < Δ, bn = 0, yn ≥ 1;

[𝜆 + (r − yn)𝜇 + yn𝜗]𝜋(r,0,yn) = 𝜆n𝜋(r−1,0,yn−1) + 𝜆c𝜋(r−1,0,yn)

+ (yn + 1)𝜗𝜋(r,0,yn+1) + (r − yn + 1)𝜇𝜋(r+1,0,yn).

r = Δ, bn = 0, yn = 0;

(𝜆 + Δ𝜇)𝜋(r,0,0) = 𝜆c𝜋(r−1,0,0) + 𝜗𝜋(r,0,1) + (Δ + 1)𝜇𝜋(r+1,0,0) + (Δ + 1)𝜇𝜋(r+1,1,0).

r − yn = Δ, bn = 0, yn > 0;

(𝜆 + Δ𝜇 + yn𝜗)𝜋(r,0,yn) = 𝜆c𝜋(r−1,0,yn) + 𝜆n𝜋(r−1,0,yn−1) + (yn + 1)𝜗𝜋(r,0,yn+1)

+ (Δ + 1)𝜇𝜋(r+1,0,yn) + (Δ + 1)𝜇𝜋(r+1,1,yn).

r − bn = Δ, bn > 0, yn = 0;

(𝜆 + r𝜇)𝜋(r,bn,0) = 𝜗𝜋(r,bn−1,1) + (r + 1)𝜇𝜋(r+1,bn+1,0) + (r + 1)𝜇𝜋(r+1,bn,0).

r − bn − yn = Δ, bn > 0, yn > 0;

[𝜆 + (r − yn)𝜇 + yn𝜗]𝜋(r,bn,yn) = 𝜆n𝜋(r−1,bn,yn−1) + (yn + 1)𝜗𝜋(r,bn−1,yn+1)

+ (r − yn + 1)𝜇𝜋(r+1,bn+1,yn) + (r − yn + 1)𝜇𝜋(r+1,bn,yn).

r > Δ, bn = 0, yn = 0;

(𝜆 + r𝜇)𝜋(r,0,0) = 𝜆c𝜋(r−1,0,0) + (r + 1)𝜇𝜋(r+1,0,0).

r − yn > Δ, bn = 0, yn > 0;

[𝜆 + (r − yn)𝜇 + yn𝜗]𝜋(r,0,yn) = 𝜆n𝜋(r−1,0,yn−1) + 𝜆c𝜋(r−1,0,yn)

+ (r − yn + 1)𝜇𝜋(r+1,0,yn).

r − bn > Δ, bn > 0, yn = 0;

(𝜆 + r𝜇)𝜋(r,bn,0) = 𝜆c𝜋(r−1,bn,0) + 𝜗𝜋(r,bn−1,1) + (r + 1)𝜇𝜋(r+1,bn,0).

r − bn − yn > Δ, bn > 0, yn > 0;

[𝜆 + (r − yn)𝜇 + yn𝜗]𝜋(r,bn,yn) = 𝜆n𝜋(r−1,bn,yn−1) + 𝜆c𝜋(r−1,bn,yn)

+ (yn + 1)𝜗𝜋(r,bn−1,yn+1) + (r − yn + 1)𝜇𝜋(r+1,bn,yn).
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The balance equations in Theorem 2 show the in and out flows from a state in 
the steady-state. Depending on the system state in consideration, the inflows show 
the rates in steady-state from the adjacent neighbors from which one-step transitions 
are possible. The outflow shows the total rate of leaving the state in consideration. 
Those balance equations are linear system of equations and thus can be easily solved 
numerically, i.e., via the method of LU factorization. We also have a valid reference 
checking point since we can compute the stationary probabilities exactly for states 
(r, 0, yn) ∈ �(S,Sc)

 , r − yn ≤ S − Sc by (15).
Now, the question is how strong or weak is the dependence of age-of-pipeline 

vector and age-of-due date vector on the number of non-critical backorders. The 
quality of the approximation will depend on this answer. In the numerical study sec-
tion, we explore how well the Independence Assumption performs under a variety of 
lead time values, and show the quality of our approximation.

Another important contribution of this study is to allow us to estimate other per-
formance measures such as expected on-hand stock, and expected number of critical 
and non-critical class backorders, through the knowledge of �(r,bn,yn) . This is because 
our approximation permits us to capture full information for the steady-state prob-
abilities of system states (r, bn, yn) rather than only estimating a certain performance 
measure, such as fill rate.

5 � Alternate model: critical class orders are due after a demand lead 
time

With minor modifications, similar ideas can easily be applied to the model in which 
critical demand class orders are due after a demand lead time of H, while non-criti-
cal class orders are due immediately. The optimization model and the fill rate equa-
tions remain the same as in the original model. We leave the rest of the derivations 
and analysis to the online supplement. There, we first present the modified defini-
tions and equations according to the alternate model. We then show that the struc-
tural results offered by Proposition 2, Proposition 3, Lemmas 1, 2, and Corollary 1 
remain valid in this alternate model. We also provide the balance equations for this 
alternate model in Theorem 3 in the online supplement.

E[OH] =

S∑
h=0

h�h

(
S, Sc

)
, using (8).

E[Bc] =

∞∑
u=0

u�u

(
S, Sc

)
, with reference to (12).

E[Bn] =

∞∑
bn=1

bn
∑
r, yn

(r, bn, yn) ∈ �(S,Sc)

�(r,bn,yn)(S, Sc).
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6 � Numerical study

Since there is no exact solution yet in the literature for computing the steady-state 
probabilities, we compare the performance of our method with the only heuristic 
in the literature, Koçaǧa and Şen (2007), against the simulation results. Therefore, 
for comparison we use the same examples and results provided in their study. This 
section is divided into three subsections. In Sect. 6.1, we compare the performance 
of our method with the Koçaǧa and Şen (2007) heuristic in terms of service level 
approximations for the critical demand class (since service level for the noncritical 
demand class can be computed exactly using (11)). In Sect. 6.2, for the fill rate opti-
mization model we compare the optimal policy parameters (S∗, S∗

c
) found by using 

the critical class service levels calculated via our method against the Koçaǧa and 
Şen (2007) heuristic and the simulation study. In Sect. 6.3, we investigate the benefit 
of integrating DLT into the threshold rationing policy.

6.1 � Service level calculations

First, we compare the performance of both heuristics at high service level require-
ments for the critical demands class. As mentioned in Koçaǧa and Şen (2007), such 
high service levels are quite common in the industry. In Table 2, the parameters are 
chosen such that the critical class service level is around 99% . The replenishment 
lead time L is 0.5 and the demand lead time H is 0.1 for all the instances. In columns 
5–10, we study the case in which the non-critical demand class has a DLT. In col-
umns 11–16, we study the case where the critical demand class a DLT. In column 5 
and column 11, exact service levels for the non-critical demand class are computed 
according to (11). Absolute errors with respect to the simulation results are provided 
in columns 8 and 14 for the Koçaǧa and Şen heuristic, and in columns 10 and 16 for 
our method. We observe that although the Koçaǧa and Şen heuristic seems to work 
well for these scenarios, our method considerably provides better quality approxima-
tions for all the instances. For the Koçaǧa and Şen heuristic, the average absolute 
errors are 1.09% and 1.18% for the two cases, while the average absolute errors are 
0.10% and 0.06% for our method. We also observe that, for the last seven instances, 
as the non-critical class service level decreases while the critical class service level 
is kept around 99% , the quality of both approximations are negatively affected. How-
ever, the maximum absolute errors for the Koçaǧa and Şen heuristic can be as high 
as 5.53% and 5.89% for the two cases, while the maximum absolute errors for our 
method are limited to 0.53% and 0.25% . We also note that the Koçaǧa and Şen heu-
ristic consistently underestimates the achieved (simulated) critical class service level 
while our method consistently overestimates.

The situation is similar in Table 3, in which the analysis is repeated for ten dif-
ferent instances. But this time the parameters are chosen such that the critical class 
service level is between 90 and 99% . Although the performance of approxima-
tions for both methods are not as good as for the 99% service level scenarios, the 
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Independence Assumption holds well and our method still considerably provides 
better quality approximations for all the instances. For the Koçaǧa and Şen heuristic, 
the average absolute errors are 1.34% and 3.36% for the two cases, while the average 
absolute errors are 0.35% and 0.13% for our method. The maximum absolute errors 
are achieved when the non-critical service levels are very low: �n

exact
= 18.51% 

(“DLT: non-critical” option), and �n
exact

= 28.54% (“DLT: critical” option). For the 
Koçaǧa and Şen heuristic, the absolute errors can be as high as 3.69% and 8.44% for 
the two cases, while they are limited to 1.56% and 0.50% for our method. We also 
observe that, as in Table 2, the quality of the Koçaǧa and Şen heuristic for the “DLT: 
non-critical” option is better than the quality of the Koçaǧa and Şen heuristic for the 
“DLT: critical” option. The situation is opposite for our method.

Next, the performance of the approximations are tested against the varying sys-
tem parameters. The results are provided in Table 4. There are four different parts. 
In each part, a single parameter is varied at a time among the following list while 
keeping other system parameters fixed: base stock level, the arrival rate for the criti-
cal demand class, the arrival rate for the non-critical demand class and the DLT, in 
sequential order. In the first part, as in line with previous results, we observe that 
as both demand class service levels increase, the quality of both approximations 
gets better. But again, our method provides better approximations for all the exam-
ples. The absolute error for the Koçaǧa and Şen heuristic can be as high as 2.61% 
and 4.20% while for our method they are limited to 0.31% and 0.18% for the two 
cases. On the other hand, in the second part, we observe that the lower service lev-
els significantly affect the quality of the Koçaǧa and Şen heuristic. As the critical 
service level decreases below 90% , we observe that the Koçaǧa and Şen heuristic 
deviates significantly from the simulation results for both cases. For the “DLT: non-
critical” option, the maximum absolute error is 19.46% , which is extremely high 
for an approximation. However, our approach still provides reasonable approxima-
tions: The maximum absolute error is 4.79% . Furthermore, we see that the quality 
of the Koçaǧa and Şen heuristic diminishes even more in the case of “DLT: critical 
option”. The maximum absolute error is 34.65% . On the other hand, our approach 
provides superb performance and the maximum absolute error is only 0.52% . From 
these results, we can conclude that the Independence Assumption holds quite well 
when the critical demand class has a DLT option, and therefore even for the very 
low service levels, our approach provides high quality approximations. In the third 
part, although the critical service levels are higher than the 98% , the absolute errors 
for the Koçaǧa and Şen heuristic continue to be considerably high. The low lev-
els of non-critical service levels seems to affect the quality of their heuristic and 
the absolute errors can be as high as 8.49% and 8.75% for the two cases. On the 
other hand, our approach again provides high quality approximations for all the 
examples and the maximum absolute errors are 0.18% and 0.26% for the two cases. 
It is also interesting to note that although the non-critical demand rate increases 
while keeping other system parameters fixed, we observe that the critical demand 
class is not affected much and still receives high levels of service. This might be 
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counter-intuitive because the total demand rate increases. One possible explanation 
is that non-critical class demands might be frequently in backorder situation and 
most of the replenishment orders due to the non-critical class orders are used to 
restore reserve stock up to Sc , which are used to satisfy the critical class demands. 
This situation might offset the negative effect of an increase in the total demand 
rate on the critical class service level (Remark: We couldn’t replicate the results of 
Table 3 of the Koçaǧa and Şen (2007) article for the “DLT: critical” option regard-
ing the second (simulation) and third (heuristic) parts. Therefore, in this study we 
performed the numerical analysis for the simulation and Koçaǧa and Şen heuristic 
for these parts rather than directly using their results, and used the correct values 
in Table  4). In the fourth part, the effect of the DLT is studied. We observe that 
as DLT increases, both demand classes receive higher services. The parameters are 
chosen such that both demand class service levels are high. Therefore, as we might 
expect, both methods perform high quality approximations. The absolute error for 
the Koçaǧa and Şen heuristic are 0.37% and 0.47% while they are limited to 0.03% 
and 0.01% for the two cases.

Considering Tables 2, 3 and 4, we can conclude that the Independence Assump-
tion holds well for most of the scenarios. The quality of our approximation is more 
significant especially for the scenarios with �n ≥ 70% , the levels which are no less 
than what we would expect in practice. For those, we observe that the average abso-
lute errors are only 0.04% and 0.04% for our approach for the two cases (“DLT: non-
critical” and “DLT: critical” options, respectively) compared to 0.53% and 1.35% for 
the existing heuristic; while the maximum absolute errors for our approximation are 
limited to only 0.17% and 0.18% compared to 1.18% and 4.20% for the existing heu-
ristic. On the other hand, based on the empirical results, we may conclude that the 
quality of the Independence Assumption diminishes as the non-critical class service 
level gets lower, and therefore the overall effect on the system of balance equations 
is more pronounced. Consequently, this leads to higher absolute errors in estimating 
the critical class service levels.

6.2 � Optimization study

In this subsection, we compare the optimal policy parameters (S∗, S∗
c
) found by using 

the critical class service levels calculated via our method against the Koçaǧa and 
Şen heuristic and the simulation study. In their study, Koçaǧa and Şen (2007) found 
the optimal policy parameters through the brute force search approach (though, they 
were able to limit the number of possible (S, Sc) pairs to consider). However, for both 
our method and the simulation study, we implement the optimization algorithm pre-
sented in Table 1, which requires the computation of steady-state probabilities only 
once. This is one of the main strengths of our algorithm. As in the previous subsec-
tion, we study two cases: “non-critical class has a DLT” and “critical class has a 
DLT”. The results are provided in Tables 5 and 6. In their study, Koçaǧa and Şen 
(2007) showed that inventory rationing can result in significant inventory savings 
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(up to 30% ) compared to one without rationing. Therefore, in order to prevent any 
repetition, we don’t include the relative savings due to inventory rationing in these 
tables. Readers may refer to their study for a more detailed discussion.

In both tables, columns 5 and 9 show the relative percentage savings in inventory 
investment S due to using our method over the Koçaǧa and Şen heuristic for calcu-
lating the critical class service levels. For all the examples presented in Tables 5 and 
6, the optimal policy parameters found by using our approach are identical to the 
ones found by the simulation studies.

In Table  5, we first fix 𝜆c = 1, L = 0.5, H = 0.1, 𝛽n = 0.80, 𝛽c = 0.99 and 
vary the non-critical demand rate �n between 1 and 10. For each case, ten differ-
ent scenarios are considered. We observe that out of ten instances, our method pro-
vides considerable amount of savings in six instances for the first case, and in five 
instances for the second case. We also observe that although the pattern is not regu-
lar, there is a tendency that percentage savings decreases as �n increases.

Next, we fix 𝜆c = 5, 𝜆n = 10, L = 2, H = 0.5, 𝛽n = 0.80 and vary 𝛽c between 
0.90 and 0.995. The results are provided in Table 6. We see that in all the instances, 
our approach achieves the optimal policy parameters correctly and provides inven-
tory savings over the Koçaǧa and Şen heuristic. As 𝛽c increases, we also observe 
that the percentage savings of using our method tends to increase in both cases, and 
can be as high as 10.81% for the first case, and 7.69% for the second case. From these 
results, we may conclude that as the gap between the required service levels of the 
two demand class increases, the quality of Koçaǧa and Şen heuristic diminishes con-
siderably, while our method continues to provide high quality approximations.

It is important to note that since there is no exact solution yet in the literature for 
computing the steady-state probabilities, we have to rely on approximation methods. 
Therefore it should be kept in mind that there may be cases of infeasibility due to 
not meeting the service level requirements for the critical customer class. Hence, at 
the end of the optimization routine, it may be essential to compare the gap between 
the estimated service level and the fill rate constraint for the critical customer class. 
However, as shown in the numerical study of the previous section, our proposed 
approximation provides high quality approximation for the majority of the instances. 
Apart from the extreme cases such that non-critical class experiences very low 
service levels, the absolute errors are considerably very low for many instances 
for the critical customer class. When Tables 2, 3 and 4 are combined, if we con-
sider the cases with �n ≥ 70% (the levels which are no less than what we would 
expect in practice), we see that the maximum absolute errors for our approximation 
are limited to 0.17% and 0.18% for the two cases (“DLT: non-critical” and “DLT: 
critical” options, respectively). As a result, we may conclude that unless the gap 
between the estimated service level and the fill rate constraint for the critical cus-
tomer class is very close, our proposed approximation may be used conveniently in 
the optimization routine. Otherwise, a single simulation study might be performed 
to determine the optimal policy parameters (S∗, S∗

c
) using our optimization routine, 

which also requires the computation of steady-state probabilities only once (note 
that our optimization algorithm is provided for the general case, independent of the 
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approximation method being used. It can be used with any other heuristic, assuming 
the computed steady-state probabilities are accurate).

6.3 � Benefit of integrating DLT into the threshold rationing policy

In this part of the numerical study, we investigate the benefit of integrating DLT into 
the threshold rationing policy. For comparison, we use the same examples studied in 
Tables 5 and 6. The results are provided in Tables 7 and 8 . In the second columns of 
both tables, we provide the optimal policy parameters found by the simulation study 
for the inventory system without incorporating the DLT into the current inventory 
rationing policy. None of the priority-demand classes shares advance demand infor-
mation, therefore the distribution center is able to see demand realizations only at 
their corresponding due dates.

In Table 7, we observe that the benefit is realized in six instances for the “DLT: 
non-critical” option, which can be as high as 16.67% . On the other hand, we don’t 
observe any benefit for the for the “DLT: critical” option. However, the situation 
changes in Table 8. In all the instances and both cases, we observe that integrating 
DLT into the current policy provides considerable savings. The average savings for 
the “DLT: non-critical” and “DLT: critical” options are 15.57% and 7.62% , respec-
tively. Furthermore, although the pattern is irregular, the associated savings tend to 
decrease for both cases as 𝛽c increases.

7 � Conclusion

We have numerically demonstrated that our approach provides superior performance 
in estimating service levels than the existing heuristic for all the examples consid-
ered. When Tables 2, 3 and 4 are combined, the average absolute errors of the exist-
ing heuristic are 2.30% and 3.50% for the two cases (“DLT: non-critical” and “DLT: 
critical” options, respectively), while the average absolute errors are 0.38% and 
0.09% for our approach. Furthermore, the maximum absolute errors of the existing 
heuristic are 19.46% and 34.64% for the two cases, while they are limited to 4.79% 
and 0.52% in our approach. On the other hand, when we consider the settings with 
�n ≥ 70% (the levels which are no less than what we would expect in practice), we 
observe that the average absolute errors are only 0.04% and 0.04% for our approach 
for the two cases compared to 0.53% and 1.35% for the existing heuristic; while the 
maximum absolute errors for our approximation are limited to only 0.17% and 0.18% 
compared to 1.18% and 4.20% for the existing heuristic.

In the service level optimization study, we show that our method can provide 
considerable inventory savings over the existing heuristic in most of the examples, 
which can be as high as 16.67% and 14.29% for the two cases. The overall effect of 
savings may even be more pronounced in practice, especially in environments (such 
that manufacturing industry or retail businesses) where hundreds to tens of thou-
sands of stock units are being managed.
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The limiting behavior of an infinitesimal probabilistic analysis has not caught 
much attention in the literature. However, as shown in this study, it allows us to 
study complex system dynamics which arose due to inventory rationing and demand 
lead times. Therefore, for the continuous review one-for-one policies, studying the 
limiting behavior of an infinitesimal analysis may open new research possibilities in 
the future.

One possible extension of the model would be to consider the case in which both 
priority demand classes have their own demand lead times, which might lead to 
additional savings in inventory management costs. Although the dimensionality of 
the state space will increase, our analysis can be directly extended to this setting as 
well. As suggestions for future research, it would be useful to extend the model to 
generally distributed lead times, and/or allow flexible delivery (early fulfillment of 

Table 7   Optimal policy parameters: with/without DLT ( 𝜆c = 1, L = 0.5, H = 0.1, 𝛽n = 0.80, 𝛽c = 0.99)

�n Without DLT DLT: non-critical DLT: critical

(S∗, S∗
c
) (S∗, S∗

c
) % Saving (S∗, S∗

c
) % Saving

1 (4,1) (4,1) – (4,1) –
2 (5,2) (5,2) – (5,2) –
3 (6,2) (5,1) 16.67 (6,2) –
4 (6,1) (6,2) – (6,1) –
5 (7,2) (6,1) 14.29 (7,2) –
6 (7,1) (7,2) – (7,1) –
7 (8,1) (7,1) 12.50 (8,2) –
8 (8,1) (7,1) 12.50 (8,1) –
9 (9,1) (8,1) 11.11 (9,1) –
10 (9,1) (8,1) 11.11 (9,1) –

Table 8   Optimal policy parameters: with/without DLT ( 𝜆c = 5, 𝜆n = 10, L = 2, H = 0.5, 𝛽n = 0.80)

𝛽c Without DLT DLT: non-critical DLT: critical

(S∗, S∗
c
) (S∗, S∗

c
) % Saving (S∗, S∗

c
) % Saving

0.900 (37,1) (31,1) 16.22 (34,1) 8.11
0.925 (37,1) (31,1) 16.22 (34,1) 8.11
0.950 (37,1) (31,1) 16.22 (34,1) 8.11
0.970 (38,2) (32,2) 15.79 (35,2) 7.89
0.980 (38,2) (32,2) 15.79 (35,2) 7.89
0.985 (38,2) (32,2) 15.79 (35,2) 7.89
0.990 (38,2) (33,3) 13.16 (36,3) 5.26
0.995 (39,3) (33,3) 15.38 (36,3) 7.69
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orders before due dates). Furthermore, since the quality of our approach for estimat-
ing the steady-state probabilities is promising, this might further enable us to study 
the cost optimization model as well, which also has a practical importance.

Appendix 1: Proof of Proposition 1

Since a one-for-one policy is implemented, whenever a demand of any type occurs, 
it triggers a replenishment order of size one, and therefore R is incremented by one. 
If there is a delivery, number of units in the resupply is decremented by one. If it is a 
due date of the non-critical order, then R is unaffected and hence remains the same.

The dynamics for Yn are also straightforward. Whenever a non-critical demand 
occurs, Yn is incremented by one. On the other hand, Yn is decremented by one only 
if it is a due date of the non-critical order. For all other cases, Yn is unaffected.

For the non-critical backorders, the only situation in which Bn can be decremented 
is with the arrival of a delivery ( Em = “v” ) when on-hand inventory prior to the deliv-
ery is Sc and there is at least one non-critical backorder. If on hand inventory equals 
Sc, then, by (1), S = Sc + Rm−1 − Bn

m−1
− Yn

m−1
 . From this equation, by rearranging 

the terms we have Bn
m−1

= Rm−1 − Yn
m−1

− (S − Sc) . Since the number of non-critical 
backorders should be at least one, we also have Rm−1 − Yn

m−1
> S − Sg . On the other 

hand, when a due date of a non-critical order comes ( Em = “y” ) and on-hand inven-
tory just prior to the due date is less than or equal to Sc , then Bn is incremented 
by one. On-hand inventory in this case is given by 

[
S − Rm−1 + Bn

m−1
+ Yn

m−1

]+
≤ Sc , 

due to (2); which is also equivalent to stating S − Rm−1 + Bn
m−1

+ Yn
m−1

≤ Sc . Rear-
ranging the terms, we have Rm−1 − Yn

m−1
≥ S − Sc + Bn

m−1
 . But Bn

m−1
 is a non-nega-

tive variable. Hence we should have Rm−1 − Yn
m−1

≥ S − Sc . 	�  ◻

Appendix 2: Proof of Proposition 2

The result �n(S, Sc) ≥ �n(S, S �
c
) is immediately follows from (11).

To prove �c(S, Sc) ≤ �c(S, S
�
c
) , let us consider two systems with identical event 

sequences 
{
(m,Tm,Em);m = 1, 2, 3,…

}
. In the first system, the policy parame-

ters are (S, Sc) and the resulting states are given by 
{
(Rm,B

n
m
, Yn

m
);m = 1, 2, 3,…

}
. 

In the second system, the policy parameters are (S, S�
c
) with S′

c
> Sc and the 

resulting states are given by 
{
(R�

m
,Bn�

m
, Yn�

m
);m = 1, 2, 3,…

}
. We conjecture that 

R�
m
= Rm, Y

n�
m
= Yn

m
 and Bn′

m
≥ Bn

m
 for all m. With reference to Proposition  1, we 

can immediately establish R�
m
= Rm and Yn�

m
= Yn

m
 for all m. We will prove Bn′

m
≥ Bn

m
 

by induction. For m = 1,… , S − Sc , it is clear that Bn�
m
= Bn

m
= 0 . For induction, 

we first assume that Bn′
m
≥ Bn

m
 is true for some m, and then validate the result for 

m + 1 . Since (S − 1, S) policy is followed, the number of backorders can change 
at most by one unit per event. Therefore, if Bn′

m
> Bn

m
 , Bn�

m+1
≥ Bn

m+1
 is imme-

diate. Else, Bn�
m
= Bn

m
 and it is left to prove Bn�

m+1
≥ Bn

m+1
 . It suffices to show that 

Bn�
m+1

< Bn
m+1

 is not possible. First, let us suppose Bn
m+1

= Bn
m
+ 1 . This can only 
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happen if Rm − Yn
m
≥ S − Sc and Em+1 = “y ” (the non-critical due date comes). 

Since S′
c
> Sc, we have R�

m
− Yn�

m
= Rm − Yn

m
≥ S − S�

c
 . Since Em+1 = “y ”, we will 

have Bn�
m+1

= Bn�
m
+ 1 = Bn

m
+ 1 = Bn

m+1
 . Now let us suppose Bn�

m+1
= Bn�

m
− 1 . This 

is possible only if Bn�
m
= R�

m
− Yn�

m
− (S − S�

c
) and Em+1 = “v ” (a delivery occurs). 

But this would imply Bn
m
= Bn�

m
= R�

m
− Yn�

m
− (S − S�

c
) > Rm − Yn

m
− (S − Sc) . How-

ever, the condition Bn
m
> Rm − Yn

m
− (S − Sc) is not possible due to (5). Therefore 

we should have Bn�
m+1

≥ Bn
m+1

 . Proof by induction is completed. Furthermore, con-
ditioned on Bn′

m
≥ Bn

m
 , by (2), at any point in time on-hand inventory in the second 

system will always be greater than or equal to the on-hand inventory in the second 
system. Hence, the critical class fill rate for the second system must be at least as 
high as for the first system. 	�  ◻

Appendix 3: Proof of Proposition 3

Let us consider two cases with (S, Sc) and (S�, S�
c
) such that Δ = S − Sc = S� − S�

c
 . 

For any given sample path 
{
(m,Tm,Em);m = 1, 2, 3,…

}
 , (Rm,B

n
m
, Yn

m
) will always 

be identical to (R�
m
,Bn�

m
, Yn�

m
) for an arbitrary m. This is because, due to Proposition 

1 the sample path dynamics depend only on Δ, the difference between the target 
inventory S and the threshold level Sc . Therefore, at any point t in time, system 
state �t will be identical to �′

t
 . Since this is also true for all sample paths, we have 

�(r,bn,yn)(S, Sc) = �(r,bn,yn)(S
�, S�

c
), (r, bn, yn) ∈ Z0 × Z0 × Z0 . 	�  ◻

Appendix 4: Proof of Lemma 1

By definition,

	�  ◻

�u(Δ + k, k) =
∑

(r, bn, yn) ∈ �(Δ+k,k)

(Δ + k − r + bn + yn)+ = 0

(r − bn − yn − Δ − k)+ = u

�(r,bn,yn)(Δ + k, k)

=
∑

(r, bn, yn) ∈ �(Δ,0)

(Δ + k − r + bn + yn)+ = 0

(r − bn − yn − Δ − k)+ = u

�(r,bn,yn)(Δ, 0) (by Proposition 3),

=
∑

(r, bn, yn) ∈ �(Δ,0)

(Δ − r + bn + yn)+ = 0

(r − bn − yn − Δ)+ = u + k

�(r,bn,yn)(Δ, 0)

=�u+k(Δ, 0).
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Appendix 5: Proof of Lemma 2

By definition,

	�  ◻

Appendix 6: Proof of Theorem 2

Starting from the initial state (0, 0, 0) at time t = 0 , let

One-step transition probabilities will be solved for a general system state 
(r, bn, yn) ∈ �(S,Sc)

 with bn ≥ 1 , yn ≥ 1 , and r − bn − yn > S − Sc (hence, OH < Sc ). 
Other system states can be solved similarly. By conditioning on the state of the sys-
tem at time t, there are five possible ways to reach state (r, bn, yn) in at most one 
transition over the next infinitesimal � time units: a non-critical demand occurs, a 
critical demand occurs, a delivery is received from the resupply, a due date of a non-
critical order comes, or nothing happens. Probabilities of two or more events hap-
pening during (t, t + �] are captured within the term o(�).

(a) A non-critical demand occurs:

�c(Δ + k, k) = 1 − �0(Δ + k, k) (with reference to Eqs.(7) and (8))

= 1 −

∞∑
u=0

�u(Δ + k, k)

= 1 −

∞∑
u=0

�u+k(Δ, 0) (by Lemma 1),

= 1 −

∞∑
u=0

�u(Δ, 0) +

k−1∑
u=0

�u(Δ, 0)

= 1 − �0(Δ, 0) +

k−1∑
u=0

�u(Δ, 0)

= �c(Δ, 0) +

k−1∑
u=0

�u(Δ, 0).

P(r̄,b̄n,ȳn),(r,bn,yn)(t, t
�) =P

[
𝜉t� = (r, bn, yn) | 𝜉0 = (0, 0, 0), 𝜉t = (r̄, b̄n, ȳn)

]
.

(29)

P(r−1,bn,yn−1),(r,bn,yn)(t, t + �)

= P
[
only a non-critical demand occurs during (t, t + �]; all r − 1 units in

the resupply at time t are still in the resupply at time t + �;

all yn − 1 orders that are “not yet due” at time t

are still “not yet due” at time t + � | �t = (r − 1, bn, yn − 1),

�0 = (0, 0, 0)
]
+ o(�).
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By the Independence Assumption and using (22) and (25), right-hand side of (29) 
becomes

Note that we used qt,� (r − yn | r − yn) rather than qt,� (r − 1 | r − 1) . This is because 
as discussed earlier, conditioned on being at state �t = (r, bn, yn) , delivery process 
over the next � time units is determined by the elements of the set �(t)⧵� (t).

(b) A critical demand occurs:

By the Independence Assumption and using (22) and (25), right-hand side of (31) 
becomes

(c) The delivery from the resupply:

(30)

P(r−1,bn,yn−1),(r,bn,yn)(t, t + 𝜏)

= 𝜆n𝜏e−𝜆𝜏 qt,𝜏(r − yn | r − yn) q̃t,𝜏 (y
n − 1 | yn − 1) + o(𝜏)

= 𝜆n𝜏e−𝜆𝜏
(
r − yn

r − yn

)
p(𝜏)r−y

n [
1 − p(𝜏)

]0

.

(
yn − 1

yn − 1

)
p̃(𝜏)y

n−1
[
1 − p̃(𝜏)

]0
+ o(𝜏)

= 𝜆n𝜏e−𝜆𝜏 p(𝜏)r−y
n

p̃(𝜏)y
n−1 + o(𝜏).

(31)

P(r−1,bn,yn),(r,bn,yn)(t, t + �)

= P
[
only a critical demand occurs during (t, t + �]; all r − 1 units in

the resupply at time t are still in the resupply at time t + �;

all yn orders that are “not yet due” at time t

are still “not yet due” at time t + � | �t = (r − 1, bn, yn),

�0 = (0, 0, 0)
]
+ o(�).

(32)

P(r−1,bn,yn),(r,bn,yn)(t, t + 𝜏)

= 𝜆c𝜏e−𝜆𝜏 qt,𝜏(r − yn − 1 | r − yn − 1) q̃t,𝜏(y
n | yn) + o(𝜏)

= 𝜆c𝜏e−𝜆𝜏
(
r − yn − 1

r − yn − 1

)
p(𝜏)r−y

n−1
[
1 − p(𝜏)

]0

.

(
yn

yn

)
p̃(𝜏)y

n [
1 − p̃(𝜏)

]0
+ o(𝜏)

= 𝜆c𝜏e−𝜆𝜏 p(𝜏)r−y
n−1 p̃(𝜏)y

n

+ o(𝜏).
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By the Independence Assumption and using (22) and (25), right-hand side of (33) 
becomes

Note that bn has not changed because OH(t) < Sc and therefore none of the existing 
non-critical backorders are cleared, if any.

(d) The non-critical order is due:

By the Independence Assumption and using (22) and (25), right-hand side of (35) 
becomes

(e) Nothing happens:

(33)

P(r+1,bn,yn),(r,bn,yn)(t, t + �)

= P
[
no demand occurs during (t, t + �]; among the r + 1 units in

the resupply at time t, only one of them is received during

(t, t + �]; all yn orders that are “not yet due” at time t

are still “not yet due” at time t + � | �t = (r + 1, bn, yn),

�0 = (0, 0, 0)
]
+ o(�).

(34)

P(r+1,bn,yn),(r,bn,yn)(t, t + 𝜏)

= e−(𝜆
n+𝜆c)𝜏 qt,𝜏(r − yn | r − yn + 1) q̃t,𝜏(y

n | yn) + o(𝜏)

= e−(𝜆
n+𝜆c)𝜏

(
r − yn + 1

r − yn

)
p(𝜏)r−y

n [
1 − p(𝜏)

]

.

(
yn

yn

)
p̃(𝜏)y

n [
1 − p̃(𝜏)

]0
+ o(𝜏)

= e−(𝜆
n+𝜆c)𝜏 (r − yn + 1)p(𝜏)r−y

n[
1 − p(𝜏)

]
p̃(𝜏)y

n

+ o(𝜏).

(35)

P(r,bn−1,yn+1),(r,bn,yn)(t, t + �)

= P
[
no demand occurs during (t, t + �]; all r units in the

resupply at time t are still in the resupply at time t + �;

among the yn + 1 orders that are “not yet due” at time t,

yn of them are still “not yet due” at t + �

| �t = (r, bn − 1, yn + 1), �0 = (0, 0, 0)
]
+ o(�).

(36)

P(r,bn−1,yn+1),(r,bn,yn)(t, t + 𝜏)

= e−(𝜆
n+𝜆c)𝜏 qt,𝜏(r − yn − 1 | r − yn − 1) q̃t,𝜏(y

n | yn + 1) + o(𝜏)

= e−(𝜆
n+𝜆c)𝜏

(
r − yn − 1

r − yn − 1

)
p(𝜏)r−y

n−1
[
1 − p(𝜏)

]0

.

(
yn + 1

yn

)
p̃(𝜏)y

n [
1 − p̃(𝜏)

]1
+ o(𝜏)

= e−(𝜆
n+𝜆c)𝜏 p(𝜏)r−y

n−1 (yn + 1)p̃(𝜏)y
n [
1 − p̃(𝜏)

]
+ o(𝜏).
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By the Independence Assumption and using (22) and (25), right-hand side of (37) 
becomes

By conditioning on the state of the system at time t:

Then using (39), the probability of being at system state (r, bn, yn) at time 
t� = t + � can be written as

Under the Independence Assumption, each of the one-step transition probabili-
ties on the right-hand side of (40) can be determined using the results in (30), 
(32), (34), (36), and (38).

Subtracting P(0,0,0),(r,bn,yn)(0, t) from both sides and taking the limits as � → 0:

(37)

P(r,bn,yn),(r,bn,yn)(t, t + �)

= P
[
no demand occurs during (t, t + �]; all r units in

the resupply at time t are still in the resupply at t + �

units; all yn orders that are “not yet due” at time t

are still “not yet due” at time t + � | �t = (r, bn, yn),

�0 = (0, 0, 0)
]
+ o(�).

(38)

P(r,bn,yn),(r,bn,yn)(t, t + 𝜏) = e−(𝜆
n+𝜆c)𝜏 qt,𝜏(r − yn | r − yn) q̃t,𝜏(y

n | yn) + o(𝜏)

= e−(𝜆
n+𝜆c)𝜏

(
r − yn

r − yn

)
p(𝜏)r−y

n [
1 − p(𝜏)

]0

.

(
yn

yn

)
p̃(𝜏)y

n [
1 − p̃(𝜏)

]0
+ o(𝜏)

= e−(𝜆
n+𝜆c)𝜏 p(𝜏)r−y

n

p̃(𝜏)y
n

+ o(𝜏).

(39)

P(0,0,0),(r,bn,yn)(0, t
�) =

∑
(r̄, b̄n, ȳn) ∈ �(S,Sc)

P(0,0,0),(r̄,b̄n,ȳn)(0, t) ⋅ P(r̄,b̄n,ȳn),(r,bn,yn)(t, t
�).

(40)

P(0,0,0),(r,bn,yn)(0, t + �)

= P(0,0,0),(r−1,bn,yn−1)(0, t) ⋅ P(r−1,bn,yn−1),(r,bn,yn)(t, t + �)

+ P(0,0,0),(r−1,bn,yn)(0, t) ⋅ P(r−1,bn,yn),(r,bn,yn)(t, t + �)

+ P(0,0,0),(r+1,bn,yn)(0, t) ⋅ P(r+1,bn,yn),(r,bn,yn)(t, t + �)

+ P(0,0,0),(r,bn−1,yn+1)(0, t) ⋅ P(r,bn−1,yn+1),(r,bn,yn)(t, t + �)

+ P(0,0,0),(r,bn,yn)(0, t) ⋅ P(r,bn,yn),(r,bn,yn)(t, t + �)

+ o(�).



420	 O. Vicil 

1 3

The left-hand side of Eq. (41) is

To determine the right-hand side, first we need to determine the limits as � → 0.
Limits as � → 0:
(a) Using (30),

substituting values of p(�) from (21) and p̃(𝜏) from (24),

(b) Using (32),

substituting values of p(�) from (21) and p̃(𝜏) from (24),

(c) Using (34),

(41)

lim
�→0

P(0,0,0),(r,bn,yn)(0, t + �) − P(0,0,0),(r,bn,yn)(0, t)

�

= P(0,0,0),(r−1,bn,yn−1)(0, t) ⋅ lim
�→0

P(r−1,bn,yn−1),(r,bn,yn)(t, t + �)

�

+ P(0,0,0),(r−1,bn,yn)(0, t) ⋅ lim
�→0

P(r−1,bn,yn),(r,bn,yn)(t, t + �)

�

+ P(0,0,0),(r+1,bn,yn)(0, t) ⋅ lim
�→0

P(r+1,bn,yn),(r,bn,yn)(t, t + �)

�

+ P(0,0,0),(r,bn−1,yn+1)(0, t) ⋅ lim
�→0

P(r,bn−1,yn+1),(r,bn,yn)(t, t + �)

�

− P(0,0,0),(r,bn,yn)(0, t) ⋅ lim
�→0

(
1 − P(r,bn,yn),(r,bn,yn)(t, t + �)

)
�

+ lim
�→0

o(�)

�
.

(42)lim
�→0

P(0,0,0),(r,bn,yn)(0, t + �) − P(0,0,0),(r,bn,yn)(0, t)

�
= P�

(0,0,0),(r,bn,yn)
(0, t).

lim
𝜏→0

P(r−1,bn,yn−1),(r,bn,yn)(t, t + 𝜏)

𝜏
= lim

𝜏→0

𝜆n𝜏e−𝜆𝜏 p(𝜏)r−y
n

p̃(𝜏)y
n−1

𝜏
+ lim

𝜏→0

o(𝜏)

𝜏
,

(43)= lim
�→0

�n�e−��
[
1 −

(�n+�c)�

�cL+�n(L−H)

]r−yn [
1 −

�

H

]yn−1

�

= �n.

lim
𝜏→0

P(r−1,bn,yn),(r,bn,yn)(t, t + 𝜏)

𝜏
= lim

𝜏→0

𝜆c𝜏e−𝜆𝜏 p(𝜏)r−y
n−1 p̃(𝜏)y

n

𝜏
+ lim

𝜏→0

o(𝜏)

𝜏
,

(44)= lim
�→0

�c�e−��
[
1 −

(�n+�c)�

�cL+�n(L−H)

]r−yn−1 [
1 −

�

H

]yn

�

= �c.
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substituting values of p(�) from (21) and p̃(𝜏) from (24),

replacing the corresponding terms with � from (27) and � from (28),

(d) Using (36),

substituting values of p(�) from (21) and p̃(𝜏) from (24),

replacing the corresponding terms with � from (27) and � from (28),

(e) Using (38),

substituting values of p(�) from (21) and p̃(𝜏) from (24),

lim
𝜏→0

P(r+1,bn,yn),(r,bn,yn)(t, t + 𝜏)

𝜏

= lim
𝜏→0

e−(𝜆
n+𝜆c)𝜏 (r − yn + 1)p(𝜏)r−y

n

[1 − p(𝜏)] p̃(𝜏)y
n

𝜏
+ lim

𝜏→0

o(𝜏)

𝜏
,

= lim
�→0

e−(�
n+�c)� (r − yn + 1)

[
1 −

(�n+�c)�

�cL+�n(L−H)

]r−yn [
(�n+�c)�

�cL+�n(L−H)

][
1 −

�

H

]yn

�
,

(45)

= lim
�→0

e−(�
n+�c)� (r − yn + 1)[1 − ��]r−y

n

�� [1 − ��]y
n

�

= (r − yn + 1)� lim
�→0

e−(�
n+�c)� lim

�→0
[1 − ��]r−y

n

lim
�→0

[1 − ��]y
n

= (r − yn + 1)�.

lim
𝜏→0

P(r,bn−1,yn+1),(r,bn,yn)(t, t + 𝜏)

𝜏

= lim
𝜏→0

e−(𝜆
n+𝜆c)𝜏 p(𝜏)r−y

n−1 (yn + 1)p̃(𝜏)y
n[
1 − p̃(𝜏)

]
𝜏

+ lim
𝜏→0

o(𝜏)

𝜏
,

= lim
�→0

e−(�
n+�c)�

[
1 −

(�n+�c)�

�cL+�n(L−H)

]r−yn−1
(yn + 1)

[
1 −

�

H

]yn
(
�

H
)

�
,

(46)

= lim
�→0

e−(�
n+�c)� [1 − ��]r−y

n−1 (yn + 1)[1 − ��]y
n

��

�

= (yn + 1)� lim
�→0

e−(�
n+�c)� lim

�→0
[1 − ��]r−y

n−1 lim
�→0

[1 − ��]y
n

= (yn + 1)�.

lim
𝜏→0

(
1 − P(r,bn,yn),(r,bn,yn)(t, t + 𝜏)

)
𝜏

= lim
𝜏→0

1 − e−(𝜆
n+𝜆c)𝜏 p(𝜏)r−y

n

p̃(𝜏)y
n

𝜏
+ lim

𝜏→0

o(𝜏)

𝜏
,
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replacing the corresponding terms with � from (27) and � from (28),

Since there is no point of discontinuity, we can apply the L’Hôpital’s rule. Then 
the right-hand side becomes

Plugging the values of these limits into Eq. (41), we have

Assuming the steady-state distributions exist, taking the limits as t → ∞:

P(0,0,0),(r,bn,yn)(0, t) is bounded by 0 and 1 for all t. Hence, if 
limt→∞ P�

(0,0,0),(r,bn,yn)
(0, t) converges, it must converge to 0. But as shown, the right-

hand side of (49) has a fixed value. Hence the left-hand side of (49) is zero. Rear-
ranging the terms, we have

= lim
�→0

1 − e−(�
n+�c)�

[
1 −

(�n+�c)�

�cL+�n(L−H)

]r−yn [
1 −

�

H

]yn

�
,

= lim
�→0

1 − e−(�
n+�c)� [1 − ��]r−y

n

[1 − ��]y
n

�
.

(47)

= lim
�→0

(�n + �c)e−(�
n+�c)� [1 − ��]r−y

n

[1 − ��]y
n

+ lim
�→0

−e−(�
n+�c)�

{
(r − yn)[1 − ��]r−y

n−1(−�)[1 − ��]y
n

+ (yn)[1 − ��]y
n−1(−�)[1 − ��]r−y

n}

= (�n + �c) + (r − yn)� + yn�.

(48)

P�
(0,0,0),(r,bn,yn)

(0, t) =P(0,0,0),(r−1,bn,yn−1)(0, t) �
n

+ P(0,0,0),(r−1,bn,yn)(0, t) �
c

+ P(0,0,0),(r+1,bn,yn)(0, t) (r − yn + 1)�

+ P(0,0,0),(r,bn−1,yn+1)(0, t) (y
n + 1)�

− P(0,0,0),(r,bn,yn)(0, t)
[
(�n + �c) + (r − yn)� + yn�

]
.

(49)

lim
t→∞

P�
(0,0,0),(r,bn,yn)

(0, t)

= lim
t→∞

{
P(0,0,0),(r−1,bn,yn−1)(0, t) �

n

+P(0,0,0),(r−1,bn,yn)(0, t) �
c

+P(0,0,0),(r+1,bn,yn)(0, t) (r − yn + 1)�

+P(0,0,0),(r,bn−1,yn+1)(0, t) (y
n + 1)�

−P(0,0,0),(r,bn,yn)(0, t)
[
(�n + �c) + (r − yn)� + yn�

]}

= �(r−1,bn,yn−1) �
n + �(r−1,bn,yn) �

c

+ �(r+1,bn,yn) (r − yn + 1)� + �(r,bn−1,yn+1) (y
n + 1)�

− �(r,bn,yn)
[
(�n + �c) + (r − yn)� + yn�

]
.
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