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Abstract

In this study, we are primarily motivated by the research problem of recognizing hetero-

geneous customer behavior towards waiting for order fulfillment under the threshold rationing

policy (also known as the critical level policy), and aim to find its effect on system stock levels

and performance measures. We assume a continuous review one-for-one ordering policy with

generally distributed lead times. In the first model, we consider the case in which low-priority

customer class exhibits zero patience for waiting if the demand is not satisfied immediately (a

lost sale), while the demand of high-priority customer class can be backordered. This is the first

study in the literature to consider this model. We provide an exact analysis for the derivation

of the steady-state probability distribution and the average infinite horizon cost per unit time.

We then develop an efficient procedure to minimize the average expected cost rate by deriving

bounds on the optimal cost, which reduces the enumeration space considerably. In the numerical

study, we show the relative savings achieved by implementing the proposed threshold rationing

policy over some of the traditional industry practices. In the second model, we study the opposite

case in which the high-priority customer class exhibits zero patience for waiting. The existing

study in the literature uses simulation to demonstrate that the performance of the critical level

policy is robust with respect to the form and variability of the lead time distribution provided

the mean lead times are identical. Then it proposes using the Continuous-Time Markov Chain

(CTMC) equivalent of the model as an approximation. In this study, we establish a theoretical

basis for the rationale of using the CTMC approach as an approximation. We show that under

certain assumptions the steady-state probabilities of the system with generally distributed lead

times are identical to the steady-state probabilities of the CTMC system with the same mean.

This result enables us to link the dynamics of the studied model to the CTMC model, which

then allows us to provide a theoretical explanation to the empirically observed phenomenon that

why the steady-state probabilities and performance measures are near-insensitive to the form

and variability of the lead time distribution as long as mean lead times are identical.

Keywords: Threshold rationing policy; Critical level policy; Continuous-Time Markov Chain;

Priority-customer classes; Backorder systems; Lost sales systems; Stochastic Lead Times.
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1 Introduction

Inventory rationing, which has been an active subject of research for several decades, serves as

a powerful tool for managing inventories in environments where customers are differentiated in

terms of their priority. This differentiation is mostly originated from their differences in service

level requirements (imposed through contractual obligations) or class-specific penalty costs during

stock-out situations. If an organization maintains a separate inventory for each customer class,

there can be severe diseconomies of scope. Rationing strategy helps organizations to limit the

growth in inventory in support of this differentiation through inventory pooling while providing

differentiated services among different customer classes.

However, the customers might not only differ in terms of their importance to the product/service

provider or their service level requirements, but also might differ in terms of their advance de-

mand information structures (available/not available, perfect/imperfect), delivery options (ex-

act/flexible), due dates (immediate/after a demand lead time), or their responses when an order is

not fulfilled immediately, etc.

In terms of customers’ willingness to wait for order fulfillment, a common approach in the

literature is to assume homogeneous customer classes: either all customer classes - whose orders

are backordered - are assumed to be infinitely patient, or all customer classes have zero patience

for waiting and therefore their orders are lost if not fulfilled immediately.

However, there may be environments where customers are not homogeneous in terms of their

patience for order fulfillment, and therefore the inventory management system should be adopted

to take into account this difference for cost reduction.

In this study, we are primarily motivated by the research problem of recognizing heterogeneous

customer behavior towards waiting for order fulfillment under the threshold rationing policy (also

known as the critical level policy), and aim to find its effect on system stock levels and performance

measures. We consider an inventory system with two priority-customer classes: non-critical and

critical. Both priority classes exhibit mutually independent, stationary, Poisson demand processes.

We assume a continuous review one-for-one ordering policy with generally distributed replenishment

lead times. Rather than dedicating completely separate inventories to these two types of customers,

the service parts provider opts to use an inventory pool common to both demand classes, and pro-

vides differentiated levels of service among them by means of preferential stock allocation policies.

In particular, a reserve (threshold) level of inventory is held for use by critical customers only, in

anticipation of future demands.

We study two models. In the first model (Model-1), we assume that the critical (high-priority)

customer class has a long term relationship with the service provider. Demands can be backordered

since there exists a contract between them. On the other hand, non-contractual relations with the

non-critical (low-priority) customer class leads the customer to be more ready to find an alternative

if the requested order cannot be immediately satisfied, which would result in a lost sale. Due to the
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followed threshold rationing policy, both class demands are satisfied on a first-come, first-served

basis (FCFS) as long as on-hand stock is greater than the threshold level, and immediately a

replenishment order of size 1 is placed through the supplier. All incoming non-critical demands

are lost (and hence no replenishment order is placed) if on-hand stock is less than or equal to the

threshold level at the time of the arrival. The critical demands are backordered only in the cases

of stock-out situation.

We are the first in the literature to study this model. We aim to find the optimal policy

parameters that minimizes the average infinite horizon cost of the given threshold rationing policy.

The summary of our contributions for Model-1 is as follows:

1. Our derivations for the steady-state probability distribution and the average infinite horizon

cost per unit time are exact.

2. We develop an efficient optimization algorithm by deriving bounds on the optimal cost which

reduces the enumeration space considerably.

3. One important aspect of the optimization search routine is that, as the base-stock level is

increased by one at each iteration, the steady-state probabilities need to be computed only

once. For a given base-stock level, we are able to determine the majority of the expected cost

measures for different threshold levels from the knowledge of the steady-state probabilities

obtained from the previous iterations.

In the second model (Model-2), we study an inventory system in which the high-priority class

exhibit zero patience and therefore any demand that cannot be satisfied immediately from the

physical stock is lost. On the other hand, the low-priority class demands can be backordered.

Our primary motivation towards this study originated from finding theoretical explanations to the

following research questions arose from the empirical results of the Enders et al. (2014) study: (i)

why do the steady-state probabilities and performance measures are near-insensitive to the form

and variability of the lead time distribution as long as mean lead times are identical? (ii) Why does

the CTMC approximation provide quality approximations for the generally distributed lead time

model for many system settings? What is the link between the dynamics of the studied model and

the CTMC model?

There is no exact solution yet in the literature to either stochastic or deterministic lead times.

A closed form analytical solution to determine steady-state probabilities is very difficult, if not

impossible, for this model. For the approximation, Enders et al. (2014) first assume exponential

lead times and then generalize to degenerate hyperexponential. Using matrix analytic methods,

they develop an exact evaluation procedure under the critical level policy and prove monotonicity

properties of the main performance measures via sample path analysis. Then they develop an

optimization procedure that minimizes the average infinite horizon cost by using the monotonicity

properties. Enders et al. (2014) state that their approach cannot be generalized to other types
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of distributions. However, using simulation they are able to obtain similar results for a variety of

distributions (i.e. Weibull, deterministic, Erlang-k, hyperexponential, and lognormal distributions).

Using simulation, they also show the near-insensitivity of the performance of the optimal critical

level policy to lead time distribution variability.

Our study for Model-2 is in fact complementary to the Enders et al. (2014) study. The summary

of our contributions is as follows:

1. We establish a theoretical basis for the rationale of using the CTMC approach as an approx-

imation. We show that under certain approximation assumptions the steady-state proba-

bilities of the system with generally distributed lead times are identical to the steady-state

probabilities of the CTMC system with the same mean. This result is significant because

it enables us to link the dynamics of the studied model to the CTMC model, which then

allows us to provide a theoretical explanation to the empirically observed phenomenon that

why the steady-state probabilities and performance measures are near-insensitive to the form

and variability of the lead time distribution as long as mean lead times are identical. The

theoretical rationale contributes to our understanding of the system dynamics, which may

further open new doors for future research.

2. Enders et al. (2014) use matrix analytic methods to solve the CTMC model. We propose an

alternative approach in which we exploit the special structure of state transitions and then

derive a numerical solution method to solve the balance equations.

Another implication of the main result is that the quality of the CTMC approximation is a

direct indicator of the quality/accuracy of the approximation assumptions. In other words, the

quality of the CTMC approximation is a direct indicator of how weak or strong the approximation

assumptions are. Via extensive simulation study, Vicil (2019) evaluates the aggregate effect of the

approximation assumptions on the class-specific service levels. He shows that the approximation

assumptions hold well for a wide range of system parameters and the performance measures can be

estimated with high quality. As long as expected lead times are identical, he also shows empirically

the near-insensitivity of the effect of the type of lead time distribution and the lead time variability

on the achieved service levels. Vicil (2019) considers cases with deterministic lead times, and Erlang,

lognormal and gamma distributed lead times. For the scenarios with β̂n ≥ 60 % and β̂c ≥ 90 %,

levels which we expect to see in practice, and coefficient of variations up to 1.5, the average absolute

errors for the CTMC approximations range between 0.05% and 0.09% (for the low-priority class fill

rate) and range between 0.03% and 0.11% (for the high-priority class fill rate) for all the lead time

distributions we considered; while the maximum absolute errors for the CTMC approximations are

observed as 0.37% (for the low-priority fill rate) and 0.47% (for the high-priority fill rate).

It is important to note that there are fundamental differences between the backorder models

and lost sales models within the one-for-one ordering policy with inventory rationing. Generally
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speaking, in conventional inventory models, analysis of the lost sales models are much more compli-

cated than the backorder models. However, as seen in one-for-one policies, this may not be the case

for rationing policies. Rationing policy changes the evolution of system states over time such that

the sequence of demand arrivals as well as the sequence of receipts from resupply do matter and

affect system states. This is a phenomenon which we do not expect to see in conventional backorder

models. For the pure backorder systems (when both priority class demands are backordered), exact

steady-state analysis seems intractable (except for the special case of exponentially distributed lead

times). There is no exact analysis yet in the literature, though several authors provide heuristics

(i.e., Dekker et al. (1998), Koçaǧa and Şen (2007), Vicil and Jackson (2016), Gabor et al. (2018)).

Infinite system state and higher dimensionality are other factors which increases the complexity of

the analysis, since system states should be represented with additional n−1 variables for n-priority

demand classes.

For the models that consider pure lost sales (the case in which demands of all priority classes

are lost if not satisfied immediately), since there is no backorder clearing process, the queuing

results in the literature can be used, and therefore the analysis becomes tractable. In addition,

the single-dimensional finite system state representation allows to write steady-state probabilities

in a simple closed form which in turn makes it relatively easier for further optimization analysis,

including inventory holding and penalty costs (i.e., Dekker et al. (2002), Kranenburg and van

Houtum (2007)).

Considering the two models (Model-1 and Model-2) that have been studied in this article, the

existence of an exact solution depends on whether the system can be modeled as one of the queuing

models for which the exact analysis is possible. Model-1 can be modeled as a M/G/∞ queue with

mean service time T and state-dependent arrival rates. Within the scope of this queuing model,

for state-dependent arrival rates that allow a representation of the certain form, there is a queuing

theory result which allows us to determine the steady-state probabilities exactly. On the other

hand, due to the followed threshold rationing policy, Model-2 has similar characteristics as the

pure backorder models, and therefore does not fit into one of the conventional queuing models. It

has an infinite two-dimensional system state representation and closed form expressions for steady-

state probabilities are not readily available. The approximation routine requires recursive numerical

solution. It is also interesting to note that even determining the non-critical class service levels is

challenging. For both pure backorder and pure lost sales models in this setting, the low-priority

class service level can be determined exactly. However, the dynamics of the hybrid structure in

Model-2 setting does not allow us to achieve an exact solution for the low-priority class service

levels. Therefore, computations of both high and low-priority class service levels are based on the

heuristic.

This paper is organized as follows. In Section 2, we review the relevant literature. In Section

3, we introduce Model-1 in which the low-priority customers have zero patience for waiting. We

provide exact derivation of steady-state probabilities and infinite horizon average cost performance.

We also establish several structural results which are crucial for the optimization routine. Then we
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provide an efficient optimization algorithm which reduces the enumeration space significantly due

to the established bounds on the optimal cost. In Section 4, we introduce Model-2 in which the

high-priority customers have zero patience for waiting. We analyze the limiting behavior of state

transition probabilities during infinitesimal time intervals under generally distributed lead times.

We then present our main theorem showing that under certain approximation assumptions, the

steady-state probabilities of the system with generally distributed lead times are identical to the

steady-state probabilities of the CTMC system with the same mean. Then we provide a solution

strategy to solve the CTMC which exploits the special structure of state transitions. Section 5 is

dedicated to comparing the policy performance for the cost optimization model for Model-1 with

some of the traditional industry practices.

2 Literature Review

Several authors investigate the form of the optimal policy for capacitated models with multiple

demand classes (assemble-to-order end product demands) and a make-to-stock component produc-

tion environment. The demand classes differ in their demand rates and backorder costs. Ha (1997)

shows that a critical level policy (i.e., a policy with a single threshold rationing level for each de-

mand class) is optimal in the case of a Poisson demand process, exponential production times for a

single shared component, and lost sales. For the two-demand class backorder case with Erlangian

distributed production times, Ha (2000) shows that the optimal policy can be described by a mono-

tone switching curve based on a state variable measuring work in storage. For the n-demand class,

backorder case, de Véricourt et al. (2000), following the initial work by Ha (1997), prove that a

critical level policy is optimal provided production times are exponentially distributed. Pang et al.

(2014) study inventory rationing in a lost sales make-to-stock production system with batch order-

ing and multiple demand classes. For general production time distributions, with the assumption

that at any time at most one order outstanding, they show that the optimal order policy is char-

acterized by a reorder point and the optimal rationing policy is characterized by time-dependent

rationing levels.

In the continuous review framework, Nahmias and Demmy (1981) consider a (c, s,Q) model

with Poisson demand and constant lead time for two-demand-classes. In their model, backorders

are allowed and low-priority customers are not served once on-hand inventory drops below critical

level c. They assume there is at most one order outstanding in the pipeline. Moon and Kang

(1998) extend the analysis to a compound Poisson demand process and Melchiors et al. (2000)

study the model within the lost sales framework. Deshpande et al. (2003) study a model similar to

Nahmias and Demmy (1981) but allow multiple replenishment orders to be present in the pipeline.

They analyze this static policy first under the assumption that backorders are filled according to a

special threshold clearing mechanism. They provide approximations for key performance measures

and present an efficient algorithm for computing the optimal policy parameters. In a similar

model setting, Arslan et al. (2007) analyzed a single location, single product inventory rationing

6

Electronic copy available at: https://ssrn.com/abstract=3478890



problem for multiple demand classes that are characterized by different shortage costs or service

requirements. They first show how to map their inventory system into a serial inventory system

and then use this mapping to develop a model for cost evaluation and optimization.

Dekker et al. (1998) is the first to study the critical level policy within the continuous review

(S−1, S) inventory model framework. They consider two priority-demand classes and assume that

both class demands can be backordered. They provide approximations for estimating the service

level for the critical demand, while the analysis for non-critical demand is exact. Koçaǧa and Şen

(2007) study an environment similar to Dekker et al. (1998), but their model allows either one

of the customer class demands to be filled in a given lead time. They provide an approximation

for the critical service level while the service level for the non-critical demand is exact. The Vicil

and Jackson (2016) study is the only study in the literature that considers general lead time

distributions in a similar model as Dekker et al. (1998). They provide an efficient optimization

algorithm for finding the minimal stock required to satisfy demand class-specific fill-rate constraints,

which requires computation of the steady-state probabilities only once. To determine steady-state

probabilities, they analyze the limiting behavior of transition probabilities during an infinitesimal

time interval. Under the proposed independence condition that the delivery times are unaffected

by the level of low-priority demand class backorders, they prove that the CTMC approach is exact

for general lead time distributions. They also provide an exact procedure for solving the CTMC

model. Then they use the results of the CTMC model to estimate the steady-state probabilities

of system states under stochastic lead times. Later Vicil and Jackson (2018) extend the Vicil and

Jackson (2016) analysis to include class-specific expected waiting-time requirements along with

fill-rate constraints. However, the introduction of the expected waiting-time constraints imposes

fundamental challenges and results of Vicil and Jackson (2016) do not directly extend to this model.

They need to derive new results regarding the properties of the steady-state probability distribution

and service level measures to decrease the computational complexity of the optimization routine.

They also characterize the form of the optimal solution in this model setting and propose a simple

two step solution strategy that leads to an optimal base-stock and threshold levels. Gabor et al.

(2018) consider a similar inventory system as Dekker et al. (1998) but aim to optimize stock levels

with respect to class-specific service levels. Their model assumes that the service level of the high-

priority customers is measured by the fill rate, while the service level of low-priority customers

is measured by a response time guarantee. They use basic lattice path combinatorics to derive

an explicit expression of the response time constraint for low-priority customers. They propose a

simple approximation for the fill rate calculation for high-priority customers.

The following studies consider pure lost sales environments, meaning that if a demand from any

priority demand class cannot be met immediately, then it is considered a lost sale. Dekker et al.

(2002) consider a (c, S − 1, S) lost sales inventory model for multiple demand classes with Poisson

demand processes under general lead time distributions. The single-dimension finite system state

representation allowed them to base their analysis on the queueing theory result for state dependent

Poisson arrival rates. They derive the exact steady-state distribution of on-hand inventory and
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develop techniques to find optimal policy parameters. Kranenburg and van Houtum (2007) study

the same environment as Dekker et al. (2002). Their approach relies on solving a series of n-

dimensional subproblems, where n is the number of demand classes. To solve the subproblems, they

present three efficient heuristic algorithms to find optimal values for the critical levels at a given base

stock level, which minimize inventory holding and penalty costs. Song and Zipkin (2009) consider

an inventory system with multiple supply sources and Poisson demand. In one section of their

study, they consider pure lost sales model within the framework of (S−1, S) policy with rationing.

Isotupa (2015) studies a continuous review, lost sales (S − 1, S) inventory system for two priority-

demand classes with Poisson demand processes. The model is restricted to the independently and

identically distributed exponential order lead times. In the study, several conditions are proposed

and then under these conditions it is proven that there is a sub-optimal policy where differentiating

between customers and using a threshold rationing policy when compared to the case of no customer

differentiation.

In different model settings, there are several studies in the literature that consider a mixture of

lost sales and backorders. Zhou and Zhao (2010) consider a periodic review inventory system with

two priority demand classes. Unsatisfied high priority class demands are lost while low-priority

class demands can be backordered. Tang et al. (2008) study a periodic review, capacitated, make-

to-stock system with two demand classes. Unsatisfied first class demands can be backordered while

second class demands are lost. Wang and Tang (2014) study the dynamic inventory rationing policy

with mixed backorders and lost sales. Their model assumes that the penalty cost of backorders

varies with time. Therefore, the priorities of demand classes vary with time.

3 Model-1: Low-priority Customers Have Zero Patience for Wait-

ing

In this model, we consider an inventory system with two priority-customer classes: non-critical

(low-priority) and critical (high-priority). The service provider opts to use an inventory pool

common to both customer classes, and provides differentiated levels of service among them by

means of preferential stock allocation policies. In particular, a reserve level of inventory, denoted

by Sc, is held for use by critical customers only, in anticipation of future demands.

We assume the demand streams for critical and non-critical customers are independent Poisson

processes with rates λc and λn, respectively. Service is differentiated using a threshold level, Sc.

As long as on-hand inventory is higher than the threshold level, both class demands are satisfied

on a first-come, first-served basis. On the other hand, an incoming non-critical demand is rejected

(hence lost) if on-hand inventory is smaller than or equal to the threshold level Sc. Critical demand

is backordered only in the case of stock-out situation. Since a continuous review (S−1, S) policy is

followed, the acceptance of any customer order (when an incoming demand is not rejected), either

by a critical or a non-critical class, triggers an immediate replenishment order of size 1, which will
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be received after a random lead time of L time units. We assume that lead times are independent

and identically distributed positively valued random variables, which have no atom at zero. We

also assume that the expected lead time, T , is finite.

Furthermore, an incoming replenishment orders are first used to clear critical class backorders,

if there exists any. Otherwise, it is added to the common inventory pool.

Our main objective is to solve the two demand class cost optimization problem that minimizes

the infinite horizon average total cost per unit time, TC(S, Sc), and determine the optimal policy

parameters (S, Sc). To do so, we need to determine the steady-state probabilities under general

lead time distributions for given policy parameters (S, Sc), and then calculate the expected total

cost per unit time TC(S, Sc).

At any time t, let OH(t) denote the number of units on-hand, R(t) denote the number of units

in resupply, and Bc(t) denote the number of outstanding critical class backorders. At a random

point t in time, the following holds:

S = OH(t) +R(t)−Bc(t). (1)

OH(t) = [S −R(t)]+ (2)

Bc(t) = [R(t)− S]+ . (3)

Hence, at a random point in time, the system state information required to implement the

overall policy can be reduced to the single state variable R(t), the number of units in the resupply

system. These relations are also valid for the steady-state distribution of these quantities, denoted

by OH, R, and Bc.

3.1 Deriving the Steady-State Probabilities

Let Z0 = {0, 1, 2, ...} be the set of non-negative integers and πr(S, Sc), r ∈ Z0, denote the steady-

state distribution of R(t) when the policy parameters are (S, Sc).

Let λ = λn + λc. The following proposition establishes an exact solution for computing the

steady-state probabilities under stochastic lead times.

Proposition 1 For policy parameters (S, Sc) with an independent and identically distributed stochas-

tic lead times with mean T , the steady-state probability of being in state r is given by

πr =


(λT )r

r! π0, 0 ≤ r ≤ S − Sc,(
λ(S−Sc)λ

r−(S−Sc)
c

)
T r

r! π0, S − Sc + 1 ≤ r,
(4)
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where

π0 =

[
S−Sc∑
r=0

(λT )r

r!
+

∞∑
r=S−Sc+1

(
λ(S−Sc)λ

r−(S−Sc)
c

)
T r

r!

]−1

. (5)

Proof: See Appendix A.

Corollary 1 The steady-state probabilities πr, r ∈ Z0, are invariant to changes in S provided

∆ = S − Sc is constant.

Proof: Due to Proposition 1, the steady-state probabilities depend only on ∆, the difference

between the target inventory S and the threshold level Sc.

3.2 Structural Properties

Lemma 1 For Sc < S, consider two systems: (S, Sc) with steady-state probabilities πr, and (S, Sc+

1) with steady-state probabilities π ′
r . Then,

π ′
r > πr for 0 ≤ r ≤ S − Sc − 1,

π ′
r < πr for S − Sc ≤ r.

Proof: See Appendix B.

Let βn(S, Sc) (respectively βc(S, Sc)) denote the fill rate for the non-critical (respectively criti-

cal) demand class as functions of (S, Sc). Let πr(S, Sc) denote the steady-state probability distri-

bution as a function of (S, Sc). Due to the Poisson Arrivals See Time Averages principle (see, e.g.,

Tijms (1986)), non-critical and critical demand class fill rates are as follows:

βn(S, Sc) = 1− P∞(OH ≤ Sc | (S, Sc)) =

S−Sc−1∑
r=0

πr(S, Sc), (6)

βc(S, Sc) = 1− P∞(OH = 0 | (S, Sc)) =

S−1∑
r=0

πr(S, Sc). (7)

Let B(S, Sc) be the expected number of critical class backorders, I(S, Sc) be the expected on-
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hand stock, and X(S, Sc) be the expected pipeline stock. Then,

B(S, Sc) =

∞∑
r=S

(r − S) πr (S, Sc) , (8)

I(S, Sc) =

S∑
r=0

(S − r)πr (S, Sc) , (9)

X(S, Sc) =

∞∑
r=0

r πr (S, Sc) . (10)

The following proposition establishes important monotonicity results.

Proposition 2 The performance measures depend on the threshold level Sc, Sc < S, in the follow-

ing manner:

βn(S, Sc + 1) < βn(S, Sc) (11)

βc(S, Sc + 1) > βc(S, Sc) (12)

I(S, Sc + 1) > I(S, Sc) (13)

B(S, Sc + 1) < B(S, Sc) (14)

X(S, Sc + 1) < X(S, Sc) (15)

Proof: See Appendix C.

As long as ∆ is fixed, the following proposition allows us to compute several performance mea-

sures of the system (∆+ k, k), k = 1, 2, ..., from the knowledge of πr(∆, 0), r ∈ Z0. These relations

significantly reduce the computational complexity of the optimization search routine described in

the next section.

Proposition 3 For fixed ∆ and k = 1, 2, ..., the following relations hold:

βn(∆ + k, k) = βn(∆, 0), (16)

βc(∆ + k, k) = βc(∆, 0) +

k−1∑
u=0

π∆+u(∆, 0), (17)

B(∆ + k, k) =
∞∑
u=k

(u− k) π∆+u(∆, 0), (18)

I(∆ + k, k) =
∆+k∑
u=0

(∆ + k − u) πu(∆, 0), (19)

X(∆ + k, k) = X(∆, 0). (20)
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Proof: See Appendix D.

3.3 Cost Optimization

The expected total cost rate (the infinite horizon average total cost per unit time), C(S, Sc), consists

of three parts. First, there is a one-time penalty cost, ρn for the non-critical class and ρc for the

critical class, whenever a demand is not immediately satisfied from on-hand stock. Second, for

each critical demand that is backordered, there is an associated penalty cost of b per unit per unit

time of delay. Third, there is a unit holding costs of h (per unit time) for each unit being held in

stock. In steady-state, let CP (S, Sc) be the expected penalty cost rate, CB (S, Sc) be the expected

backorder cost rate, and CH (S, Sc) be the expected holding cost rate. Then,

CP (S, Sc) = ρnλn(1− βn(S, Sc)) + ρcλc(1− βc(S, Sc)), (21)

CB (S, Sc) = b

∞∑
i=0

i πS+i (S, Sc) , (22)

CH (S, Sc) = h
S∑

i=0

(S − i)πi (S, Sc) . (23)

Hence, the total expected cost rate is given by

C (S, Sc) = CP (S, Sc) + CB (S, Sc) + CH (S, Sc)

= ρnλn(1− βn(S, Sc)) + ρcλc(1− βc(S, Sc)) + b B(S, Sc) + h I(S, Sc). (24)

The cost optimization model can be written as:

min
S,Sc

C (S, Sc) = min
S,Sc

{
ρnλn(1− βn(S, Sc)) + ρcλc(1− βc(S, Sc)) + b B(S, Sc) + h I(S, Sc)

}
s.t. Sc ≤ S,

S, Sc ∈ Z0. (25)

Proposition 4 A lower bound function for C(S, Sc) is given by:

C (S, Sc) ≥ CLB (S, Sc) := ρnλn(1− βn(S, Sc)) + h (S −X(S, Sc))

Proof: See Appendix E.

Let C̃(S) be the minimum cost for a given value of S:

C̃(S) := min
Sc

{C (S, Sc) : 0 ≤ Sc ≤ S, Sc ∈ Z0} .
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Corollary 2 A lower bound function for C̃(S) is given by

C̃(S) ≥ C̃LB(S) := h (S − λT )

Proof:

C (S, Sc) ≥ CLB (S, Sc) := ρnλn(1− βn(S, Sc)) + h (S −X(S, Sc))

≥ h (S −X(S, Sc)) (26)

≥ h (S −X(S, 0)) (27)

≥ h (S − λT ) . (28)

(27) follows from (26) due to the monotonicity results in Proposition 2. To prove (28), let us

consider a second system, System-2, with policy parameters (S, 0) such that both class demands

are satisfied on a first-come, first-served basis, both demand types can be backordered, and there

is no customer differentiation. Then clearly, the expected number of units in the resupply for

this system will be higher than the expected number of units in the resupply, X(S, 0), for System-1

(original (S, 0) system with lost sales and backorders). Then System-2 is equivalent to the (S−1, S)

system with a single customer type with demand rate λ = λn + λc. Then by Palm’s Theorem, the

number of units in the resupply for this system is Poisson distributed with mean λT . Hence, the

expected number of units in the resupply is λT . Consequently, (28) follows from (27). Since the

RHS of (28) holds for all Sc, the proof is completed.

Although it was given for a different model (equivalent to Model-2 of our study), we are going to

follow a similar optimization search routine as provided by Enders et al. (2014) for determining the

optimal policy parameters. For a given S, CLB (S, Sc) is increasing in Sc; and C̃LB(S) is increasing

in S. Our search algorithm, which is presented in Table 1, uses these monotonicity properties and

established bounds to reduce the enumeration space considerably. Let C̃∗(S) be the minimum cost

up to a certain value of S. Starting from S = 0, we increase S, one unit at a time. We continue

increasing S until C̃∗(S) ≤ C̃LB(S + 1). This condition is checked via “Step 6. WHILE loop

execution”. When the condition C̃∗(S) ≤ C̃LB(S+1) is satisfied for the first time, there is no need

to search for higher values of S to find the optimal policy parameters. Because for all (S ′, Sc) pairs

such that S ′ > S, C̃∗(S) is guaranteed to be less than or equal to C̃(S ′).

The second part of the search algorithm involves searching for C̃(S), the minimum cost for

a given value of S. This is performed via the “Step 6.g. WHILE loop execution”. For a given

value of S, starting from Sc = 0 we increase Sc one unit at a time as long as {Sc < S} AND

{C̃(S) > CLB(S, Sc+1)}. When the condition C̃(S) ≤ CLB(S, Sc+1) is satisfied for the first time,

C̃(S) is guaranteed to be the minimum cost for a given value of S, and hence there is no need to

check for higher values of Sc. The first condition of the “Step 6.g. WHILE loop execution”, Sc < S,

is necessary for terminating the execution because, since the algorithm relies on the lower bounds,
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it may be possible that the condition C̃(S) ≤ CLB(S, Sc + 1) might never be satisfied during the

search. We demonstrate the efficiency of the optimization algorithm in the numerical study, Section

5. Our search algorithm needs to iterate, on average, only 0.926 values for S beyond S∗.

However, our search algorithm differs from the cost optimization algorithm of Enders et al.

(2014) in the way cost performance measures are calculated at each iteration. An important aspect

of our optimization search routine is that, as the base-stock level is increased by one at each

iteration, the steady-state probability need to be computed only once for (S, 0). For a given base-

stock level, for all Sc > 0, C(S, Sc) can be easily determined from the knowledge of πr(S − Sc, 0)

(which has already been computed in the previous iterations) using Proposition 3.

Table 1: Cost optimization algorithm for the two demand class model

Step Inputs: λn, λc, T, pn, pc, b, h
1. Set S = 0, Sc = 0;
2. Set S∗ = 0, S∗

c = 0;
3. Compute πr(0, 0) for all r ∈ Z0 using Proposition 1;

4. Initialize C̃∗(0) = C(0, 0) using (24);

5. Compute C̃LB(S + 1) using Corollary 2;

6. WHILE C̃∗(S) > C̃LB(S + 1):
a. Set S = S + 1;
b. Set Sc = 0;
c. Compute πr(S, Sc) for all r ∈ Z0 using Proposition 1;

d. Initialize C̃(S) = C(S, Sc) using (24);

e. IF C̃(S) < C̃∗(S − 1):

- Set C̃∗(S) = C̃(S);
- Set S∗ = S, S∗

c = Sc;
ELSE:

- Set C̃∗(S) = C̃∗(S − 1);
f. Compute CLB(S, Sc + 1) from the knowledge of πr(S − Sc − 1, 0)

using Propositions 3 and 4;

g. WHILE {Sc < S} AND {C̃(S) > CLB(S, Sc + 1)} :
- Set Sc = Sc + 1;
- Compute C(S, Sc) from the knowledge of πr(S − Sc, 0) using Proposition 3;

- IF C(S, Sc) < C̃(S):

∗ Set C̃(S) = C(S, Sc);

∗ IF C̃(S) < C̃∗(S):

⋄ Set C̃∗(S) = C̃(S);
⋄ Set S∗ = S, S∗

c = Sc;
- IF Sc < S:
∗ Compute CLB(S, Sc + 1) from the knowledge of πr(S − Sc − 1, 0)
using Propositions 3 and 4;

h. Compute C̃LB(S + 1) using Corollary 2;
7. Return (S∗, S∗

c );

8. Return C̃∗(S).
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4 Model-2: High-priority Customers Have Zero Patience for Wait-

ing

In this model, we consider a similar inventory system as in Model-1, but this time demands of

the non-critical customer class can be backordered while the critical class demands are lost if not

met immediately. The critical customer class experiences higher service level (fill rate) than the

non-critical customer class.

Service is differentiated using a threshold level, Sc. As long as on-hand inventory is higher

than the threshold level, both class demands are satisfied on a first-come, first-served basis. On

the other hand, when on-hand stock is at or below Sc all incoming non-critical class demands are

backordered. Critical class demands are lost only if the on-hand inventory is zero.

The delivery of a replenishment order is first used to replenish the critical reserve inventory

(up to Sc). Only when on-hand inventory would otherwise exceed the level Sc is a delivery used to

satisfy non-critical backorders. If on-hand inventory is at or above level Sc and there are no further

non-critical backorders, then deliveries are added to the common inventory pool and the on-hand

inventory level is allowed to exceed Sc.

Because the replenishment policy is a simple order-up-to policy and the rationing policy is static

(rather than being dynamic), at a random point in time, the system state information required to

implement the overall policy can be reduced to two state variables
(
R(t), Bn(t)

)
, the number of

units in the resupply system, and the number of non-critical backorders, respectively. At a random

point t in time, the following holds:

OH(t) = S −R(t) +Bn(t). (29)

The relation (29) holds for the steady-state distributions as well.

4.1 Determining the Steady-State Probabilities

Let Z0 = {0, 1, 2, ...} be the set of non-negative integers and ξt = (r, bn) ∈ F(S,Sc) denote the system

state at time t, t ≥ 0, where F(S,Sc) represents the set of feasible states when the policy parameters

are given by (S, Sc). And let π(r,bn)(S, Sc), (r, bn) ∈ F(S,Sc), denote the steady-state distribution of

(R(t), Bn(t)) for given policy parameters (S, Sc).

Determining the steady-state probability distribution is a challenge. This is because, for the case

of generally distributed lead times, “not only total demand arrivals and deliveries are important,

but also the sequence of arrivals and deliveries do matter”. Therefore, a closed form analytical

solution to determine steady-state probabilities is very difficult, if not impossible, for this model.

To show this, let us consider two scenarios with constant lead times L, and S = 4, Sc = 1. In the

first scenario, let us suppose OH = 4, R = 0, and Bn = 0 at t=0. Suppose also that during the

next L time periods there are exactly three non-critical demands followed by two critical demands.
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At t = L, the system state will be OH = 0, R = 4, and Bn = 0. On the other hand, if the sequence

of arrivals had been reversed (two critical demands followed by three non-critical demands) the

resulting state would have been OH = 1, R = 5, and Bn = 2. In the second scenario, let us suppose

OH = 3, R = 1, and Bn = 0 at t = L. Suppose also that during the next L time periods there are

exactly one delivery, three non-critical demands followed by two critical demands. At t = 2L, the

system state will be OH = 0, R = 4, and Bn = 0. On the other hand, if the delivery were to be

the last (three non-critical demands followed by two critical demands and a single delivery), the

resulting state would have been OH = 1, R = 4, and Bn = 1.

Exact determination of steady-state probabilities for arbitrary lead time distributions, including

constant lead times, is an unsolved problem in the literature. However, the results of the Vicil and

Jackson (2016) study triggered our motivation to analyze the limiting behavior of infinitesimal

state transition probabilities in this model setting. But before exploring this approach in our

model setting, we note that for the special case (S, 0) the following proposition allows us to have

an exact solution to steady-state probabilities.

Proposition 5 For the special case (S, 0) with an independent and identically distributed stochastic

lead times with finite mean T , the steady-state probabilities are

π(i,j) =


(λT )i

i! π(0,0), 0 ≤ i ≤ S,(
λSλj

n

)
T i

i! π(0,0), S + 1 ≤ i,
(30)

where

π(0,0) =

[
S∑

v=0

(λT )v

v!
+

∞∑
v=S+1

(
λSλv−S

n

)
T v

v!

]−1

. (31)

Proof: See Appendix F.

Before analyzing the limiting behavior of state-transitions during infinitesimal time units, first

we need to examine the demand arrival and replenishment processes. Although the demand process

is Poisson and a one-for-one replenishment policy is followed, order cancelations occur due to the

lost sale structure of the process. If there is a physical stock at the time of a critical demand arrival,

the order is satisfied from the on-hand stock and immediately a replenishment order is given through

the supplier. Replenishment orders are placed at a rate of λn + λc in these situations. However, if

there is a stock-out situation at the time of a critical demand arrival, then the order is rejected (a

lost sale), and therefore no replenishment order is placed. Thus, replenishment orders are placed

at a rate of λn in stock-out situations. Furthermore, in steady-state, an arriving customer demand

encounters a stock-out situation with probability 1 − βc = P∞(OH = 0). Hence, in steady-state,

the expected number of replenishment orders placed through the supplier over a finite interval, for
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example (t, t+ τ ], is (λn+βcλc)τ . However, the process is not a non-homogeneous Poisson Process

because the acceptance of orders are state-dependent and the number of replenishment orders

placed in any finite set of nonoverlapping intervals are not necessarily mutually independent random

variables. But still we have a valid starting point for the analysis. This is because, interarrival times

of replenishment orders due to the non-critical demands are exponentially distributed with mean

1/λn, while interarrival times of replenishment orders due to the critical demands are exponentially

distributed with mean 1/λc provided no stock-out occurs. The irregularities occur only during

stock-out situations. As achieved service levels for the critical demand class increases, we expect

to see these irregularities lesser. Since a one-for-one policy is implemented, if we ignore these

irregularities, then given that a replenishment order is placed during (0, t], the time of the order

placement is expected to be uniformly distributed over this interval. This will serve as our first

approximation assumption for the analysis.

On the other hand, there is another dynamic that affects the uniformity of the time of the order

placement. Let us explore the system dynamics a little further. The state of the system changes if a

replenishment order is placed or a unit is received from the resupply system. Demands are indepen-

dent and identically distributed so the resupply process is independent of the subsequent demand

processes. In addition, replenishment lead times are independent and identically distributed, hence

orders may cross. Since demands are Poisson processes and orders from suppliers are triggered

whenever a non-critical demand occurs or a critical demand occurs and is satisfied from on-hand

stock, at a random point t in time, if only R(t) is known (or observed), one may claim that the

knowledge of the number of units in the resupply would be sufficient to characterize the delivery

process via using the previous approximation assumption: unordered times of the replenishment

order placements are independent and uniformly distributed over (0, t]. However, this claim is not

correct. Our intuition may play us a trick here at first sight, because the replenishment process is

governed by the base-stock policy and orders are placed no matter whether the inventory is rationed

or not. Hence, the replenishment process may seem independent of the rationing policy.

Nevertheless, the above reasoning is not correct. If we condition on being at some system state,

say (R(t), Bn(t)), then the delivery process will also depend on the knowledge of Bn(t). This is

because; due to the threshold rationing policy there is a correlation between the pipeline vector

and the number non-critical class backorders. In other words, there is a difference between condi-

tioning on only the knowledge of R(t) and conditioning on the complete system state information

(R(t), Bn(t)). To make the analysis tractable, we relax the dependency of these two variables

via using another approximation assumption (Note that according to our model the system state

information is (R(t), Bn(t)). However, there are other ways to represent system states so that

OH(t), Bn(t), Bc(t), R(t) information could be extracted. If this were to be the case, then the vari-

ant of the approximation assumption would be such that we relax the dependency of the pipeline

vector to the current system sate information).

For our analysis, we will use the following approximation assumptions.
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Approximation Assumptions:

1. Given that a replenishment order is placed during (0, t], the time of the order is uniformly

distributed over this interval.

2. Conditioned on being at the system state ξt = (r, bn) ∈ F(S,Sc) at an arbitrary point in time t,

the probability of a unit delivery in the interval (t, t+ τ) for an infinitesimally small τ, τ > 0,

does not depend on the value of bn.

But the question is how weak or strong these assumptions are. Because the quality of the

approximation will depend on the aggregate effect of these approximation assumptions on system

state transition probabilities. We will explore these dynamics later.

The following lemma establishes an important result which will be used in steady-state analysis.

Lemma 2 Conditioned on being at the system state ξt = (r, bn) ∈ F(S,Sc) at an arbitrary point in

time t, under the Approximation Assumptions, the probability of more than one state transition

happening in the interval (t, t+ τ) for an infinitesimally small τ, τ > 0, is o(τ).

Proof: See Appendix G.

The following theorem establishes the relationship between steady-state probabilities under the

Approximation Assumptions for generally distributed lead times.

Theorem 1 For a system with a general, positively-valued lead time distribution having finite

mean, T , with no probability mass at zero, then under the Approximation Assumptions the steady-

state distribution of (R,Bn) satisfies the same balance equations as the system with an exponential

lead time distribution with the same mean.

Proof: See Appendix H.

For a given (S, Sc) pair such that S > Sc ≥ 2, the steady-state distribution of (R,Bn) satisfies

the following balance equations in Table 2. Special cases with Sc ∈ {0, 1} can be written similarly.

For notational simplicity, we use π(r,bn) instead of π(r,bn)(S, Sc).
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Table 2: Balance equations for the system (S, Sc), such that S > Sc ≥ 2

State classification Balance Equation

r = 0, bn = 0 λπ(0,0) = µπ(1,0)

0 < r < S − Sc, bn = 0 (rµ+ λ)π(r,0) = λπ(r−1,0) + (r + 1)µπ(r+1,0)

r = S − Sc, bn = 0 (rµ+ λ)π(r,0) = λπ(r−1,0) + (r + 1)µπ(r+1,0) + (r + 1)µπ(r+1,1)

S − Sc < r < S, bn = 0 (rµ+ λ)π(r,0) = λcπ(r−1,0) + (r + 1)µπ(r+1,0)

r = S, bn = 0 (Sµ+ λn)π(S,0) = λcπ(S−1,0)

r > S − Sc, bn = r − (S − Sc) (rµ+ λ)π(r,bn) = λnπ(r−1,bn−1) + (r + 1)µπ(r+1,bn) + (r + 1)µπ(r+1,bn+1)

(S − Sc) + bn < r < S + bn, bn > 0 (rµ+ λ)π(r,bn) = λnπ(r−1,bn−1) + λcπ(r−1,bn) + (r + 1)µπ(r+1,bn)

r > S, bn = r − S (rµ+ λn)π(r,bn) = λnπ(r−1,bn−1) + λcπ(r−1,bn)

The result of Theorem 1 is very significant for few reasons. First, although the analysis is

quite complex we are able to study the steady-state behavior of state transitions with only two

approximation assumptions, which have been reasoned using the system dynamics. We theoreti-

cally justified that under the two Approximation Assumptions, CTMC approach is exact for the

generally distributed lead time model. Second, things might have turned out differently: under the

Approximation Assumptions we might have ended up with some recursive equations for the balance

equations that may depend on the form or the variability of the lead time distribution. But instead,

we have been able to reach nicely expressed, simple closed form solutions to the balance equations

of the steady-state distribution of (R,Bn), which does not depend on the form and variability of

the lead time distribution. Therefore, this result allows us to provide a theoretical explanation to

the empirically observed phenomenon that why the steady-state performance measures (i.e. class-

specific service levels or cost measures) are near-insensitive to the form and variability of lead time

distributions as long as mean lead times are identical.

So, using Theorem 1, if we determine the stationary probabilities of the alternate Continuous-

Time Markov Chain model, we can use these probabilities to approximate the steady-state proba-

bilities of the original system. And then we can estimate the class-specific service levels. But the

question is how well this CTMC approximation is. Therefore, to evaluate the quality of the CTMC

approximation for the service level calculations (and hence the quality/accuracy of the Approxi-

mation Assumptions), we refer to the Vicil (2019) study in which he performs extensive numerical

study under a variety of lead time probability distributions and system parameters. He shows that

the CTMC approximation works well for many model settings. As long as expected lead times are

identical, it is also shown empirically the near-insensitivity of the effect of the type of lead time

distribution and the lead time variability on the achieved service levels. Vicil (2019) considers cases

with deterministic lead times, and Erlang, lognormal and gamma distributed lead times. For the

scenarios with β̂n ≥ 60 % and β̂c ≥ 90 %, levels which we expect to see in practice, and coefficient

of variations (CV ) up to 1.5, the summary of the main findings for the CTMC approximations for

both customer classes are presented in Table 3 (for more discussion, see Vicil, 2019). Note that

CV of the Erlang distribution always varies between 0 and 1.
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Table 3: Average and Maximum Absolute Errors of the CTMC approximation (β̂n ≥ 60 % and
β̂c ≥ 90 %).

Average Maximum

Distribution AEn AEc AEn AEc

Constant 0.09% 0.05% 0.37% 0.18%

Erlang 0.05% 0.04% 0.20% 0.17%

Lognormal (CV ≤ 1.5) 0.05% 0.03% 0.28% 0.11%

Gamma (CV ≤ 1.5) 0.09% 0.11% 0.31% 0.47%

4.2 Exact Solution: Exponentially Distributed Lead Times

In this section, we show that the balance equations for the exponentially distributed lead times can

be numerically solved and then the steady-state probabilities can be exactly computed.

Figure 1: State transition diagram for the CTMC model

Figure 1 displays a state transition diagram for the policy parameters (S, Sc), S > Sc ≥ 2, with

rates for this alternate CTMC system in terms of the state variable pair (R,Bn). Note that all
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the transitions between columns corresponding to deliveries are one-way, from left to right, unless

R − Bn = S − Sc (which means OH = Sc). That is, a delivery cannot cause a transition to the

left unless OH = Sc. When R − Bn > S − Sc (so that OH < Sc), an incoming resupply unit will

decrease R by 1 unit which causes an upward transition.

As can be seen in Figure 1, the state transitions have a special structure such that every

stationary probability can be written in terms of the single state (0, 0) stationary probability.

Therefore, the balance equations can be solved by truncating the infinite state transition matrix.

Note that the system regenerates itself every time state (0, 0) is reached, when there are no orders

outstanding.

We are going to prove that any steady-state probability π(i,j) can be written in terms of the

single steady-state probability π(0,0). Hence, since the sum of stationary probabilities will be equal

to 1, steady-state probabilities can be computed easily. We consider the balance equations for the

models with S > Sc ≥ 2 which are provided in Table 2. Balance equations for models with other

policy parameters (S, Sc) can be solved similarly.

STEP 1: For all π(i,0) s.t. 1 ≤ i ≤ S − Sc;

π(1,0)µ = π(0,0)λ,

π(i,0)µi = π(i−1,0)[λ+ µ(i− 1)]− π(i−2,0)λ for i ≥ 2.

Solving the above two equations leads to the following recursion:

π(i,0) =
1

i!

(
λ

µ

)i

π(0,0). (32)

Hence, for 1 ≤ i ≤ S − Sc, all π(i,0) can be written in terms of π(0,0).

STEP 2: For all π(i,0) s.t. S − Sc ≤ i ≤ S − 1;

π(S,0)(λn + µS) = π(S−1,0)λc,

=⇒ π(S−1,0) = π(S,0)

(
λn + µS

λc

)
. (33)

From the balance equations, we first write π(S−2,0) in terms of π(S−1,0) and π(S,0) as,

π(S−2,0) =
{
π(S−1,0)[λ+ µ(S − 1)]− π(S,0)µS

} 1

λc
. (34)

Note that since π(S−1,0) has already been determined in terms of π(S,0), π(S−2,0) can be written

in terms of only π(S,0). And then recursively, all the remaining stationary probabilities can be
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written in terms of only π(S,0):

π(S−k,0) =
{
π(S−k+1,0)[λ+ µ(S − k + 1)]− π(S−k+2,0)µ(S − k + 2)

} 1

λc
, for k = 3, 4, ..., Sc, (35)

with the last one being,

π(S−Sc,0) =
{
π(S−Sc+1,0)[λ+ µ(S − Sc + 1)]− π(S−Sc+2,0)µ(S − Sc + 2)

} 1

λc
. (36)

But from the Equation (32), we also have

π(S−Sc,0) =
1

(S − Sc)!

(
λ

µ

)S−Sc

π(0,0). (37)

Hence, numerical solution to (36) and (37) exist and therefore, π(S,0) can be written in terms of

only π(0,0); which also implies that for S − Sc ≤ i ≤ S − 1, all π(i,0) can be written in terms of only

π(0,0).

STEP 3: For all π(i,j) s.t. S − Sc + j ≤ i ≤ S + j, 1 ≤ j;

In this step, we will show that all π(i,j) can be written recursively in terms of only π(0,0) for

j = 1, 2, ....

For j = 1, the balance equation for state (S − Sc + j − 1, j − 1) is,

π(S−Sc,0) [µ(S − Sc) + λ] = π(S−Sc−1,0)λ + π(S−Sc+1,0)µ (S − Sc + 1) + π(S−Sc+1,1)µ (S − Sc + 1) .(38)

For j ≥ 2, the balance equation for state (S − Sc + j − 1, j − 1) is,

π(S−Sc+j−1,j−1) [µ(S − Sc + j − 1) + λ] = π(S−Sc+j−2,j−2)λn + π(S−Sc+j,j−1)µ (S − Sc + j)

+ π(S−Sc+j,j)µ (S − Sc + j) . (39)

In the above equations, π(S−Sc+j,j) for j ≥ 1 can be written exclusively in terms of π(0,0),

because the steady-state probabilities π(i,k), k ≤ j − 1, were already written in terms of π(0,0) in

previous steps and recursions.

And then, from the balance equations we first write π(S+j−1,j) in terms of π(S+j,j) and π(S+j−1,j−1)

as,

π(S+j−1,j) =
{
π(S+j,j)[λn + µ(S + j)]− π(S+j−1,j−1)λn

} 1

λc
, (40)

where π(S+j−1,j−1) has already been written in terms of π(0,0) in the previous steps and recursions.

And then recursively, for k = 1, ..., Sc − 1, all the remaining stationary probabilities can be
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written in terms of π(S+j,j), π(S+j−1,j) and π(S+j−k,j−1) as:

π(S+j−1−k,j) =
{
π(S+j−k,j)[λ+ µ(S + j − k)]

− π(S+j+1−k,j)µ(S + j + 1− k)− π(S+j−1−k,j−1)λn

} 1

λc
, (41)

with the last one being,

π(S−Sc+j,j) =
{
π(S−Sc+1+j,j)[λ+ µ(S − Sc + 1 + j)]− π(S−Sc+2+j,j)µ(S − Sc + 2 + j)

−π(S−Sc+j,j−1)λn

} 1

λc
. (42)

π(S−Sc+j,j) had already been written in terms of only π(0,0) in (38) and (39). It has also been

written in terms of π(S+j,j) and π(0,0) in (40) and (41). Hence numerical solution to those equations

exist and, therefore π(S+j,j) can be solved and written in terms of only π(0,0); which also implies

that for S − Sc + j ≤ i ≤ S + j, j ≥ 2, all π(i,j) can be written in terms of only π(0,0).

STEP 4: Write all π(i,j) in terms of the single unknown π(0,0) and then solve the following

equation ∑
i

∑
j

π(i,j) = 1. (43)

Solving the above equation, we can first determine π(0,0) and then all π(i,j) can be determined

successively.

Note that for coding purpose, the infinite sum in (43) can be solved by truncating the infinite

state space and solving for ∑
i

∑
j≤K

π(i,j) = 1, (44)

whereK denotes an upper limit on the number of non-critical customer class backorders to compute.

Let us denote the cumulative distribution function of Poisson distribution as F (·). To truncate

the infinite state space according to a desired precision, one possible upper bound on the number

of non-critical customer class backorders, K, can be found as

K = F−1(α,
λ

µ
), (45)

where λ
µ is the mean of Poisson distribution and α is the captured cumulative probability of the

number of non-critical class backorders, representing the precision. For the purpose of this study, we

set α = 99.999%. However, depending on the desired precision level, α can be chosen appropriately.

To show this, for given arbitrary policy parameters (S, Sc) and demand stream, let us consider two

systems. The first system represents Model-2 of this study. The second system represents a very

similar inventory system except that backorders are allowed for both customer classes. Let system
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states be (R(t), Bn(t)) and (R′(t), B′
n(t)) for the first and second systems, respectively. At any point

in time, Bn(t) ≤ R(t)−(S−Sc). In addition, R(t) ≤ R′(t). This is because, although replenishment

process is governed by the base-stock policy for both systems, some of the critical demands are lost

in the first system during stock out situations, and therefore do not trigger replenishment orders.

These relations are also valid in the steady-state. Hence we have Bn ≤ R − (S − Sc) ≤ R ≤ R′.

Furthermore, Vicil and Jackson (2016) showed that in steady-state R′ is Poisson distributed with

mean λ
µ . Hence, if K is set according to K = F−1(α, λµ), then

P (Bn ≤ K) ≥ P (R ≤ K) ≥ P (R′ ≤ K) ≥ α. (46)

Note that P (R′ ≤ K) ≥ α, instead of P (R′ ≤ K) = α, because of the discreteness of Poisson

distribution. If we denote the maximum value of Bn as Bmax
n , this result implies that P (Bmax

n ≤
K) ≥ α. Hence, for Model-2, K = F−1(α, λµ) is a legitimate upper bound on the number of non-

critical class backorders with precision level α. Furthermore, since the infinite sum is truncated to

the finite sum in (44), the error associated with the truncation is bounded by
∑
i

∑
j>K

π(i,j) ≤ 1−α.

In our setting, P (Bmax
n ≤ K) ≥ 99.999%, and hence the error associated with the truncation is

bounded by 0.001 %.

Let π̂(i,j) be the estimator of the steady-state probabilities of the original system under the

generally distributed lead times. Then, the CTMC approximation algorithm can be implemented

as in Table 4.

Table 4: The CTMC Approximation Algorithm for estimating the steady-state probabilities of the
two demand class hybrid model

Step Inputs: S, Sc, T, λn, λc

1. Initialize µ = 1/T, λ = λn + λc, K = F−1(99.999%, λµ);

2. Write every state π(i,j), i ≥ 1, in terms of π(0,0) using STEP 1 through STEP 4;

3. Compute π(0,0) from the equation
∑
i

∑
j≤K

π(i,j) = 1;

4. Determine all π(i,j), i ≥ 1, from Step 2 (of Table 4);

5. Set π̂(i,j) = π(i,j), for all i, j.

5 Comparing Policy Performance of Model-1 for the Cost Opti-

mization Model

In this section, we compare the performance of the threshold rationing policy with the pooling

without rationing policy and the separate-stock policy, which are common in practice (for more

discussion see e.g., Deshpande (2003)). In the pooling without rationing policy, the advantage of

inventory pooling is taken but there is no differentiation among customer classes and, therefore

demands from both classes are satisfied on a first-come, first-served basis.
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To illustrate the benefit of implementing the threshold rationing policy among the heterogeneous

customer classes with different impatience for waiting, we study 27 instances with varying system

parameters. For all the instances, we fix h = 1, b = 10, pn = 10, T = 1, and vary λn, λc and pc. The

results are provided in Table 5. In the first two columns, the demand rates are provided for the

non-critical and critical customer classes, respectively. In the third column, one-time penalty cost

pc are provided for the critical customer demands that are not immediately satisfied from on-hand

stock. In columns 4− 5, we provide the percentage savings of using the threshold rationing policy

over the separate-stock policy and the pooling without rationing policy, respectively.

We first observe that threshold rationing policy provides significant savings with respect to the

separate-stock policy in all the instances. The percentage savings vary between 16.01% and 30.89%.

We also observe that for λn = λc, as λ increases, the percentage savings increases. Furthermore,

we see that for a fixed λ, the higher the ratio λn/λc, the higher the percentage savings. However,

besides these relationships, there is no other regular pattern showing the relation between the

percentage savings and variables λn, λc and pc.

Although the savings are not as significant as in the separate-stock policy comparison, the

threshold rationing policy still provides considerable savings over the pooling without rationing

policy. The threshold rationing policy provides savings in 27 of the 29 instances, which can be as

high as 11.33%. We observe that while keeping λn and λc fixed, as pc increases the percentage

saving increases. We observe a similar pattern as in the separate-stock policy. For λn = λc, as λ

increases the percentage savings increases. We also observe that for a fixed λ, the higher the ratio

λn/λc, the higher the percentage savings.

We note that the (total) savings associated with implementing the threshold rationing policy

may be more pronounced in environments where hundreds to tens of thousands of stock units are

being managed.

Furthermore, we can conclude that our optimization algorithm is quite efficient. Due to using the

bounds in our optimization algorithm, we are able to eliminate considerable parts of the enumeration

space. Considering all 27 instances in Table 5, our search algorithm needs to iterate, on average, only

0.926 values for S beyond S∗ (The maximum and the minimum number of required iterations for S

beyond S∗ are observed as 2 and 0). This also implies that, on average, the steady-state probabilities

need to be computed only S∗ + 1.926 times for all possible enumeration of (S, Sc) pairs due to

Proposition 3 (Recall that as the base-stock level is increased by one at each iteration, the steady-

state probabilities need to be computed only once in our proposed optimization routine. For a given

base-stock level S, C(S, Sc) can be immediately determined for all Sc > 0 from the knowledge of

the steady-state probabilities already computed in previous iterations using Proposition 3. Also

note that when the optimization routine terminates with base-stock level, say S, the steady-state

probabilities are calculated in total S + 1 times for the policy parameters (0, 0), (1, 0), . . . , (S, 0)).
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Table 5: Benefit of Threshold Rationing Policy vs. Pooling without Rationing and Separate-Stock
Policies

λn λc pc % Saving (sep-stock) % Saving (pooling w/o rat.)

1 1 50 27.54 % 0.74 %

1 1 100 26.40 % 4.49 %

1 1 200 25.27 % 4.86 %

1 5 50 20.77 % 1.07 %

1 5 100 20.09 % 3.16 %

1 5 200 19.73 % 3.48 %

1 10 50 17.11 % 0.94 %

1 10 100 16.50 % 1.73 %

1 10 200 16.01 % 2.61 %

5 1 50 27.04 % 0 %

5 1 100 26.96 % 3.69 %

5 1 200 27.52 % 7.64 %

5 5 50 29.49 % 3.53 %

5 5 100 29.46 % 6.68 %

5 5 200 29.08 % 8.76 %

5 10 50 28.11 % 4.52 %

5 10 100 27.52 % 6.14 %

5 10 200 26.80 % 7.45 %

10 1 50 24.07 % 0 %

10 1 100 23.46 % 0.84 %

10 1 200 24.97 % 6.05 %

10 5 50 30.61 % 4.66 %

10 5 100 30.13 % 7.39 %

10 5 200 30.79 % 11.33 %

10 10 50 30.78 % 5.41 %

10 10 100 30.67 % 8.12 %

10 10 200 30.89 % 11.26 %

6 Conclusion and Future Research

Inventory rationing in different settings have been studied in the past but for most, it remains a

challenging problem because of the difficulty of computing exact or accurate performance measures.

In this study, we explore a specific threshold rationing policy for a single service part with two

priority-demand classes in concert with a continuous review (S−1, S) replenishment policy. Demand

classes are not only differentiated in terms of their importance to the service parts provider, but

also differentiated in terms of their willingness to wait for backordered demand.

This is the first study in the literature to consider Model-1. We provide an exact analysis for the
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derivation of the steady-state probability distribution and the average infinite horizon cost per unit

time. We then develop a computationally efficient optimization algorithm to minimize the average

expected cost rate by deriving bounds on the optimal cost, which reduces the enumeration space

considerably. To make the optimization algorithm coding friendly for practitioners, we present

every step in detail. Then in the numerical study section, we demonstrate that inventory rationing

may provide considerable savings over some of the traditional approaches in practice.

In Model-2, we aim to analyze the dynamics behind the empirically observed phenomenon

that why the CTMC approximation provides quality approximations for the generally distributed

lead time model in many system settings. By analyzing the limiting behavior of state transition

probabilities during infinitesimal time intervals, we establish a theoretical basis for the rationale

of using the CTMC approach as an approximation. We show that under certain approximation

assumptions, the steady-state probabilities of the system with generally distributed lead times are

identical to the steady-state probabilities of the CTMC system with the same mean. This result

allows us to provide a theoretical explanation to the empirically observed phenomenon that why the

steady-state probabilities and performance measures are near-insensitive to the form and variability

of the lead time distribution as long as mean lead times are identical. The theoretical rationale

contributes to our understanding of the system dynamics, which may further open new doors for

future research.

One direct extension of Model-1 is to consider a service level optimization model. As a suggestion

for future research for both Model-1 and Model-2, it may be interesting to consider an inventory

system such that rather than showing a zero patience towards waiting for order fulfillment, the

corresponding demand class is willing to wait but only up to a certain point. The orders are lost

only if the waiting time exceeds a certain patience time.
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A Proof of Proposition 1

At any point in time, the knowledge of the number of units in the resupply system is sufficient

to characterize the system state. Therefore, the system can be modeled as a M/G/∞ queue with

mean service time T and state-dependent arrival rates

λr =

λ, 0 ≤ r ≤ S − Sc − 1,

λc, S − Sc ≤ r.
(47)

Smeitink (1990) studied a (S−1, S) inventory system with partial backordering such that there

is no demand differentiation. In our rationing model with two priority-demand classes, if we define

αr−(S−Sc) =
λc
λ for r ≥ S − Sc, and Ψ(r) as

Ψ(r) =

1, 0 ≤ r ≤ S − Sc,

Π
r−(S−Sc)−1
j=0 αj , r ≥ S − Sc + 1,

and then use the steady-state probabilities derived by Smeitink (1990) where the maximum stock

level S is replaced by S − Sc, we obtain the steady-state probabilities presented in Proposition 1.
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B Proof of Lemma 1

Considering the state-dependent arrival rates in (47), the steady-state probabilities in Proposition

1 are also equivalent to

πr =

{
r−1∏
i=0

λi

}
T r

r!
π0, r ≥ 1, (48)

where

π0 =

[ ∞∑
r=0

{
r−1∏
i=0

λi

}
T r

r!

]−1

. (49)

Let

Ar =

{
r−1∏
i=0

λi

}
T r

r!
, 0 ≤ r ≤ S − Sc − 1,

A ′
r =


r−1∏
i=0

i ̸=S−Sc−1

λi

 T r

r!
, S − Sc ≤ r,

B =
S−Sc−1∑

j=0

{
j−1∏
i=0

λi

}
T j

j!
,

C =

∞∑
j=S−Sc


j−1∏
i=0

i ̸=S−Sc−1

λi

 T j

j!
.

Results are immediately established by using the approach provided in the proof of Lemma 1,

Dekker et al. (2002), which is given for the pure lost sales model with finitely valued system state

information r.

C Proof of Proposition 2

(i) βn(S, Sc + 1) < βn(S, Sc):

Due to Corollary 1, βn(S, Sc) = βn(S − Sc, 0) and βn(S, Sc + 1) = βn(S − Sc − 1, 0). If we consider

the policy parameters (S − Sc − 1, 0), there is no reserve stock for the critical class demands

and demands of both classes are satisfied on a first-come, first-served basis as long as there is

physical stock. Hence, there is no difference in terms the experienced service levels and therefore

βn(S−Sc− 1, 0) = βc(S−Sc− 1, 0). If we consider the policy parameters (S−Sc, 0), there is more
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inventory for common use, and therefore considering the infinite horizon average performance there

will be less stock-out situations for both demand classes than the case would be for (S−Sc − 1, 0).

Consequently, βn(S − Sc, 0) = βc(S − Sc, 0) > βn(S − Sc − 1, 0) = βc(S − Sc − 1, 0). As a result,

βn(S, Sc) > βn(S, Sc + 1).

(ii) βc(S, Sc + 1) > βc(S, Sc):

βc(S, Sc + 1)− βc(S, Sc) =

(
1−

∞∑
r=S

πr(S, Sc + 1)

)
−

(
1−

∞∑
r=S

πr(S, Sc)

)

=

∞∑
r=S

(πr(S, Sc)− πr(S, Sc + 1))

> 0 (due to Lemma 1).

(iii) I(S, Sc + 1) > I(S, Sc):

I(S, Sc + 1)− I(S, Sc) =
S∑

r=0

(S − r) (πr(S, Sc + 1)− πr(S, Sc))

=

S−Sc−1∑
r=0

(S − r) (πr(S, Sc + 1)− πr(S, Sc))

−
S∑

r=S−Sc

(S − r) (πr(S, Sc)− πr(S, Sc + 1)) . (50)

Due to Lemma 1, the terms of both summation in (50) are positive. Let

δ1 =

S−Sc−1∑
r=0

πr(S, Sc + 1)− πr(S, Sc),

δ2 =

S∑
r=S−Sc

πr(S, Sc)− πr(S, Sc + 1),

δ3 =
∞∑

r=S+1

πr(S, Sc)− πr(S, Sc + 1).

Due to Lemma 1, δ1, δ2, δ3 > 0. In addition, since the sum of steady-state probabilities is 1 for

both systems, we should have δ1 = δ2 + δ3.

Furthermore,

S−Sc−1∑
r=0

(S − r) (πr(S, Sc + 1)− πr(S, Sc)) ≥
S−Sc−1∑

r=0

(Sc + 1) (πr(S, Sc + 1)− πr(S, Sc))

= (Sc + 1)

S−Sc−1∑
r=0

(πr(S, Sc + 1)− πr(S, Sc))

= (Sc + 1) δ1.
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For the second term in the RHS of (50),

S∑
r=S−Sc

(S − r) (πr(S, Sc)− πr(S, Sc + 1)) ≤
S∑

r=S−Sc

Sc (πr(S, Sc)− πr(S, Sc + 1))

= Sc

S∑
r=S−Sc

πr(S, Sc)− πr(S, Sc + 1)

= Sc δ2.

Since δ1 > δ2, (Sc + 1) δ1 > Sc δ2. Therefore, the RHS of (50) is positive. Consequently,

I(S, Sc + 1)− I(S, Sc) > 0.

(iv) B(S, Sc + 1) < B(S, Sc):

B(S, Sc)− B(S, Sc + 1) =

∞∑
r=S

(r − S)
(
πr(S, Sc)− πr(S, Sc + 1)

)
> 0 (due to Lemma 1).

(v) X(S, Sc + 1) < X(S, Sc):

X(S, Sc)−X(S, Sc + 1) = I(S, Sc + 1)− I(S, Sc) + B(S, Sc)− B(S, Sc + 1) (using (1))

> 0 (With reference to (13) and (14)).

D Proof of Proposition 3

The non-critical customer class fill rate for the system (∆ + k, k) is given by

βn(∆ + k, k) =

∆−1∑
r=0

πr(∆ + k, k) (by (6))

=

∆−1∑
r=0

πr(∆, 0) (by Corollary 1)

= βn(∆, 0).
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The critical customer class fill rate for the system (∆ + k, k) is given by

βc(∆ + k, k) =

∆+k−1∑
r=0

πr(∆ + k, k) (by (7))

=
∆+k−1∑
r=0

πr(∆, 0) (by Corollary 1)

=
∆−1∑
r=0

πr(∆, 0) +
∆+k−1∑
r=∆

πr(∆, 0)

= βc(∆, 0) +

k−1∑
u=0

π∆+u(∆, 0).

The expected number of the critical class backorders is given by

B(∆ + k, k) =

∞∑
i=0

i π∆+k+i (∆ + k, k)

=

∞∑
i=0

i π∆+k+i (∆, 0) (by Corollary 1)

=

∞∑
u=k

(u− k) π∆+u (∆, 0) (by change of variables).

The expected on-hand stock is given by

I(∆ + k, k) =

∆+k∑
u=0

(∆ + k − u) πu (∆ + k, k)

=
∆+k∑
u=0

(∆ + k − u) πu (∆, 0) (by Corollary 1).

The expected number of units in the resupply is given by

X(∆ + k, k) =

∞∑
u=0

u πu (∆ + k, k)

=
∞∑
u=0

u πu (∆, 0) (by Corollary 1)

= X(∆, 0).
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E Proof of Proposition 4

The cost function C (S, Sc) for the proposed policy can be bounded from below as follows:

C (S, Sc) = ρnλn(1− βn(S, Sc)) + ρcλc(1− βc(S, Sc)) + b B(S, Sc) + h I(S, Sc)

= ρnλn(1− βn(S, Sc)) + ρcλc(1− βc(S, Sc)) + (b+ h) B(S, Sc) + h (I(S, Sc)− B(S, Sc))

≥ ρnλn(1− βn(S, Sc)) + (b+ h) B(S, Sc) + h (I(S, Sc)− B(S, Sc))

≥ ρnλn(1− βn(S, Sc)) + h (I(S, Sc)− B(S, Sc))

= ρnλn(1− βn(S, Sc)) + h (S −X(S, Sc)) .

F Proof of Proposition 5

For the special case (S, 0), the knowledge of the number of units in the resupply system is sufficient

to characterize the system states as follows:

(i, j) =

(i, 0), 0 ≤ i ≤ S,

(i, i− S), S + 1 ≤ i.
(51)

So, at any point in time, there is one-to-one mapping between the current system state and

the current number of units in the resupply system. Therefore, the system can be modeled as a

M/G/∞ queue with mean service time T and state dependent arrival rates

λ(i,j) =

λ, 0 ≤ i ≤ S − 1,

λn, S ≤ i.
(52)

In our rationing model with two priority demand classes, if we define αi−S = λn
λ for i ≥ S, then

follow similar arguments as in the proof of Proposition 1, we obtain the results presented in the

proposition.

G Proof of Lemma 2

In the proof, we will use some of the established probabilities in the proof of Theorem 1 in Appendix

H, as well as the results previously established by Vicil and Jackson (2016) for the pure backorder

system in a similar model setting. Let G(·) denote the probability distribution of the lead time.
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Let p̃t,t+τ be the probability that a unit in resupply at time t will still be in the resupply system

at time t+ τ . And let

qt,t+τ (x|n) = P [x of those n units remain in the resupply at t+ τ |R(t) = n]

=

(
n

x

)
p̃ x
t,t+τ (1− p̃t,t+τ )

n−x .

Starting from the initial system state ξ0 = (0, 0) in which there are no units in the resupply at

time 0, and assuming R(t) = r is finite,

P
[
there are two or more state-transitions during (t, t+ τ ] | ξt = (r, bn)

]
= 1 − P

[
there is at most one state-transition during (t, t+ τ ] | ξt = (r, bn)

]
= 1 − P

[
no demand occurs during (t, t+ τ ]; all r units in the resupply

at time t are still in the resupply at time t+ τ | ξt = (r, bn)
]

− P
[
only one demand occurs during (t, t+ τ ]; all r units in the resupply

at time t are still in the resupply at time t+ τ | ξt = (r, bn)
]

− P
[
no demand occurs during (t, t+ τ ]; among the r units in the resupply

at time t, only one of them is received during (t, t+ τ ] | ξt = (r, bn)
]

= 1 − e−λτ qt,t+τ (r | r) − λτe−λτ qt,t+τ (r | r)

− e−λτ qt,t+τ (r | r − 1) (due to Approximation Assumption 2 )

= 1 − e−λτ

(
r

r

)
p̃ r
t,t+τ (1− p̃t,t+τ )

0 − λτe−λτ

(
r

r

)
p̃ r
t,t+τ (1− p̃t,t+τ )

0

− e−λτ

(
r

r − 1

)
p̃ r−1
t,t+τ (1− p̃t,t+τ ) , (with reference to (54))

= 1 − e−λτ p̃ r
t,t+τ − λτe−λτ p̃ r

t,t+τ − e−λτ r
(
p̃ r−1
t,t+τ − p̃ r

t,t+τ

)
(53)

A function f(h) is o(h) if limh→0
f(h)
h = 0. Hence, to prove whether the probability expression

on the right hand side of (53) is o(τ), we need to determine the limit of the expression as τ → 0.

The individual limits are presented below.

lim
τ→0

1 − e−λτ p̃ r
t,t+τ

τ
= λ + r

G(t)∫ t
0 [1−G(u)]du

, (due to Lemma A1 of Vicil and Jackson, 2016).

lim
τ→0

λτe−λτ p̃ r
t,t+τ

τ
= λ.
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lim
τ→0

e−λτ r
(
p̃ r−1
t,t+τ − p̃ r

t,t+τ

)
τ

= lim
τ→0

[
e−λτ r

]
lim
τ→0

[(
p̃ r−1
t,t+τ − p̃ r

t,t+τ

)
τ

]

= r
G(t)∫ t

0 [1−G(u)]du
, (due to Lemma A1 of Vicil and Jackson, 2016).

If we plug these individual limits into the right hand side of (53), the terms cancel each other

and we get zero.

H Proof of Theorem 1

For the analysis, we are going to rely on the notation and results established earlier by Vicil and

Jackson (2016) for the pure backorder system in a similar model setting. Let G(·) denote the

probability distribution of the lead time. Let pt be the common probability that any replenishment

order which is placed during [0, t) remains in the resupply system at time t. Conditioning on the

time of the order placement and using Approximation Assumption 1, we have:

pt =

∫ t

0
[1−G(t− s)]

1

t
ds.

Let p̃t,t+τ be the probability that a unit in resupply at time t will still be in the resupply

system at time t+ τ . Conditioning on the time of the order placement, which belongs in [0, t), this

probability is given by:

p̃t,t+τ =
P {an order is placed in [0, t) and is in resupply at time t+ τ}
P {an order is placed in [0, t) and is in resupply at time t}

=

∫ t
0 [1−G(t+ τ − s)]1tds∫ t

0 [1−G(t− s)]1tds

=

∫ t
0 [1−G(t+ τ − s)]ds∫ t

0 [1−G(t− s)]ds
.

Note that p̃t,t+τ represents the probability for unordered replenishment orders in the resupply.

Let

qt,t+τ (x|n) = P [x of those n units remain in the resupply at t+ τ |R(t) = n].

Each replenishment order that is in the resupply at time t, has a probability p̃t,t+τ that it will

be still in the resupply at time t + τ . Therefore, the probability that among the n replenishment

36

Electronic copy available at: https://ssrn.com/abstract=3478890



orders in the resupply at time t, x of them will remain in the resupply at time t+ τ is given by

qt,t+τ (x|n) =
(
n

x

)
p̃xt,t+τ (1− p̃t,t+τ )

n−x . (54)

Let us denote the system state at time t by ξt = (r, bn). Starting from the initial state (0, 0) at

time t = 0, let

P(r̄,b̄n),(r,bn)(t, t
′) = P

[
ξt′ = (r, bn) | ξ0 = (0, 0), ξt = (r̄, b̄n)

]
.

By conditioning on the state of the system at time t, the probability of being at system state

(r, bn) at time t′ = t+ τ can be written as

P(0,0),(r,bn)(0, t+ τ) =
∑

(r̄,b̄n)∈F(S,Sc)

P(0,0),(r̄,b̄n)(0, t) · P(r̄,b̄n),(r,bn)(t, t+ τ). (55)

One-step transition probabilities will be solved for a general system state (r, bn) ∈ F(S,Sc) with

S−Sc+bn < r < S+bn and bn ≥ 1 (hence, OH < Sc). Other system states can be solved similarly.

By conditioning on the state of the system at time t, there are four possible ways to reach state

(r, bn) in at most one transition over the next infinitesimal τ time units: a non-critical demand

occurs, a critical demand occurs, a delivery is received from the resupply, or nothing happens.

Since τ is an infinitesimal time, the probability of two or more events happening during (t, t + τ ]

is captured within the term o(τ) due to Lemma 2. For the infinitesimal transition probability

calculations, we assume R(t) = r is finite for all t. Hence, we have

P(0,0),(r,bn)(0, t+ τ) =

{
P(0,0),(r−1,bn−1)(0, t) · P(r−1,bn−1),(r,bn)(t, t+ τ)

+ P(0,0),(r−1,bn)(0, t) · P(r−1,bn),(r,bn)(t, t+ τ)

+ P(0,0),(r+1,bn)(0, t) · P(r+1,bn),(r,bn)(t, t+ τ) (56)

+ P(0,0),(r,bn)(0, t) · P(r,bn),(r,bn)(t, t+ τ)

+o(τ)

}
.

Next, let us determine the one-step transition probabilities in (56).
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a) A non-critical demand occurs:

P(r−1,bn−1),(r,bn)(t, t+ τ) = P
[
only a non-critical demand occurs during (t, t+ τ ]; all r − 1 units in

the resupply at time t are still in the resupply at time t+ τ

| ξt = (r − 1, bn − 1), ξ0 = (0, 0)
]

+ o(τ)

= λnτe
−λτ qt,t+τ (r − 1 | r − 1) + o(τ) (due to Approximation Assumption 2)

= λnτe
−λτ

(
r − 1

r − 1

)
p̃ r−1
t,t+τ (1− p̃t,t+τ )

0 + o(τ) (with reference to (54))

= λnτe
−λτ p̃ r−1

t,t+τ + o(τ). (57)

b) A critical demand occurs:

P(r−1,bn),(r,bn)(t, t+ τ) = P
[
only a critical demand occurs during (t, t+ τ ]; all r − 1 units in

the resupply at time t are still in the resupply at time t+ τ

| ξt = (r − 1, bn), ξ0 = (0, 0)
]

+ o(τ)

= λcτe
−λτ qt,t+τ (r − 1 | r − 1) + o(τ) (due to Approximation Assumption 2)

= λcτe
−λτ

(
r − 1

r − 1

)
p̃ r−1
t,t+τ (1− p̃t,t+τ )

0 + o(τ) (with reference to (54))

= λcτe
−λτ p̃ r−1

t,t+τ + o(τ). (58)

c) Delivery from the resupply:

P(r+1,bn),(r,bn)(t, t+ τ) = P
[
no demand occurs during (t, t+ τ ]; among the r + 1 units in the

resupply at time t, only one of them is received during (t, t+ τ ]

| ξt = (r + 1, bn), ξ0 = (0, 0)
]

+ o(τ)

= e−(λn+λc)τ qt,t+τ (r | r + 1) + o(τ) (due to Approximation Assumption 2)

= e−(λn+λc)τ

(
r + 1

r

)
p̃ r
t,t+τ (1− p̃t,t+τ ) + o(τ) (with reference to (54))

= e−(λn+λc)τ (r + 1)
(
p̃ r
t,t+τ − p̃ r+1

t,t+τ

)
+ o(τ). (59)
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d) Nothing happens:

P(r,bn),(r,bn)(t, t+ τ) = P
[
no demand occurs during (t, t+ τ ]; all r units in the

resupply at time t are still in the resupply at time (t, t+ τ ]

| ξt = (r, bn), ξ0 = (0, 0)
]

+ o(τ)

= e−(λn+λc)τ qt,t+τ (r | r) + o(τ) (due to Approximation Assumption 2)

= e−(λn+λc)τ

(
r

r

)
p̃ r
t,t+τ (1− p̃t,t+τ )

0 + o(τ) (with reference to (54))

= e−(λn+λc)τ p̃ r
t,t+τ + o(τ). (60)

Subtracting P(0,0),(r,bn)(0, t) from both sides of (56) and taking the limits as τ → 0:

lim
τ→0

P(0,0),(r,bn)(0, t+ τ)− P(0,0),(r,bn)(0, t)

τ = P(0,0),(r−1,bn−1)(0, t) · lim
τ→0

P(r−1,bn−1),(r,bn)(t, t+ τ)

τ

+ P(0,0),(r−1,bn)(0, t) · limτ→0

P(r−1,bn),(r,bn)(t, t+ τ)

τ

+ P(0,0),(r+1,bn)(0, t) · limτ→0

P(r+1,bn),(r,bn)(t, t+ τ)

τ
(61)

− P(0,0),(r,bn)(0, t) · limτ→0

(
1− P(r,bn),(r,bn)(t, t+ τ)

)
τ

+ lim
τ→0

o(τ)

τ
.

The left-hand side of Equation (61) is P ′
(0,0),(r,bn)

(0, t). The limit terms on the right-hand side

are provided by Vicil and Jackson (2016). Plugging their values, we have

P ′
(0,0),(r,bn)

(0, t) = P(0,0),(r−1,bn−1)(0, t)λn

+ P(0,0),(r−1,bn)(0, t)λc

+ P(0,0),(r+1,bn)(0, t)(r + 1)
G(t)∫ t

0 [1−G(u)] du

− P(0,0),(r,bn)(0, t)
(
λn + λc + r

G(t)∫ t
0 [1−G(u)] du

)
.
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Taking the limits as t → ∞:

lim
t→∞

P ′
(0,0),(r,bn)

(0, t) = lim
t→∞

P(0,0),(r−1,bn−1)(0, t)λn

+ lim
t→∞

P(0,0),(r−1,bn)(0, t)λc

+ lim
t→∞

P(0,0),(r+1,bn)(0, t)(r + 1)
G(t)∫ t

0 [1−G(u)] du

− lim
t→∞

P(0,0),(r,bn)(0, t)
(
λn + λc + r

G(t)∫ t
0 [1−G(u)] du

)
. (62)

P(0,0),(r,bn)(0, t) is bounded by 0 and 1 for all t. Therefore, if limt→∞ P ′
(0,0),(r,bn)

(0, t) converges,

then it must converge to 0. Since limt→∞
G(t)∫ t

0 [1−G(u)] du
= 1

T and assuming the steady-state

distributions exist, the limit exists for the RHS of (62). Hence limt→∞ P ′
(0,0),(r,bn)

(0, t) = 0. After

reordering the terms, (62) becomes:(
λn + λc +

r

T

)
π(r,bn) = λnπ(r−1,bn−1) + λcπ(r−1,bn) +

r + 1

T
π(r+1,bn).
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