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Generally, in empirical financial studies, the determination of the true conditional 
variance in GARCH modelling is largely subjective. In this paper, we investigate the 
consequences of choosing a wrong conditional variance specification. The methodology 
involves specifying a true conditional variance and then simulating data to conform to the 

true specification. The estimation is then carried out using the true specification and other 
plausible specification that are appealing to the researcher, using model and forecast 
evaluation criteria for assessing performance. The results show that GARCH model could 
serve as better alternative to other asymmetric volatility models. 
 
Keywords: Forecasts, GARCH, misspecification, specification 

 

Introduction 

Since the seminal articles of Engle (1982) and Bollerslev (1986), the class of 

Generalized Autoregressive Conditionally Heteroscedasticity (GARCH) models 

has been a key model in financial industries. Due to wide applications of this 

model in financial industries and related areas, Lee and Hansen (1994) referred to 

the model as the workhouse of the industry. Considered here is the 

misspecification of variants of GARCH models. The variants include the GARCH 

model of Bollerslev (1986), Exponential GARCH model of Nelson (1991), 

Glosten Jagannathan and Runkle-GARCH (GJR-GARCH) model of Glosten, 

Jagannathan and Runkle (1993) and Asymmetric Power ARCH (APARCH) 

model of Ding, Granger and Engle (1993). Using model and forecast evaluation 

http://dx.doi.org/10.22237/jmasm/1478002800
mailto:oe.olubusoye@ui.edu.ng
mailto:os.yaya@ui.edu.ng
mailto:daruu208075@yahoo.com
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criteria, both correctly specified and the misspecified model performances are 

judged. 

Specification of the form of GARCH model depends on the behavior and 

properties of the series. For example, there are asymmetric GARCH specifications 

which are preferred for the asymmetric series. Unlike Smooth Transition 

Autoregressive (STAR) model of Teräsvirta (1994) which allows selection of 

model between the Exponential STAR (ESTAR) and Logistic STAR (LSTAR) 

model based on the model specification tests, GARCH model is yet to develop 

such tests which selects among many alternatives. A particular GARCH model is 

often considered on the asset returns/residuals based on the properties of the series. 

The GARCH specification is a parametric model in which a particular structure is 

imposed at a time, and therefore, it is important to perform misspecification tests 

to check for the consequence of choosing a wrong model structure. Engle and Ng 

(1993) and Li and Mak (1994) proposed an adequacy test using the squared 

standardized error process. Recently, Lundbergh and Teräsvirta (2002) proposed 

tests for remaining ARCH in standardized errors, linearity and parameter 

constancy. None of the specification tests were designed to select or reject a 

particular GARCH specification. 

Misspecification of GARCH model may pose serious problem to forecast 

values hence it deserves to be investigated. Wang (2002) affirmed that spurious 

and inefficient inference is expected when pure GARCH models are misspecified, 

this as well may affect the Quasi Maximum Likelihood Estimates (QMLEs) of the 

misspecified model. The QMLE of a pure GARCH (1,1) model indicates that the 

ARCH parameter is small, GARCH parameter is close to unity and the sum of 

both parameters approaches unity as the sampling frequency increases (Engle & 

Bollerslev, 1986; Bollerslev & Engle, 1993; Baillie, Bollerslev, & Mikkelsen, 

1996; Ding & Granger, 1996; Andersen & Bollerslev, 1997 and Engle & Patton, 

2001). This fact is reflected in the Integrated GARCH (IGARCH) model of Engle 

and Bollerslev (1986). More recent paper by Jansen and Lange (2010) shows that 

in a GARCH (1,1) model, the estimates of 
1̂  and 1̂  tend to 0 and 1, respectively 

as the sampling frequency increases, which is an IGARCH effect. 

In a situation whereby the GARCH series is fitted to any other variants of 

the model, particularly those ones with asymmetric effect, do we still expect this 

IGARCH convergence? This paper therefore considers the misspecification of 

GARCH models using simulation approach. The model and forecast evaluation 

criteria are used to judge the alternative models. 
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Variants of GARCH model 

The (GARCH) model predicts the volatility in the residuals εt of the mean 

equation 

 

 
0 1 1t t ty y       (1) 

 

where yt is the time series or returns series under investigation, ϕ0 and ϕi are the 

constant and Autoregressive (AR) parameters of the model. In volatility 

modelling, autoregressive order is usually less than 3 and in some cases 

autoregression as well as constant may not be significant, which is the case of a 

pure GARCH process. The residuals of this model often violate normality 

assumption and are serially correlated. In that case, the non-normal residuals εt are 

modelled using variance equation. 

Engle (1982) proposed the first variance equation for predicting volatility in 

the asset returns/innovations εt, and this has been the origin of other volatility 

models in the literature. Bollerslev (1986) proposed using lags of the conditional 

volatility in the model specification. The GARCH (1,1) model, proposed in 

Bollerslev (1986) is, 

 

 2 2 2

1 1 1 1t t t          (2) 

 

where εt are the log-returns series of the financial asset. The residuals relates to 

the volatility as εt = σt zt with zt ≈ N(0, 1). The σt is the unconditional standard 

deviation expressed by the variance equation (GARCH model). The parameter is 

conditioned as w > 0, 
1 ≥ 0 and 

1 ≥ 0 in order to ensure positive definite 

variance. These 
1  and 

1 are the ARCH and GARCH parameters for the ARCH 

term 2

1t 
 and GARCH term 2

1t 
, respectively while the stationarity imposition on 

the GARCH (1,1) is that the sum of the ARCH and GARCH parameters should be 

less than unity, that is 
1 +

1 < 1. Then, combining the AR model in (1) with 

GARCH model in (2) gives AR (1)-GARCH (1,1) model. 

The Exponential GARCH (EGARCH) model is given in Nelson (1991). 

This model was developed based on the fact that GARCH (1,1) model of 

Bollerslev (1986) uses the magnitude of the innovations to predict future volatility 

but do not consider the effect of the positivity or negativity of the innovations on 

the volatility. The positive constraint imposed on the intercept ω often poses 

serious estimation problems. In that case, Nelson (1991) considered the 
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GARCH (1,1) model as symmetric type while the EGARCH (1,1) is asymmetric 

in the sense that it assumes different conditional volatility responses for either 

positive or negative innovations. The simplest EGARCH (1,1) specification is 

 

 
2 21 1

1 1 1 1

1 1

log logt t
t t

t t

 
     

 
 



 

 
     

 
  (3) 

 

This model can also be re-specified as, 

 

  2 2

1 1 1 1 1 1log logt t t tz z             (4) 

 

because εt = σt zt. Here, there is good news if εt-1 > 0 and bad news if εt-1 < 0 which 

have different effect on the conditional variance. The response of either good 

news or bad news on the conditional volatility is then measured by the 

asymmetric parameter, 
1 . 

The Asymmetric Power ARCH (APARCH) model is proposed in Ding et al. 

(1993) with power specification δ. The proposition was based on modelling 

standard deviation instead of the variance as in the case of GARCH and 

EGARCH models. This ideas was earlier considered in Taylor (1986) and 

Schwert (1989). The power parameter is estimated simultaneously with other 

parameters in the model. The specification of the APARCH (1,1) model is, 

 

  1 1 1 1 1logt t i t t

                (5) 

 

where δ > 0 and |γ1| ≤ 1. At δ = 2 and γ1 = 0, the APARCH (1,1) model reduces to 

GARCH (1,1) model. 

Estimation and Forecasts Evaluation 

Estimation of GARCH model is often carried out by numerical derivatives. 

Numerical derivatives are used in GARCH estimation since the model lacks 

closed form estimation (Xekalaki & Degiannakis, 2010). The derivatives 

simplifies and maximises the QML log likelihood function 
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where εt are the innovations from the initial AR model, 2

t  are the conditional 

volatility realized from the variance equation and N is the sample size. Berndt, 

Hall, Hall and Hausman (BHHH) algorithm of Berndt, Hall, Hall and Hausman 

(1974) is often preferred to other numerical derivatives such as Marquadt and 

Gauss Newton, since it uses only the first derivatives of the likelihood function to 

estimate the parameter values. The algorithm is 

 

 
   

     
1

1

1

.
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i i t t N
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   (7) 

 

with initial parameter set as ψ(0), the parameter set which maximizes the 

likelihood function is denoted as ψ(i+1) and the log-likelihood Lt as given in (6) 

above. The number of iteration is denoted by i, and the iteration stops once there 

is no further improvement in the likelihood function. Ideally, EViews software 

allows setting the number of iteration and the level of precision for the estimation. 

Forecast evaluation criteria considered are the Root Mean Squares Forecast 

Error (RMSFE), Mean Absolute Forecast Error (MAFE), Mean Absolute 

Percentage Forecast Error (MAPFE) and Theil Inequality of Theil (1961; 1966). 

The MSFE is defined as, 

 

  
2

2 2

1
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t t

t
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    (8) 

 

where 2ˆ
t  is the predicted in-sample conditional variances, and this depends on 

the scale of the variance series, 2

t . The square root of MSFE is the RMSFE, 
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    (9) 

 

The MAFE and MAPFE are obtained by taking the absolute differences of 

the predicted conditional volatilities and the observed volatilities as, 
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The Theil inequality is given as, 
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  (12) 

 

The inequality coefficient is time invariant and always lies between 0 and unity. 

The smaller these forecast evaluation criteria, the better the candidate model 

represents well the data. 

Monte Carlo Experiment, Results and Discussion 

The Monte Carlo experiment is set up using the Data Generating Processes 

(DGPs) in (13)-(16) below. The AR (1) DGP in (12) is the mean equation, with 

ϕ0 = 0.15 and ϕ1 = 0.5, setting the process at the stationarity level.  

 

 
10.15 0.5t t ty y      (13) 

 

The error distribution εt = σt zt, zt ~ N(0, 1) for each of the variance equations,  

 

 2 2 2

1 10.02 0.25 0.60
t t t        (14) 
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 (15) 

 

  
1.21.2 1.2

1 1 10.02 0.25 0.10 0.60logt t t t           (16) 

 

representing GARCH (1,1), EGARCH (1,1) and APARCH (1,1) models, 

respectively. The parameters of the models were generated by arbitrarily fixing 

values for them making sure the parameters of the ARCH and GARCH terms are 

in stationarity range, and this realizes positive definite stationary non-explosive 
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conditional variance. These parameter values are fixed in the three models. The 

AR (1) DGP is combined with each variance equations in (14), (15) and (16) 

giving AR (1)-GARCH (1,1), AR (1)-EGARCH (1,1) and AR (1)-APARCH (1,1) 

DGPs, respectively. The asymmetric parameter in EGARCH and APARCH 

models are fixed at γ1 = -0.10 and the power parameter in APARCH model fixed 

at 1.2. The misspecification of each model is considered and the behaviour of the 

realized conditional variance is examined using the model and forecast evaluation 

criteria. Sample sizes are N = 2000, 4000 and 6000 each with 25% of samples as 

in-sample forecasts. 

The results of the Monte Carlo experiment are presented here as Scenarios 

1-3, where both parameter and forecasts evaluation estimates are given. 

 

Scenario 1: When the true model is GARCH 
 
 
Table 1. Model parameter estimates 
 

Sample 
size 

Estimated Model 
0̂  (0.15) 1̂  (0.50) ŵ  (0.02) 1

̂  (0.25) 
1

̂  (0.60) 

2000 GARCH 0.1480 0.4839 0.0169 0.2110 0.6596 
4000 GARCH 0.1517 0.4724 0.0173 0.2049 0.6590 
6000 GARCH 0.1475 0.4750 0.0180 0.2052 0.6503 

       2000 EGARCH 0.1480 0.4839 0.0169 0.2110 0.6596 
4000 EGARCH 0.1517 0.4724 0.0173 0.2049 0.6590 
6000 EGARCH 0.1475 0.4750 0.0180 0.2052 0.6503 

       2000 APARCH 0.1464 0.4875 0.0405 0.1988 0.0184 
4000 APARCH 0.1488 0.4741 0.0412 0.1947 0.0633 
6000 APARCH NA NA NA NA NA 

 
 

The results presented in Scenario 1 is when GARCH simulated series is used to 

estimate EGARCH, APARCH as well as GARCH model and the parameter and 

in-sample forecasts estimates presented in Tables 1 and 2, respectively. The 

parameter estimates for the three models are very close to the real values but these 

are not consistent with sample sizes. This is expected since we do not expect the 

least squares estimates to be consistent in the presence of serial correlation and 

heteroscedasticity of the residuals. We also noted the similarity in the results 

obtained for GARCH and EGARCH models, across the sample sizes. The 

APARCH estimation posed serious problem at very high sample sizes due to 

tendencies of the simulator to realize some non-positive volatility and the power 

estimates of these cannot be obtained. 
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Table 2. Forecast evaluation estimates 

 

Sample size Estimated Model RMSFE MAFE MAPFE Theil  
2000 GARCH 0.000271 0.011228 48.09666 0.0289 
4000 GARCH 0.000174 0.010415 44.88254 0.0257 
6000 GARCH 0.000139 0.010104 49.58554 0.0287 

      2000 EGARCH 0.002067 0.085482 617.9674 0.1772 
4000 EGARCH 0.001301 0.078142 645.6404 0.1688 
6000 EGARCH 0.001165 0.084255 639.2407 0.1798 

      2000 APARCH 0.000520 0.021537 94.48200 0.1077 
4000 APARCH 0.000344 0.020411 93.54733 0.0974 
6000 APARCH NA NA NA NA 

 
 

From the forecasts evaluation results in Table 2 of Scenario 1, the estimates 

obtained for GARCH and EGARCH models are different. Actually the RMSFE 

and MAFE for the models across different sample sizes are very low but the 

MAPFE vary significantly. The RMSFE, MAFE, MAPFE and Theil inequality 

coefficient for the GARCH models are the lowest, followed by that of APARCH 

models. This is expected since the DGP is GARCH. The MAPFE estimates vary 

significantly, about 50% for GARCH, 600% for EGARCH and 90% for 

APARCH models. It is clear to see that GARCH model forecasts are better than 

EGARCH and APARCH model forecasts in terms of RMSPE and Theil 

inequality when GARCH model is the DGP. 

 

Scenario 2: When the true model is EGARCH 
 
 
Table 3. Model parameter estimates 

 

Sample 
size 

Estimated 
Model 0̂  (0.15) 1̂  (0.50) ŵ  (0.02) 1

̂  (0.25) 
1

̂  (0.60) 

2000 GARCH 0.1320 0.4998 0.2037 0.0078 0.7817 
4000 GARCH 0.1441 0.5067 0.4191 0.0058 0.5268 
6000 GARCH 0.1212 0.4737 0.1355 -0.0101 0.8559 

       2000 EGARCH 0.1320 0.4998 0.2037 0.0078 0.7817 
4000 EGARCH 0.1293 0.4806 0.1915 -0.0094 0.7933 
6000 EGARCH 0.1212 0.4737 0.1355 -0.0101 0.8559 

       2000 APARCH 0.1679 0.4765 0.5952 -0.0823 1.0000 
4000 APARCH NA NA NA NA NA 
6000 APARCH NA NA NA NA NA 

 
 

In Scenario 2 of Table 3, the true series follows EGARCH process. The 

parameter estimates are not consistent with sample sizes. Here, both the estimates 
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of the mean and variance equations are very far from the real values. Even with 

EGARCH DGP to estimate EGARCH model, the estimates seem not to improve 

when compared with that of the misspecified GARCH model. Estimates of 

APARCH model for all the sampled points in the simulations could not be 

computed except for sample 2000, the estimation was very slow at samples 4000 

and 6000 and the estimation process crashed unexpectedly.  
 
 
Table 4. Forecast evaluation estimates 

 

Sample size Estimated Model RMSFE MAFE MAPFE Theil  

2000 GARCH 0.009880 0.412570 79.28039 0.2282 
4000 GARCH 0.006603 0.389932 69.61645 0.2152 
6000 GARCH 0.005286 0.381419 69.51897 0.2158 

      2000 EGARCH 0.028755 1.224082 210.8467 0.4251 
4000 EGARCH 0.010901 0.642821 138.9766 0.3230 
6000 EGARCH 0.006889 0.495946 107.6174 0.2687 

      2000 APARCH 0.065849 2.763889 372.1500 0.9589 
4000 APARCH NA NA NA NA 
6000 APARCH NA NA NA NA 

 
 

In Table 4 of Scenario 2, forecast estimates for the three models are different, 

with estimated GARCH models presenting better forecasts than the estimated 

EGARCH and APARCH model at corresponding sample sizes. 

 

Scenario 3: When the true model is APARCH 
 
 
Table 5. Model parameter estimates 

 

Sample 
size 

Estimated 
Model 0̂  (0.15) 1̂  (0.50) ŵ  (0.02) 1

̂  (0.25) 
1

̂  (0.60) 

2000 GARCH 0.1514 0.4795 0.0037 0.2240 0.6188 
4000 GARCH 0.1459 0.5028 0.0046 0.2567 0.5399 
6000 GARCH 0.1526 0.4721 0.0039 0.2110 0.6157 

       2000 EGARCH 0.1514 0.4795 0.0037 0.2240 0.6188 
4000 EGARCH 0.1438 0.5052 0.0046 0.2514 0.5526 
6000 EGARCH 0.1526 0.4721 0.0039 0.2110 0.6157 

       2000 APARCH 0.1476 0.5164 0.0260 0.2753 -0.0012 
4000 APARCH 0.1395 0.5345 0.0188 0.2371 -0.0800 
6000 APARCH NA NA NA NA NA 
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Scenario 3, Table 5 presents the case where APARCH series is assumed. 

The APARCH model is more complex in structure than the GARCH and 

EGARCH models, therefore estimating APARCH model from the series at very 

high sample size posed serious problems. For samples 2000 and 4000, estimates 

of parameters were computed. 
 
 
Table 6. Forecast evaluation estimates 

 

Sample size Estimated Model RMSFE MAFE MAPFE Theil  
2000 GARCH 8.20E-06 0.000341 54.08614 0.0053 
4000 GARCH 5.98E-06 0.000401 56.20084 0.0057 
6000 GARCH 4.25E-06 0.000307 54.36182 0.0054 

      2000 EGARCH 0.000347 0.014360 3191.426 0.0925 
4000 EGARCH 0.000480 0.028411 5535.569 0.1344 
6000 EGARCH 0.000187 0.013544 31268.40 0.0910 

      2000 APARCH 2.33E-05 0.000955 85.89381 0.0182 
4000 APARCH 9.13E-06 0.000538 94.78748 0.0181 
6000 APARCH NA NA NA NA 

 
 

In Scenario 3, Table 6, the simulated forecasts for GARCH, EGARCH and 

APARCH models from APARCH DGP are presented. Closer look still showed 

that GARCH forecasts are the best in terms of forecast evaluation criteria. 

Followed after GARCH is the APARCH model and EGARCH is the least. 

Conclusion 

The misspecification of some GARCH models were considered using parameter 

and forecast evaluation estimates as criteria. It was found that a correctly 

specified EGARCH and APARCH models actually, in the real sense, did not give 

better parameter estimates and forecasts when compared with that of GARCH 

model. These results are not consistent with sample sizes. The results obtained in 

this paper therefore support the seminal work of Hansen and Lunde (2005) titled: 

"A Forecast Comparison of Volatility Models: Does Anything Beat a 

GARCH(1,1)", which was their argument with Andersen and Bollerslev (1998). 

Great care should be taken wherever volatility model are being specified for 

assets returns, since misspecified model could cause great loss in model 

information criteria and forecasts. This work, therefore re-popularize the use of 

symmetric GARCH (1,1) model of Bollerslev (1986) and Taylor (1986) in 

empirical analysis and simulations. 
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