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INTRODUCTION

The VHL gene is a tumor suppressor gene located at
chromosome 3p25,1 and its protein has multiple
functions linked to multiple effector proteins.2 Aber-
rations in the VHL gene are associated with sporadic
clear cell renal cell carcinomas (ccRCCs), sporadic
hemangioblastomas, pheochromocytomas, pancre-
atic islet cell tumors, endolymphatic sac tumors, and
benign cysts affecting various organs.3 Germline in-
activation of the VHL gene causes the autosomal
dominant von Hippel-Lindau (VHL) syndrome. VHL is
rarely mutated outside of the context of RCC or VHL
syndrome–associated malignancies.4 Biallelic VHL
inactivation caused by genetic and epigenetic alter-
ations (including DNA methylation, histone modifi-
cations, and coincidental loss of genes localized
adjacent to the VHL chromosome locus) has been
described.2 In both hereditary and sporadic tumors,
VHL mutations are heterogeneous.5

The encoded VHL protein (pVHL) plays an important role
in ubiquitination and proteosomal degradation of hypoxia
inducible factor-1 α (HIF-1α). HIF-1α activates tran-
scription of genes (ie, target genes related to adaptation
to hypoxia, such as vascular endothelial growth factor
[VEGF] and platelet-derived growth factor β [PDGFβ])6-8

and acts in cellular processes such as metabolism,
cellular senescence, chemotaxis, proliferation, tran-
scription, WNT signaling, ubiquitinating RNA polymer-
ase, and regulating nuclear factor κβ.2 Here, we present
a case report of a patient with metastasized follicular
dendritic cell sarcoma (FDCS) harboring a somatic c.
119delC VHL mutation. Our aim was to investigate the
(epi)genetic background of this patient’s disease and to
determine whether the identified VHLmutation could be
a driving mutation in this patient’s FDCS.

METHODS

Case Report

In 2013, a 29-year-old female patient presented with
a large abdominally located mass and multiple hepatic
lesions. A histologic biopsy from a liver lesion showed
an epithelioid and spindle cell malignant neoplasm
with scattered lymphocytes. Immunohistochemistry
(IHC) results matched the pattern of FDCS with ex-
pression of follicular dendritic cell markers CD21,

CD23, and CD359 (Fig 1A-C). Ewing sarcoma break-
point region 1 (ESWR 1) was not detected with fluo-
rescence in situ hybridization. On the basis of
radiologic diagnosis, the pattern did not fit an RCC.
This was further supported by a negative paired box
gene 8 (PAX8) IHC result (Fig 1D).

The clinical course of our patient’s disease is outlined
in Figure 2. The first-line treatment consisted of eight
cycles of CHOP (cyclophosphamide, doxorubicin,
vincristine, prednisone), resulting in a metabolic com-
plete response. Approximately 8 months later, pro-
gressive disease was apparent, with fluorodeoxyglucose-
positive lymph nodes in the hepatic hilum (Fig 3A and
3B). The second-line treatment was pazopanib, which
resulted in unexpected stable disease for 22 months.

The patient participated in the Dutch National Center
for Personalized Cancer Treatment (CPCT)-02 pro-
gram,10 rendering additional tumor sampling for
whole-genome sequencing (WGS) analysis before and
after treatment with pazopanib. DNA was extracted
from fresh-frozen biopsies obtained from a hepatic
metastatic lesion and blood as a germline control. WGS
was performed on the Illumina HiSeq X platform with
100 ng DNA as input using standard protocols (paired-
end 2 × 150 base pairs; Illumina, San Diego, CA).
Within the framework of CPCT-02, all germline variants
are filtered, which guarantees that only somatic vari-
ants are reported. Tumor samples and control blood
were sequenced with a minimum base coverage depth
of 90× and 30×, respectively. Somatic single nucle-
otide and indel variant calling was performed by an
optimized bioinformatics pipeline (https://github.com/
hartwigmedical/) on the basis of Strelka2 (v1.0.14-1).11

Additional filtering against a panel of nearly 2,000
control genomes removed variants that were present in
six or more of these respective samples. Germline and
somatic structural variant detection was performed
using Illumina Manta (v.1.0.3) and were post-
processed using a custom application (Break Point
Inspector; https://github.com/hartwigmedical/) to filter
false-positive candidates and to discover exact
breakpoint positions.12 In both biopsies, WGS showed
a somatic c.119delC VHL mutation, which prompted
us to identify the meaning and importance of this
variant in our patient.
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RESULTS

Genomic Landscape

The identified c.119delC VHL frameshift mutation led to
a truncated pVHL (p.Pro40fs; Fig 4). Both biopsies showed
genome-wide aberrations, with large chromosomal copy
number alterations, structural rearrangements, and mu-
tations in a broad spectrum of loci (Fig 5). Amplification of
the VHL locus 3p25 was identified in both biopsies, with
germline-informative B-allele frequencies revealing loss of
heterozygosity. This finding hints toward a model in which
the remaining VHL allele had been duplicated (and sub-
sequently mutated), resulting in three VHL loci in biopsy 1

(two VHLWT and one VHLc.119delC) and seven VHL loci in
biopsy 2 (two VHLWT and five VHLc.119delC). Identified
variants and translocations differed between biopsies 1 and
2, with a remarkable reduction in translocations in the post-
treatment biopsy (Fig 5).

Consequences of the Identified c.119delC VHL Mutation

The primary question about the identified VHL mutation
concerned the functional consequence at the protein level
and whether this variation could be a driver mutation.
Overproduction of HIF-1α in the absence of hypoxia is the
main effect of pVHL functional loss.13 Therefore, we per-
formed IHC on the second biopsy for HIF-1α (Fig 1E),
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FIG 1. Immunohistochemistry (IHC). The liver biopsy showed large solid fields of discohesive epithelioid and
spindle cells with basophilic cytoplasm, round to oval nucleus, and moderately enlarged nucleoli. A moderate
number of scattered lymphocytes was present throughout the lesion. The cells were moderately pleomorphic
with frequent mitoses. Hematoxylin and eosin immunohistochemistry (HE IH) ×100 (A). The tumor cells were
strongly positive for CD21 (B), CD23 (C), and SMA; CD35 was locally positive. Calretinin, CD20, CD117,
chromogranin, desmin, DOG1, EMA, KERPAN, KL1, Melan A, S100, and synaptophysin were negative. Paired
box gene 8 (PAX8) IHC was negative (D). HIF-1α IHC showed positive nuclear staining (E), and glucose
transporter 1 (GLUT1) IHC showed positive staining (F).
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FIG 2. Clinical course of the disease. The patient was diagnosed with follicular dendritic cell sarcoma in November 2013 (T0). The patient received eight
cycles of CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone), which resulted 6months later (T6) in metabolic complete remission (CR). Eight
months later (T14), the patient had progressive disease (PD). At T14, she was treated with pazopanib. In response to pazopanib, the patient had stable
disease (SD) for a total of 22 months. After that (T36), the patient showed PD and participated in a phase 1 trial with immunotherapy (CD40 agonistic
monoclonal antibody) in combination with vanucizumab (anti-angiopoietin-2 and anti-VEGF [vascular endothelial growth factor]) for 11months. (*) Tumor
biopsies were obtained before the start of treatment with pazopanib and after its discontinuation.
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which showed positive nuclear staining, and for glucose
transporter 1 (GLUT1; a glucose transporter associated
with HIF-1α downstream activation), which showed positive

staining (Fig 1F). Both results provide circumstantial evi-
dence for functional loss of pVHL.7,10

DISCUSSION

Our analysis revealed a unique patient with FDCS harboring
a somatic functional VHL aberration, which is the first
description of a VHLmutation in sarcoma.14 Because FDCS
is a rare mesenchymal neoplasm with a largely unknown
and rather complex genetic landscape15 and is unknown
for harboring VHL aberrations, we verified specific IHC-
based markers to confirm the diagnosis and to reject
metastatic RCC (mRCC) as an alternative diagnosis. The
positive HIF-1α IHC result may indicate a functional loss of
pVHL; in this patient, it was a consequence of mutation and
potential methylation-derived changes leading to biallelic
VHL gene inactivation. Although most evidence in FDCS
has been found for the involvement of the RAS/RAF sig-
naling pathway,16,17 we did not identify mitogen-activated
protein kinase (MAPK) alterations in our patient. All evi-
dence collected points toward FDCS with a functional VHL
mutation. A mutant allele-specific imbalance as a con-
sequence of allele-specific amplification has been de-
scribed.18,19 However, this seems to be a more common
aspect with activating mutations. Recurrent VHL locus
amplifications have not been described in ccRCC;
therefore, it does not seem to be a common aberration.
However, these reports did not specifically investigate
post-tyrosine kinase samples.2,20,21

Numerous nonspecific chromosomal translocations were
present in the pretreatment biopsy, with a remarkable
decline in the number of structural variants (SVs) following
treatment with pazopanib. Treatment of cancer may have
an influence on involved processes and subsequently on
patterns and frequency of SVs.22 Alterations in the number
of SVs between time points in a patient’s malignancy may
also be a consequence of tumor evolution and selective
survival of subclonal populations as a result of the se-
lective pressure of treatment, similar to variable somatic
alterations that cause the emergence of drug resistance.23

The changes in the genomic landscape between the two
biopsies obtained in our patient could be associated with
the observed disease response during treatment with
pazopanib.24 Moreover, the fact that the mutated VHL
gene has been amplified in our patient’s disease over time
emphasizes its importance and potential as a driver
mutation.

Upregulated VEGF is associated with the HIF pathway. In
ccRCC, it is well known that HIF-1α is constitutively acti-
vated by inactivation of the VHL gene. Pazopanib, a mul-
tikinase inhibitor with activity against the VEGF receptor
and platelet-derived growth factor α and β receptors, is
effective in the treatment of mRCC25 and metastatic sar-
coma.26 During treatment with pazopanib, our patient had
stable disease for 22 months. The length of this
progression-free survival (PFS) is significantly longer than
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FIG 3. Localization and progression of our patient’s follicular dendritic
cell sarcoma. In March 2016, progressive disease was revealed on
a conventional CT scan (A) and on a positron emission tomography
scan (B) before the start of treatment with pazopanib. In January
2017, progressive disease persisted after 22 months of treatment with
pazopanib (C).
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the observed median PFS in the PALETTE trial26 (4.6
months; 95% CI, 3.7 to 4.8 months). Moreover, Saygin
et al27 performed a pooled analysis of data from 462 pa-
tients with FDCS, showing a median survival for patients
with metastatic disease of 9 months (range, 0.25 to 72
months) and a 2-year survival rate of 15.8%; these results
suggest that the long PFS is not the result of better prog-
nostic features of FDCS. The relatively long PFS during our
patient’s last treatment, which consisted of the combination
of a CD40 agonistic monoclonal antibody and an anti-
angiopoietin-2 and anti-VEGF bispecific monoclonal anti-
body, could possibly be explained by the effect of the latter
drug (vanucizumab). These data imply that the VHL mu-
tation in our patient may predict a biologic behavior more
similar to mRCC than to a metastatic sarcoma in response
to treatment with pazopanib. These findings are not suf-
ficient to make an argument for VEGF-targeted therapies in

FDCS, because this is the first case of a VHL-mutated FDCS
as far as we know.

Although HIF stabilization and GLUT1 accumulation are, at
the most, indirect evidence for pVHL functional loss,
a limitation of this case report is the absence of methylation
analysis looking further into epigenetic silencing of the VHL
gene. This is a consequence of the lack of normal control
material from our patient, which made it impossible to
correctly interpret the methylation analysis. In addition,
there was no remaining material from biopsy 1 to perform
additional IHC analysis.

In conclusion, this case report describes a patient with
FDCS harboring a unique somatic mutation in VHL. This
case underscores the scientific value of next-generation
sequencing of a patient’s genetic material to unravel the
genomic profile of cancers and to identify potential genetic
abnormalities that can be targeted by cancer therapies.
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FIG 4. Change-of-function von Hippel Lindau (VHL) frameshift mutation (c.119delC) leads to
truncated VHL protein (pVHL). (A) c.119delC mutation on a schematic model of premRNA VHL
transcript with allelic frequencies of reference (GC) and alternative (G-) observations, colored white
and gray, respectively. Untranslated regions (UTR) and exonic regions are depicted by rectangular
boxes (colored dark blue and dark gold, respectively), and intronic regions are depicted by black
lines. (B) c.119delC mutation on a schematic model of pVHL with predicted protein domains;
(GXEEX)8 is shown in violet, α-domain in purple, and β-domain in pink. (C) Protein sequences of
wild-type (wt) pVHL andmutant pVHL, colored by protein domains; (GXEEX)8 is shown in light blue,
α-domain in light gold, and β-domain in red. (The VHL gene model is on the basis of Ensembl
transcript NM_000551.2 and the protein model is on the basis of the UniProtKB P40337 entry.)
Red asterisk indicates stop codon. Bold text represents (predicted) aberrant sequence of amino
acids (out-of-frame). BAF, B-allele frequencies.
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FIG 5. Genomic landscapes before and after treatment. (A) Biopsy obtained before pazopanib treatment. (B) Biopsy obtained after pazopanib
treatment. The outermost track displays the ideogram of the human genome with exclusion of chromosome Y. The second outermost track displays
absolute copy number estimations from zero copies to 10 copies. Regions with copy number gains (more than three copies; green) and copy number
losses (zero copies; red) . The third track displays the B-allele frequencies (BAFs) in the tumor(s) with germline-informative (heterozygous) markers.
Regions displaying loss of heterozygosity (BAF ≥ 0.66 or ≤ 0.33) are colored in dark pink. The fourth outermost track displays the mutational burden per
1 Mb sliding windows. Higher numbers, indicated in blue, represent regions with more mutations. The innermost lines represent structural variations
colored per type; interchromosomal translocations are shown in blue, deletions in pink, insertions in green-cyan, inversions in yellow-brown, and tandem
duplications in brown.
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