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Uncertainties, limitations and biases may impede the correct application of concentration-

response linear functions to estimate the effects of air pollution exposure on population 

health. The reliability of a prediction depends largely on the strength of the linear 

correlation between the studied variables. This work proposes the joint use of the 

coefficient of determination, r2, with the regression slope, b, as an improved measure of 

the strength of the linear relation between air pollution and its effects on population 

health. The proposed br2-weighting method offers more reliable inferences about the 

potential effects of air pollution on population health, and can be applied universally to 

other fields of research. 

 

Keywords: Linear regression coefficients, uncertainty analysis, concentration-

response function, air pollution, population health 

 

Introduction 

Inherent uncertainties associated with the application of relative risks (RR), 

hazard ratios (HR) and concentration-response (C-R) functions derived from the 

epidemiological studies on air pollution exposure vs. population 

mortality/morbidity have been discussed in the published literature (Burnett et al., 

2014; Fann, Gilmore, &Walker, 2013; Fann et al., 2011; Krewski et al., 2009; 

Environmental Protection Agency, 2006; Post, Watts, Al-Hussainy, & Neubig, 

2005; Lipfert & Wyzga, 1995). Considering that confounding factors not 

controlled or accounted for could affect our ability to predict reliably the effects 

attributed to a variable of interest (e.g., effects of PM2.5 on population health), 

epidemiological studies often include adjustments for potential impacts from 

various environmental, behavioral, genetic, and socio-economic health risk 

factors. 

http://dx.doi.org/10.22237/jmasm/1478004000
mailto:goran.krstic@fraserhealth.ca
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The coefficient of correlation (r) has been developed in its current format by 

Pearson in 1895 (Rodgers & Nicewander, 1988). The squared value of r is 

defined as the coefficient of determination (r2), which provides an estimated 

proportion of the variation in a dependent/response variable y that could be 

explained by the variation in an independent/explanatory variable x. In linear least 

squares regression with an estimated intercept term, the r2 can be calculated with 

the following equation: 

 

 

  

   

2

2 1

2 2

1 1

n

i i

i

n n

i i

i i

O O P P

r

O O P P



 

 
  

 
 

   
 



 

  (1) 

 

where O are the observed and P the predicted values (Krause, Boyle, & Bäse, 

2005). 

When used for regression between an environmental risk factor vs. 

population health, the r2 provides a statistical estimate of how well the regression 

line approximates the real observations. The r2 provides an estimate of the 

combined dispersion against the single dispersion of the observed and predicted 

series, with values in the range 0 to 1, where r2 = 1 indicates a perfect linear 

correlation (i.e., the dispersion values of the observation and the prediction are 

equal) and r2 = 0 indicates absence of a linear correlation between the studied 

variables. Refer to Rodgers and Nicewander, (1988) for a set of different ways to 

express r and conversely the r2. 

The coefficient of determination (r2) is sensitive to outliers and extreme 

dataset values, which may lead to a “bias toward the extreme events if correlation-

based measures are employed in model evaluation” (Legates & McCabe, 1999, p. 

234). Arnold et al. (2012) indicated the use of r2 without the regression 

coefficients could be associated with an over-estimation bias and that “if r2 is the 

primary statistical measure, it should always be used with slope and intercept to 

ensure that means are reasonable (slope = 1) and bias is low” (p. 1495). 

The study by Pope, Ezzati, and Dockery, (2009) could be used as an 

example to illustrate the importance of r2-value as well as the slope in predicting 

the effects of PM2.5 on population health. Pope, Ezzati, and Dockery (2009, 2012) 

suggested a reduction in PM2.5 concentration observed over the period 1980s – 

2000s is responsible for a statistically significant improvement of life expectancy 

in the metropolitan areas of the United States. However, the observed correlation 
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with/without the influential observations is very weak (r2 ~ 0.05) and Pope et al. 

(2012) acknowledged that “given that there are other determinates of life 

expectancy that may have changed in correlation with changes in air pollution” (p. 

234) their analyses “cannot fully eliminate the potential of some residual 

confounding” (p. 234). This indicates in statistical terms that only approximately 

5% of the variation in a change of life expectancy could be explained by the 

variation in a change of PM2.5 concentration and that the remaining 95% could be 

attributed to a set of selected explanatory variables including income and proxy 

smoking or other environmental, behavioral, genetic and socio-economic health 

risk factors not controlled or accounted for in the presented study (e.g., medical 

practice improvement, public health expenditure change, ambient air temperature). 

The focus of the current study is on improving the interpretation of 

statistical linear regression analyses between air pollution vs. population health. 

Krause et al., (2005) introduced the application of the regression slope (b) as a 

weighing factor of the coefficient of determination (r2) to address potential under- 

or over-estimates of model predictions. The proposed method has been used 

extensively by other researchers in the field of hydrology (Malagò, Pagliero, 

Bouraoui, & Franchini , 2014; Feaster et al., 2014; Arnold et al., 2012; Zambrano-

Bigiarini, 2010; Bellocchi, Rivington, Donatelli, & Matthews, 2009). However, 

application of this approach in the field of environmental health has been limited 

(Krstić, 2012; Young & Xia, 2013).  

Methodology 

In a comparison of different efficiency criteria for hydrological model assessment, 

Krause et al., (2005) consider that r2 alone may be limited in its ability to explain 

the relationship between the response and the explanatory variables, as it 

quantifies only the dispersion, where “a model which systematically over- or 

under-predicts all the time will still result in good r2 values close to 1.0 even if all 

predictions were wrong” (p. 90). Hence, they argue that “for a proper model 

assessment the gradient b should always be discussed together with r2” (p. 90), 

and proposed the following model of a weighted coefficient of determination (wr2) 

(Krause et al., 2005): 
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The weighted coefficient of determination (wr2) quantifies under- or over-

predictions from both the r2 and the slope or gradient of the regression line (b) for 

a more comprehensive representation of the variable dynamics and model results. 

In a recently developed R package (R Core Team, 2015) on goodness-of-fit 

functions for comparison of simulated and observed hydrological time series 

(“hydroGOF”), Zambrano-Bigiarini (2014) indicates “the br2 coefficient allows 

accounting for the discrepancy in the magnitude of two signals (depicted by ‘b’) 

as well as their dynamics (depicted by r2)” (p. 6). Hence, the commutative product 

of |b| and r2 presented above in (2) can be considered also from the opposite 

perspective, where r2 is used for weighting the slope/gradient (b) to take into 

account the strength of the linear correlation between the studied variables. 

For example, a weak correlation model (e.g., r2 < 0.1) cannot be considered 

the same as a model with near perfect correlation (i.e., r2 value close to 1.0), 

which should be taken into account for the interpretation of linear regression 

analyses by adjusting the slope/gradient (b) accordingly: 
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where wb represents a weighted slope/gradient (b) of the regression line. If r2 = 1.0, 

in a hypothetical situation of a perfect linear correlation, then wb = |b| or wb = |b|-1 

(i.e., r2 – neutral). 

In case of |b| ≤ 1, the limit of r2 |b| equals 0 if both |b| and r2 approach 0. The 

same result for the limit of r2 |b| is obtained if |b| → 0 and r2 → 1 as well as if 

|b| → 1 and r2 → 0: 
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The limit of r2 |b| equals 1 when both |b| and r2 approach 1: 
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In case of |b| > 1, the limit of r2 |b|-1 equals 0 if |b| → 1 and r2 → 0 or if |b| → ∞ 

and r2 → 0 or if |b| → ∞ and r2 → 1: 
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As in the case of wb = r2 |b|, the limit of r2 |b|-1 equals 1 when both |b| and r2 

approach 1: 
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The results of linear regression analyses models can be used to make 

predictions about the effects of exposure to environmental/socio-economic factors 

on population health. A linear dose-response model or a linear concentration-

response (C-R) function is typically assumed: 

 

 ,y a bx    (8) 

 

where y is the dependent/response variable, x – independent/explanatory variable, 

a – the y-axis intercept, and b – the slope/gradient of the line. However, it needs 

to be taken into consideration that the reliability of a prediction made with the 

aforementioned model depends largely on the strength of the linear correlation 

between the studied variables, where r2–values greater than ~ 0.5 indicate a strong 

relationship with high reliability and r2–values less than ~ 0.1 indicate a weak 

relationship with low reliability of model predictions. This is where the weighted 

slope/gradient (wb) can be used for a more robust procedure to assess the potential 

effects of exposure to environmental and/or socio-economic factors on population 

health. 

Using the methodology for particulate matter risk analysis described by the 

U.S. Environmental Protection Agency (US EPA), Environmental Protection 

Authority of Victoria (Australia) developed the equations for dose-response or 

concentration-response (C-R) functions. The authors estimate health outcome 

changes and calculate the health-endpoint-specific effect coefficient (β) on the 

basis of available dose-response data (Burgers & Walsh, 2002). 

The C-R functions can be estimated from epidemiological studies using a 

Poisson regression where the natural base logarithm of a health endpoint or an 

effect is presented as a linear function of air pollution (e.g., PM2.5) concentration 

(Environmental Protection Agency, 2010a): 
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 1

1 0 ,
xy y e

    (9) 

 

where y1 is the incidence rate of a specific health endpoint of interest at the 

ambient air pollution concentration (x1), e – the base of natural logarithm (ln or 

loge), β – the health effect coefficient of ambient air pollution derived from 

epidemiological studies, and yo – the baseline incidence rate in hypothetical 

absence of ambient air pollution, provided that there is no threshold concentration 

(i.e., level of air pollution below which there is no significant health effect). 

The change in the number of cases for a specific health endpoint (e.g., lung 

cancer incidence or mortality rate) Δy = y1 - yo or y1 = Δy + yo, corresponding to a 

given change in ambient air pollution levels relative to the background 

(Δx = x1 - xo or x1 = Δx + xo), can be calculated from the C-R function in (9) 

presented above using the following equation: 

 

 
  1 ,ox x

oy y e
  

     (10) 

 

where β is the health-endpoint-specific effect coefficient representing an 

incremental change in the health outcome associated with a unit change in air 

pollution (Δx). In a hypothetical situation where the background air pollution 

xo = 0, (10) can be presented as following: 

 

    1   or  1x

o o xy y e y y RR

        (11) 

 

where the term eβΔx is also known as the relative risk (RRΔx) associated with the 

change in Δx. If eβΔx = RRΔx then βΔx = ln(RRΔx), and β = ln(RRΔx)/Δx. 

The percentage change in the number of cases of a given health endpoint 

(zp), corresponding to a given change in air pollution concentration (Δx), can be 

calculated from (Burgers & Walsh, 2002): 
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      (12) 

 

Then, combining and rearranging (11) and (12) provides the equation to calculate 

β for different health endpoints on the basis of available dose-response data from 

epidemiological studies for a 1 μg/m3 change in air pollution: 
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Finally, an impact of air pollution on a health endpoint can be calculated from the 

following equation (Fann et al., 2011): 

 

  1 ,x

oy y e pop      (14) 

 

where pop is population size of a particular group exposed to air pollution. 

Case study data used in the current paper are obtained from Vinikoor-Imler, 

Davis, and Luben (2011), the National Center for Environmental Assessment of 

the U.S. EPA, who studied an association between air pollution and population 

health in North Carolina. They reported the following slopes for PM2.5 vs. lung 

cancer mortality and incidence after adjusting for the neighborhood socio-

economic status and the prevalence of cigarette smoking: b = 0.96 per 1 μg/m3 

PM2.5 for lung cancer mortality (95% CI: 0.34, 1.59, p-value < 0.01; r2 = 0.18; 

y-axis intercept, a = 40.96) and b = 1.35 per 1 μg/m3 PM2.5 for lung cancer 

incidence (95% CI: 0.36, 2.35, p-value 0.01; r2 = 0.09; y-axis intercept, a = 44.36). 

Results 

Case Study Worked Example Calculations: Lung Cancer Mortality 

Vinikoor-Imler et al., (2011) provided an adjusted slope of 0.96 lung cancer 

mortality cases per 100,000 population per 1 μg/m3 change in PM2.5 

(b = 0.96·10-5), a y-axis intercept (a) or an estimated baseline lung cancer 

mortality rate at xo = 0 of 40.96 cases per 100,000 population (yo = 40.96·10-5), 

and lung cancer mortality rate per 100,000 population associated with an 

incremental 1 μg/m3 increase in PM2.5 (y1 = 0.96·10-5 + 40.96·10-5 = 41.92·10-5). 

Using (12) the value of zp is calculated at 2.344%. Considering that y1 = bx1 + a 

and yo = bxo + a, the same calculation can be obtained on the basis of the 

relationship: y1 - yo = (bx1 + a) - (bxo + a) or Δy = bΔx, where if Δx = 1 μg/m3 

then Δy = b (i.e., 0.96 cases per 100.000 population per 1 μg/m3): 

 100   .p

o

b
z

y
    (15) 
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The C-R coefficient β can be then calculated using (13): 
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On the basis of the analysis presented by Vinikoor-Imler et al., (2011), using 

(14), it is estimated that incremental 10 μg/m3 increase in PM2.5 concentration 

could be associated with additional 10.68 cases of lung cancer mortality per 

100,000 population (i.e., 34,710 additional cases in ~325 million U.S. population). 

In the following estimate of the coefficient β, the slope of the regression line 

(b) is adjusted for the observed strength of the association between PM2.5 

exposure and lung cancer mortality (r2) using (13) and (15) with (3), where 

|b| = 0.96·10-5 and r2 = 0.18 for a weighted slope/gradient wb = 1.728·10-6 per 

μg/m3 and where Δx = 1 μg/m3 for Δy = wb: 
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A weighted coefficient βw can be then calculated using a weighted percentage 

increase in the number of cases of a given health endpoint zw in the following 

equation: 
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  (17) 

 

Hence, adjusting for the neighborhood socio-economic status, cigarette smoking, 

and the r2 between PM2.5 concentration and lung cancer mortality yields a 

weighted C-R coefficient βw of 0.0042 per μg/m3. Using (14), it is estimated that 

an incremental 10 μg/m3 increase in PM2.5 concentration could be associated with 

additional 1.76 cases of lung cancer mortality per 100,000 population or 5,720 

additional cases if applied to ~325 million U.S. population, which is much lower 
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than the 34,710 additional cases foreseen by using the unadjusted slope 

coefficient b. 

Case Study Worked Example Calculations: Lung Cancer Incidence 

Using the approach described above and the data from Vinikoor-Imler et al., 

(2011), a weighted C-R coefficient βw is calculated for the cancer incidence where 

the slope/gradient b > 1 (i.e., b = 1.35), r2 = 0.09 and an estimated baseline lung 

cancer incidence rate yo = 44.36 per 100,000 population at xo = 0. Hence, from (3) 

a weighted slope/gradient is wb = r2·|b|-1 = 0.09·0.7407·10-5 = 6.666·10-7 per 

μg/m3 and zw can be calculated using a modified version of (16) to reflect that 

b > 1: 
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A weighted C-R coefficient βw is calculated using (17): 
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then, using (14), an incremental 10 μg/m3 increase in PM2.5 concentration could 

be associated with additional 0.67 cases of lung cancer incidence per 100,000 

population or 2,178 additional cases if applied to ~325 million U.S. population. 

Discussion and Conclusion 

Some of the key uncertainties and limitations of currently accepted approach in 

assessing the effects of air pollution on population health stem from the quality 

and reliability of epidemiological studies (e.g., study design, exposure assessment, 

confounding factors, statistical model assumptions, risk characterization, potential 

errors and biases). The assumptions required for a valid least-squares regression 

are often not possible to satisfy completely in epidemiological study designs. It 

should be emphasized that regression coefficient/slope b becomes meaningless 

and should not be used to make linear inferences/predictions if the r2 approaches 
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0 (e.g., r2 < 0.1) even in situations where it may appear to be statistically 

significant. 

It is also important to consider available evidence for a plausible biological 

mechanism of toxicity and for a slope and shape of the dose-response relationship 

at low to very low levels of air pollution (Vedal, Brauer, White, & Petkau, 2003). 

There is no universal agreement among the researchers for an assumed linear no-

threshold effect of air pollution on population health. Specifically regarding 

PM2.5-related mortality the U.S. EPA indicated “a review of the time-series and 

cohort studies may lead to the conclusion that although a threshold is not apparent 

at commonly observed concentrations, one may exist at lower levels” 

(Environmental Protection Agency, 2010b, p. 23). Uncertainties associated with 

the evidence for and likelihood of causality should be acknowledged. In addition, 

there is variability in the estimated C-R functions and the magnitude of potential 

effects of air pollution on population health as reported by different research 

groups (Environmental Protection Agency, 2010a). 

The described methodological approach, first proposed by Krause et al., 

(2005) in the context of hydrology, was applied by Krstić, (2012) and accepted by 

Young & Xia, (2013) from the National Institute of Statistical Sciences (NISS) to 

adjust the predicted population health effects in the context of ambient air 

pollution. The analyses presented in the current paper on the basis of 

epidemiological and environmental data from Vinikoor-Imler et al., (2011) 

showed that inclusion of the r2 in the calculation is expected to yield better 

estimates of the predicted effects of air pollution on population health, which 

reflect more accurately the strength of the real linear correlation between the air 

pollution and the specified population health endpoint. 

The proposed br2-weighting method is sensitive to extreme values of both 

|b| and r2 where model prediction reliability increases if |b| and r2 approach 1 and 

decreases if |b| departs from 1 in either direction (i.e., |b| → ∞ or |b| → 0) and/or if 

r2 departs from 1 and approaches 0. The method identifies situations of maximum 

prediction ability as those of |b| ≤ 1 as well as for |b| > 1, provided that both |b| 

and r2 are close to 1. This is in agreement with theoretical/ideal conditions in 

linear regression where a perfect correlation requires that r = 1, |b| = 1 and 

y-intercept a = 0 if the relationship between the studied variables is truly linear in 

nature, resulting in a 45° angle for the regression line as the best fit of the least-

squares estimator (Nau, 2014; Legendre, 2014). 

The least-squares regression coefficient b is considered as an unbiased 

prediction estimator under the assumptions of a perfect correlation between the 

studied variables (Legendre, & Legendre, 1998). The estimated r2-values closer to 
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1 allow more direct and reliable application of b in making inferences and 

predictions. On the other hand, r2-values closer to 0 indicate a necessity to adjust 

the slope b for the observed reduction in model prediction ability. In situations of 

very low r2-values, it becomes increasingly more likely even for the 95% 

confidence interval of the slope b not to include the ideal 45° angle line of the 

best regression fit (Mesplé et al., 1996; Legendre, 2014). 

The presented analyses illustrate the importance of weighting the slope of 

the regression (b) by the coefficient of determination (r2) to obtain more reliable 

inferences in projecting potential effects of air pollution on population health. The 

proposed br2-weighting method could be applied universally in studies of other 

environmental, behavioral, genetic or socio-economic risk factors for more 

comprehensive health impact estimates with lower potential bias and better 

decision-making. 
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