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In this paper, hierarchical Bayes approach is presented for estimation and prediction of 

reliability indexes and remaining lifetimes of a cold standby series system under general 

progressive Type II censoring scheme. A simulation study has been carried out for 

comparison purpose. The study will help reliability engineers in various industrial series 

system setups. 

 

Keywords: Cold standby series system, general progressive Type II censoring, 

hierarchical Bayes estimation, Monte Carlo simulation 

 

Introduction 

A cold standby series system is widely applied to achieve high reliability in various 

engineering systems used in space exploration and satellite, textile manufacturing 

and carbon recovery systems. In such a series system, some units are placed in 

working mode while the rest in cold standby mode. When any unit in the working 

mode fails, it is replaced by any of the standby units in negligible time to survive 

the engineering system. The standby system becomes invalid when all standby units 

are used up, and one of the working units becomes unusable. 

Mei, Liao, and Sun (1992) discussed the point estimation of reliability indexes 

by assuming that the life units in the series system have identical exponential 

distribution, and the failure rate is a known constant. Under the assumption that the 

failure rate is a random variable, Su and Gu (2003) derived the Bayes estimates 

while Bai, Yu, and Hu (1998) derived the multiple Bayes estimates of reliability 

indexes for the series system. Pham and Turkkan (1994) studied the reliability of 
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the series system with Beta distribution component live. Willits (1997) studied 

reliability estimation of the series system using small binomial samples. Xu, Kang, 

and Shi (2002) discussed Bayesian and multiple Bayesian analysis of reliability 

performances for the series system. Barot and Patel (2014) derived the exact 

confidence limits of the reliability indexes for a cold standby series system under 

general progressive Type II censoring scheme using an empirical Bayesian 

approach. 

In a life testing experiment, a censoring scheme that can balance between total 

times spent, number of units used and efficiency of statistical inference based on 

the results of an experiment is desirable. For this reason a more general censoring 

scheme called, general progressive Type II censoring scheme, has received a 

significant importance in the last few decades. This censoring scheme is extremely 

useful in both industrial life testing and clinical settings. The numerous articles 

dealing with inference procedures under this censoring scheme have been found in 

the journals (e.g., Balakrishnan & Sandhu, 1996; Fernández, 2004; Kim & Han, 

2009; Barot & Patel, 2014). 

In Bayes approach, the posterior distribution of the parameters of interest 

given the data is obtained by assuming that the model hyper-parameter is known 

and then inferences are considered based on this distribution. However, when the 

information regarding the model hyper-parameter is unknown, empirical Bayes or 

hierarchical Bayes approaches are used to handle the super parameter structure for 

the estimation and prediction. In the empirical Bayes approach, the posterior 

distribution of the parameter of interest given the data is first obtained, assuming 

that the model hyper-parameters are known. The hyper-parameter is estimated from 

the marginal distribution of the data, and inferences are then based on the estimated 

posterior distribution. 

However, in the case of non-availability of empirical data, estimates of 

parameters can be obtained through only an expert consulting. In such situations, 

hierarchical Bayes approach is more preferable than empirical Bayes approach. In 

hierarchical Bayes approach, a prior distribution of the hyper-parameter is specified 

according to expert’s opinions, and then the posterior distribution of the parameter 

of interest is obtained. A parameter of interest is then estimated by its posterior 

mean and its precision is measured by its posterior variance. The hierarchical Bayes 

approach is straightforward and clear-cut, but computationally intensive, often 

involving high dimensional integration. It looks promising, but caution should be 

exercised in applying this approach. It has been described and applied extensively 

for various statistical inferences in literature (e.g., Han, 1998; Lehmann & Casella, 
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1998; Papadopoulos, Tiwari, & Zalkikar, 1996; Younes, Delampady, MacGibbon, 

& Cherkaoui, 2007). 

Statistical prediction was the most prevalent form of statistical inference, 

which is very important in a variety of disciplines such as medicine, engineering, 

and business. Various authors have studied the prediction problems in reliability 

and life testing problems (e.g., Dunsmore, 1974; Chhikara & Guttman, 1982; Ali 

Mousa, 2001; Ali Mousa & Jaheen, 2002). 

Most of the research on a cold standby series system has focused on the usual 

Bayes approach. The objective of the present paper is to investigate estimation and 

prediction of reliability indexes and remaining lifetimes of the series system using 

a hierarchical Bayes approach under general progressive Type II censoring scheme. 

Bayes Estimation of Reliability Indexes 

In reliability and life testing studies, an exponential distribution is one of the most 

widely used lifetime models, and inference based on this distribution can be used 

quite effectively. A number of lifetime data have been analyzed, and it was 

observed that in most of the cases an exponential distribution provides a good fit. 

This distribution has been used to describe the life span of many items such as 

electronic tubes, light bulbs and mechanical components. 

Suppose that a cold standby series system has (k + n – 1) identical units 

comprising a series of k working units U1, U2,…, Uk being in an operational state 

and (n – 1) standby units S1, S2,…, S(n–1) connected in a series. When any unit of 

the series of k working units fails, any unit of (n – 1) standby units replaces it 

immediately through an alternation switch in negligible time, so that the series 

system stays operational. Figure 1 shows a functional diagram of the series system. 

Barot and Patel (2014) have considered such a series system and placed it on a life 

testing experiment under general progressive Type II censoring scheme by 

assuming that every unit has the failure rate kλ with the probability density and 

cumulative distribution functions, respectively, as 

 

  f | e , , , 0kxx k x k      (1) 

 

and 

 

  F | 1 e kxx      (2) 
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Figure 1. Cold standby series system with (k + n – 1) identical units 
 

 

According to Cao and Cheng (1986), the reliability R(t) and average life 

MTTF of the series system are strictly monotonic decreasing functions with respect 

to  and can be given, respectively, by 
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Under the general progressive Type II scheme, the lifetimes of the first s units, 

i.e., x(1), x(2),…, x(s) are not observed, and then the lifetimes until the mth failure, i.e., 

x(s+1), x(s+2),…, x(m) are completely observed. At the time of every ith failure, ri units 

are randomly removed from the remaining (n – s – 1) standby units (i = s + 1, 

s + 2,…, m – 1). Instead of continuing the test until the entire standby units are used 

up, the test is terminated at the time of the mth failure (m < n), and all the remaining 

rm standby units are removed from the test, where rm is given by 
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Following Barot and Patel (2014), the likelihood function based on the general 

progressive Type II sample x = (x(s+1), x(s+2),…, x(m)) can be written as 
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The concern in Bayesian estimation is an appropriate choice of a prior 

distribution for a parameter to consider subjective information from experienced 

experts. An exponential distribution is one of most prominent random probability 

distributions, and its good mathematical properties facilitate insight and 

computational reduction. In reliability analysis and life testing, it is preferred over 

many other distributions due to its richness, computational ease, better fit to the 

failure data, analytical tractability, and easy interpretability. To ease the 

computational burden and get computable closed form expression for the posterior 

distribution, it is assumed that the unknown failure rate λ is the realization of a 

random variable and follows an exponential prior with the probability density 

function 

 

  | e , 0        (5) 

 

The likelihood function (4) and prior distribution (5) can be easily combined 

to form a posterior distribution that represents total knowledge about the parameter 

λ after the data have been observed. It is 
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In Bayesian analysis, a loss function must be specified in order to obtain 

Bayes estimates. The loss function is a non-negative function of the distance 

between the estimate and the true value. When decisions become gradually more 

damaging for large errors, the use of squared error loss function,    
2

ˆ ˆL ,     , 

is more appropriate because of its analytical tractability. The Bayes estimate of 

parameter λ, reliability R(t) and MTTF can be obtained under the squared error loss 

function, respectively, as 
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Hierarchical Bayesian Analysis 

The idea in a Bayesian model is that when you look at a likelihood function and 

decide right priors for parameters. Instead, it may be more appropriate to use priors 

depending on other parameters those are not mentioned in a likelihood function. 

These parameters themselves will require priors and can depend on new ones. This 

can continue in a hierarchical framework until there are no more parameters to 

incorporate in the model. In this section, hierarchical Bayes estimates of reliability 

indexes of the series system are constructed. 
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Due to the complicity of practical problems and uncertainty about the true 

level of an expert, it is quite difficult to give the exact estimate of a super parameter 

β. However, the value of β can be obtained in an approximate interval denoted by 

(a, b) through an expert consulting. As there is no other information on the 

parameter β,  it is assumed that it has uniform distribution on (a, b) with the 

probability density function 
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given in Xu et al. (2002). In order to obtain the posterior density of β given x, 
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where 
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From Bayes theorem, the posterior density of β given x can be obtained as 
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Under the squared error loss function, the Bayes estimate of β can be given by 
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where 
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Using (10) in (7), (8), and (9), the hierarchical Bayes estimates of λ, R(t) and MTTF 

under the squared error loss function can be obtained as follows: 
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In Bayesian inference, the 100(1 – α)% highest probability density (HPD) 

interval of the parameter of interest is the shortest interval in parameter space that 

contains 100(1 – α)% of the probable values of the parameter. It is one of the most 

useful tools to measure posterior uncertainty that includes more probable values 

and excludes the least probable values of the parameter. Since the posterior 
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distribution (6) is unimodal, the 100(1 – α)% Bayes HPD-interval (p1, p2) for λ must 

simultaneously satisfy the equations 
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After tedious algebra, the equations (14) and (15) can be written in the form 
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where cj = kwj + β. 

The 100(1 – α)% Bayes HPD-intervals of R(t) and MTTF can be obtained 

from (8) and (9). When the super parameter β is unknown, the 100(1 – α)% 

hierarchical Bayes HPD-intervals of reliability indexes can be obtained by using 

the estimate ˆ
B  for β. 

Prediction of Remaining Lifetimes Truncated at x(m) 

The prediction of remaining lifetimes, based on a current available sample, known 

as an informative sample, is an important feature in Bayesian analysis. Howlader 

(1985) presented HPD-prediction intervals for the zth order statistic of a future 

sample. Fernández (2000) considered the problem of predicting an independent 

future sample from the Rayleigh distribution under doubly Type II censoring 

scheme. Raqab and Madi (2002) considered an estimation of the predictive 

distribution of the total time on a test up to certain failures in a future sample, as 

well as that of the remaining testing time until all the units in the original sample 

have failed. 
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Let 
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denote the lifetime of the lth unit to fail. The conditional probability density function 

of y = x(l) – x(m) from the probability density function truncated at x(m) is given by 

 

  
     

 

11

1

1

F | 1 F | f |
f | , 0

B , 1

l m n l

y y y
y y

l m n l

  


  

       
  

  

 

From (1) and (2), the function f1 = (y | λ) can be obtained as 
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Based on the general progressive Type II censored sample x, the conditional joint 

probability density function of y and λ can be written as 
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The Bayes predictive density function of y can be obtained as 
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where 
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Under the squared error loss function, the Bayes predictive estimate of y can be 

obtained as 
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Thus, the Bayes predictive estimate of x(l) can be given by 
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Moreover, the 100(1 – α)% Bayes HPD-prediction interval of y* is given by (h1, h2), 

where h1 and h2 are solutions of the equations 
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Using (19) in (20) and (21), after tedious algebra, we have 
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where 
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Hence, the 100(1 – α)% Bayes HPD-prediction interval for x(l) is 

 

     1 2,
m m

x h x h    (24) 

 

When the super parameter β is unknown, the hierarchical Bayes predictive 

estimates x(l) and the corresponding 100(1 – α)% hierarchical HPD-prediction 

interval of can be obtained by using the estimate ˆ
B  for β in (19) and (24). 

Simulation Study 

An extensive Monte Carlo simulation study was carried out to illustrate and 

compare the performance of hierarchical Bayes estimates of reliability indexes of 

the system with series of k units in working mode and (n – 1) units in cold standby 

mode. The performance is evaluated based on estimated risks and biases for 

different combinations of sample size (n), effective sample size (m – s), and general 

progressive Type II censoring scheme r = (rs+1, rs+2,…, rm). The different censoring 

schemes applied in the simulation study are summarized in Table 1. 

For given values a = 0, b = 1 and 100,00,000 generated uniform numbers, two 

values of β, one is the true value βT = 0.5002 and another is the expert value 

βE = 0.4999 were obtained by the Monte Carlo means. The corresponding 

λ = 2.0008 is brought from the prior (5) and the expert value βE. Using the generated 

value of λ, we have generated a general progressive Type II censored sample 

x = (x(s+1), x(s+2),…, x(m)) with the censoring scheme r from the exponential 

distribution according to the algorithm presented in Balakrishnan and Sandhu 

(1996) that involves the following steps: 
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1. Generate Vm from the Beta distribution with parameters (n – s) and 

(s + 1) 

2. Independently generate Zs+i from U(0, 1) and then set 

1

s ia

s i s iV Z 

  , 

1

m

s i jj m i
a i r   

   for i = 1, 2,…, (m – s – 1) 

3. Set Us+1 = 1 – Vm and Us+i = 1 – (Vm–i+1Vm–i+2…Vm), 

i = 2, 3,…, (m – s) 

4. For the generated value of λ and given k,    
1

ln 1 s is i
x U

k


   , 

i = 1, 2,…, (m – s) is the required general progressive Type II 

censored sample of size (m – s) from the exponential distribution 

 

The Bayes estimates, hierarchical Bayes estimates, and the corresponding 

estimated risks were computed by averaging over 100,000 simulations, and are 

reported, respectively, in Tables 2-6. From the simulation results, the following 

points can be drawn: 

 

1) For the fixed sample size n and initial s unobserved failures, as the 

predetermined number of failures m increases, the estimated risks of 

estimates of reliability indexes decrease, that is, the performance 

becomes better in terms of the estimated risks. (Refer to Tables 2-4) 

2) For the fixed effective sample size (m – s), the estimated risks of 

estimates of failure rate λ and reliability R(t) decrease while that of 

MTTF increase with the increasing sample size n. (Refer to Tables 2-

4) 

3) For the fixed sample size n and predetermined number of failures m, 

the estimated risks of estimates of failure rate λ and reliability R(t) 

increase while that of MTTF decrease with the increasing number of 

initial s unobserved failures. (Refer to Tables 2-4) 

4) For the fixed sample size n and effective sample size (m – s), the 

estimated risks of the estimates of MTTF decrease while that of 

reliability R(t) decrease for small sample size and increase for 

moderate and large sample sizes with increasing number of working 

units k. (Refer to Table 6) 

5) It is noted that an increase in k does not have any dampening effect on 

the estimated risk of failure rate λ. (Refer to Table 6) 
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6) The estimated risks of the Bayes estimates of reliability indexes are 

smaller than the corresponding hierarchical Bayes estimates for all the 

considered cases. This indicates that Bayes estimates outperform the 

hierarchical Bayes estimates. (Refer to Tables 2-4) 

7) For the fixed effective sample size (m – s), as the sample size n 

increases, the Bayes and hierarchical Bayes estimates of failure rate λ 

decrease while reliability R(t) and MTTF increase, i.e., the series 

system survives for a long period. (Refer to Tables 2-4) 

8) For the fixed sample size n and effective sample size (m – s), as the 

number of working units k increases, the Bayes and hierarchical Bayes 

estimates of reliability R(t) and MTTF decrease, i.e., the series system 

fails frequently. (Refer to Table 5) 
 
 
Table 1. Progressive Type II censoring schemes (CS) applied to the simulation study 
 

n m s CS No. r = (rs+1,rs+2,…,rm)  n m s CS No. r = (rs+1,rs+2,…,rm) 

20 8 3
 

[1] (1, 0, 4, 1, 6)  50 10 3
 

[19] (6, 8, 10, 4, 3, 7, 2) 
   [2] (0, 0, 0, 0, 12)     [20] (0, 0, 0, 0, 0, 0, 40) 
    [3] (12, 0, 0, 0, 0)      [21]

 
(40, 0, 0, 0, 0, 0, 0) 

           

  4
 

[4] (2, 0, 4, 6)    4
 

[22]
 

(6, 8, 10, 4, 5, 7) 
   [5] (0, 0, 0, 12)     [23]

 
(0, 0, 0, 0, 0, 40) 

     [6] (12, 0, 0, 0)        [24]
 

(40, 0, 0, 0, 0, 0) 

           

 10 3
 

[7] (2, 0, 3, 0, 1, 2, 2)  100 8 3
 

[25] (16, 12, 20, 14, 30) 
   [8] (0, 0, 0, 0, 0, 0, 10)     [26] (0, 0, 0, 0, 92) 
   [9] (10, 0, 0, 0, 0, 0, 0)      [27] (92, 0, 0, 0, 0) 

           

  4
 

[10] (3, 0, 2, 1, 0, 4)    4
 

[28] (28, 25,17, 22) 
   [11] (0, 0, 0, 0, 0, 10)     [29] (0, 0, 0, 92) 

      [12] (10, 0, 0, 0, 0, 0)       [30] (92, 0, 0, 0) 

           

50 8 3
 

[13] (6, 12, 11, 4, 9)   10 3
 

[31] (6, 13, 15, 14, 8, 12, 22) 
   [14] (0, 0, 0, 0, 42)     [32] (0, 0, 0, 0, 0, 0, 90) 
    [15] (42, 0, 0, 0, 0)      [33]

 
(90, 0, 0, 0, 0, 0, 0) 

           

  4
 

[16] (8, 15, 7, 12)    4
 

[34]
 

(16, 18, 15, 14, 15, 12) 
   [17] (0, 0, 0, 42)     [35]

 
(0, 0, 0, 0, 0, 90) 

      [18] (42, 0, 0, 0)        [36]
 

90, 0, 0, 0, 0, 0 
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Table 2. Estimates of failure rate of λ and their estimated risks 
 

CS β̂  
ˆ

B
λ  ˆ

HB
λ   ˆ

B
λER   ˆ

HB
λER  

1 0.5257 2.2951 2.3031 0.6755 0.7867 

2 0.5273 2.2706 2.2772 0.6508 0.7554 

3 0.5078 2.5724 2.6029 1.0682 1.3812 

4 0.5229 2.3396 2.3504 0.7288 0.8545 

5 0.5250 2.3066 2.3154 0.6917 0.8070 

6 0.5005 2.6863 2.7278 1.2986 1.6107 

7 0.5234 2.3322 2.3365 0.6178 0.6879 

8 0.5280 2.2616 2.2629 0.5479 0.6060 

9 0.5098 2.5440 2.5598 0.8976 1.0207 

10 0.5192 2.3984 2.4059 0.6934 0.7772 

11 0.5246 2.3146 2.3181 0.5986 0.6655 

12 0.4985 2.7215 2.7505 1.2238 1.4206 

13 0.5279 2.2612 2.2676 0.6451 0.7537 

14 0.5300 2.2301 2.2348 0.6168 0.7176 

15 0.5078 2.5717 2.6025 1.0667 1.2980 

16 0.5269 2.2779 2.2850 0.6593 0.7669 

17 0.5292 2.2422 2.2473 0.6250 0.7233 

18 0.5006 2.6853 2.7265 1.2945 1.6056 

19 0.5269 2.2790 2.2808 0.5607 0.6197 

20 0.5317 2.2033 2.2042 0.4952 0.5432 

21 0.5098 2.5438 2.5593 0.8921 1.0120 

22 0.5265 2.2845 2.2865 0.5639 0.6223 

23 0.5307 2.2195 2.2199 0.5060 0.5548 

24 0.4985 2.7209 2.7495 1.2191 1.4100 

25 0.5299 2.2310 2.2358 0.6177 0.7183 

26 0.5305 2.2219 2.2262 0.6038 0.6983 

27 0.5076 2.5706 2.6017 1.0657 1.2978 

28 0.5286 2.2511 2.2564 0.6259 0.7249 

29 0.5301 2.2282 2.2323 0.6054 0.6989 

30 0.5004 2.6824 2.7254 1.2902 1.5969 

31 0.5317 2.2031 2.2040 0.4944 0.5427 

32 0.5326 2.1878 2.1883 0.4845 0.5312 

33 0.5098 2.5424 2.5588 0.8907 1.0105 

34 0.5296 2.2362 2.2365 0.5266 0.5806 

35 0.5321 2.1971 2.1970 0.4951 0.5437 

36 0.4985 2.7203 2.7403 1.2161 1.4044 
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Table 3. Estimates of reliability R(t) and their estimated risks 
 

CS R(t)  ˆ
B

tR   ˆ
HB

tR    ˆ
B

tER R    ˆ
HB

tER R  

1 0.4695 0.4554 0.4600 0.0598 0.0623 

2  0.4638 0.4686 0.0601 0.0617 

3  0.3692 0.3717 0.0646 0.0661 

4  0.4410 0.4453 0.0600 0.0625 

5  0.4520 0.4564 0.0603 0.0626 

6  0.3410 0.3428 0.0789 0.0815 

7  0.4249 0.4289 0.0586 0.0604 

8  0.4505 0.4549 0.0583 0.0601 

9  0.3552 0.3578 0.0642 0.0659 

10  0.4019 0.4055 0.0596 0.0613 

11  0.4311 0.4352 0.0584 0.0602 

12   0.3060 0.3075 0.0734 0.0752 
      

13 0.9999 0.9643 0.9676 0.0069 0.0092 

14  0.9665 0.9696 0.0063 0.0085 

15  0.9361 0.9429 0.0144 0.0195 

16  0.9631 0.9666 0.0071 0.0095 

17  0.9657 0.9689 0.0065 0.0087 

18  0.9219 0.9307 0.0190 0.0259 

19  0.9722 0.9745 0.0048 0.0063 

20  0.9768 0.9786 0.0039 0.0050 

21  0.9513 0.9558 0.0101 0.0131 

22  0.9719 0.9742 0.0049 0.0064 

23  0.9759 0.9778 0.0040 0.0052 

24   0.9318 0.9387 0.0159 0.0209 
      

25 1.0000 0.9993 0.9997 1.136 × 10-5 1.105 × 10-5 

26  0.9993 0.9997 1.079 × 10-5 1.172 × 10-5 

27  0.9981 0.9991 6.165 × 10-5 3.532 × 10-5 

28  0.9993 0.9996 1.934 × 10-5 1.141 × 10-5 

29  0.9993 0.9997 1.798 × 10-5 1.262 × 10-5 

30  0.9973 0.9988 8.788 × 10-5 5.091 × 10-5 

31  0.9997 0.9999 6.051 × 10-5 3.037 × 10-5 

32  0.9997 0.9999 5.034 × 10-5 2.081 × 10-5 

33  0.9993 0.9996 2.221 × 10-5 1.098 × 10-5 

34  0.9997 0.9998 6.072 × 10-5 3.081 × 10-5 

35  0.9997 0.9998 5.092 × 10-5 2.594 × 10-5 

36   0.9986 0.9993 4.714 × 10-5 2.338 × 10-5 

 
 
 
 
 
 



HIERARCHICAL BAYES ESTIMATION OF RELIABILITY INDEXES 

687 

Table 4. Estimates of MTTF and their estimated risks 
 

CS MTTF B
MTTF  

HB
MTTF   B

MTTFER   HB
MTTFER  

1 1.9991 2.1663 2.1792 0.4857 0.5213 

2  2.1901 2.2039 0.5051 0.5417 

3  1.9329 1.9369 0.3798 0.4136 

4  2.1270 2.1386 0.4620 0.4965 

5  2.1576 2.1702 0.4834 0.5190 

6  1.8599 1.8602 0.3788 0.4116 

7  2.0519 2.0613 0.3475 0.3687 

8  2.1164 2.1276 0.3809 0.4039 

9  1.8815 1.8855 0.3062 0.3255 

10  1.9954 2.0032 0.3271 0.3473 

11  2.0677 2.0776 0.3552 0.3769 

12   1.7626 1.7630 0.3027 0.3239 
      

13 4.9979 5.5000 5.5351 3.2263 3.4580 

14  5.5787 5.6162 3.4049 3.6458 

15  4.8297 4.8395 2.3392 2.5313 

16  5.4589 5.4926 3.1398 3.3672 

17  5.5472 5.5838 3.3299 3.5669 

18  4.6484 4.6492 2.3318 2.5252 

19  5.2490 5.2760 2.3295 2.4697 

20  5.4308 5.4626 2.6177 2.7724 

21  4.7025 4.7124 1.9184 2.2388 

22  5.2357 5.2623 2.3140 2.4531 

23  5.3902 5.4209 2.5499 2.7009 

24   4.4066 4.4072 1.8230 2.1551 
      

25 9.9958 11.1494 11.2244 13.5400 14.4996 

26  11.1964 11.2729 13.7659 14.7371 

27  9.6457 9.6649 9.2994 10.1653 

28  11.0364 11.1081 12.9450 13.8712 

29  11.1528 11.2282 13.4762 14.4297 

30  9.2739 9.2750 9.2443 10.1482 

31  10.8628 10.9265 10.5038 11.1230 

32  10.9300 10.9954 10.7570 11.3888 

33  9.4016 9.4214 7.6860 8.1665 

34  10.7068 10.7662 10.0085 10.6043 

35  10.8999 10.9644 10.6881 11.3177 

36   8.8144 8.8156 7.0966 7.6261 
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Table 5. The effect of k on the estimates of reliability indexes 
 

CS k 
ˆ

B
λ  ˆ

HB
λ   ˆ

B
tR   ˆ

HB
tR  

B
MTTF  

HB
MTTF  

1 4 2.2951 2.3031 0.6261 0.6282 2.7078 2.7240 
 8   0.1543 0.1587 1.3539 1.3620 
 12   0.0371 0.0388 0.9026 0.9080 

4 4 2.3396 2.3504 0.6118 0.6136 2.6588 2.6732 
 8   0.1464 0.1506 1.3294 1.3366 
 12   0.0346 0.0362 0.8863 0.8911 

7 4 2.3322 2.3365 0.6095 0.6115 2.5648 2.3365 
 8   0.1210 0.1244 1.2824 1.2883 
 12   0.0225 0.0236 0.8549 0.8589 

10 4 2.3984 2.4059 0.5866 0.5881 2.4943 2.5040 
 8   0.1099 0.1129 1.2471 1.2520 
 12   0.0198 0.0206 0.8314 0.8346 

13 4 2.2612 2.2675 0.9896 0.9873 6.8750 6.9188 
 8   0.8067 0.8056 3.4375 3.4594 
 12   0.5095 0.5144 2.2917 2.3063 

16 4 2.2779 2.2850 0.9893 0.9869 6.8236 6.8658 
 8   0.8022 0.8010 3.4118 3.4329 
 12   0.5033 0.5080 2.2745 2.2886 

19 4 2.2790 2.2808 0.9930 0.9916 6.5613 6.5950 
 8   0.8123 0.8115 3.2806 3.2975 
 12   0.4877 0.4923 2.1871 2.1983 

22 4 2.2845 2.2865 0.9929 0.9915 6.5446 6.5779 
 8   0.8108 0.8100 3.2723 3.2889 
 12   0.4853 0.4898 2.1815 2.1926 

25 4 2.2310 2.2358 0.9999 0.9998 13.9367 14.0305 
 8   0.9919 0.9897 6.9684 7.0152 
 12   0.9382 0.9348 4.6456 4.6768 

28 4 2.2511 2.2564 0.9999 0.9998 13.7955 13.8852 
 8   0.9917 0.9896 6.8977 6.9426 
 12   0.9362 0.9327 4.5985 4.6284 

31 4 2.2031 2.2020 0.9999 0.9999 13.5785 13.6581 
 8   0.9955 0.9945 6.7892 6.8290 
 12   0.9527 0.9505 4.5261 4.5527 

34 4 2.2362 2.2365 0.9999 0.9999 13.3835 13.4578 
 8   0.9949 0.9937 6.6917 6.7289 

  12     0.9489 0.9465 4.4611 4.4859 
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Table 6. The effect of k on the estimated risks of estimates of reliability indexes 
 

CS k  ˆ
B
λER   ˆ

HB
λER    ˆ

B
tER R    ˆ

HB
tER R   B

MTTFER   HB
MTTFER  

1 4 0.6755 0.7867 0.0927 0.0950 0.7590 0.8146 
 8   0.0428 0.0454 0.1897 0.2036 
 12   0.0043 0.0047 0.0843 0.0905 

4 4 0.7288 0.8545 0.0993 0.1018 0.7218 0.7758 
 8   0.0394 0.0418 0.1804 0.1939 
 12   0.0039 0.0042 0.0802 0.0862 

7 4 0.6178 0.6879 0.0985 0.1002 0.5429 0.5761 
 8   0.0284 0.0300 0.1357 0.1440 
 12   0.0019 0.0021 0.0603 0.0640 

10 4 0.6934 0.7772 0.1092 0.1112 0.5111 0.5427 
 8   0.0242 0.0256 0.1278 0.1357 
 12   0.0015 0.0017 0.0568 0.0603 

13 4 0.6451 0.7537 0.0015 0.0026 5.0411 5.4031 
 8   0.0790 0.0829 1.2603 1.3508 
 12   0.0871 0.0891 0.5601 0.6003 

16 4 0.6593 0.7669 0.0015 0.0027 4.9060 5.2612 
 8   0.0815 0.0856 1.2265 1.3153 
 12   0.0882 0.0902 0.5451 0.5846 

19 4 0.5607 0.6197 0.0009 0.0014 3.6399 3.8589 
 8   0.0752 0.0782 0.9100 0.9647 
 12   0.0804 0.0818 0.4044 0.4288 

22 4 0.5640 0.6223 0.0009 0.0014 3.6156 3.8330 
 8   0.0759 0.0790 0.9039 0.9582 
 12   0.0808 0.0821 0.4017 0.4259 

25 4 0.6177 0.7183 2.071×10-6 3.023×10-5 21.1563 22.6557 
 8   0.0012 0.0023 5.2891 5.6639 
 12   0.0176 0.0210 2.3507 2.5173 

28 4 0.6259 0.7249 1.565×10-6 2.568×10-5 20.2266 21.6737 
 8   0.0012 0.0022 5.0566 5.4184 
 12   0.0180 0.0214 2.2474 2.4082 

31 4 0.4944 0.5427 4.014×10-7 5.444×10-6 16.4122 17.3797 
 8   0.0006 0.0010 4.1030 4.3449 

  12     0.0121 0.0141 1.8236 1.9311 

34 4 0.5266 0.5806 3.553×10-7 4.667×10-6 15.6383 16.5692 

 8   0.0007 0.0011 3.9096 4.1423 

  12     0.0136 0.0159 1.7376 1.8410 

Numerical Examples 

Two numerical examples are presented to illustrate how the data support the 

developed model and how to employ the proposed method for estimation of 

reliability indexes of the series system. Examples 1 and 2 consider the artificial 
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general progressive Type II censored samples generated from the real data set 

provided by Nelson (1982) and the computer simulation, respectively. 

Example 1. Real Life Data 

As a numerical illustration, a system comprising a series of 2 working units and 18 

cold standby units was considered. This series system is equivalent to a cold 

standby series system of 19 identical and independent units. The lifetimes of such 

19 units were observed until failure during the life test experiment in which 

specimens of a type of electrical insulating fluid were subject to a constant voltage 

stress (34 KV/minutes). The 19 failure times were obtained as follows: 

 

 
0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67 4.85 6.50

7.35 8.01 8.27 12.06 31.75 32.52 33.94 36.71 72.89
  

 

Asgharzadeh and Valiollahi (2009) checked the validity of an exponential model 

with mean = 14.2857 and indicated that the exponential model is adequate for this 

data set. To generate an artificial general progressive Type II censored sample from 

the given real data set, it is assumed that the lifetimes of the first two failures are 

lost without observation, and then lifetimes were observed until the eighth failure. 

At each failure from 3rd failure to 8th failure, units were randomly withdrawn 

according to the general progressive Type II censoring scheme r = (r3, r4,…, r8) 

= (2, 0, 1, 2, 1, 5). The life test was terminated at the eighth failure, and the vector 

of observed lifetimes was found to be x = (x(3), x(4),…, x(8)) 

= (0.96, 1.31, 2.78, 4.85, 6.50, 8.01). 
 
 
Table 7. Estimates of reliability indexes and their (1 – α)% HPD-intervals for Example 1 
 

 Parameter Estimate 95% HPD-interval 99% HPD-interval 

Bayes Estimation  0.0519 (0.0209, 0.0866) (0.0107, 0.1239) 
 R(t) 0.9415 (0.6257, 0.9999) (0.0992, 0.9999) 
 MTTF 205.5657 (109.7102, 454.5454) (76.6798, 887.8505) 
     

Hierarchical 
Bayes Estimation 

 0.0519 (0.0203, 0.0880) (0.0120, 0.1172) 

R(t) 0.9418 (0.5988, 0.9999) (0.1526, 0.9999) 
 MTTF 205.7603 (107.9023, 467.9803) (81.0286, 791.6666) 
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Table 8. Predictive estimates of the remaining lifetimes and their (1 – α)% HPD-
prediction intervals for Example 1 
 

  l x(i) 95% HPD-interval 99% HPD-interval 

Bayes Estimation 9 10.1738 (8.0262, 15.3444) (8.0206, 22.2503) 
 10 12.8786 (8.0218, 20.7168) (8.0202, 27.9367) 
 11 16.4851 (8.0418, 28.2399) (8.0251, 38.7317) 
 12 21.8947 (8.1446, 39.6961) (8.0996, 55.4946) 

  13 32.7139 (8.0212, 46.9190) (8.0201, 61.6929) 
     

Hierarchical Bayes 
Estimation 

9 10.1758 (8.0470, 16.1734) (8.0244, 24.3241) 

10 12.8833 (8.0267, 20.7303) (8.0377, 27.9939) 
 11 16.4931 (8.0355, 28.2591) (8.0298, 38.7608) 
 12 21.9078 (8.0907, 39.7260) (8.0971, 55.5395) 

  13 32.7373 (8.0261, 46.9559) (8.0241, 61.7342) 

 
 

The Bayes and hierarchical Bayes estimates of failure rate λ, reliability R(t), 

and MTTF and the corresponding HPD-intervals at t = 100 have been computed, 

and are reported in Table 7. The 95% and 99% Bayes and hierarchical Bayes 

predictive estimates and the corresponding HPD-prediction intervals for the each 

of the remaining l lifetimes (9 ≤ l ≤ ) have also been computed, and are reported 

in Table 8. 

Example 2. Simulated Data 

As a numerical illustration, a system initiated with the series of 5 working units 

being in an operational state is placed on a life test along with the other 19 standby 

units connected in a series. This series system is equivalent to a cold standby series 

system of 20 identical and independent units. Under a general progressive Type II 

censoring scheme, the lifetimes of the first two failures are not observed and then 

the lifetimes are completely observed until the eighth failure. Using the algorithm 

presented in the previous section, the general progressive Type II censored sample 

x = (0.01250, 0.01531, 0.02063, 0.02679, 0.03062, 0.05251) has been generated 

with the censoring scheme r = (1, 0, 2, 1, 2, 6). For this sample, Bayes and 

hierarchical Bayes estimates of failure rate λ, reliability R(t), and MTTF, and the 

corresponding HPD intervals at t = 2, have been computed and are reported in Table 

9. Moreover, the 95% and 99% Bayes and hierarchical Bayes predictive estimates 

and the corresponding HPD-prediction intervals for each of the remaining l 

lifetimes (9 ≤ l ≤ ) have also been computed, and are reported in Table 10. 
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Table 9. Estimates of reliability indexes and their (1 – α)% HPD-intervals for Example 2 
 

 Parameter Estimate 95% HPD-interval 99% HPD-interval 

Bayes Estimation λ 2.4747 (0.9950, 4.1210) (0.7440, 4.8827) 
 R(t) 0.3201 (9.053×10-5, 0.9967) (9.9×10-7, 0.9999) 
 MTTF 1.8184 (0.9706, 4.0201) (0.8192, 5.3763) 
     

Hierarchical Bayes 
Estimation 

λ 2.4650 (0.9910, 4.1050) (0.74800, 4.8390) 

R(t) 0.3235 (9.895×10-5, 0.9968) (1.31×10-6, 0.9999) 
 MTTF 1.8256 (0.9744, 4.0363) (0.82661, 5.3476) 

 
 
Table 10. Predictive estimates of the remaining lifetimes and their (1 – α)% HPD-
prediction intervals for Example 2 
 

 l x(i) 95% HPD-interval 99% HPD-interval 

Bayes Estimation 9 0.0676 (0.0527, 0.1079) (0.0526, 0.1661) 
 10 0.0858 (0.0526, 0.1394) (0.0526, 0.1888) 

 11 0.1086 (0.0530, 0.1859) (0.0526, 0.2546) 

 12 0.1389 (0.0526, 0.2477) (0.0526, 0.3431) 

 13 0.1843 (0.0562, 0.3429) (0.0526, 0.4821) 

     

Hierarchical Bayes 
Estimation 

9 0.0677 (0.0529, 0.1201) (0.0526, 0.1662) 

10 0.0860 (0.0527, 0.1398) (0.0526, 0.1893) 

 11 0.1088 (0.0526, 0.1864) (0.0526, 0.2554) 

 12 0.1392 (0.0531, 0.2485) (0.0526, 0.3442) 

 13 0.1848 (0.0526, 0.3440) (0.0526, 0.4838) 

 
 

From the results presented in Tables 7-10, it is observed that the hierarchical 

Bayes estimates and predictors are very close to the Bayes estimates and predictors 

for both the considered real and simulated data. Furthermore, the Bayes and 

hierarchical Bayes predictive estimates and the length of the HPD-prediction 

interval increases as l increases. This implies that the prediction is less precise as a 

large l is considered. 

Conclusion 

This purpose of this study was to study hierarchical Bayes estimation and prediction 

of reliability indexes and remaining lifetimes of a cold standby series system 

consisting a series of k working units and (n – 1) cold standby units under general 

progressive Type II censoring scheme. The Bayes and hierarchical Bayes estimates 

as well as an HPD interval for reliability indexes of the series system are derived. 

In addition, we have derived the Bayes and hierarchical Bayes predictive estimates, 
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and HPD-prediction interval for the remaining lifetimes based on an informative 

sample. We have presented two numerical examples to illustrate the proposed 

estimation and prediction methods. The Monte Carlo simulation study is carried 

out to examine and compare the performance of the Bayes and hierarchical Bayes 

estimates. The simulation results indicated Bayes estimation should be preferred 

over the hierarchical Bayes estimation for estimation of reliability indexes of the 

series system. Furthermore, the number of components in the working condition 

should be less and the number of components in the cold standby mode should be 

large to run the series system for a long period. 
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