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A B S T R A C T

Understanding the customers’ perception of the value of constituent characteristics of a good is among the
key questions in any pricing strategy. Hedonic pricing allows such an analysis and is frequently applied in
economic fields. Although it is regarded as a benchmark in its original form, the availability of new data
sources and the development of machine learning techniques created a space for further improvement. In this
study, we propose a general framework for applying machine learning tools to enhance the hedonic pricing
model in several directions. We do this, first, by adding image and text sources to conventional data and then
by applying an advanced nonparametric prediction model. Lastly, we use model agnostic analysis to uncover
new pricing factors and unravel complex relationships that could not be captured by conventional models.
1. Introduction

The analysis of the real estate market has always drawn attention
of researchers and practitioners. As a relatively stable, comparable,
and easily accessible source of data, the housing market is used as a
proxy for unobserved phenomena such as environmental evaluations,
macroeconomic fundamentals, and socioeconomic aspects. However,
many previous empirical studies showed that estimated prices do not
always coincide with the actual sale prices. This bias can be addressed
to omitted variables (de Koning et al., 2018; Ghysels et al., 2012)
or insufficient flexibility of a modeling procedure (Mason & Quigley,
1996; McMillen & Redfearn, 2007), leading to spurious conclusions in
fields that rely on the real estate market and causing wrong policy
decisions. Therefore, the ability to model and price real estate correctly
is crucial.

Among the most popular methods in pricing theory is hedonic price
modeling. According to this approach, a good does not provide any util-
ity by itself. Instead, it consists of characteristics that hold constituted
utility. The market price consumer pays for a given good is related to
the utility of these characteristics. Therefore, by comparing the prices
of goods with different levels of utility for the characteristic of interest,
it becomes possible to quantify their value (Lancaster, 1966).

The above-mentioned characteristic of hedonic pricing makes hedo-
nic pricing a perfect tool for estimating the price of such hardly tangible
aspects as air quality, green area proximity, a view of the ocean, or the
criminality level in the neighborhood (Benson et al., 1998; Bishop &
Lange, 2005; Clark & Herrin, 2000; Wolf, 2007). Hedonic models aim
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at quantifying these individual characteristics while keeping the model
interpretable. Consequently, the majority of papers related to hedonic
pricing are based on simple parametric models employing structured
conventional data. Ordinary least squares (OLS) regression is a perfect
example of such a model, as it allows deriving the constituted price
of the attribute of interest by simply analyzing the regression coeffi-
cients. However, OLS is a parametric model that is subject to several
crucial assumptions. Although it can deliver accurate predictions when
these assumptions are not met, interpretation of its coefficients might
be misleading. In practice, most novel big data generating processes
fail to fulfill the usual OLS assumptions and can provide misleading
interpretations.

Recent methodological advancements in the areas of machine learn-
ing (ML) and artificial intelligence (AI) may be used to improve the per-
formance of marketing research in various ways (Ma & Sun, 2020). Ad-
vanced machine learning models such as neural nets (Abidoye & Chan,
2018), random forests (Hong et al., 2020; Neloy et al., 2019), boosted
trees (Neloy et al., 2019), or support vector machines (Oladunni &
Sharma, 2016) usually offer more predictive power than their con-
ventional counterparts. However, these models are often called black
boxes due to their limited interpretation. The majority of studies em-
ploying black-box models for a housing market pursued the goal of
achieving better predictive accuracy, completely abandoning models’
interpretability (Abidoye & Chan, 2018; Hong et al., 2020; Ma &
Sun, 2020; Neloy et al., 2019). The inability to uncover patterns and
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understand the impact of employed covariates on the housing prices di-
minished the practicability of the mentioned papers. This inscrutability
is especially troublesome outside of the academic world where users
may find it difficult to make policy decisions based on conclusions
drawn from the model they do not understand. Further, without un-
derstanding the logic of a model, it becomes impossible to derive from
and invest in factors contributing the most to the prediction. Thus, it
is to no surprise that many recent hedonic studies still rely on easily
interpretable but often less accurate OLS-based models (Gibbs et al.,
2018; Hussain et al., 2019; Zhang & Dong, 2018).

Given the extensiveness in which new AI models are applied in
the marketing-oriented areas, the urge of reaching their reliable inter-
pretation is unquestionable. Hence, this demand is addressed by the
development of numerous explainable AI (XAI) methods; see Lundberg
and Lee (2017), Rai (2019), Ribeiro et al. (2016) and Zhao and Hastie
(2019) for more details. If applied properly, the XAI methods may
not only reach similar interpretability to the parametric models but
can also provide more insights. This improvement leads to a plethora
of benefits for a business, e.g., a better understanding of the clients,
making conscious decisions, and providing insights on the causality of
the uncovered trends (Lipton, 2016; Rai, 2019; Shrestha et al., 2021).

It is estimated that, on average, 80% of the data that compa-
nies possess are unstructured and take forms such as images and
text (Dayley & Logan, 2015). It is important to note that the vol-
ume of these novel sources of information is growing 15 times faster
than the structured ones (Nair & Narayanan, 2012). Therefore, un-
structured data-based studies usually rely on a considerably wider
information set. This can be important in uncovering new factors and
dependencies that are not captured by using conventional structured
data. The importance of employing rich sources applies especially to
the customer-oriented research, which aims at specifying consumers’
sentiments and needs (Mustak et al., 2021).

In this paper, we propose a general framework for the application
of advanced machine learning methods to reinforce the performance
and the interpretability of traditional hedonic pricing models. Besides
focusing on these two aspects, we attempt to account for the well-
established hedonic theory of Rosen (1974). Particular attention is
paid to uncovering the theoretically justified nonlinear dependence
of hedonic prices related to the utility of the housing attributes. The
empirical illustration considers the Rotterdam housing market and may
be divided into three parts. First, we propose an easy and reproducible
way of gathering data about any housing market through scraping
the information from rental websites and Google Maps. With image
recognition and text analysis methods, we present the methodology
for defining and extracting the most relevant covariates from unstruc-
tured data. We expand much previous research such as Chen et al.
(2020), Law et al. (2019) and Zhang and Dong (2018) by combining
numerous sources of data into a complete ML framework, imitating the
customers’ data gathering. Second, we use the collected data next to
more conventional variables to create hedonic pricing models for rental
prices in Rotterdam. To verify if the application of ML-driven methods
significantly increases the performance of hedonic models, we conduct
a two-fold comparison. We check whether higher predictive accuracy is
associated with the employment of unstructured data, the application of
a more advanced black-box model, or both. Such differentiation aims to
separately measure the added value of using new sources of information
and new modeling techniques. The third part of the study illustrates
how specific black-box uncovering XAI methods can be used to study
individual attributes’ prices. By applying such methods, we aim to show
that, due to recent methodological advancements (Lundberg & Lee,
2017; Ribeiro et al., 2016), the ML models do not have to be treated
as black boxes anymore. Further, as XAI methods are built on top of
complex, nonparametric models, their application may help find new
factors and uncover potential nonlinear dependencies that are typically
51

not captured by the conventional hedonic approach.
We view our study as the modernization of hedonic methodology,
bridging a gap between two distinct groups of research. The first
one, focusing on quantifying the value of good’s characteristics via
traditional hedonic modeling, and the second one, pursuing the best
possible accuracy by employing complex ML models. The findings
illustrate the usefulness of incorporating complex data sources in in-
creasing the accuracy of hedonic pricing models. When compared to the
traditional methods, the proposed machine-learning-driven approach
leads to an increase of 25% in predictive accuracy in the presented
settings. Moreover, the applied black-box uncovering methods show
that the estimated hedonic prices of housing attributes are not linear.
We discover that the marginal price of living area for rented properties
is only piecewise linear. Each additional squared meter from 1 to 136
m is estimated to cost 7.26 euros, from 136 to 191 m 1.65 euros,
and above 191 m 5.70 euros. Further, we find that increasing the
total number of rooms above seven does not impact the rental prices
in Rotterdam. Additionally, we observe that income requirements im-
posed by landlords are related to the drop in rental prices. With the
usage of covariates extracted from satellite images, we also aim at
accounting for such aspects as traffic, noise pollution, and proximity
to green areas and water bodies. Lastly, we discover that the value of
housing attributes depends not only on their own quantity and quality
but also on the quantity of other attributes. The value of the view on
Rotterdam panorama is estimated to cost over 100 euros for large and
well-localized properties which is almost 50 euros more than for a less
expensive real estate.

The remainder of this paper is structured as follows. Section 2 pro-
vides a comprehensive literature review of the theory and application of
hedonic pricing models. Section 3 describes data collection. Section 4
presents the methodology and the applied analysis regarding feature
extraction, predictive modeling, and augmenting the interpretability of
the created regression models. Finally, Section 5 discusses the implica-
tions of our findings and their potential usage in real world. Lastly, the
limitations of the study are acknowledged and suggestions for future
research are provided.

2. Literature

2.1. Hedonic pricing approach in housing market

Hedonic pricing has been extensively applied in real estate appraisal
research due to the housing market characteristics. Real estate matches
the assumptions of a hedonic approach as it may be treated as a good
consisting of multiple individual attributes such as a living area, a
number of rooms, or localization. The attributes of a property in the
hedonic approach tend to be divided into multiple categories.

The current study considered approach by Chin and Chau (2003),
who proposed the division of characteristics into three main groups:
the locational group consisting of real estate characteristics, such as the
distance to the central business district (CBD) and the type of view from
a property, structural attributes describing the living area, the number
of bedrooms, or the age of a building, and features characterizing the
neighborhood of a real estate. The attributes considered in the current
study complement the list by Chin and Chau (2003) and are presented
in Table 1.

2.2. Methodology of the previous hedonic studies

2.2.1. Linear approach
The first formal contribution to hedonic price analysis may be

granted to Court (1939), who examined automobile price indices.
However, the popularization of hedonic pricing took place many years
later thanks to Griliches (1961). The considerable response to Griliches
(1961) led to the swift development of hedonic pricing (Goodman,
1998), also from a theoretical micro-econometric perspective. Lancaster

(1966) and Rosen (1974) contributed greatly to the theory of hedonic
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Table 1
Housing attributes commonly used in hedonic pricing models.

Attribute Reference

Locational
Distance from CBD McMillan et al. (1992) and

Palmquist (1992)
View on the sea, lakes, rivers,
hills etc.

Gillard (1981) and Mok et al.
(1995)

Obstructed view Benson et al. (1998)

Structural

Number of rooms, bedrooms,
bathrooms

Ball (1973) and Garrod and
Willis (1992)

Living area Ball (1973) and Garrod and
Willis (1992)

Basement, garage, storage and
patio

Forrest et al. (1996) and
Garrod and Willis (1992)

Building services (e.g. lift, AC) Garrod and Willis (1992)
Floor level So et al. (1996)
Structural quality Kain and Quigley (1970)
Facilities (e.g. swimming pool,
gym)

Garrod and Willis (1992)

Age of the building Clark and Herrin (2000) and
Li and Brown (1980)

Neighborhood

Income of residents Kain and Quigley (1970)
Proximity to good schools Clark and Herrin (2000)
Proximity to hospitals Huh and Kwak (1997)
Proximity to places of worship Carroll et al. (1996)
Proximity to hazardous
industrial facilities

Grislain-Letrémy and Katossky
(2014)

Proximity to shopping centers Des Rosiers et al. (1996)
Proximity to green areas Bishop and Lange (2005) and

Wolf (2007)
Proximity to water bodies Colby and Wishart (2003)
Crime rate Clark and Herrin (2000)
Traffic/airport noise Espey and Lopez (2000) and

Williams (1991)
Environmental quality (e.g.
landscape)

Clark and Herrin (2000)

Air quality Smith and Huang (1993) and
Zhao and Hastie (2019)

pricing. Although both models are still seen as a benchmark in urban,
environmental, or labor economics (Greenstone, 2017), they suffer
from several empirical limitations.

Among the most notable challenges is the employment of hedonic
pricing theory in a parametric model. The usual assumption of a linear
model is the Gaussian distribution of data which is rarely observed in
practice. This is motivated by the fact that, only for Gaussian data, a
linear relation is a perfect proxy for a general dependence. Conversely,
without the validity of this assumption, linear models might pro-
vide misleading results. Moreover, considering all possible interactions
among characteristics might lead to multicollinearity problems in OLS
and, as a result, unreliable standard errors of estimated coefficients. The
usual practical approach is transforming the data closer to Gaussian.
Several transformations may be applied in hedonic models, e.g., linear,
semi-log, or Box–Cox. Nevertheless, there is little research on how
the transformation, or in other words the functional form, should be
chosen (Butler, 1982). The most popular technique, Box–Cox transfor-
mation, automatically identifies transformation to convert the data as
close to Gaussian distribution as possible (Sakia, 1992). However, it
does not guarantee that the transformed data will suit the model and
fulfill the assumptions.

However, methodological drawbacks of the traditional OLS-based
models did not stop researchers from following this approach (Gibbs
et al., 2018; Hussain et al., 2019; Zhang & Dong, 2018). The ease of
use, combined with the clear interpretability of the created models,
often overshadowed the potential inference issues of the models. To
this day, numerous recent well-received papers, although still insightful
in the context of their study areas, may suffer from the mentioned
52

methodological issues.
2.2.2. Spatial approach
The classic linear models such as OLS regression do not directly con-

sider spatial interactions in the data. The basic assumption of this type
of model is the constant relation between dependent and independent
variables, unaffected by the geographical space (Cellmer et al., 2020).
The use of spatially-dependent variables in the linear settings may
result in spatial autocorrelation and spatial non-stationarity, causing
the violation of OLS assumptions (Getis, 2011; Kim et al., 2020).
Consequently, the linear approach not only fails in capturing the local
variations among the predictors (Yoo & Wagner, 2016) but also causes
the biased inference of the model (Fotheringham et al., 2002).

Numerous spatial models were developed as an extension of the
classic linear approach, usually taking the form of parametric or semi-
parametric models such as geographically weighted regression and
spatial regression (Basile & Mínguez, 2018). By including the geo-
graphical space into the analysis, studies employing spatial approach
often surpassed the linear models in terms of both explanatory power
and predictive accuracy (Anselin & Lozano-Gracia, 2009). However,
most spatial models did not manage to eliminate the restrictions and
drawbacks similar to the OLS approach (Hengl et al., 2018).

First, parametric spatial models require the residuals to be sta-
tionary and normally distributed. Similarly, as in the linear approach,
the data transformations such as Box–Cox are a possibility, although
they do not guarantee that the final distribution will meet the model’s
assumptions (Basile & Mínguez, 2018).

Second, it is difficult to capture complex, nonlinear data patterns,
especially in the parametric versions of spatial models. Similarly, as in
OLS, some flexibility is offered by transforming the predictors, although
it may lead to functional form bias. Some semi-parametric spatial
models employing regression spline methods allow for approximating
the nonlinear relationships between the dependent variable and the
covariates (Basile & Mínguez, 2018). However, the spline method is
not expected to work well in the case of adjacent observations, having
notably different data values. This limitation is in line with the concept
of spatial auto-correlation, claiming that observations in the direct
neighborhood should possess similar values. However, in practice, it
may not always be the case.

Third, accounting for interaction effects in spatial models is prob-
lematic. Usually, the interactions between covariates have to be man-
ually specified. Further, combining numerous interactions with the
estimation of separate coefficients based on geographical space leads
to an enormous amount of model parameters (Hengl et al., 2018).

2.2.3. Nonparametric approach
The limitations of the parametric approach induced researchers to

employ numerous nonparametric models that are not constrained by
the form and the predictors’ distribution. Mason and Quigley (1996)
were among the first to follow this approach by considering a nonpara-
metric procedure to choose optimal functional form for the hedonic
pricing model. The authors employed a nonparametric generalized
additive model to estimate the hedonic function. Additive structure
made it possible to keep the theoretical hedonic pricing framework
and relax the constraints imposed by the traditional methodology.
Consequently, the nonparametric model uncovered nonlinearities in the
data that could not be modeled with the traditional approach.

Throughout the last two decades plethora of studies aimed at in-
creasing the accuracy of predictive models by employing advanced
machine learning models. ML models, such as random forest (Hong
et al., 2020; Neloy et al., 2019), neural nets (Abidoye & Chan, 2018),
and support vector machines (Oladunni & Sharma, 2016) typically
provided better results than the traditional hedonic regression in the
context of a housing market. Further, comparisons between tree-based
models and spatial models showed slight superiority of the former in
terms of predictive power (Credit, 2021; Hengl et al., 2018). Hengl
et al. (2018) emphasized the natural ability in capturing interaction
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effects and nonlinearities of the random forest method, contributing to
its advantage over traditional linear and spatial models.

The common denominator of the studies employing machine learn-
ing algorithms for the housing market was the focus on predictive
performance. This center of attention combined with a difficult inter-
pretation of the ML models often overshadowed the essence of the
hedonic approach: the estimation of housing characteristics’ value.
Contrary to the first attempts by Mason and Quigley (1996), most
ML-driven studies overlooked this estimation (Abidoye & Chan, 2018;
Hong et al., 2020; Neloy et al., 2019; Oladunni & Sharma, 2016).
Only recently, some attention started to be paid to the interpretability
of black-box models in the context of a housing market. Zhao and
Hastie (2019), through the usage of partial dependence plots (PDP)
and individual conditional expectation (ICE), attempted to measure the
impact of air pollution on the housing prices. However, as global meth-
ods, PDP and ICE did not explain the model’s behavior behind every
prediction. This methodological challenge was addressed by the devel-
opment of explainable methods, such as LIME (Ribeiro et al., 2016)
and SHAP (Lundberg & Lee, 2017). Nonetheless, due to their recency,
there has been a limited number of studies employing these methods in
the context of a housing market. As one of the first, Chen et al. (2020)
employed SHAP to the XGBoost model, successfully deriving nonlinear
patterns in the impact of urban environmental elements on housing
prices in Shanghai. However, the study was limited in several ways,
which are discussed in detail in the following Section 2.2.4.

2.2.4. Feature extraction
A significant drawback of hedonic pricing is the unrealistic as-

sumption of perfect competition. It implies that the information flow
between consumers and suppliers is instant and is not disrupted. Con-
sequently, the model does not consider the delayed reaction of a
market to any changes or an imperfect estimation of the value of
given attributes. As the assumption of the perfect competition is not
unique to hedonic models, mentioned limitations are relatively popular
in economic models, although hedonic pricing models face a major
limitation. In real life, it is impossible for consumers to have full
knowledge of every attribute of a good. Nevertheless, they have to
estimate the value/utility of a good based on the knowledge they
possess (Kask & Maani, 1992). Therefore, in our eyes, the best possible
model has to include multiple sources of information processed by the
customers while making their purchases.

Apart from predictive models discussed in Section 2.2.3 above,
machine learning models were also used in the hedonic literature to
extract information from complex data sources. Poursaeed et al. (2018)
used a convolutional neural net to estimate the level of luxury for
analyzed real estate, based on the available photos. Some studies did
not categorize the data into explicit variables, such as the luxury level.
However, they still confirmed the usefulness of image-sourced data in
boosting the predictive performance of regression models (Ahmed &
Moustafa, 2016; You et al., 2017).

Although the neighborhood stands for 15% up to 50% of the stan-
dardized variation of a site evaluation model (Linneman, 1980), this
group of external attributes was not an object of special attention in
most recent ML-driven housing research. Law et al. (2019) and Zhang
and Dong (2018) are two of the few recently published studies that
included the neighborhood aspect by successfully using street views
and satellite images in the house price evaluation model.

Similar to the studies using ML in predictive modeling, the papers
using ML in feature extraction focused on increasing the overall pre-
dictive performance. Without evaluating the extracted features in the
context of housing prices, these papers did not contribute significantly
to the hedonic literature. To our best knowledge, Chen et al. (2020)
is the only study that proposed the framework combining ML methods
in all three aspects: feature extraction, predictive modeling, and model
interpretation.
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The framework proposed in the current study is somewhat similar to
the one of Chen et al. (2020), although it expands it in multiple ways.
First, Chen et al. (2020) suffered from an extremely limited number
of housing characteristics used in the model, potentially leading to the
omitted-variable bias. We address this issue by presenting a complete
research framework, including a variety of housing characteristics orig-
inating from rental websites, google maps, images, and text sources.
Second, considering the spatiality of the housing data, we use geograph-
ical coordinates in ML predictive models instead of simple distances to
specific city areas, such as the central business district (CBD). Third,
we conduct a full comparison between the ML-driven approach and the
traditional hedonic modeling, emphasizing the limitations of the latter
in terms of predictive performance and interpretability.

3. Data

Unlike most price-based hedonic pricing models, this study used
the rental costs. Such an approach, however, brings a minor drawback
related to interpretation. While comparing the findings of this paper to
previous research, it has to be acknowledged that the rent:price ratio
is not constant. The ratio differs among properties depending on their
attributes, e.g., large living area or expensive neighborhood is related to
an increase in the price:rent ratio (Bracke, 2014; Clark & Lomax, 2019).
The dynamics of real house prices, as well as such macroeconomic
policies as low-interest rates, also impact the ratio over time (Sommer
et al., 2010). Further, governmental policies aiming at regulating the
rental market may affect the rental costs and the rent:price ratio.
However, the last aspect is not problematic in the context of this
research. In the Netherlands, the rent price regulations such as ceiling
costs apply only for social housing, which in 2020 were defined as
properties with the total rent cost below 737 euros (Ministry of the
Interior Kingdom Relations, 2021). In the gathered dataset properties
that fall into this category stand only for 2.2% of the total sample size.

In the conditions of such a hardly regulated market, the strong cor-
relation between the price and rental cost is undeniable. Therefore, the
majority of the findings should be applicable to the traditional housing
market. Moreover, an advantage of considering rental prices is their
higher reliability, as they are rarely a subject of bargaining. Further,
due to the rental data accessibility, this research can be reproduced for
any other city or region. The data may be collected without reaching
third parties such as municipalities or broker agencies.

Based on the problem with the assumptions of perfect competition
discussed in Section 2.1, we built the dataset by imitating the process of
finding a flat in real life, i.e., the data used for the research reflected the
factors that potential tenants mostly pay attention to. The most crucial
part of the data describing the basic housing characteristics (BHC) was
web-scraped from one of the leading rental websites in the Netherlands.
Typical variables of this group were rental price, type of house, or living
area of a property. Subsequently, text descriptions of all properties were
also collected.

Simultaneously with scraping the data of house characteristics, the
images of each rental offer were scraped. With an average of 22
photos per an offer, over 40 000 images were collected. Additionally,
a set of over 2000 photos originating from other rental offer websites
were collected to serve as a training set for image recognition models.
Following this approach assures that the potential increase in the
regression accuracy would be caused by the fully-automated feature
extraction process. The manual labeling was not performed to avoid
potential upward biases in the impact of image-based covariates on the
prediction.

Next to structural attributes represented by BHC, the process of
data-scraping also included two remaining categories of predictors:
location and neighborhood. Next to the usage of Google Maps API, a set
of variables were collected: the distance from a house street to Central
Business District (CBD) and the time it takes to travel the distance
by walking, biking, and public transport. Similarly, the geographical
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Fig. 1. Workflow diagram of the study.
coordinates of each street appearing in the initial data set in the form
of longitude and latitude were gathered. Lastly, the satellite photos of
each street’s neighborhood at various zooms were saved.

The process of gathering data was fully automated with the usage of
R. Packages that allowed scrapping the data based on HTML and XML
code of the website were rvest, selectr,and xml2.Consequently,
over 2000 real estate rental offers were found and crawled from the
beginning of April till the end of June 2020. After removing the
duplicates and fake advertisements, the final data set consisted of 1844
unique observations.

4. Methodology and application

The current study was conducted in three main steps: (1) extraction
of covariates from complex data sources such as images and text and
transforming them into low-dimensional tabular data; (2) modeling
and predicting the rental costs of properties in Rotterdam based on
conventional and big data; (3) interpretation of the created predictive
models. Fig. 1 provides a workflow diagram of all steps that are
discussed in detail in the next subsections.

4.1. Feature extraction

4.1.1. Image recognition: Methodology
Among the main challenges of the study was to extract meaningful

and useful predictors from images and texts. The majority of recent
studies agreed on the fact that the best-performing image recognition
models were based on convolutional neural networks (CNN) (Khan
et al., 2020; Simonyan & Zisserman, 2014; Szegedy et al., 2015).

CNNs are constructed similarly to regular neural networks. The
main difference lies in the architecture of the layers. For a better
understanding of CNN, we provide the example of a model’s dataflow
in Fig. 2, with steps which we describe below and enumerate from 1 to
9. In image recognition models, the input usually takes the form of A ×
B × 3 matrices, where A stands for the picture width, B for the picture
height, and 3 represents color channel values (RGB). To analyze such
complex input types, CNN introduces three-dimensional hidden layers,
whose size is reduced in subsequent processing. The first layer in the
model is called the convolutional layer. In this part, the model analyzes
one part of the picture, multiplies its values by a pre-defined smaller
matrix known as a filter or kernel (1), and then convolves to a new part
until the whole picture is scanned (2). The size of the part of a picture
scanned at one moment is equal to the kernel size, which is one of the
parameters that may be tuned. However, the sizes of 3 × 3 × 3 and
54
5 × 5 × 3 pixels are the most popular (Simonyan & Zisserman, 2014;
Szegedy et al., 2015).

The output of numerous multiplications is stored in a two-
dimensional matrix known as an activation map (3). The calculated
activation map is subsequently passed to an activation function (4). The
goal of the function is to activate and use in subsequent processing only
those parts of the picture that generate patterns we try to recognize
with the model. In the case of the CNN, a ReLU function is usually
used. ReLU is defined as 𝑓 (𝑥) = max(0, 𝑥), where 𝑥 is an input value.
By applying this function element-wise, more complex patterns can be
captured by the model; see Li et al. (2019) for more details.

The number of filters used in the CNN is the parameter of their
tuning. As filters may be seen as feature detectors, increasing their
number often leads to model’s better accuracy. On the other hand,
a separate activation map has to be calculated for each added filter,
which drastically increases the computational power needed for train-
ing a model. Similarly, the number of convolutional layers used in the
CNN may be adjusted. Generally, the lower convolutional layers are
responsible for recognizing simple features. The deeper convolutional
layers use these features as an input in detecting more sophisticated
characteristics of an image (Zhu et al., 2020).

In the next step, the processed activation maps are stacked along
the depth dimension (5). The created three-dimensional matrix is used
as an input for the next layer used in CNN: a pooling layer, whose main
function is reducing the size of convolved features and, consequently,
the number of parameters and computational time. This goal is accom-
plished by analyzing the input matrix by parts. In the case of the most
popular approach known as max pooling, only the maximum value is
returned for each submatrix, whose size depends on the pre-defined
kernel (6). Then, the process is repeated until the whole image is
traversed and the original matrix is transformed into a less-dimensional
one.

Next, the matrix is transferred to the fully connected layer (also
known as a dense layer). At this point, the data are transformed into
a column vector, which is subsequently used as an input for a regular
feed-forward neural net (7). Each of the input values, also known as a
neuron, (8) is then multiplied by a weight (9) and becomes an addend
of neurons in the next layer.

Contrary to ReLU activation function used in three dimensional
layers, softmax function is defined as:

𝛿(𝑧𝑙) =
𝑒𝑧𝑙

∑𝐾
𝑗=1 𝑒

𝑧𝑗
, (1)

where 𝑧𝑙 , 𝑙 = 1, ⋅, 𝐾, values are the elements of the input vector and K is
the number of classes in the classifier. This is a commonly used function
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Fig. 2. The example of CNN architecture.
for the output layer, whose main purpose is to provide probabilities for
each of the output classes (Nwankpa et al., 2020). In the current study,
classes are related to four different types of views from a window: city
view, green area view, open view, and others.

After producing predictions, CNN calculates the prediction error
through the usage of a loss function. Among the most popular ap-
proaches used in deep neural nets is the cross-entropy function, due to
its robustness and high accuracy (Zhang & Sabuncu, 2018). In our case,
the softmax function is used to determine the output class probabilities.
Cross entropy is defined as:

𝐶𝐸 = −
𝐾
∑

𝑙=1
𝑡𝑙𝑙𝑜𝑔(𝛿(𝑧𝑙)), (2)

where 𝑡𝑙 and 𝛿(𝑧𝑙), 𝑙 = 1, ⋅, 𝐾, are the target values and the probabil-
ities calculated by softmax function for each class. Lastly, the model
iteratively updates the weights and filters values in order to minimize
the prediction error. The provided description of CNN is an example
of a simplified model architecture. The number of layers and methods
used, as well as their order, is usually more complex for real-life modes.
For a more detailed explanation of the model’s technical attributes and
architecture, see Yamashita et al. (2018).

4.1.2. Image recognition: Application for Rotterdam housing market
The majority of the housing pricing research that included image

recognition methods focused on investigating the interior of real es-
tate (Poursaeed et al., 2018; You et al., 2017). This study considered
the external factors that may impact the renting price, especially the
type of view from the property.

The image recognition process for different types of views was
divided into two sequential CNN models. The first model aimed to filter
the property images and classify them as outside or inside. The goal of
the second model was to analyze the outside photos and classify them
into four categories:

• View on the city: category featuring photos with a relatively
unbroken view of the city panorama;

• Green view: category featuring images with a view of a park, a
forest, or other green areas;

• Open view: category featuring images with an unbroken view,
e.g., photos presenting an open view of a neighborhood or a river;

• Other: category featuring all the other images.

Apart from the usage of property photos, the collected maps of
neighborhoods were also analyzed. Following the conclusions drawn
from the literature review and the specific nature of Rotterdam’s urban
layout, we decided to focus on two categories. For each of the cate-
gories, a separate image recognition model was created. As a result,
the following dummy variables were created:
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Table 2
Accuracy of the image recognition models.

Variable Accuracy

Water body 94%
Park 86%
City view 90%
Green view 86%
Open view 76%

• Parks: category indicating whether a given property lies, in a
direct neighborhood of a park or other green areas.

• Water bodies: category indicating whether a given property lies,
in a direct neighborhood of a river or a large lake.

The accuracy of the feature extraction process, measured on the test
set, is presented in Table 2.

4.1.3. Text sources
The initial analysis of property descriptions showed that most of

them were written similarly. When combined with relatively small
sample size, it was no surprise that the attempted sentiment analysis
did not bring additional value to the research. The distribution of fea-
tures based on natural language processing ended up being extremely
skewed as the majority of descriptions were written using unnatural
positive language. In contrast, the content of descriptions in terms of
the mentioned house characteristics differed notably. Therefore, the
text analysis part of the research was based on information extraction
using keywords. The first step of the analysis was to identify the most
commonly used words in rental offer descriptions.

Following Vijayarani et al. (2015), the pre-processing part included
the transformation of all the descriptions into lowercase, applying
stemming and removing stop words obtained from a pre-compiled list
from R package stopwords. Subsequently, the bag-of-words model
was applied. In the first step, the model learned vocabulary from all
descriptions. In the second part, it counted the number of times each
word appeared in each description, disregarding the order in which
they appeared.

Unsurprisingly, most of the frequently appearing words were related
to the variables mentioned on the rental website, such as the number
of rooms or location. Nonetheless, several additional keywords, poten-
tially carrying information about rental cost, were found, e.g., ‘‘pets’’ or
‘‘sunny’’. Each description was scanned for these keywords, leading to
the creation of dummy variables, indicating whether a property is ex-
posed to a given factor. Additionally, for each keyword, its surrounding
was scanned for such phrases impacting the original meaning as ‘‘not’’,
‘‘no’’, etc. In cases when such phrases were found, the value of the
dummy variable was adjusted accordingly. In the end, three variables
were built based on text sources:
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Table 3
Variables present in the initial data set.

Variable Type Description

Street Character Street
Price Numeric Price in euros
Living_area Numeric Living area in squared meters
Rooms Numeric Number of rooms
House_type Factor (3 levels) Is a property a house, a room or a flat?
Bedrooms Numeric Number of bedrooms
Bathrooms Numeric Number of bathrooms
Balcony Factor (2 levels) Does a property have a balcony?
Garden Factor (2 levels) Does a property have a garden?
Storage Factor (2 levels) Does a property have a storage?
Garage Factor (2 levels) Does a property have a garage?
Bath Factor (2 levels) Does a property have a bath?
Lift Factor (2 levels) Does a property have a lift?
Toilet Factor (2 levels) Does a property have a separate toilet?
Furnished Factor (2 levels) Is a property fully furnished?
Description Character Description of a property
Time_walking Numeric Travel time by walking in seconds
Time_biking Numeric Travel time by biking in seconds
Time_public Numeric Travel time by public transport in seconds
Longitude Numeric Street’s longitude coordinate
Latitude Numeric Street’s latitude coordinate

Table 4
Descriptive statistics of numeric basic housing characteristics.

Variable Min. Mean Median Max St. dev.

Price 295.00 1347.00 1295.00 4995.00 542.38
Living_Area 6.00 75.61 73.00 935.00 41.29
Rooms 1.00 2.72 3.00 11.00 1.13
Bedrooms 1.00 1.20 1.00 5.00 0.81
Time_walking 128.00 2275.00 1754.00 9037.00 1512.49
Time_biking 32.00 704.70 540.00 2530.00 458.37
Time_public 109.00 1085.70 996.50 3085.00 530.86
Longitude 4.41 4.48 4.48 4.58 0.03
Latitude 51.87 51.92 51.92 51.98 0.02

Table 5
Descriptive statistics of binary basic housing characteristics.

Variable Not present Present

Balcony 1152 692
Garden 1638 206
Storage 1382 462
Garage 1759 85
Bath 1371 473
Lift 1456 388
Toilet 1053 791
Furnished 562 1282
Park 1359 485
View_on_the_city 1617 227
Enjoyable_view 1204 640
Green_view 1589 255
Water_body 892 952
Pets_not_allowed 1696 148
Income 1693 151
Insolation 1171 673

• Pets: category indicating whether pets are allowed in the prop-
erty;

• Insolation: category based on words indicating that a property is
exposed to sunlight, e.g., bright, sunny;

• Income: category indicating whether a financial requirement is
mentioned in the description based on the words ‘‘guarantor’’ and
‘‘income’’.

.1.4. Feature selection
The feature extraction process combined with the initial data set

irectly scrapped from the rental websites and Google API resulted
n the final dataset consisting of 21 variables. Their description and
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escriptive statistics are presented in Tables 3, 4, and 5.
Apart from the described variables, the distance to arterial roads
was measured based on Google Maps images and used as a proxy for
traffic and noise pollution. Services mentioned in properties’ descrip-
tions were used as a proxy for the neighborhood’s utility . However, the
application of these factors did not provide insightful results. This can
be explained by considerable diversity in the quality of descriptions.

Previous studies identified several other external aspects impact-
ing the value of the real estate, e.g., air pollution (Smith & Huang,
1993), proximity to hazardous industrial facilities (Grislain-Letrémy
& Katossky, 2014), or neighborhood characteristics such as crime
rate (Dubin & Goodman, 1982) and the quality of schools (Clark &
Herrin, 2000). We decided not to include these factors in the analysis.

First, we find Rotterdam as a rather homogeneous region in terms of
most of the mentioned characteristics. As a windy city located near the
North Sea, Rotterdam does not suffer severely from air pollution (The
World Air Quality Project, 2021). Areas with slightly better air quality
are parks and water bodies, which are already accounted for by other
predictors in the dataset. Further, the majority of Rotterdam heavy
industry is located nearby the port, far away from the residential areas.

Second, including aspects specific to Rotterdam would diminish
the flexibility of the research framework, which is applicable to most
cities in the world in the presented setting. Moreover, according to
the hedonic pricing theory, the customers’ willingness to pay for a
particular good is based only on the attributes they may perceive.
Therefore, aspects such as air quality or environmental risks seemed
less likely to affect the rental price, compared to more easily noticeable
features, such as the view from the window.

Third, the detailed neighborhood characteristics could suffer from
endogeneity bias. As an example, many papers find that proximity to
good schools (Clark & Herrin, 2000) and shopping malls (Wilhelmsson
& Long, 2020) positively impact the housing prices. However, such
services are also more likely to be opened and operate in rich neigh-
borhoods. This problem of symbiotic relation between dependent and
independent variables, known as simultaneity, may cause biased infer-
ence of the predictive model. On the other hand, completely omitting
relevant predictors that impact the predicted variable also causes an
endogenous issue known as omitted-variable bias.

If addressed properly, the variables omitted in our research could
lead to augmented interpretability and better predictive performance
of the created models. However, rental market prices are mostly driven
by housing characteristics and the distance to the city center. In that
context, we expect the added value of incorporating a few missing
variables to be rather negligible. Therefore, employing full statistical
endogeneity analysis, which would significantly enlarge an already
wide methodology part of the paper, was not a priority in the current
study. For more details regarding causal inference and controlling for
endogeneity by employing instrumental variables, see Bascle (2008)
and Chernozhukov et al. (2018).

Instead, we decided to follow a simplified proxy variable approach.
By employing geographical coordinates in a nonlinear machine learning
model, the area of Rotterdam was divided into multiple regions. There-
fore, the omitted neighborhood characteristics were indirectly mirrored
in the locational parts of the models described in the following section.
As for the rest of the variables used in the study, we found their relation
to rental prices to be rather one-sided and not simultaneous, e.g., in-
creased living area is likely to increase the rent, although increasing
the rent does not increase the living area.

It is important to note that, in the current study, we were unable
to employ demand-sided attributes such as buyer characteristics. We
found the process of gathering tenants-oriented data without cooper-
ating with real estate brokers a futile task. In the hedonic literature,
when individual-level data were not available, a common approach was
to use demographic data published by municipalities in public reports
and censuses (Day et al., 2003). Unfortunately, we were not able to

reach district-level demographic data for Rotterdam.
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Even though buyers’ characteristics played a significant role in the
original hedonic theory of Rosen (1974), in practice, their impact on
the inference of first-stage hedonic models was not crucial. In their
study, Kim (1992) built a series of OLS-based hedonic models aiming
at predicting monthly rental costs of properties in Sacramento, Cali-
fornia. The first model consisted solely of housing characteristics. The
second model used only demand-based characteristics such as income,
age, and commuting time of tenants. The third model combined both
housing and demand characteristics. Interestingly, the comparison of
housing characteristics coefficients between the first and the third
model showed minimal differences. The clearest contrast between both
models lied in the constant value which was significantly lower in
the third model. This, however, was compensated by demand-based
coefficients absent in the first model. As such, it may be concluded that
incorporating demand-based characteristics into the model did increase
its overall interpretability but barely changed the inference of housing
characteristics.

The lack of demand-based attributes in the current study may be
seen as a drawback in the context of hedonic pricing. However, demo-
graphic characteristics, similar as in the case of other omitted variables
discussed above, were indirectly reflected in the locational parts of
the created models. This, combined with the empirical results of Kim
(1992), prompts us to conclude that the missing demand attributes
did not interfere with the overall analysis and results presented in the
paper.

4.2. Predictive modeling

4.2.1. Linear regression
Most studies conducted in hedonic pricing were based on a par-

simonious linear regression model or its variations (Owusu-Ansah,
2013). The current study also followed this approach to build an initial
predictive model that served as a point of reference in the evaluation of
the accuracy and interpretability of more advanced machine learning
models.

Before estimating an OLS model, an initial analysis of the available
data was performed, and some multicollinearity issues were observed.
To diminish them, the variable describing the number of bedrooms was
dropped as it was strongly correlated with the number of rooms as well
as living area. Another adjustment that had to be made was the choice
of the locational predictor. Out of three variables extracted from Google
Maps API, biking time was used due to biking popularity in the city.

Although the longitude and latitude were not linearly correlated
with the biking time, it was reasonable to assume that these vari-
ables were strongly related in a nonlinear way. In linear conditions,
geographical coordinates were only able to indicate a part of the city
(e.g., west or east in the case of longitude) with higher rental costs.
Therefore, measuring the location of property through biking time to
CBD was more proper for the traditional hedonic model. Nonetheless,
for completeness, both locational approaches were used for prediction.

Several linear models were estimated and compared in terms of
predictive accuracy and reliability. For all the models, the same train
and test sets were used, where the former consisted of 70% and
the latter of 30% of observations. Although 70% / 30% splitting is
nonstandard in the OLS setting, it was employed to perform a fair out-
of-sample comparison to the ML technique discussed below. The chosen
train:test ratio was based on the empirical results of Gholamy et al.
(2018). Following Chai and Draxler (2014), the models were compared
in terms of root mean square error (RMSE)

RMSE =

√

√

√

√

𝑛
∑

𝑖=1

(𝑦𝑖 − 𝑦𝑖)2

𝑛
, (3)

calculated on the test set. In (3), 𝑦𝑖 is a predicted value for 𝑖𝑡ℎ observa-
ion, 𝑦𝑖 is an observed value of an 𝑖𝑡ℎ observation, and 𝑛 is the number
f observations.
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Table 6
The coefficients of the final linear model and corresponding p-values for t-test.

Coefficients Estimate Pr(>|t|) Significance

(Intercept) 433.37 <0.001 ***
Living_Area 6.09 <0.001 ***
Rooms 89.80 <0.001 ***
House_Type House 26.52 0.589
House_Type Room −192.16 <0.001 ***
Bathrooms 238.77 <0.001 ***
Balcony Present −5.44 0.813
Garden Present 111.29 0.002 **
Storage Present −33.27 0.234
Garage Present 256.53 <0.001 ***
Bath Present 64.62 0.011 *
Lift Present 38.26 0.188
Toilet Present −9.34 0.678
Furnished 1 87.34 <0.001 ***
View_on_the_city 1 115.21 <0.001 ***
Water_body 1 46.30 0.025 *
Income 1 −165.19 <0.001 ***
Insolation 1 117.83 <0.001 ***
Time_biking −0.26 <0.001 ***

The variables were found significant at different levels:
*p < 0.05.
**p < 0.01.
**p < 0.001.

Two linear BHC-based models were estimated and compared to
elect the best locational proxy. Both models contained Living_Area,
ooms, House_Type, Bathrooms, Balcony, Garden, Storage, Garage, Bath,
oilet, Lift and Furnished as covariates. Model (4) used biking time as a
ocational proxy, while Model (5) included geographical coordinates.

𝑂𝐿𝑆𝐴
𝑖 = 𝛼𝐴 + 𝛽𝐴𝐿𝐴 ∗ 𝐿𝑖𝑣𝑖𝑛𝑔𝐴𝑟𝑒𝑎𝑖 + 𝛽𝐴𝑅 ∗ 𝑅𝑜𝑜𝑚𝑠𝑖 +⋯ + 𝛽𝐴𝐹 ∗ 𝐹𝑢𝑟𝑛𝑖𝑠ℎ𝑒𝑑𝑖

+𝛽𝐴𝑇𝐵 ∗ 𝑇 𝑖𝑚𝑒 𝑏𝑖𝑘𝑖𝑛𝑔𝑖 + 𝜖𝐴𝑖 (4)

𝑂𝐿𝑆𝐵
𝑖 = 𝛼𝐵 + 𝛽𝐵𝐿𝐴 ∗ 𝐿𝑖𝑣𝑖𝑛𝑔𝐴𝑟𝑒𝑎𝑖 +⋯ + 𝛽𝐵𝐹 ∗ 𝐹𝑢𝑟𝑛𝑖𝑠ℎ𝑒𝑑𝑖

+𝛽𝐵𝐿𝑂𝑁 ∗ 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑖 + 𝛽𝐵𝐿𝐴𝑇 ∗ 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖 + 𝜖𝐵𝑖 (5)

In (4), (5) and (6), 𝛼 is an intercept, and 𝜷 = (𝛽𝐿𝐴, 𝛽𝑅,… , 𝛽𝐿𝐴𝑇 ) is
he set of coefficients to be estimated 𝑦, and 𝜖, are the price and the
rror term for the 𝑖𝑡ℎ observation, 𝑖 = 1,… , 𝑛.

The comparison of both models proved a slight superiority of biking
ime over geographical coordinates in terms of RMSE and the propor-
ion of the variance explained (𝑅2) in linear conditions. The difference
n the accuracy of the models was further confirmed by the conducted
aired Wilcoxon test on models’ residuals. It resulted in a 𝑝-value of
.496−3, indicating that the median prediction error of Model (4) was
ignificantly lower than the one of Model (5) Consequently, Model (4)
as enriched with images and text data, leading to the creation of the

inal Model (6)
𝑂𝐿𝑆𝐶
𝑖 = 𝛼𝐶 + 𝛽𝐶𝐿𝐴 ∗ 𝐿𝑖𝑣𝑖𝑛𝑔𝐴𝑟𝑒𝑎𝑖 +⋯ + 𝛽𝐶𝐼 ∗ 𝐼𝑛𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑖

+𝛽𝐴𝑇𝐵 ∗ 𝑇 𝑖𝑚𝑒 𝑏𝑖𝑘𝑖𝑛𝑔𝑖 + 𝜖𝐶𝑖 (6)

However, many variables originating from rich data sources were
ound insignificant and were omitted to avoid over-specification of the
odel; see Butler (1982) and Mok et al. (1995) for more details. The

-value of 1.447−5 for the paired Wilcoxon test showed the significant
dvantage of the final Model (6) over Model (4) in terms of predictive
ccuracy. The coefficients of the Model (6) are presented in Table 6
elow.

Out of BHC, living area, the number of rooms and bathrooms, the
resence of a garden, garage, and bath, as well as the furnishing turned
ut to be significant positive predictors of a rental cost prediction.
hese findings combined with the fact that the distance to CBD lowers

he rental price match the previous research provided in Table 1. The
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Fig. 3. The example view on Rotterdam panorama.
findings got more peculiar in terms of features extracted from images
and descriptions. Income requirements for tenants were related to the
average drop in a rent price of 165 euros. While the direction of
causality may be an object of discussion, we found it as an interesting
finding, which, to the best of our knowledge, had not been studied
previously. The pet permission turned out to be an insignificant factor.
On the contrary, both the proximity of a water body and insolation
positively impacted the real estate’s rental price. The same was true
for the view out of the window, although only one featuring a city
panorama.

Numerous studies indicated that customers were willing to spend
up to 9.2% more money on properties with good views such as lakes or
green areas (Gillard, 1981; Mok et al., 1995). This study did not confirm
the significant impact of these types of views on the rental costs of
properties. Similarly, the proximity to parks did not seem to affect the
renting price. Conversely, Bishop and Lange (2005) and Wolf (2007)
reported that parks located in the distance of up to 400 m, depending
on their characteristics, increased on average the price of properties by
10% or even 20%. Further, as opposed to Ming and Hian (2005), who
found obstructed view to depress property value by 8%, we did not find
any indications of such relation.

Some of these findings might be specific to the area of Rotterdam
due to its distinctive nature. As seen in Fig. 5, parks and green areas are
equally distributed throughout Rotterdam and are easily accessible for
the majority of citizens. On the other hand, water bodies are specific
to the central (Meuse river) and northern parts (two lakes) of the
city. Therefore, it is rather unsurprising that the proximity to these
recreational areas was related to the increased rental costs. The fact
that the only type of view significantly impacting rental prices was a
city view might be connected to the remarkable beauty of Rotterdam
panorama, presented in Fig. 3.

It is important to note that the current study employed OLS as
a prediction technique. While the linearity assumption enabled easy
interpretation, the OLS model suffered from several issues related to its
assumptions. Firstly, the residuals of the model were not normally dis-
tributed. Secondly, the problem with heteroscedasticity was found. To
overcome these problems, semi-log and Box–Cox transformations were
applied according to (Butler, 1982). Nevertheless, this procedure did
not solve the issue while the accuracy of the model dropped. Therefore,
the estimated coefficients and the standard errors of the created OLS
model were not fully reliable, which consequently diminished its main
advantage over more advanced machine learning models: ease and
reliability of interpretation and availability of the testing procedure.

4.2.2. Random forest
Due to the limitations of linear regression, we decided to take ad-

vantage of a nonparametric approach. Previous research conducted in
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the area of the housing market showed better performance of decision
tree models, especially one of its ensemble variations, random forest,
over traditional hedonic regression (Hong et al., 2020; Neloy et al.,
2019), as well as the spatial approach (Credit, 2021; Hengl et al., 2018).

As a nonparametric method, the decision-tree-based models do not
require any assumptions regarding the distribution of the data and
can capture more complex patterns than their linear counterparts.
Moreover, as opposed to spatial models, they are able to capture
interactions between covariates naturally and can be easily applied
to a combination of numerical and categorical variables without cre-
ating huge sets of dummy variables. Both features are important for
hedonic pricing models. First, in the original hedonic pricing theory,
the importance of interactions between goods and their quantity is
emphasized (Rosen, 1974). Further, typical real estate data contain
many categorical variables.

The decision tree is a nonlinear model consisting of sequential con-
ditional statements that separate the data into smaller subsets known
as nodes. Geometrically, this corresponds to separating the observations
by hyperplanes parallel to one axis of the feature space (Ho, 1995). At
each step, the algorithm chooses the split that leads to the greatest drop
in the applied loss function. The type of applied loss function depends
mostly on the type of the dependent variable. The standard choice for
regression problem is the residual sum of squares (RSS), defined as

RSS =
𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2, (7)

where 𝑦𝑖 is a predicted value for 𝑖𝑡ℎ observation, 𝑦𝑖 is an observed value
of an 𝑖𝑡ℎ observation, and 𝑛 is the number of observations. The splitting
process is repeated for newly created nodes until a stopping rule is met,
e.g. when the number of observations in newly created nodes would fall
below a specified threshold.

In Fig. 4, we provide an example of the simplified decision tree
model using geographical coordinates and living area to predict rental
price, where final nodes were specified to consist of at least 5% of the
total number of observations.

The common weakness of decision trees is their tendency to grow
deep and thus overfit the data. One of the approaches that help in
dealing with this problem is the usage of bootstrap-based ensemble
method such as bagging, defined as:

𝑓 (𝑥) = 1
𝑁

𝑁
∑

𝑛=1
𝑓𝑛(𝑋𝐵

𝑛 ), 𝑛 = 1,… , 𝑁 (8)

Bootstrap method simulates 𝑁 new data sets 𝑋𝐵
𝑛 by randomly

drawing observations with replacement from the original data set. Sub-
sequently, for each 𝑛𝑡ℎ bootstrapped sample, a decision tree model 𝑓𝑛(⋅)
is built. The prediction of the bagged model is an average predicted
value among all 𝑁 regression trees, which reduces the overall variation
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Fig. 4. The example of decision tree using geographical coordinates and living area to predict rental price.
in comparison to a single tree and results in better out-of-sample
performance. For more details, we suggest (James et al., 2013).

One of the weaknesses of bagging is the fact that bootstrapped-
based trees are highly correlated by construction. Random forest, which
is a variation of bagging, addresses this problem by allowing only a
random subset of original variables to be used in a single bootstrapped
tree. This approach not only decorrelates the trees but also prevents
numerical variables from completely dominating over categorical ones.
The number of predictors used in each tree is a parameter that may be
tuned via grid search with cross-validation.

Random forest models were built similar to the OLS models (4), (5)
and (6):

𝑦𝑅𝐹
𝐴

𝑖 = 𝑓𝑅𝐹𝐴
(𝐿𝑖𝑣𝑖𝑛𝑔𝐴𝑟𝑒𝑎𝑖,… , 𝐹 𝑢𝑟𝑛𝑖𝑠ℎ𝑒𝑑𝑖, 𝑇 𝑖𝑚𝑒 𝑏𝑖𝑘𝑖𝑛𝑔𝑖) + 𝜖𝑅𝐹

𝐴

𝑖 (9)

𝑦𝑅𝐹
𝐵

𝑖 = 𝑓𝑅𝐹𝐵
(𝐿𝑖𝑣𝑖𝑛𝑔𝐴𝑟𝑒𝑎𝑖,… , 𝐹 𝑢𝑟𝑛𝑖𝑠ℎ𝑒𝑑𝑖, 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑖, 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖) + 𝜖𝑅𝐹

𝐵

𝑖

(10)

𝑦𝑅𝐹
𝐶

𝑖 = 𝑓𝑅𝐹𝐶
(𝐿𝑖𝑣𝑖𝑛𝑔𝐴𝑟𝑒𝑎𝑖,… , 𝐼𝑛𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑖, 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑖, 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖) + 𝜖𝑅𝐹

𝐶

𝑖

(11)

The first two models aimed to distinguish which locational approach
is more suitable. Next to BHC, Model (9) employed biking time to CBD,
while Model (10) used geographical coordinates. In (9), (10), and (11),
𝑓 (⋅) stands for the function estimated by random forest, 𝑦 and 𝜖 are the
price and the error term for the 𝑖𝑡ℎ observation, where 𝑖 = 1,… , 𝑛.

The latter approach was shown to be superior to its biking coun-
terpart. Both RMSE and 𝑅2 scores for Model (10) improved when
compared with Model (9). The conducted paired Wilcoxon test on
models’ residuals with the 𝑝-value of 1.482−2 further confirmed the
better performance of Model (10). This difference may be explained
by the fact that by using such a nonlinear model as random forest,
it became possible to fully use the potential laying in geographical
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coordinates. Not only the mixture of both variables contained all the
information about the distance to CBD, but also served as a proxy for
unobserved characteristics such as criminality level or noise pollution
of the neighborhood. Fig. 5 provides a simplified visualization of this
phenomenon. Splitting the observations even by the limited number of
lines parallel to the axes of longitude and latitude led to the creation
of heterogeneous regions of properties in Rotterdam.

Therefore, the final Model (11) consisted of BHC, geographical
coordinates, and covariates extracted from images and text, which
turned out significant in the linear model. Similar to Models (9) and
(10), the number of predictors used in each tree was set to 10 according
to the results of a tuning process based on a grid search with cross-
validation. Model (11) turned out to be the most accurate in terms of
RMSE and the proportion of the variance explained (𝑅2). This is further
confirmed by the conducted nonparametric Wilcoxon test between the
predictions of the random forest model that used unstructured data
sources, and those that did not. The test resulted in a 𝑝-value of 3.986−2,
implying that there was a significant difference between the accuracy
of both models. Lastly, in comparison to the final OLS Model (6), Model
(11) also proved superiority in terms of predictive accuracy according
to Wilcoxon test, resulting in a 𝑝-value of 3.706−11. The performance of
all models is presented in Table 7.

4.3. Explainable AI

4.3.1. Explainable AI: Methodology
The results presented in the previous section provided us with two

main conclusions. Firstly, including unstructured data in the research,
even in a relatively simple form, allowed us to significantly increase
the performance of the predictive models. Secondly, applying advanced
machine learning techniques also significantly increased the accuracy
when compared to the traditional OLS regression. However, in the
context of hedonic pricing, superior forecasting ability may be seen as a
success only after reaching a certain level of interpretability. Therefore,
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Fig. 5. Mapped results of the decision tree presented in Fig. 4. The regressed rental prices of properties with living area between 36 and 64 squared meters visibly differ depending
on the location.
Table 7
The performance of OLS and random forest models.

Model 𝑅2 RMSE

(5) OLS: BHC + Longitude | Latitude 0.56 329
(4) OLS: BHC + Time_biking 0.59 321
(6) OLS: BHC + Time_biking + Significant image and text variables 0.61 309
(9) RF: BHC + Time_biking 0.70 258
(10) RF: BHC + Longitude | Latitude 0.71 246
(11) RF: BHC + Longitude | Latitude + Significant image and text variables 0.74 240
in contrast to the previous research conducted in the area, e.g., Hong
et al. (2020), Law et al. (2019), and Neloy et al. (2019), this study
aimed to tackle the problem of interpretability by applying explainable
AI methods. To uncover the functioning of black-box models, three
different model agnostic methods were applied: variable importance,
partial dependence analysis, and local interpretable model-agnostic
explanations (LIME).

Variable importance analysis is based on the mean decrease in
accuracy. The idea of the method is to permute one predictor in order
to decouple its relation with the dependent variable. Subsequently, a
new model with the permuted predictor is fitted and its accuracy is
measured. The higher reduction of accuracy corresponds to the higher
importance of the predictor.

In contrast to variable importance, partial dependence analysis is
a graphical technique. It shows the marginal effect of a feature on
the predicted outcome of a machine learning model (Friedman, 2001).
In practice, the partial dependence function is estimated by averaging
values observed in the training set. It works by marginalizing the
machine learning model output over the distribution of all the features
except the feature of interest (Molnar, 2019). This way, the function
estimates the relationship between the feature of interest and the pre-
dicted outcome of the machine learning model. It allows approximating
the type of relation between the independent and dependent variables,
e.g., linear, monotonic, or complex, which was a particular point of
interest of this research. In the case of categorical predictors, the partial
dependence is calculated in two steps. First, all observations are forced
to have the same category. Second, the predictions for these modified
observations are computed and averaged. The process is then repeated
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for each level of the categorical predictor. Consequently, the average
marginal effect on the prediction for each level is obtained.

However, both methods function on the global scale of a model,
meaning that they do not allow understanding the reasoning of an
algorithm for a single prediction. LIME approach, first introduced
by Ribeiro et al. (2016), aims to tackle this issue. LIME is rooted in
the assumption that even the most complex model is linear on a local
scale. This assumption implies the key idea of LIME: if two observations
possess very similar covariates, they should have similar responses in
a machine learning model. Therefore, if multiple similar observations
behave similarly in a black-box model, it is possible to fit a local
prediction (surrogate) model on their basis. A surrogate model is aimed
at mimicking and consequently explaining the local behavior of the
original model.

In the first step of LIME, the observations of interest are permuted
𝑁 times. Then, the prediction for each permutation is obtained by
applying the original black-box model. Subsequently, the distances be-
tween the original observation and the prediction scores for permuted
observations are calculated based on the chosen distance measure. The
distances are then converted to similarity scores using an exponential
smoothing kernel of a width equal to 0.75 times the square root of the
number of features (Ribeiro et al., 2016).

In the next step, a surrogate model is fitted to the permuted data.
The surrogate model may take numerous forms, e.g., OLS regression
or decision tree. The only requirement for the chosen type of model
is its interpretability. While training the local explanatory model, the
outcome is weighted for a permuted observation by its similarity to
the original observation. Finally, the feature weights of the surrogate
model may be extracted and used as a proxy for the complex model’s
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Table 8
The comparison of variables’ impact on the prediction between the OLS and random
forest models.

Variable OLS coefficient RF partial dependence

House_Type room −192.16 −281.73
Garden 111.29 9.53
Garage 256.53 104.96
Bath 64.62 37.59
Furnished 87.34 57.12
View_on_the_city 115.21 62.56
Water_body 46.30 10.88
Income −165.19 −15.44
Insolation 117.82 51.61

local behavior. The type of obtained feature weights depends on the
applied surrogate model, e.g., in case of OLS regression, they take the
form of regression coefficients. As a result, LIME allows to analyze the
regression model on an observation level (Alvarez-Melis & Jaakkola,
2018; Molnar, 2019). This aspect may help uncover different impacts
of the same predictor on observations, potentially leading to a better
understanding of the hedonic prices of an analyzed good.

4.3.2. Explainable AI: Application
The explanatory analysis of the final random forest model started

with measuring variable importance based on the mean decrease in
accuracy. The analysis presented in Fig. A0 indicated that the model’s
accuracy was mostly based on the living area’s size, the localization
of the real estate, and the number of rooms. These findings concurred
well with the simplified decision tree model presented in 4, where the
model based the splits on the same covariates. These results mainly
coincided with the conclusions drawn from the OLS model. However,
after considering the magnitude of the biking time coefficient and
the average value of this variable, we concluded that it impacted
linear model predictions to a smaller degree than the geographical
coordinates in random forests.

To get an insight into the form of nonparametric function produced
by the random forest model, partial dependence functions were cal-
culated. Table 8 presents the comparison between the values obtained
with partial dependence functions and the coefficients of the final linear
model. The latter may be directly interpreted as the partial dependence
scores of the OLS model. When applied to a linear model, the partial
dependence always shows a linear relationship between the analyzed
variable and a prediction, with a magnitude equal to the predictor’s
coefficient.

The results showed substantial differences between the models.
While both models agreed on the sign of coefficients, there were
notable differences in their magnitude. For the majority of predictors,
especially for Garden, Garage, and Income, their impact on the predic-
tion was much lower in the case of a random forest model. The only
variable which the random forest model evaluated as more influential
than the OLS regression was the House_Type Room. Apart from the
categorical variables presented in Table 8, the partial dependence was
also applied to the numerical variables. Probably the most interesting
conclusion was drawn from the analysis of the living area presented in
Fig. 6. In the OLS regression, it was only possible to derive the average
value of 6.09 euros for each additional squared meter of the property.

On the contrary, the dependence between both variables in the
random forest was nonlinear. For the properties with a living area
between 6 and 136 m, the average value of each additional squared
meter was estimated at 7.26 euros. Surprisingly, this value dropped
to 1.65 euros after reaching the threshold of 136 square meters, to
eventually rise again to 5.54 euros after passing the threshold of
191 square meters. However, the average price of each square meter
calculated based on the whole set was equal to 5.70 euros, which was
close to the OLS-estimated coefficient.
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Fig. 6. The partial dependence plot of living area.

Similar to the living area, the number of rooms had a comparable
value between the two models. Based on the partial dependence func-
tion, it was concluded that each additional room up to the threshold
of seven rooms increased on average the rental price of a property
by 87.16 euros. When compared to the OLS coefficient of 89.80, the
difference was quite negligible and was much smaller than in the case
of categorical variables.

This phenomenon suggests that the differences between both models
might have been partially caused by the nature of random forest which,
generally, favors the continuous variables in terms of their impact and
importance. Nonetheless, if both living area and the number of rooms
shared similar coefficients across the models, the drop in the impor-
tance of categorical variables in random forest had to be compensated
by other predictors. Apart from methodology, the only difference be-
tween the models lay in the chosen locational approach. In our opinion,
this factor partially explained the presented behavior. Longitude and
latitude as proxy variables indirectly reflected numerous aspects that
linear distance to CBD did not. Therefore, it may be suspected that the
geographical coordinates affected the other predictors in the model to
a further degree than the biking time in the OLS case.

There was no certainty in establishing the model describing the
real-life values of properties’ characteristics better. However, a much
better performance of a random forest model in terms of accuracy and
the variance explained together with the violated assumptions of the
linear model prompted us to conclude that the obtained coefficients
were more valid for prediction than those of the OLS regression. This
conclusion implied that the OLS model may tend to overestimate the
value of less important structural attributes, which were caused by its
incapability to capture the locational aspects.

The explanatory analysis provided us with strong indications that
housing attributes such as the size of the living area did not possess a
constant marginal price for each additional unit and therefore did not
have a linear relation to the predicted rental cost. Another aspect we
were interested in is related to the original hedonic theory of Rosen
(1974). Rosen (1974) argued that the marginal willingness to pay
for the attribute of good changes for consumers depending on their
(nonlinear) budget constraints and preferences. This statement further
supported the decision to use a nonlinear machine learning model and
encouraged checking how the hedonic price of household attributes
varied among properties. To answer this question, LIME with a decision
tree as a surrogate model, and Manhattan as a distance function were
applied.

The explanatory model featured an extremely low 𝑅2 value for some
observations. After examining the distribution of variance explained
among observations, we decided to analyze only the ones with the 𝑅2

above 0.3. This arbitrary threshold was based on the trade-off between
a reliable inference on observation and global levels. The results of the
LIME analysis indicated that the hedonic price of an attribute was not
constant. For example, the value of the city view presented in Fig. 7
for the flats/rooms with rent below 1000 euros stayed at the level of
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Fig. 7. View value versus predicted rental cost.

Fig. 8. Insolation value versus predicted rental cost.

around 60 euros, in order to rise above 100 euros for the properties that
cost more than 1500 euros per month. A similar growing tendency was
noted for the insolation of property in Fig. 8. In this case, however,
the hedonic price of an attribute lowered after reaching the rental cost
threshold of 1500 euros. Such behavior may be explained by the fact
that detached houses and larger apartments started appearing after that
threshold. As it may be expected, such properties are exposed to more
than one geographical direction and are sunny by default.

The analysis shows that the value of the same attribute may not be
constant and impacts different real estates to a different degree. The
presented results provide clear trends of hedonic prices which can be
directly applied to the real estate evaluation. However, the estimation
of hedonic prices is only the first part of the two-stage procedure
envisioned by Rosen (1974). In the second stage, the estimated hedonic
prices may be used to uncover the customer preferences and an inverse
demand function for the attribute of interest.

The observation-level results of LIME presented above can be used
to create a function explaining the drivers of the estimated hedonic
prices. Additionally, by incorporating tenants’ information such as
education, ethnicity, or age into the formula, it would become possible
to shed some light on how the estimated prices of housing attributes
depend on the demand characteristics. Formula (12) serves as a theoret-
ical example of how the hedonic price of the city view may be explained
by other predictors:

𝑃𝑣𝑖𝑒𝑤𝑖
= 𝑓 (𝑣𝑖𝑒𝑤𝑖, 𝑃𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑖 ,𝐻𝐶𝑖, 𝑇 𝐼𝑖) + 𝜖𝑖. (12)

In (12), 𝑃𝑣𝑖𝑒𝑤 is the hedonic price of the view for 𝑖𝑡ℎ observation
estimated by LIME, 𝑣𝑖𝑒𝑤 is a dummy variable indicating the existence
of the city view, 𝑃𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 is the total price of the 𝑖𝑡ℎ property, 𝐻𝐶 are
other housing characteristics, and 𝑇𝐶 are tenants characteristics.

However, as pointed out by Brown and Rosen (1982), no infor-
mation about customer preferences can be obtained directly in the
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second stage of the model as it would only reproduce the information
provisioned by the first-stage estimation (Mei et al., 2017). This pitfall
is most often addressed in the literature by exploiting the nonlin-
earity of the marginal hedonic price (Ekeland et al., 2004) or by
extending the analysis to multiple markets (Bishop & Timmins, 2018;
Palmquist, 1984). Additionally, to reach reliable estimates in (12), the
clear endogeneity problem would have to be addressed, for example,
by employing instrumental variables; see Bartik (1987) and Palmquist
(1984) for more details.

Incorporating the second stage of the analysis envisioned by Rosen
(1974) would require a wide methodological toolkit, significantly en-
larging an already wide scope of the paper. Further, as mentioned
in Section 4.1.4, we were unable to gather data regarding tenants and
detailed demographics of Rotterdam districts. Consequently, this would
diminish the potential insights from the analysis we envisioned. How-
ever, we leave this short theoretical discussion in hope of encouraging
researchers to include the aspect of consumer preferences by employing
model agnostic methods such as LIME in their future studies.

5. Conclusions

For over 50 years, hedonic pricing models have been extensively
researched. Despite their undeniable popularity, in most cases, the
hedonic models have been based on simple linear regression meth-
ods employing structured conventional data. This study confirms that
such an approach can be successfully improved without significant
drawbacks through the usage of advanced machine learning techniques.

First, the methodology in extracting covariates from property im-
ages, satellite maps, and text descriptions and incorporating them into
a hedonic pricing model was provided. Most previous research (Law
et al., 2019; Zhang & Dong, 2018) focused on measuring the impact
of adding singular feature types, e.g., google street images to the
basic analysis. On the contrary, we built a more complete framework,
combining multiple sources of data. With this approach, we attempted
to mimic the information-gathering process of tenants before making
the purchase decision.

Second, an accuracy-based comparison between the OLS and ran-
dom forest models indicated the undeniable superiority of the advanced
machine learning approach over the traditional hedonic regression. Em-
ploying complex data sources made it possible to increase the predictive
accuracy even further. When compared to the OLS model, machine
learning approach in the presented setting led to a drop of 25% in RMSE
and an increase of 0.15 in 𝑅2.

The majority of previous machine learning-driven studies for a hous-
ing market did not include interpretation and evaluation of covariates
employed in the models (Abidoye & Chan, 2018; Hong et al., 2020; Law
et al., 2019; Neloy et al., 2019; Zhang & Dong, 2018). In this study,
the problem of interpretability of the black-box model was successfully
addressed by explainable AI methods. The provided empirical results
show that the more complex but at the same time more accurate
ML methods may be as interpretable as traditional hedonic models.
Additionally, the results revealed that the marginal prices of some
housing attributes such as living area were not constant, which could
not be captured by a conventional OLS approach. Such results provided
empirical evidence for the original hedonic theory published by Rosen
(1974), who argued that, generally, the nonlinearity between the price
of goods and their inherent attributes is likely to happen. Further, it
was observed that the value of a view on the city panorama differed
between 60 and 100 euros, even though the quality of the views was
on at similar level among all the properties. A clear relation between
the total rental cost and view value was found. It showed that the
average value of the view rose with the total rental cost of a property.
On the contrary, insolation was evaluated higher for mid-ranged price
properties than for cheap or expensive real estate.

The results of the study showed limited predictive ability for the
distance to the central business district as a measure of locational
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aspect. According to our findings, this commonly used approach (Chen
& Hao, 2008; Gaolu, 2015) performed worse than the geographical
coordinates in terms of accuracy and may have contributed to the
overestimation of other predictors in the model. The evaluation of the
living area by both models resulted in a similar average price of around
6 euros per one additional squared meter. However, the nonlinearities
uncovered by the random forest model showed that this price level did
not fully apply to large properties. The drop to 1.65 euros between
136 and 191 square meters implied the low utility of the living area
in this interval. A similar conclusion was drawn for the number of
rooms, which did not seem to provide extra utility after reaching the
threshold of seven. The majority of covariates extracted from satellite
images, aiming at accounting for aspects such as traffic, noise pollution,
and proximity to parks, did not bring insightful results. However, the
proximity to water bodies was found significant and related to a slight
increase in rental prices. On the contrary, the income requirements for
tenants, extracted from rental offer descriptions, were observed to be
negatively correlated with the rental prices.

The shift from the traditional linear estimation of hedonic prices to
the one presented in this study might be of great value for the academic
as well as the business world. Applying the proposed framework in
other research areas and settings is expected to show promising results
in terms of the predictive accuracy and interpretability of created mod-
els. Apart from a more complex methodology, we do not find significant
drawbacks of the presented machine learning approach when compared
to traditional hedonic approach. Therefore, we hope that the study
will inspire future studies to follow a similar direction. We find the
proposed research framework and analysis beneficial to landlords, real
estate brokers, and municipalities. Better estimation of the optimal real
estate value, as well as related environmental and social factors, may
lead to more accurate and conscious decision-making. The conclusions
drawn from the analysis could also be used to create an application
allowing future tenants to estimate a ‘‘fair’’ rental cost for a property
of interest depending on its attributes.

However, this study was limited in several ways. First, the sample
size was relatively small and could be increased in other settings. Due
to the text analysis part, only offers containing information in English
were included in the research. Additionally, the data were gathered
only for three months during the first wave of COVID-19, which could
have impacted the rental market prices. Second, we were unable to
capture demand-based characteristics of tenants and consequently con-
duct a full, two-staged hedonic procedure, as envisioned by Rosen
(1974). We leave the theoretical discussion on that topic to inspire
future studies to take full advantage of the model-agnostic methods in
the context of hedonic pricing. Third, the potential endogeneity in the
data could be addressed better through methods made specifically to
serve this purpose. Lastly, even though the employed random forest
model performed well in the study, other modern ML models, such
as geographical random forest (Georganos et al., 2019), may provide
better results. Given the flexibility of our research framework, largely
based on model-agnostic methods, the application of other modeling
approaches should be straightforward.
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Appendix

Fig. A.1. Variable importance of the final random forest model.
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