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Missing data is a common problem in longitudinal studies because of the characteristics 
of repeated measurements. Herein is proposed a latent variable model for nonignorable 
intermittent missing data in which the latent variables are used as random effects in 
modeling and link longitudinal responses and missingness process. In this methodology, 
the latent variables are assumed to be normally distributed with zero-mean, and the 
values of variance-covariance are calculated through maximum likelihood estimations. 

Parameter estimates and standard errors of the proposed method are compared with the 
mixed model and the complete-case analysis in the simulations and the application to the 
weight gain prevention among women (WGPW) data set. In the simulation results with 
respect to bias, mean squared error, and coverage of confidence interval, the proposed 
model performs better than the other two methods in different scenarios. Relatively, the 
proposed latent variable model and the mixed model do a better job for between-subject 
effects compared to within-subject effects. The converse is true for the complete case 

analysis. The simulation results also provide support for application of this proposed 
latent variable model to the WGPW data set. 
 
Keywords: Latent variable, longitudinal study, non-ignorable missing data, weight 
gain prevention 

 

Introduction 

Missing data is a common issue encountered in the analysis of longitudinal data. 

In the behavioral intervention setting, missed visits and/or losing to follow up can 

be extremely problematic. In this area, missed visits are assumed to be a result of 

http://dx.doi.org/10.22237/jmasm/1478003640
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failure of the intervention, sustained lack of interest in the study, or decreased 

desire to change the behavior (Qin et al., 2009). For weight loss studies, these are 

common issues that must be dealt with at the data analysis phase. For example, 

Levine et al. (2007) conducted a weight gain prevention study among women 

(WGPW) aged 25 to 45 years old. Participants were assessed for BMI (Body 

Mass Index) at baseline, year one, two and three. However, the outcomes at 

follow-ups for some women were missing. Because the missing data might be 

related to their unobserved BMIs, they were considered as nonignorable, 

informative, or missing not at random (MNAR) (Rubin, 1976). 

To account for informative missingness, a number of model-based 

approaches were proposed to jointly model the longitudinal outcome and the 

missingness mechanism. The methodology adopted here is motivated by latent 

pattern mixture models (Lin, McCulloch, & Rosenheck, 2004) and latent dropout 

class models (Roy, 2003). In latent pattern mixture models, the mixture patterns 

are formed from latent classes that link the longitudinal responses and the 

missingness process. A non-iterative approach has been proposed, to assess the 

assumption of the conditional independence between the longitudinal outcomes 

and the missingness process given the latent classes (Lin et al., 2004). Roy (2003) 

noted the idea of pattern-mixture models (e.g., Little, 1993) is not appropriate in 

many circumstances, because there are many reasons for missingness and subjects 

with the same missingness pattern may not share a common distribution. Roy 

(2003) assumed the existence of a small number of dropout classes behind the 

observed dropout times. But for Roy (2003)’s method, it is difficult to decide the 

number of latent classes ahead of the analysis. It also leads to misclassification 

because it is difficult to divide subjects into classes due to the variety of reasons 

for missingness. Some subjects may not belong to any latent classes. So it is 

reasonable and straightforward to propose a latent variable model in which the 

latent variable is unobserved and continuous. 

The WGPW study data (Levine et al., 2007) provides motivation to adopt 

the latent pattern mixture model methodology. In this trial, interventions were 

compared with a control group in preventing weight gain among normal or 

overweight women. 190 women were randomized to clinic-based group 

intervention and information-only control condition. For women randomized to 

the interventions, treatment was provided over a two-year period, with a follow-

up at year three. All women participated in yearly assessment. The primary 

outcome of interest was body mass index (BMI) calculated from weight assessed 

yearly and height at baseline. Overall, 81%, 76% and 36% completed a weight 

assessment at year one, two and three, respectively. The reasons for this 
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incompleteness may be related to their unobserved outcomes. To avoid biased 

estimations, possible dependence of missingness status on unobserved responses 

has to be considered. 

A latent variable model is proposed for informative intermittent missingness, 

developed from Henderson, Diggle, and Dobson’s (2000) joint modeling of 

longitudinal measurements and event time data. In the proposed model, 

longitudinal process and missing data process are linked through a latent bivariate 

Gaussian process W(t) = {W1(t), W2(t)}. An assumption of this latent variable 

model is that the longitudinal measurements and missing data process are 

conditional independent given W(t). This assumption simplifies likelihood 

function. It also increases the strength of the relationship between the missing 

data process and underlying true outcome process determined by the correlation 

between W1(t) and W2(t). 

The proposed latent variable model and the parameter estimation is 

described in next section. A simulation study is carried out in the following 

section, to compare the performance of the latent variable model with mixed 

model and complete-case analysis. The proposed model is then applied to the 

WGPW data (Levine et al., 2007) and compared with the mixed model and 

complete-case analysis, and the assessment of fit of the model is treated. A 

discussion is provided in the last section. 

Model specification and estimation  

Assume the proposed latent variable model is present for the full data. Denoting a 

normally distributed continuous response variable measured on the ith subject at 

the jth occasion as Yij (i = 1, …, N; j = 1, …, K), the K intended responses are 

collected into a vector Yi = (Yi1, …, YiK) if there is no missing data. 

For various reasons, not all subjects have all K measurements. Here the 

baseline measure Yi1 is assumed to be observed for every individual. When 

missingness process occurs as a result of dropout, the response Yij for subject i is 

only observed at time points j = 1, …, ki; where ki ≤ K. But if the data are subject 

to intermittent missingness, before time point ki, there may be additional missing 

measurements. A missingness indicator, Rij, is used for each of the K 

measurements, with 1 if Yij is missing and 0 if Yij is observed. 

In the following, random-effect models are briefly described for the separate 

analysis of longitudinal data and missingness procedure, and the joint model via a 

latent zero-mean bivariate Gaussian process. 
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Longitudinal Responses 

The sequence of longitudinal measurements Yi1, Yi2, …, YiK for the ith subject at 

times ti1, ti2, …, tiK is modeled as 

 

Yij = βTxij + W1i (tij) + εij, 

 

where βTxij = μij is the mean response in which the vector β and xij represent 

possibly time-varying explanatory variables and their corresponding regression 

coefficients, respectively; W1i(tij) incorporates subject-specific random effects; 

and εij ~ N(0, σε2) is a sequence of mutually independent measurement errors 

corresponding to Yij. The W1i(tij) can be viewed as the actual individual variability 

of outcome trajectories after they have been adjusted for the overall mean 

trajectory and other fixed effects. 

Missing Data Procedures 

Here Rij = 1 is defined as Yij being missing, and Rij = 0 as Yij being observed. 

Letting φij denote the probability of Rij = 1, the logistic model for φij is specified 

as 

 

log

  

j
ij

1-j
ij

 = αTzij + W2i (tij). 

 

where α is a vector of log odds ratios corresponding to zij; zij is a vector of 

covariates specific to the missingness process for subject i; and W2i(tij) represents 

random effect. 

Latent Variable Model 

The dependence between the missingness process and longitudinal responses is 

characterized by sharing a common random effect vector for the ith subject, say 

(W1i, W2i)T, which is independent across different subjects. Thus, the stochastic 

dependence between W1i and W2i is critical. It is referred as latent association. 

Before specifying (W1i, W2i)T, the pair of latent variables (U1i, U2i)T are defined 

with a mean-zero bivariate Gaussian distribution N(0, Σ) (Henderson et al., 2000). 

The (W1i, W2i)T are then modeled as 

 

W1i (s) = U1i + U2is, 
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W2i (t) = λ1U1i + λ2U2it 

 

Both W1i and W2i are represented as random intercept and slope terms; s and t 

are possibly time-varying explanatory variables; λ1 and λ2 are the parameters 

measuring the association between W1i and W2i, that is, the association between 

longitudinal and missing data processes induced through the intercept, slope and 

current W1 value. The derivatives of W2i are as follows: 

 

                                  W2i (t) = λ1U1i + λ2U2it 

 = γ1U1i + γ2U2it + γ3(U1i + U2it) 

 = γ1U1i + γ2U2it + γ3W1i (t), 

 

where λ1 = γ1 + γ3 and λ2 = γ2 + γ3. 

In this way, the traditional Laird-Ware random effects models are combined 

with a proportionality assumption W2i(t) ∝ W1i(t). A simple case of this 

assumption is W2i(t) = W1i(t), in which γ1 = γ2 = 0 and γ3 = 1. The proportionality 

assumption allows us to consider more complicated situations in which the 

association between longitudinal and missing data processes is described in terms 

of the intercept and slope. In other words, the impact of underlying random effect 

structure differences between the longitudinal and missing data processes can be 

assessed. The fixed effects in sub-models mentioned earlier in this section, xij and 

zij, may or may not correspond to the same covariates. Actually, the dependence 

between Yij and φij may arise in two ways: through the common fixed effects or 

through stochastic dependence between W1i and W2i. Even if W1i and W2i are 

independent, the longitudinal and missing data processes still could be associated 

through the common fixed effects. 

Estimation  

Let yi, yi
c and yi

m denote the vector of observed, complete and missing 

longitudinal responses for the ith subject. Let ψT = (βT, αT, γT) represent the set of 

parameters of interests; the observed log-likelihood for the joint model is 

 

  

log L y ; y,j,W | x,z( ) = log L b; y
i

c | x
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where 
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is the mean vector for Wi. Here let 

 

  
log L b; y

i
| x

i
,j

i
,W

i( ) = log L b; y
i
| x

i
,W

i( ), 

 

that is, given the latent variables Wi, the outcome Yi is independent of the 

missingness φi. This is an important assumption which reduces the mathematical 

complexity for estimation. Because φi affects yi through Wi, the missingness is not 

ignored in the maximum likelihood inference.  

The maximum likelihood estimation of the joint model is obtained by the 

quasi-Newton method, in which the latent variables are estimated by empirical 

Bayes and standard errors are estimated using the delta method. Because the 

likelihood equations for the L(α;φi | zi,Wi) are non-linear (from logistic regression) 

and do not have closed form maximizers, which may lead to some maximization 

algorithms having difficulty converging, a modified quasi-Newton algorithm is 

used for maximizing the likelihood. For example, the current estimate of ψ is 

updated by 

 

 

  

y
k+1( )

=y
k( )

-a
k( ) ¶2 l y( )

¶y ¶y T

ì
í
ï

îï

ü
ý
ï
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-1

¶l y( )
¶y

 

 

where l(ψ) = logL(ψ; y,φ,W | x,z), and a(k) is a small constant with values 

between 0 and 1. Generally, a(k) starts from very small (e.g., 0.01) toward 1 as k 

increases. The above algorithm may be repeated for different starting values of ψ 
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to make sure that it will converge to a global maximum. Here, the starting values 

are chosen from the estimates of complete-case analysis. 

Sensitivity Analysis  

The proposed method assumes that the distribution of the longitudinal responses 

(both observed and missing) does not depend on the missingness procedure after 

conditioning to latent zero-mean bivariate Gaussian process. This conditional 

independence assumption is strong, and neither it nor the missing not at random 

assumption can be tested just using the observed data. The sensitivity analyses 

will be considered for these assumptions by comparing the new model with 

commonly used mixed model and complete-case analysis in the simulation and 

data analysis sections. Results by the proposed method will be reported with 

different latent processes W1(s) and W2(t). Akaike’s information criterion (AIC) 

(Akaike, 1981) and the Bayesian information criteria (BIC) (Schwartz, 1978) will 

be used to assess model fit. It must be kept in mind that the unobserved outcomes 

cannot be checked in any sensitivity analyses. 

Simulation study  

A small simulation study was carried out to compare the performance of the latent 

variable model with mixed model under MAR assumption and complete-case 

analysis that discards subjects with missing observations. The data sets were 

generated by considering two aspects: the complete data structure with outcomes 

and observable independent variables; and the missingness structure.  

Complete data is generated with N = 200 subjects with J = 4 time points. It is 

assumed that there are 2 treatment groups with an equal number of subjects in 

each group. The following specifications for the longitudinal component are 

assumed: intercept = −0.5; treatment (Tx) = 1.0; time 2 vs. time 1 (T2 – T1) = 0.5; 

time 3 vs. time 1 (T3 – T1) = 1.0; time 4 vs. time 1 (T4 – T1) = 1.5. Consequently 

the mean of the dependent variable Yij can be written as:  

 

E(Yij) = β0 + β1Tx + β2 (T2 – T1) + β3 (T3 – T1) + β4 (T4 – T1) 

 

where β0 = −0.5, β1 = 1.0, β2 = 0.5, β3 = 1.0, and β4 = 1.5 as defined above. Tx is 

the variable for treatment groups with values of 0 or 1; (T2 – T1) = 1 if Yij is 

observed at time point 2, 0 otherwise; (T3 – T1) and (T4 – T1) are defined similarly 

with a value of 1 if Yij is observed at time point 3 or 4 and a value of 0 otherwise. 
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The error term of outcomes Yi follows a compound symmetry structure, with 

variance 1 and covariance 0.5.  

For missingness component, the assumption of missing not at random 

(MNAR) will be followed directly: that is, the missingness depends on the 

unobserved variables. Here let missingness procedure follow a logistic regression 

with an intercept and current unobserved response as the only covariate. 

Specifications are assumed as: intercept (α0) = −3.0 and log odds ratio for the 

current unobserved response (α1)  = 1.5, 1.0 or 0.5. That is: 

 

 

  

log
j

ij

1-j
ij

= a
0
+a

1
y

ij
. 

 

The summary measures for a parameter estimate include: a) mean bias: the 

mean difference of a sample estimate from the true parameter average over 

iterations of a simulation run; b) mean squared error: the mean of the squared 

deviation of a sample estimate from the true parameter averaged over iterations of 

a simulation run; and c) the coverage of nominal 95% confidence intervals, 

obtained by computing the percentage of iterations for which the corresponding 

nominal 95% confidence interval included the true parameter (Ten Have, 

Kunselman, Pulkstenis, & Landis, 1998). Data are generated 1000 times under 

each scenario for the proposed model (latent variable model, LVM), a mixed 

model (MM) for all available data, and a mixed model that discards the missed 

observations, that is, a complete-case analysis (CC). 

The simulation results are presented in Table 1. When missingness strongly 

depends on the unobserved outcomes (α1 = 1.5), the time effects (T2 – T1, T3 – T1, 

and T4 – T1) are underestimated (negative bias) and coverage of 95% confidence 

interval is poor under the mixed model. For complete-case analysis, the between-

subject effect (Intercept and Tx) estimates and confidence interval coverage do 

not exhibit good properties, though the mixed model displays just the opposite, 

that is, it is accurate in the between-subject effect estimates but not in the within-

subject effect (time effect) estimates. For the proposed method, both within- and 

between-subject inference are accurate even under the strong dependence on the 

unobserved outcomes except for the effect of (T4 – T1), which is due to the small 

number of observations at T4. 
 
 



QIN ET AL. 

635 

Table 1. Simulation results: mean bias and mean squared error (MSE) for the three 

models (latent variable model (LVM), mixed model (MM) and complete case analysis 
(CC)). 
 

  
α1 = 1.5 

 
α1 = 1.0 

 
α1 = 0.5 

Statistic Variable LVM MM CC   LVM MM CC   LVM MM CC 

% Bias 

Intercept -1.46 -3.42 -28.88   -1.41 -1.30 -17.59   -1.49 -1.66 -6.73 

Tx -11.19 -15.23 -33.13 
 

-5.50 -8.09 -17.18 
 

-1.12 -1.94 -4.73 

T2 – T1 -3.72 -4.48 -0.92 
 

-0.91 -1.43 -0.56 
 

0.03 0.12 -0.24 

T3 – T1 -8.48 -11.49 -5.88 
 

-3.74 -4.84 -3.70 
 

-0.15 -1.06 -1.44 

T4 – T1 -14.78 -18.73 -10.14 
 

-5.02 -6.27 -3.50 
 

0.67 0.60 0.37 

             

% Mean Squared 

Error 

Intercept 0.70 0.87 9.77 
 

0.63 0.65 3.90 
 

0.82 0.78 1.32 

Tx 2.40 3.39 13.42 
 

1.22 1.71 4.55 
 

1.20 1.15 1.77 

T2 – T1 0.75 0.84 0.98 
 

0.68 0.66 0.63 
 

0.50 0.46 0.46 

T3 – T1 1.12 1.82 1.41 
 

0.63 0.77 0.68 
 

0.50 0.52 0.44 

T4 – T1 2.81 4.08 2.01 
 

0.73 0.88 0.82 
 

0.48 0.47 0.50 

             

Coverage of 

95% CI 

Intercept 0.94 0.92 0.21 
 

0.97 0.97 0.63 
 

0.95 0.95 0.92 

Tx 0.81 0.73 0.42 
 

0.93 0.90 0.78 
 

0.96 0.95 0.95 

T2 – T1 0.90 0.87 0.95 
 

0.92 0.92 0.99 
 

0.93 0.97 0.97 

T3 – T1 0.86 0.73 0.91 
 

0.93 0.89 0.97 
 

0.96 0.96 0.99 

T4 – T1 0.60 0.37 0.88   0.95 0.94 0.97   0.97 0.99 0.97 

 

Application to WGPW data  

Data description and model specifications 

The proposed latent variable model is applied to an actual data set to illustrate its 

features and explore issues involved with its implementation. The sensitivity of 

inference to the model assumption and constraints in model formulation are also 

considered. 

To illustrate the method, a subset of data from a study involving weight gain 

prevention in women (WGPW) is used. This trial was conducted in the 

Department of Psychiatry at the University of Pittsburgh Medical Center (Levine 

et al., 2007), and involved 25- to 45-year-old women at risk for weight gain and 

future obesity. The primary aim of the trial was to compare the relative efficacy of 

three approaches to weight gain prevention: a clinic-based group intervention, a 

mailed, correspondence intervention and an information-only control group. The 

measurements were taken at baseline, year 1, year 2 and year 3. 

For the analysis, 190 women with complete baseline data are focused on and 

randomized into the clinic-based group and the control group.  Women 

randomized to the clinic-based intervention group were required to attend 15 
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group meetings over a 24-month period. These sessions were held biweekly for 

the first 2 months and bimonthly for the next 22 months. Biweekly sessions 

focused on self-monitoring of energy intake and expenditure, and behavioral 

strategies for making modest changes in dietary intake and activity level. During 

the 11 bimonthly clinic-based meetings, participants received lessons on cognitive 

change strategies, stimulus control techniques, problem solving, goal setting, 

stress and time management, and relapse prevention. Women belonging to the 

control group received booklets containing information about the benefits of 

weight maintenance, low-fat eating, and regular physical activity. 

About 70% of the women did not complete their scheduled assessments 

(Table 2). It was suspected that this was in part due to reasons related to their 

weight outcomes. Among women randomized to the intervention group in which 

treatment was provided over a 2-year period, 20% missed the weight assessments 

at year 1; 27% at year 2; and 63% at year 3 of the follow-up.  For subjects in the 

control group, 19%, 22% and 66% missed the weight assessments at year 1, 2 and 

3. The plot in Figure 1 indicates that at year 2, which is the end of the treatment, 

the intervention group exhibits a lower BMI than the control group. However the 

plot of Figure 2 indicates that at year 2, the probability of missingness in the 

intervention group is a little higher than that of the control group. If only the 

observed data are used, the conclusion that the intervention group has a smaller 

BMI at the end of the treatment (year 2) may be reached. But if the missing data 

mechanism is considered, what will the data tell us? 
 
 
Table 2. Distribution of the missingness patterns for WPGW data. 
 

Pattern Baseline Year 1 Year 2 Year 3 Frequency (%) 

1 • • • • 56 (29.5) 

2 • • • × 77 (40.5) 

3 • • × • 06 (03.2) 

4 • × • • 01 (00.5) 

5 • • × × 14 (07.4) 

6 • × • × 10 (05.3) 

7 • × × • 05 (02.6) 

8 • × × × 21 (11.1) 
 

Note: •: observed; ×: missingness 

 
 



QIN ET AL. 

637 

 
 

Figure 1. Observed BMI mean (SE) across years for each treatment group 

 

 
 

 
 

Figure 2. Probability of missingness across years for each treatment group 
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Let Yij denote the BMI measurement on the ith patient at the jth year in the 

trial, j = 0, 1, 2 and 3. Six explanatory variables are included as main effects in the 

analysis: treatment (Tx, intervention = 1 and control = 0), years in the trial (year), 

patient age when enrolled (age), dietary restraint (S3FS1, range from 0–21), 

disinhibition (S3FS2, range from 0–16), and perceived hunger (S3FS3, range from 

0–14). Among them, dietary restraint, disinhibition and perceived hunger belong 

to Stunkard Three-Factor Eating Questionnaire, and they are included in the 

model as time-variant predictors, as is year. The linear random effects model for 

BMI is specified as 

 

   Yij = β0 + β1yearj + β2yearj  

 × Txi + β3agei + β4S3FS1ij + β5S3FS2ij + β6S3FS3ij + W1i(yearj), 

 

where W1i(yearj) is the random effect. 

Similarly the missingness procedure is modelled with the logistic regression 

with random effect, W2i(yearj). Let φij = Pr(Yij is missing), 

 

  0 1 2log
1

ij

i i j

ij

Tx W year


 


  


. 

 

To choose the exact forms of W1i and W2i, Akaike’s information criterion 

(AIC) (Akaike, 1981) and the Bayesian information criterion (BIC) (Schwartz, 

1978) are used. The results are given in Table 3: because Model VII emerges with 

the smallest values of AIC and BIC, it is selected over the others, and also 

demonstrates the full complexity of (W1i, W2i)T given under the Latent Variable 

Model, earlier. In Model VII, W1i(yearj) = U1i + U2iyearj. So W1i(yearj) includes 

random effects for intercept and slope over time, where 

   1 2 2, ~ 0,
iid

T

i i iU U U N   and variance-covariance structure 
11 12

12 22

   
  
   

. 

This structure of random effects allow that each subject has her own baseline BMI 

value and time trend of BMIs over years in the trial. And the random effects in the 

models of missingness procedure are chosen as 

W2i(yearj) = r1U1i + r2U2iyearj + r3(U1i + U2iyearj), where U1i and U2i are defined 

as before. In the following application results and interpretations, inferences will 

be based on these chosen random effect structures. 
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Table 3. Descriptive of model fit for different random effect structures for WGPW data. 

 

Model W1i W2i 

−2 log 

likelihood AIC BIC 

I 0 0 2904.4 2936.4 3018.0 

II U1i 0 2656.6 2657.6 2709.6 

III U1i γ1U1i 2625.3 2657.3 2709.3 

IV U1i+ U2iyearj 0 2595.9 2629.7 2679.8 

V U1i+ U2iyearj γ1U1i 2595.7 2627.7 2679.6 

VI U1i+ U2iyearj γ1U1i+ γ2U2i 2614.6 2656.6 2698.6 

VII U1i+ U2iyearj γ1U1i+ γ2U2i+ γ3W1i 2534.7 2566.7 2618.6 

 

Model interpretation  

Table 4 details the model estimates of treatment, time, age, dietary restraint, 

disinhibition and perceived hunger effects on the BMIs. In Table 5, the estimates 

in the missingness component of the joint model are compared to the analogous 

estimates from a random effects model, which ignores the BMI outcome, to 

address the effects of treatment on the missingness status. In both tables, the 

estimates for variance-covariance structure Σ under models for longitudinal 

responses and missing data procedure, separately and jointly, are discussed. 

As shown in Table 4, the mixed model, under the assumption of missing at 

random, and the proposed joint model yield similar inference for significant effect 

of year, whereas the complete case analysis under the assumption of missing 

completely at random does not show any significant time effect. In the proposed 

model, age effect intends to be significant (p value = 0.074), although in the other 

two models, there is no such intention. Under all three models, dietary restraint 

and disinhibition show strong effects (p values < .0001). In Table 5, the 

association parameter in the proposed method, γ3, is negative and significantly 

different from zero. It provides a strong evidence of association between the two 

sub-models of the proposed method, and indicates that the slope of observed BMI 

values is negatively associated with the missingness status, because of 

λ2 = γ2 + γ3 < 0 with γ2 = 6.779 and γ3 = −26.94 (Table 5). This may result from 

patients with larger BMI values having lower probabilities of dropping out, 

leaving their relatively larger BMI values in the trial. 

Comparisons with simulation results 

The relationship between the proposed method and the mixed model in the 

application to the WGPW data is now checked, and compared with the patterns 

observed in the simulations. Table 4 reveals that the proposed method and the 
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mixed model yield similar between-subject effect estimates (age, dietary restraint, 

disinhibition and perceived hunger), but are different in the within-subject 

inference (year, and year × treatment). As in the simulation results, the mixed 

model gives accurate inference in between-subject effect estimates but not in 

within-subject effect estimates. This congruence in the between-subject effect 

estimates, and difference in the within-subject effect estimates, provides evidence 

that the proposed method is a good choice for the WGPW data. 
 
 
Table 4. Parameter estimates, estimated standard errors and p-values for modeling the 
outcomes, BMI. 
 

 
CC analysis 

 
Mixed Model 

 
Latent Variable model 

Variable Estimate SE p-value 
 

Estimate SE p-value 
 

Estimate SE p-value 

Intercept 24.3000 2.1350 <0.0001   22.8200 1.1410 <0.0001   22.8400 1.1590 <0.0001 

Year 0.0770 0.1400 0.5850 
 

0.2030 0.0920 0.0290 
 

0.1520 0.0750 0.0440 

Year × Treatment -0.0240 0.1920 0.9030 
 

-0.1630 0.1280 0.2020 
 

-0.1240 0.1030 0.2300 

Age 0.0370 0.0580 0.5250 
 

0.0470 0.0300 0.1180 
 

0.0550 0.0300 0.0740 

Dietary Restraint -0.2090 0.0370 <0.0001 
 

-0.1200 0.0220 <0.0001 
 

-0.1320 0.0240 <0.0001 

Disinhibition 0.1650 0.0520 0.0030 
 

0.1800 0.0320 <0.0001 
 

0.1780 0.0330 <0.0001 

Perceived 
Hunger 

-0.0270 0.0450 0.5460 
 

-0.0180 0.0300 0.5610 
 

-0.0280 0.0320 0.3940 

Σ11 1.9480 0.2300 <0.0001 
 

2.0180 0.1300 <0.0001 
 

2.0490 0.1250 <0.0001 

Σ12 -0.0090 0.1120 0.9370 
 

-0.0230 0.0750 0.7620 
 

0.0040 0.0090 0.6720 

Σ22  0.4940 0.0940 <0.0001 
 

0.5280 0.0690 <0.0001 
 

0.0620 0.0410 0.1300 

σε
2 0.9400 0.0720 <0.0001   0.8620 0.0500 <0.0001   1.0680 0.0460 <0.0001 

 
 
Table 5. Parameter estimates, estimated standard errors and p-values for modeling the 
missingness status, R. 
 

 

Separate Analysis 
 

Latent Variable Model 

Variable Estimate SE p-value 
 

Estimate SE p-value 

Intercept -1.0620 0.1350 <0.0001   -2.5910 0.3580 <0.0001 

Treatment 0.0360 0.1800 0.8410 
 

0.0700 0.3320 0.8320 

γ1 NA NA NA 
 

27.0600 17.9600 0.2400 

γ2 NA NA NA 
 

6.7790 5.7500 0.1360 

γ3 NA NA NA   -26.9400 17.9700 <0.0001 

 

Conclusion 

A latent variable model was proposed to fit longitudinal data with informative 

intermittent missingness. The main idea is to jointly model the longitudinal 

process and missing data process via a latent zero-mean bivariate Gaussian 
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process on (W1(t), W2(t))T, with correlation between W1(t) and W2(t), inducing 

stochastic dependence between the longitudinal and missing data processes. An 

advantage of this method, compared with other existing methods for informative 

missing data problems, is its easy implementation. The models in this method can 

be easily fit after providing the likelihood functions. Thus it avoids the 

complexity of EM algorithm programming, facilitating use of this proposed 

method in practice. The specifications and selections of W1(t) and W2(t) can be 

implemented via AIC and BIC, and the method enables direct comparisons of 

different specifications. 

In the proposed method, the latent variables are also used to induce 

conditional independence between the responses (both observed and missing) and 

missingness status, so that the standard likelihood techniques can be used to 

derive the estimates. This is a strong assumption and it cannot be tested with the 

available data. For this type of assumption, a sensitivity analysis is the way to 

investigate the model fit and departure of the assumption. Such an analysis has 

been attempted by comparing the proposed method with other alternative models 

in the true data and in simulations. 

The proposed method is developed from the joint model proposed by 

Henderson et al. (2000) for longitudinal and survival processes. In the future, this 

method should be considered for extension into other applications, through 

different link functions (e.g. binary or ordinal data) or random effect structures 

other than zero-mean bivariate Gaussian distribution. 
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