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In the current study, we have exemplified the use of Bayesian neural networks for breast 
cancer classification using the evidence procedure. The optimal Bayesian network has 
81% overall accuracy in correctly classifying the true status of breast cancer patients, 
59% sensitivity in correctly detecting the malignancy and 83% specificity in correctly 
detecting the non-malignancy. The area under the receiver operating characteristic curve 
(0.7940) shows that this is a moderate classification model. 
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Introduction 

Early detection of breast cancer can reduce the deadly threat to life. Including the 

well-known “Gail model” (Gail et al., 1989), a number of other statistical models 

have been proposed to assess the risk of being diagnosed with breast cancer 

(Claus, Risch, & Thompson, 1993; Domchek et al., 2003; van Asperen et al., 

2004). However, these models imposed some limitations in their use of risk 

prediction (Amir et al., 2003; Euhus, Leitch, Huth, & Peters, 2002). 

The objective of the current study is to develop a better statistical model to 

correctly classify the malignant breast cancer patients with their demographic 

factors and previous mammogram results using a multi-layer perceptron (MLP), a 

type of feedforward neural network. Although there exist several other models 

based on neural networks with the same intention, few of them have make use of 

the evidence approach with automatic relevance determination (ARD) prior for 

http://dx.doi.org/10.22237/jmasm/1478003520
mailto:sarasepa@mail.usf.edu
mailto:ctsokos@usf.edu
mailto:taysseer.sharaf@sru.edu
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network regularization. We have selected the optimal network based on the model 

evidence (or cost function) as oppose to the classical minimum square error. 

In order to train MLPs, we have considered two different approaches. In the 

first approach, a MLP is trained in the standard setting without incorporating any 

prior probabilities in their weight structure, where the later approach is based on 

Bayesian evidence procedure and the posterior probabilities of malignancy (Hung, 

Shanker, & Hu, 2002) have been obtained. These probabilities have been used as 

an initial measure for risk of diagnosing with incident breast cancer. 

The advantage of neural networks over the other models is that, it is a self-

learning model which is free of statistical assumptions. This allows neural 

network process to be considered as a generalization of existing statistical 

methodologies.  

MLPs are used in a wide variety of fields including pattern recognition, 

cognition and decision making (Ayer et al., 2010; Floyd, Lo, Yun, Sullivan, & 

Kornguth, 1994; Orr, 2001; Wu et al., 1993), where they learn by examples 

through training algorithms. Training can be supervised, where both inputs and 

their corresponding outputs are fed to the network, or can be unsupervised, where 

training data consist of only the inputs. During the training process, the weights 

and the biases of the network are continuously adjusted to minimize the error 

between the network’s output and the target outputs (Haykin, 1999). This process 

leads weights and biases of the network to learn the knowledge or information 

about the problem. 

In the Bayesian approach, the uncertainty about the weight parameters is 

estimated from data itself and represented by a probability distribution (Bishop, 

1995). Apart from capturing the uncertainties and providing a natural 

interpretation on regularization techniques, Bayesian approach has some other 

useful aspects. Automatic relevance determination process is one of them, which 

can be used to identify the relative importance of different inputs. This method 

also allows making predictions by combining several networks (network 

committees) in order to obtain improved performance. 

Multi-Layer Perceptron (MLP) 

MLPs are a popular class of feedforward networks which represent a multivariate 

non-linear function mapping between a set of input and output variables (Bishop, 

1995). These networks are organized as several interconnected layers. Each layer 

is a collection of artificial neurons (nodes) where connections among the layers 

have not formed any loops, hence the name feedforward. Data have been fed 
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through the input layer, and then they pass through the hidden layer, and final 

outcome is given by the output layer. 

The complexity of a MLP is directly proportional to the number of hidden 

nodes. It has been shown that a network with one hidden layer accompanied by 

sufficient number of hidden nodes is capable of approximating any continuous 

function (Hornik, Stinchcombe, & White, 1989). Therefore, we have considered a 

MLP with one hidden layer (Figure 1) and the final outcome is given by (1). 
 
 

 
Figure 1. A multi-layer perceptron network (MLP) 
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During the training process, the goal is to minimize the difference between 

the actual and network predictions by adjusting the weights (including biases) 

using some optimization algorithms. A well trained MLP is capable of making 
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reasonable predictions to unseen data, which is known as generalization. This is 

achieved by incorporating the regularization techniques like weight decay (Bishop, 

1995). Next, we discuss some theory related to MLP for a two-class classification 

problem. 

Two-Class Classification Problem  

For a two class classification, logistic sigmoid is selected as the activation 

function in the output layer. This is the activation function “g” in (1), and has the 

form of 

 

  
 

1
;

1 exp
y x w

a


 
  (2) 

 

In the Bayesian context, the y (x; w) can be interpreted as the probability of 

membership in class C1 given the input vector x. The probability of membership 

of class C2 is then given by (1 – y (x; w)). 

MLP with Maximum Likelihood (Standard Network) 

Network training (minimizing the difference between the actual and network 

predictions) can be done in two ways, using conventional maximum likelihood 

and Bayesian approaches. In maximum likelihood, a single set of most likely 

values for the weights are found whereas in Bayesian, a probability distribution 

for weights is obtained to represent the uncertainty in the weight estimation.  

For a set of training data {xn, tn} which are independent and identically 

distributed, the likelihood can be written as in (3) (Assuming the data are coming 

from a Bernoulli distribution). G (D| w) is the negative logarithm of the likelihood 

which is defined as the cross entropy error function as given in (4). 
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Instead of maximizing the likelihood (since it is a monotonically decreasing 

function), it is more convenient to minimize the cross-entropy. When training the 

standard MLP in our analysis we have used this error function. The predictions on 
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new data are made using the optimal set of weights through the maximum 

likelihood method. 

MLP with Bayesian Techniques  

In training a MLP, weights are adjusted whenever a new data point is presented to 

the network. A probability distribution which contains the degree of confidence 

associated with each different weight can be used to represent this uncertainty. 

The choice of prior distribution and about the corresponding posterior distribution 

will be discussed shortly. 

Network Regularization and Gaussian Prior  

Smooth network mapping can be obtained by introducing network regularization 

techniques. This will lead for better generalization. In the simplest setting we have 

used a weight decay regularizer Ew of the form (5). 

 

 
21

2
wE w   (5) 

 
As smaller weights (i.e a smaller Ew) are preferred for network weights, we 

have generated the weights from a zero mean Gaussian prior (6) initially.  
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 and, α is the inverse variance of the distribution which is 

known as the hyper-parameter of the prior distribution. As a part of Bayesian 

learning we can optimize the hyper-parameter α (evidence procedure). 

 

 

Posterior Distribution of Weights 

The posterior probability distribution for weights can be determined according to 

the Bayes’ theorem by incorporating the above prior (6) and the data likelihood 

(3),  
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where Zs is the normalization constant and S (w) is the regularized cost function. 

The most probable weight vector wMP is found by maximizing the posterior, or 

minimizing the regularized cost function. From the second order Taylor series 

expansion of S (w) around its minimum wMP, we can obtain the following 

approximation. 
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1

2

T

MP MP MPS w S w w w A w w      (8) 

 

Where A denotes the Hessian matrix of the regularized cost function. This leads to 

the Gaussian approximation to posterior distribution as given in (9) where *

sZ  is 

the normalization constant. 
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Using the above posterior distribution, obtain the network predictions for the 

probability that a new input vector x* belongs to class C1 as in (10). Although this 

prediction is not directly achievable, we can use marginalized predictions to 

obtain the results as suggested by (MacKay, 1992): 

 

          * *

1 1, , ,P C x D P C x w P w D dw y x w P w D dw     (10) 

 

The Evidence Procedure 

Prior to finding the above wMP , it is needed to find the most probable hyper-

parameter αMP , which maximizes the posterior probability of weights in Bayesian 

setting (MacKay, 1996) .This αMP is obtained using the evidence p (D| α), by 

integrating the product of data likelihood and the prior distribution of the weights 

as given in (11). 

 

      p D p D w p w d      (11) 
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After several modifications, the logarithm of the evidence can be 

represented as in (12). The first term is the negative value of the regularized cost 

function, and the next two terms are the Occam factors that represent the ratio of 

posterior volume to prior volume. A network with higher number of hidden nodes 

has a large prior volume and thus, has a small Occam factor. Hence, these Occam 

factors act to penalize complex models and the evidence represents a trade-off 

between the accuracy and the complexity (MacKay, 1992).  

 

      log log logwE S OCC OCC    w   (12) 

 

Periodically re-estimate α according to (13), in order to get the greatest log 

evidence value where γ represents the effective number of weights whose values 

are controlled by the data rather than by the prior. Using that αMP we can calculate 

the wMP (Thodberg, 1996). More details regarding this can be find in (Bishop, 

1995). 

 

 
2

New

wE


    (13) 

The Automatic Relevance Determination  

In the Bayesian setting, we can associate a separate hyper-parameter to each input 

variable which represents the inverse variance of the prior distribution of the 

weights fanning out from that input (Nabney, 2002). Optimal values for these 

hyper-parameters are obtained using the evidence procedure. So the weights 

connected to irrelevant inputs are automatically set to small values and this is 

known as the ARD approach. 

Committees 

We can form a committee of networks to improve the prediction accuracies 

by combining several networks with different architectures. These networks can 

have different numbers of hidden nodes and/or they can be trained with different 

random initializations. 

The simplest form of a committee, which involves taking the average 

predictions of the outputs of the L networks, is given by (14). This will improve 

the accuracy of the predictions over an individual network output (Nabney, 2002). 
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Methodology 

Implementation of MLPs 

Study Population  The data for this study are taken from Breast Cancer 

Surveillance Consortium (Barlow et al., 2006) for the period 1996 to 2002. The 

participating registries have obtained annual approvals from its institutional 

review board.  

The data sample contains the information on menopausal type, age, breast 

density, ethnicity (Hispanic), body mass index (BMI), age at first birth, personal 

or family history of breast cancer, prior breast procedures, results of the last 

mammogram, type of menopause and current hormone therapy for each white 

woman. These women were aged from 35 to 84 years, and more details are 

available in Table 1. 

Implementation of the Standard and Bayesian MLPs 

Training and testing data sets were created by partitioning the whole data sets 

each with 75% and 25% of data. A random sample out of the non-malignant 

group in the training set is selected and merged that with the malignant group in 

order to obtain a balanced training set. Table 2 represents the composition of data. 

Different MLPs were trained using both standard and Bayesian approaches 

with varying number of hidden nodes from 1 to 25. For all of these MLPs, a 

logistic sigmoid activation function and scaled conjugate gradient (SCG) training 

algorithm were used. SCG is selected as it is a faster training algorithm compared 

to other algorithms (Penny & Roberts, 1999). 

The standard MLP is trained using 10 fold cross-validation method and 

without any weight regularization. In 10 fold cross-validation, the training set is 

divided into 10 distinct segments, where 9 of those are used to train the network 

while the remaining segment is used for validation. This process is repeated for 

each of the 10 possible choices of the segments which are omitted from the 

training process and the validation errors (cross-entropy error) are averaged over 

all 10 results. The best network (with the corresponding hidden nodes) in this 

approach is the one with the smallest average cross-entropy in the validation data 

set (Kline & Berardi, 2005). 
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Table 1. Details of the Study Population 

 

   
Malignant (%) Not Malignant (%) Total 

 
Total 

 
1053 6.47 15218 93.53 16271 100.00 

1 Menopausal Type ( X1) 

 
Premenopausal 227 21.56 2882 18.94 3109 19.11 

 
Postmenopausal 826 78.44 12336 81.06 13162 80.89 

2 Age Group ( X2) 

  
35-39 6 0.57 496 3.26 502 3.09 

  
40-44 72 6.84 788 5.18 860 5.29 

  
45-49 137 13.01 2355 15.48 2492 15.32 

  
50-54 168 15.95 2695 17.71 2863 17.60 

  
55-59 150 14.25 1872 12.30 2022 12.43 

  
60-64 141 13.39 1663 10.93 1804 11.09 

  
65-69 131 12.44 1533 10.07 1664 10.23 

  
70-74 96 9.12 1477 9.71 1573 9.67 

  
75-79 93 8.83 1343 8.83 1436 8.83 

  
80-84 59 5.60 996 6.54 1055 6.48 

3 Breast Density ( X3) 

 
Almost entirely fat 31 2.94 2575 16.92 2606 16.02 

 
Scattered fibroglandular densities 405 38.46 5319 34.95 5724 35.18 

 
Heterogeneously dense 506 48.05 4993 32.81 5499 33.80 

 
Extremely dense 111 10.54 2331 15.32 2442 15.01 

4 Hispanic (X4) 

  
No 1026 97.44 12476 81.98 13502 82.98 

  
Yes 27 2.56 2742 18.02 2769 17.02 

5 BMI (X5) 

  
10-24.99 432 41.03 4969 32.65 5401 33.19 

  
25-29.99 326 30.96 4404 28.94 4730 29.07 

  
30-34.99 181 17.19 3304 21.71 3485 21.42 

  
35 or more 114 10.83 2541 16.70 2655 16.32 

6 Age at First Birth ( X6) 

  
Age<30 692 65.72 7654 50.30 8346 51.29 

  
Age 30 or greater 154 14.62 3412 22.42 3566 21.92 

  
Nulliparous 207 19.66 4152 27.28 4359 26.79 

7 Number of first degree relatives with breast cancer ( X7) 

  
Zero 763 72.46 8515 55.95 9278 57.02 

  
One 252 23.93 5077 33.36 5329 32.75 

  
Two or more 38 3.61 1626 10.68 1664 10.23 

8 Previous breast procedure ( X8)  

  
No 716 68.00 8925 58.65 9641 59.25 

  
Yes 337 32.00 6293 41.35 6630 40.75 

9 Result of last mammogram before the index mammogram ( X9) 

  
Negative 1032 98.01 13244 87.03 14276 87.74 

  
False positive 21 1.99 1974 12.97 1995 12.26 

10 Surgical menopause ( X10) 

  
Natural 576 54.70 7000 46.00 7576 46.56 

  
Surgical 250 23.74 5336 35.06 5586 34.33 

  
Unknown 227 21.56 2882 18.94 3109 19.11 

11 Current hormone therapy( X11) 

  
No 400 37.99 6382 41.94 6782 41.68 

  
Yes 426 40.46 5954 39.12 6380 39.21 

 
Unknown or not menopausal 227 21.56 2882 18.94 3109 19.11 

 
 



BAYESIAN NEURAL NETWORK BREAST CANCER ID  

572 

Table 2. Summary of the training and testing data sets  

 

Data set Malignant Non-Malignant Total 
Training set 829 1658 2487 

Test set  224 3030 3254 
Total 1053 4688 5741 

 
 

Under the Bayesian approach, four types of networks were trained with 

different weight regularization techniques. The first network is trained using 10 

fold cross validation along with a weight regularization. The second and third 

types of the networks are trained using Bayesian evidence procedure, one without 

and the other with ARD prior. For both of the above types, 10 different networks 

were trained with 10 different random initializations to examine the effect of local 

minima on solutions, and they were taken to construct the network committees. 

The optimal MLP with the lowest average regularized cost function in the training 

data (or the highest average log evidence) is then selected and used to predict the 

posterior probability of malignancy by simply averaging 10 network predictions 

from each committee. Additionally, a same type of neural network with one 

hidden node was built for a comparison, which is functionally equivalent to a 

logistic regression model. 

As the final network type, 10 different networks were trained on 10 different 

random samples with varying number of hidden nodes along with evidence 

process and ARD prior. The best MLP is selected using the minimum of the 

regularized cost function.  

Model Evaluation 

The selected ANN models are evaluated based on their accuracy, sensitivity, 

specificity values and the area under the receiver operating characteristic curve 

(AUC) for the testing data (Bradley, 1997; Friedman & Wyatt, 2005). The 

proportions of correctly identified malignant and non-malignant women from the 

ANN models are known as the model accuracies. The proportions of actual 

malignant patients who are correctly identified from the models are known as the 

sensitivities and the proportions of non-malignant women who are correctly 

identified from the models are known as the specificities.  

A perfect desirable predictor would be described as 100% sensitive (i.e. 

predicting all people from the malignant group as malignant) and 100% specific 

(i.e. predicting all non-malignant people as non-malignant). However, for any test, 
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there is usually a trade-off between these two measures, and this can be 

represented graphically by a receiver operating characteristic curve.  

Results 

The summary of our six optimal network types is given in Table 3. Overall 

accuracy in the logistic network (6th MLP in the table) is lower than all other 

MLPs except for the MLP trained without ARD prior. Moreover it has the second 

lowest sensitivity and specificity values with the highest error. However, these 

models are not directly comparable in terms of their errors, as they have different 

settings and different training samples.  
 
 
Table 3. Classification summary of the different MLP 

 

No MLP Type 
 Error(Cross 

Entropy/Cost) 
Accuracy Sensitivity Specificity 

1 Standard MLP 
641.96(valid error 

16.50)  
78.43% 55.36% 80.13% 

2 MLP with weight regularization  
434.77(valid error 

8.28)  
74.09% 53.57% 75.61% 

3 
MLP with evidence, but without 

ARD prior 
548.63 72.99% 60.71% 73.89% 

4 
MLP with both evidence and 

ARD prior 
582.28 74.15% 59.82% 75.21% 

5 
MLP trained on different samples 

with evidence and ARD prior 
908.78 81.35% 59.38% 82.97% 

6 
MLP with one hidden node 

(logistic) 
1123.10 73.11% 55.35% 74.42% 

 
 

Out of these MLP types, the best network in terms of the highest accuracy 

and specificity is found to be the MLP trained using different samples along with 

both evidence procedure and ARD prior (5th MLP). As can be seen, use of the 

evidence procedure and the ARD prior has always resulted in better sensitivities. 

However, use of weight regularization without any optimization (evidence 

process) does not provide any significant improvement over the standard network 

training process.  

It can be concluded that use of weight regularization techniques along with 

evidence process gives better results in Bayesian classification for most of the 

time. Apart from that, use of ARD prior helps to identify the most contributing 

variables to the network. Overall, Bayesian methods are preferred over the 

standard method mainly because of the natural way of handling the weight 
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regularization. By forming committees, we were able to reduce the network 

training error. 

The minimum and maximum prediction accuracies from these MLPs are 

73% and 81%, respectively. Sensitivity values are varying from a minimum of 

54% up to a maximum of 61% while specificity values are varying from 74% to 

83%.  
 
 

 
 
Figure 2. The receiver operating characteristic curves and the AUC values 

 

 
 

The AUC values of all the above MLPs are greater than 70%, which implies a 

moderate classification model. Figure 2 represents the receiver operating 

characteristic curves with the corresponding AUC values. The posterior 

probabilities of malignancy were obtained from the best Bayesian MLP network 

selected. 

ARD prior identifies the relevant importance of the inputs in the network. 

Table 4 includes the rankings of the variable based on these hyper-parameter 

values. Risk factors with smaller hyper-parameters are highly contributing to the 

model outcome. Being in the age group 75 to 79 is the most critical factor in 

diagnosing with malignant breast cancer. Having a prior false positive 

mammogram can be an indication of malignant breast cancer. In accordance with 

cancer literature, risk factors such as having heterogeneously or extremely dense 

breast densities, and having a BMI of 35 or more are significantly contributing to 

the model.  
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Table 4. Rankings of the attributable variables based on the ARD prior 

 

Rank 
Alpha  

(hyper-parameter) 
Variable Risk Group 

1 0.3841 agegrp9 Age group 75-79 

2 0.5550 lastmamm 
Result of last mammogram before the index mammogram 

- False positive 

3 0.6489 density3 Density - Heterogeneously dense 

4 0.6846 density4 Density - Extremely dense 

5 0.8251 bmi4 35 or more 

6 1.3072 agegrp2 Age group 40-44 

7 1.3872 agegrp7 Age group 65-69 

8 1.6989 hispanic Hispanic or not - Yes 

9 1.7403 nrelbc2 
Number of first degree relatives with breast cancer - 2 or 

more 

10 1.9510 hrtYes Current hormone therapy – Yes 

11 2.0528 agegrp10 Age group 80-84 

12 2.0826 bmi2 25-29.99 

13 2.1980 agegrp8 Age group 70-74 

14 2.2112 hrtNo Current hormone therapy - No 

15 2.8161 agegrp6 Age group 65-69 

16 2.9341 bmi3 30-34.99 

17 3.2299 agegrp5 Age group 55-59 

18 3.6520 nrelbc1 Number of first degree relatives with breast cancer - One 

19 3.7138 surgnatural Surgical menopause - Natural  

20 4.2249 agegrp4 Age group 50-54 

21 5.0616 surgsurgical Surgical menopause - Surgical 

22 5.1547 brstproc Previous breast procedure - Yes 

23 5.7224 density2 Density - Scattered fibroglandular densities  

24 7.2989 menopaus Postmenopausal or age>=55 

25 10.1388 agenulli Age at first birth - Nulliparous 

26 10.5538 agegrp3 Age group - 45-49  

27 11.4664 agegreater30 Age at first birth - Age 30 or greater 
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Conclusion 

A breast cancer detection model was introduced using artificial neural network 

theory. With the intention of having a better classification, different types of 

MLPs were developed. These models are trained using the standard and Bayesian 

techniques. The first two models were validated using 10-fold cross validation 

and we have constructed committees for the other models. Finally all MLPs were 

tested on a new set of test data.  

The advantage of Bayesian MLP is that it gives the posterior probabilities 

for classification which can be used as a priori risk of diagnosing with breast 

cancer. The evidence procedure is used for the network regularization along with 

ARD prior. Use of ARD prior did not make any significant difference in the 

accuracy of our optimal MLP. Use of committees also did not show much 

difference in the overall results compared to the single network predictions alone. 

However, this has helped to give a low variance in the predictions. 

The highest accuracy which was obtained from one of the Bayesian MLP is 

about 81% and this is a significant improvement over the other methods which 

used the same set of real data in terms of the discriminative accuracy. ROC curve 

provides information about a model’s classification efficiency. A good 

classification model was obtained for the third and the fifth MLP with more than 

75% area under the ROC curve. The model may be further improved by 

considering more relevant risk factors and more recent data, such as different 

races because ethnicity is one of the significant risk factors that contributes to the 

malignancy of breast cancer (Xu, Kepner, & Tsokos, 2011). 

It was also confirmed that ANN may have an important role in improving 

the accuracy and consistency of medical diagnosis. The proposed approach in 

developing the ANN model is free of assumptions, as opposed to parametric 

regression and hence increases the validity of our findings. 
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