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Fuzzy Data 
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Tehran, Iran 
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The problem of estimating the parameter of Exponential distribution on the basis of type 
II censoring scheme is considered when the available data are in the form of fuzzy 
numbers. The Bayes estimate of the unknown parameter is obtained by using the 
approximation forms of Lindley (1980) and Tierney and Kadane (1986) under the 
assumption of gamma prior. The highest posterior density (HPD) estimate of the 
parameter of interest is found. A Monte Carlo simulation is used to compare the 
performances of the different methods. A real data set is investigated to illustrate the 

applicability of the proposed methods.  
 
Keywords: Type II censoring, fuzzy lifetime data, exponential distribution, Bayesian 
estimation 

 

Introduction 

In life testing and reliability studies, the experimenter may not always obtain 

complete information on failure times for all experimental units. Data obtained 

from such experiments are called censored data. One of the most common 

censoring scheme is Type II (failure) censoring, where the life testing experiment 

will be terminated upon the rth (r is pre-fixed) failure. This scheme is often 

adopted for toxicology experiments and life testing applications by engineers as it 

has been proven to save time and money. Several authors have addressed 

inferential issues based on Type II censored samples; for example, Ng, Kundu, 

and Balakrishnan (2006) discussed point and interval estimation for the two 

parameter Birnbaum-Saunders distribution base on Type II censored samples. 

Balakrishnan and Han (2008) considered inference for a simple step-stress model 

http://dx.doi.org/10.22237/jmasm/1478003280
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from exponential distribution under Type II censoring. Iliopoulos and 

Balakrishnan (2011) studied likelihood inference for Laplace distribution based 

on Type II censored samples. Dey and Kuo (1991) obtained a new class of 

empirical Bayes estimator for exponential distribution parameter from Type II 

censored data. Singh and Kumar (2007) considered Bayesian estimation of the 

exponential parameter under a multiply Type II Censoring scheme. Kundu and 

Raqab (2012) addressed Bayesian inference for Weibull distribution under Type 

II censoring scheme. 

The above research results are based on precise lifetime data. However, in 

real situations, some collected data might be imprecise quantities. For instance, 

the lifetime of a battery may be reported as: ‘about 1000 h’, ‘approximately 

1400 h’, ‘almost between 1000 h and 1200 h’, ‘essentially less than 1200 h’, and 

so on. The lack of precision of such data can be described using fuzzy sets. The 

classical statistical estimation methods are not appropriate to deal with such 

imprecise cases. Therefore, the conventional procedures used for estimating the 

parameter of Exponential distribution will have to be adapted to the new situation.  

In recent years, several researchers considered applying the fuzzy sets to 

estimation theory. Gertner and Zhu (1996) considered Bayesian estimation in 

forest surveys when samples or prior information are fuzzy. Huang, Zuo, and Sun 

(2006) proposed a new method to determine the membership function of the 

estimates of the parameters and the reliability function of multiparameter lifetime 

distributions. Coppi, Gil, and Kiers (1991) presented some applications of fuzzy 

techniques in statistical analysis. Akbari and Rezaei (2007) proposed a new 

method for uniformly minimum variance unbiased fuzzy point estimation. Pak, 

Parham, and Saraj (2013, 2014) conducted a series of studies to develop the 

inferential procedures for the lifetime distributions on the basis of fuzzy numbers. 

However, there are no reports on estimating the parameter of Exponential 

parameter from Type II fuzzy censored data. Hence, the purpose of this study is to 

consider Bayesian estimation of the parameter of Exponential distribution under 

Type II censoring scheme when the lifetime observations are reported in the form 

of fuzzy numbers.  

Below are the main definitions of fuzzy sets and some of the formula: 

 

Definition 1: Let X be a universe set. A fuzzy set A  in X is defined by a 

membership function    0,1
A

x  , where  
A

x , x X  , 

indicates the degree of x in A. 
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Definition 2: A fuzzy subset A  of the universe set X is normal iff 

 sup 1x X A
x  , where X is the universe set. 

Definition 3: A fuzzy subset A
~

 of universe set X  is convex iff 

       1 min ,
A A A

x y x y       ,  , , 0,1x y X     . 

Definition 4: A fuzzy set x  is a fuzzy number iff x  be normal and 

convex on X. 

 

In all of fuzzy types of presentation, LR-type fuzzy numbers are most used 

as in linguistic, decision making, knowledge representation, medical diagnosis, 

control systems, databases. Therefore, we shall focus on the set of LR-type fuzzy 

numbers. 

Suppose that  : 0,1L    and  : 0,1R    be two continuous 

functions with the following properties: 

 

1)        ,   L x L x R x R x    . 

2)    0 1,   0 1L R  . 

3) L and R be decreasing in [0, ∞). 

4)    lim 0,   lim 0
x x

L x R x
 

   

 

Definition 5:  A fuzzy number x  is said to be an LR-type fuzzy number 

if  

 

  

    

    

x

m x
L x m

x
x m

R x m






  
 

 
 

     

  

 

where m characterizes the mean value of x , while α and β are the left and the 

right coefficient of fuzziness, respectively. Symbolically, the LR-type fuzzy 

number is denoted by  , ,x m  . 
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Data, likelihood and parameter estimation 

Consider a generalization of the likelihood function based on Type II censoring 

when the lifetime observations are reported in the form of LR-type fuzzy numbers. 

The Bayes estimate of the unknown parameter will then be obtained using 

suitable conjugate prior of the unknown parameter, and the highest posterior 

density estimation will be discussed. 

Fuzzy lifetime data and the likelihood function 

Suppose that n independent units are placed on a life test with the corresponding 

lifetimes X1,…, Xn. It is assumed that these variables are independent and 

identically distributed as Exponential E (λ), with probability density function 

(pdf)  

 

    ; exp ,  ,  0.f x x x o         (1) 

 

Prior to the experiment, a number r < n is determined and the experiment is 

terminated after the rth failure. Now consider the problem where under the Type II 

censoring scheme, failure times are not observed precisely and only partial 

information about them are available in the form of fuzzy numbers 

 , ,i i i ix m  ,I = 1,…, r, with the corresponding membership functions 

   
1 1 , ,

rx x rx x  . Let the maximum value of the means of these fuzzy numbers 

to be m(r). The lifetime of n - r surviving units, which are removed from the test 

after the mth failure, can be encoded as fuzzy numbers 1, ,r nx x  with the 

membership functions  

 

  
 

 

0   
,    1, , .

1   j

r

x

r

x m
x j r n

x m



  



  

 

The fuzzy data  1, , nx xx =  is thus the vector of observed lifetimes. Then, by 

using Zadeh’s definition of the probability of a fuzzy event (Zadeh, 1968), the 

corresponding observed-data likelihood function can be obtained as 

 

          
1

; exp exp .
i

r
r

xr

i

n r m x x dx    


    
 x   (2) 
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Bayesian estimation 

In recent decades, the Bayes viewpoint, as a powerful and valid alternative to 

traditional statistical perspectives, has received frequent attention for statistical 

inference. Consider the Bayesian estimation of the unknown parameter λ. As 

conjugate prior for λ, we take the Gamma (a, b) density with pdf given by  

 

  
 

 1 exp , 0,
a

ab
b

a
      


  (3) 

 

where a > 0 and b > 0. Based on this prior, the posterior density function of λ 

given the data can be written as follows: 

 

  
       

        

1

1

1

10

exp exp

,

exp exp

i

i

r
r a

xr

i

r
r a

xr
i

n r m b x x dx

n r m b x x dx d

   

 

    

 





 



    
 



    
 



 

x   (4) 

 

Then, under a squared error loss function, the Bayes estimate of any function of λ, 

say g (λ), is  

 

   
          

        

1

10

1

10

exp exp

exp exp

i

i

r
r a

xr
i

r
r a

xr
i

h n r m b x x dx d

E h

n r m b x x dx d

     



    



 





 



    
 



    
 

 

 

x  (5) 

 

Note that (5) can not be obtained analytically; therefore, adopt two 

approximations-Lindley’s approximation and Tierney and Kadane’s 

approximation for computing the Bayes estimate. 

 

Lindley’s approximation 

 

Setting          ln ln ;F L         x , (5) can be rewritten as  
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0

0

.

F

F

h e d
E h

e d





 











x   (6) 

 

Then, by using Lindley’s approximation (see Lindley, 1980), the ratio of the two 

integrals in (6) can be obtained as 

 

   2

11 11 1 1 11 3 11 1

1 1
,

2 2
h h h F h         (7) 

 

where 

 

 
     2

1 11 12
, ,

dh d h d
h h

d d d

   


  
     

 

 
   

1
3 2

3 113 2
, .

F F
F

 


 



  
   

  
  

 

Evaluating all the expressions in (7) at the maximum likelihood estimate (MLE) 

of λ produces the approximation ˆ
Bh  to (6). In this case,  

 

          
1

log log exp .
i

r

x r
i

F r x x dx n r m    


        

 

The MLE of λ, say ̂ , is the solution of the equation 

 

 
     

   
   

1

exp
0.

exp

i

i

r
x

r
i x

x x x dxF r
n r m

x x dx

 

   


    

 





  

 

Now, to apply Lindley’s form in (7), first obtain 

 

   

   

   

   

2
2

11 2
1

ˆ ˆexp exp

ˆ ˆ ˆexp exp

i i

i i

r
x x

i x x

x x x dx x x x dxr

x x dx x x dx
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3

3 3 2
1

2

ˆexp

ˆexp
2

ˆ ˆ ˆexp exp

ˆexp

ˆexp

ˆexpˆexp
2

ˆ ˆexp exp

i

i

i i

i

i

i
i

i

x

r x

i
x x

x

x

x
x

x

x x x dx

x x dx
r

F
x x x dx x x x dx

x x dx

x x x dx

x x dxx x x dx

x x dx x x

 

 

    

 

 

  

   



 
 
 
 

   
         

   
  




 

 















  

   

2

1

ˆexp

i

i

r

i
x

x

x dx

x x dx 



  
  
  
  
  

   
   
   
   






  

 

The approximate Bayes of λ, say ˆ
B , for the squared error loss function is the 

posterior mean of h (λ) = λ, which is by (7) as follows.  

 

 2

11 3 11

1 1ˆ ˆ .
ˆ 2

B

a
b F   



 
    

 
  (8) 

 

Tierney and Kadane’s approximation 

 

Setting W (λ) = L (λ) / n and W* (λ) = [ln h (λ) + L (λ)] / n, the expression in (6) 

can be re-expressed as  

 

   
   

 

*

0

0

ˆ .

nW

nW

h e d

E h

e d





 













x   (9) 

 

Following Tierney and Kadane (1986), (9) can be approximated as the following 

form: 
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1

* 2

* *ˆ exp ,BTg n W W


  


 
   
  

 

  (10) 

where *  and   maximize  *W   and  W  , respectively, and 
*  and   are 

minus the inverse of the second derivatives of  *W   and  W   at *  and  , 

respectively. 

In this case, 

 

  
     

   
1

1 log
1

,
log exp

i

r

r

x

i

k r a b n r m

W
n x x dx

 


 



       
  

  
  
 
 

  (11) 

 

where k is a constant, and  

 

    * 1
ln .W H

n
      (12) 

 

Substituting for (11) and (12) in (10), the Bayes estimate ˆ
BT  of a function 

h (λ) = λ under squared error loss can then be obtained straightforwardly. 

HPD estimation 

The highest posterior density (HPD) estimation is another popular method used 

by the Bayesian perspective. This method is based on the maximum likelihood 

principle; hence, it leads to the mode of the posterior density. The HPD estimate, 

ˆ
H , of λ is obtained by solving the equation 

 
0

 








x
 where  

 

 
 

   

   

   1

exp1
.

exp

i

i

r
x

r
i x

x x x dxr a
b n r m

x x dx

  

   

  
     
  






x
  (13) 

 

However, the solution cannot be obtained explicitly. In the following, Theorem 1 

discusses the existence and uniqueness of the HPD estimate of λ. 
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Theorem 1. Let g (λ) denote the function on the right-hand side of the 

expression in (13). Then the root of the equation g (λ) = 0 exists and is unique.  

 

Proof. From (13) it is easily seen that  lim g





  . Also, note that 

   
1

, 0,
r a

g  


 
    , and consequently 

 

    
1

lim lim 0 0,
r a

g
 

 
 

 
       

 

Therefore, the equation g (λ) = 0 has at least one root in (0, ∞). To prove that the 

root is unique, we consider the first derivative of g, g ('λ), given by  

 

      
2

2 2
1

1
' log exp

i

r

x

i

r a
g x x dx  

 

  
   


    

 

Let u (λ) = exp (– λx) and      exp .
ii xv x x dx     Then g ('λ) can be written 

as  

 

    
2

2 2
1

1
' log

r

i

i

r a
g v 

 

  
  


   

 

It is clearly that u (λ) is a log-concave function of λ, and by the Prekopa-Leindler 

inequality (see Gardner, 2002) vi (λ), i = 1,…, m, are also log-concave in λ. It 

follows that g is a strictly decreasing function w.r.t. λ and hence the equation 

g (λ) = 0 has exactly one solution. 

Because there is no closed form of the solution to the equation (13), an 

iterative numerical search such as Newton-Raphson method can be used to obtain 

the HPD estimate of λ. The second-order derivative form required for proceeding 

with the Newton-Raphson method, is obtained as follows.  

 

 

       

   

   

   

2
22

2 2
1

exp exp1
.

exp exp

i i

i i

r
x x

i x x

x x x dx x x x dxr a

x x dx x x dx

    

     

       
     
      

 


 

x
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Figure 1. Fuzzy information system used to encode the simulated data 

 

 

Numerical Study 

A Monte Carlo simulation study and one example are presented to illustrate the 

methods of inference developed in this paper. First, for fixed θ = 1 and different 

choices of n and r, generated Type II censored samples were generated, say 

x = (x1,…, xr), from the exponential distribution using the method proposed by 

Aggarwala and Balakrishnan (1998). Each realization of x was fuzzified using the 

fuzzy information system (see Pak et al., 2014) shown in Figure 1, corresponding 

to the membership functions 

 

    
1 2

0.25
0.25 0.5,

1 0.25, 0.25

0.5 0.75
0.25 0.5, 0.5 0.75,

0.25 0.25

0 otherwise, 0 otherwise,

x x

x
x

x

x x
x x x x 


 


  

      
 
 




  

 

0

1

0.05 0.25 0.5 0.75 1 1.5 2 3

x

m
e
m

b
e
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h
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 d
e
g
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3 4

0.5 0.75
0.5 0.75, 0.75 1,

0.25 0.25

1 1.25
0.75 1, 1 1.25,

0.25 0.25

0 otherwise, 0 otherwise,

x x

x x
x x

x x
x x x x 

  
    

 
  

      
 
 
 
 

  

 

    
5 6

1 1.25
1 1.25, 1.25 1.5,

0.25 0.25

1.5 1.75
1.25 1.5, 1.5 1.75,

0.25 0.25

0 otherwise, 0 otherwise,

x x

x x
x x

x x
x x x x 

  
    

 
  

      
 
 
 
 

  

 

    
7 8

1.5
1.5 1.75,

0.25 1.75 1.75 2,
2

1.75 2, 1 2,
0.25

0 otherwise.
0 otherwise,

x x

x
x

x x
x

x x x x 


 

  
 

     
 





  

 

Then, the approximate Bayes estimates (via Lindley approximation or Tierney 

and Kadane approximation) and the HPD estimates of λ for the fuzzy sample were 

computed under the assumption that λ has Gamma (a, b) prior, including the non-

informative gamma prior, i.e. a = b = 0, and informative gamma prior, i.e. 

a = b = 2. The average values and mean squared errors of the estimates, computed 

based on 1000 replication, are presented in Tables 1 and 2. 

In viewing the tables, using Lindley approximation or Tierney and Kadane 

approximation for the computation of Bayes estimates gave similar estimation 

results. The performance of HPD estimates are better than the Bayes estimates in 

terms of MSE. Also, the approximate Bayes estimates based on informative prior 

are uniformly better than that of non-informative prior. In all the cases, it was 

observed that as the effective sample size m increases the performances in terms 

of MSE become better. 
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Table 1. Average values (AV) and mean squared errors (MSE) of the Bayes and HPD 

estimates of λ based on non-informative prior (a = b = 0) and for different sample sizes. 
 

n r B̂  BT̂
 Ĥ  

AV MSE AV MSE AV MSE 
20 10 1.081 0.175 1.082 0.175 1.061 0.147 

20 12 1.078 0.156 1.078 0.155 1.057 0.131 

20 15 1.055 0.124 1.030 0.123 1.045 0.115 

30 15 1.092 0.104 1.091 0.104 1.075 0.085 

30 20 1.065 0.096 1.065 0.096 1.052 0.066 

30 25 1.040 0.071 1.041 0.071 1.028 0.048 

50 20 1.051 0.098 1.050 0.098 1.040 0.073 

50 25 1.034 0.055 1.034 0.054 1.026 0.037 

50 35 1.021 0.037 1.021 0.037 1.018 0.029 

 
 
Table 2. Average values (AV) and mean squared errors (MSE) of the Bayes and HPD 

estimates of λ based on informative prior (a = b = 2) and for different sample sizes. 
 

n r B̂  BT̂
 Ĥ  

AV MSE AV MSE AV MSE 
20 10 1.069 0.151 1.068 0.152 1.047 0.129 

20 12 1.059 0.133 1.059 0.132 1.036 0.117 

20 15 1.038 0.105 1.038 0.105 1.030 0.092 

30 15 1.077 0.081 1.076 0.080 1.056 0.070 

30 20 1.051 0.067 1.051 0.067 1.041 0.051 

30 25 1.024 0.052 1.024 0.053 1.017 0.033 

50 20 1.040 0.079 1.041 0.078 1.028 0.056 

50 25 1.019 0.041 1.018 0.041 1.015 0.025 

50 35 1.012 0.020 1.012 0.020 1.007 0.014 

 

Application example 

To demonstrate the application of the proposed methods to real data, consider the 

following life-testing experiment in which n = 22 identical valves are placed on 

test. The unknown lifetime xi of valve i may be regarded as a realization of a 

random variable Xi, induced by random sampling from a total population of 

valves, which is distributed as Exponential by an unknown parameter of λ. A 

tested valve may be considered as failed, or -strictly speaking- as nonconforming, 

when at least one value of its parameters falls beyond specification limits. In 

practice, however, there isn’t the possibility to measure all parameters and are not 

able to define precisely the moment of a failure. So, the observed failure times (in 

100h) are reported in the form of lower and upper bounds, as well as a point 

estimate which are as follows. 
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Data Set: 

 

(20.68, 25.86, 29.73), (22.72, 28.41, 32.67), (24.61, 30.77, 35.38), 

(26.43, 33.04, 37.99), (28.15, 35.19, 40.46), (30.29, 37.87, 43.55), 

(34.32, 42.91, 49.34), (35.51, 44.39, 51.04), (37.80, 47.25, 54.33), 

(41.16, 51.45, 59.16), (42.52, 53.16, 61.13), (43.97, 54.97, 63.21), 

(44.31, 55.39, 63.69), (46.75, 58.44, 67.20), (47.69, 59.62, 68.56), 

(48.09, 60.12, 69.13), (52.27, 65.34, 75.14), (53.65, 67.07, 77.13), 

(60.72, 75.91, 87.29), (63.45, 79.32, 91.21), (65.69, 82.12, 94.43), 

(73.48, 91.86, 105.63). 

 

Each triple is modeled by a triangular fuzzy number 
ix , and is interpreted as 

a possibility distribution related to an unknown value xi, itself a realization of a 

random variable Xi. Randomness arises from the selection of objects from the 

total population of batteries. In contrast, fuzziness arises from the limited ability 

of the observer to describe the moment of a failure using numbers, which is not 

influenced by random factors. Consider Type II censored samples of size 

r = 12, 15, 20 from the above data and compute the estimate of λ using the Bayes 

and HPD procedures under the assumption of non-informative and informative 

priors. All the results are summarized in Table 3. 
 
 
Table 3. Bayes and HPD estimates for application example.  

 

r a = b = 0 a = b = 2 

 
B̂  BT̂

 Ĥ  B̂  BT̂
 Ĥ  

12 0.0118 0.0117 0.0107 0.0136 0.0135 0.0126 
15 0.0141 0.0140 0.0131 0.0158 0.0159 0.0152 
20 0.0163 0.0162 0.0154 0.0181 0.0181 0.0172 

 

Conclusion 

Statistical analysis of exponential distribution under Type II censoring is based on 

precise lifetime data. Precisely reported lifetimes are common when data comes 

from specially designed life tests. In such a case a failure should be precisely 

defined, and all tested items should be continuously monitored. However, in real 

situations these test requirements might not be fulfilled. In these cases, it is 

sometimes impossible to obtain exact observations of lifetime. The obtained 
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lifetime data may be imprecise most of the time. Therefore, a suitable statistical 

methodology is needed to handle these data as well.  

The Bayesian inference for the exponential distribution parameter under 

Type II censoring was addressed when the lifetime observations are fuzzy 

numbers. Based on the results of the simulation study, the HPD procedure 

produces the estimates with smaller MSE than the Bayes estimates. Using the 

informative prior for computing the approximate Bayes estimates provides an 

improvement in the estimates in terms of MSE. 
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