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Estimation of Parameters of Misclassified
Size Biased Borel Distribution

B. S. Trivedi M. N. Patel
Ahmedabad University Gujarat University
Navrangpura, Ahmedabad, India Ahmedabad, India

A misclassified size-biased Borel Distribution (MSBBD), where some of the observations
corresponding to x =c + 1 are wrongly reported as x =c¢ with probability o, is defined.
Various estimation methods like the method of maximum likelihood (ML), method of
moments, and the Bayes estimation for the parameters of the MSBB distribution are used.
The performance of the estimators are studied using simulated bias and simulated risk.
Simulation studies are carried out for different values of the parameters and sample size.

Keywords: Borel distribution, misclassification, size—biased, method of moments,
maximum likelihood, Bayes estimation

Introduction

The Borel distribution is a discrete probability distribution, arising in contexts
including branching processes and queueing theory. If the number of offspring that
an organism has is Poisson-distributed, and if the average number of offspring of
each organism is no bigger than 1, then the descendants of each individual will
ultimately become extinct. The number of descendants that an individual ultimately
has in that situation is a random variable distributed according to a Borel
distribution.
Borel (1942) defined a one parameter Borel distribution as

(1+x)"

: ge ™ 0<0<1,x=123,... (1)
X!

P(X=x)=p(x;0)=

B. S. Trivedi is an Associate Professor in the H. L. Institute of Commerce. Email her at:
bhaktida.trivedi@ahduni.edu.in. M. N. Patel is in the Department of Statistics. Email
them at: mnpatel.stat@gmail.com.
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MISCLASSIFIED SIZE-BIASED BOREL DISTRIBUTION

This distribution describes a distribution of the number of customers served before
a gqueue vanishes under condition of a single queue with random arrival times (at
constant rate) of customers and a constant time occupied in serving each customer.

Gupta (1974) defined the Modified Power Series Distribution (MPSD) with
probability function given by

P (X =x)=a(X)(g(9))x, xeT )

where a(x) >0, T is a subset of the set of non-negative integers, g(0) and f(9) are
positive, finite, and differentiable, and 4 is the parameter.

Hassan and Ahmad (2009) showed the Borel distribution is a particular case
of modified power series distribution (MPSD) with

a(x)=%, g(0)=0e"’, f(6)=¢’ (3)

in (2).

The Borel-Tanner distribution generalizes the Borel distribution. Let k be a
positive integer. If X1, Xo,..., Xk are independent and each has Borel distribution with
parameter 6, then their sum w=x; + X2 +...+ Xk is said to have the Borel-Tanner
distribution with parameters 6 and k. This gives the distribution of the total number
of individuals in a Poisson-Galton-Watson process starting with k individuals in the
first generation, or of the time taken for an M/D/1 queue to empty starting with k
jobs in the queue. The case k = 1 is simply the Borel distribution above.

Here, the M/D/1 queue represents the queue length in a system having a single
server, where arrivals are determined by a Poisson process and job service times
are fixed (deterministic). An extension of this model with more than one server is
the M/D/c queue.

Size-Biased Borel Distribution

Size-biased distributions are a special case of the more general form known as
weighted distributions. Weighted distributions have numerous applications in
forestry and ecology.

Size-biased distributions were first introduced by Fisher (1934) to model
ascertainment bias; weighted distributions were later formalized in a unifying
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TRIVEDI & PATEL

theory by Rao (1965). Such distributions arise naturally in practice when
observations from a sample are recorded with unequal probability, such as from
probability proportional to size (PPS) designs. In short, if the random variable X
has distribution f(x; #), with unknown parameter 6, then the corresponding
weighted distribution is of the form

£ (x,0)= )0 (4)

fw ()]

where w(x) is a non-negative weight function such that E{w(x)} exists.

The size-biased Borel distribution is also derived from the size-biased MPSD
as it is a particular case of the MPSD. A size-biased MPSD is obtained by taking
the weight of MPSD (2) as x, given by

u(0)f(e
") (5)
_b(9(9))
f(6)
where by = xa(x) and f*(0) = w(O)f(6).
Now, by taking
x-1
b, =xa(x)= (E:‘i)! ,u(e)zﬁ, g(0)=0e,1(0)=¢’, 0<O<1 (6)
a size-biased Borel distribution is obtained with p.m.f. given by
— _ (l+ X)X_l x-1 —-6(1+x) _
P(x_x)_me (1-0)e™™, x=123,... (7)

Misclassified Size-Biased Borel Distribution

A dependent variable which is a discrete response causes the estimated coefficients
to be inconsistent in a probit or logit model when misclassification is present. By
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MISCLASSIFIED SIZE-BIASED BOREL DISTRIBUTION

'misclassification' we mean that the response is reported or recorded in the wrong
category; for example, a variable is recorded as a one when it should have the value
zero. This mistake might easily happen inan interview setting where the respondent
misunderstands the question or the interviewer simply checks the wrong box. Other
data sources where the researcher suspects measurement error, such as historical
data, certainly exist as well. It will be shown that, when a dependent variable is
misclassified in a probit or logit setting, the resulting coefficients are biased and
inconsistent.

Assume that some of the values (c + 1) are erroneously reported as c, and let
the probabilities of these observation be a. Then the resulting distribution of the
size-biased random variable X is called the misclassified size-biased distribution.
Trivedi and Patel (2013) have considered misclassified size-biased generalized
negative binomial distributions and parameter estimation. The misclassified size-
biased Borel distribution can be obtained as

p, =P(X =x)
i o
- (1—a)(c+z)°(ae9)”1{0!(19_62 )}1, R
il

where S is the set of non-negative integers excluding integerscandc+ 1,0 <a <1,
0<éf<1l,andx=1,2,3,.... The mean and variance of this distribution are obtained
from the moments of misclassified size-biased MPSD given by Hassan and Ahmad
(2009) as

1 0

M =u =
s (1—9)2+(1—9)

—a(1-0)b,, g e ©)
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TRIVEDI & PATEL

Variance = p,
2+26(1-0)—(2c+1)(1- )’
39-6%) |
- ( 4) + —ab,,9°(1- 0)3 e (10)
(1-9)

x{b,.10°(1-0) e}

Method of Maximum Likelihood Estimation

Let X1, X2,..., Xk be the probable values of the random variable X in a random sample
of misclassified size-biased Borel distribution and n¢ denote the number of
observations corresponding to the value xx in the sample (where k > 0). Thus the
likelihood function L is given by

k

L o H p"
=PRI [ R

i=c,c+1

e (14.(;)°’l (2+c)°(9e‘9) oe? 17 "
—[(ee ) { =) +a - H(l—@)} ] (11)
x[(l—a)(c+2)°(9eQ)M{c!(f_e;)} }

H[ e ){aeege)}l}

where
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MISCLASSIFIED SIZE-BIASED BOREL DISTRIBUTION

_ o) (@)t (2+c) (0e) | [ ge? |
|n|—”c'”{(ee){(01)! T H(W)H

+nIn l(la)(c +2)°(6e 7)™ {C!(lee;)}l]

g

(1+c) y (2+c) (0e™)

(c—1)! c!

In(1-a)+n,cln(c+2)
In6—-n,,,0

c+l c+1

—nccln9n6c0+ncln{ }nclne (12)

-n0+n.In(1-6)+n

+n,,(c+1)In@—-n_,; (c+1)0-n,, Incl-n

i n(-0)+ 3 n {(“1)'”<‘+1>+<i—1)lne }

c+1

—i0-In(i-1)-0+In(1-6)

Let the derivative of In L with respect to « and 6 be zero. The solutions of

olnl =0 and % =0 gives us the ML estimators of « and 6:

oa

ol __ (2+c) (6e) (1+c)°‘1+a(2+c)c(<9e*9) _1+n ()
da °© c! {(Cl)! cl c+l( (13)

@_(1_1jzk:in . a(ZZ!C) (e 9_06_9) —(i"'ljzkln
00 - 0 i-1 i C{(l+c)61 (2+C)C(986)} 0 i=1 i
+a (14)
(c—1)! c!
1 k
1&g
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TRIVEDI & PATEL

Equating 88Inl and olnl
a

to zero, we get

n.(2+c) (6e?)=n_.c(1+c)

a= c(+)(c ) c+1(+) (15)
(2+c) (6e)(n, +n,,)

[%)2 in, +n, {a(zj(cl)j:‘);(ll—g) + (1(_99)} (16)
g g

i=1 i=1

In the equation (16), substituting a from the equation (15), we get an equation
consisting only parameter 6, say g(#) = 0. By solving this equation for & using any
iterative method, we get the solution, known as the MLE of 6. Using this MLE of
6 in (15), we get the MLE of «.

Asymptotic Variance—Covariance Matrix of ML Estimators

The second order derivatives with respect to o and 8 of the likelihood function L
are obtained as below:

2 n (2+c)*(6e )
0 InL:_ o ) ( ) Ny (17)

oa” {C(1+C)H+a(2+c)c(6’6’6)}2 (1-a)

LN (2+0) e’ (1-0){c(1+0)")

" 5 (18)
00a {c(1+ c)c_1 +a(2+c) (Qe’g )}
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MISCLASSIFIED SIZE-BIASED BOREL DISTRIBUTION

’InL (-1 1-26 X
DY — n+| —— n.
00" (ejz | ( JZ

na(2ro)e’ {(2-0)[c(a+c) " +a(2+c) (6e”)])

{c(1+ ) +a(2+c) (06 )}2

(19)

na(2+c) e’ fe” (1-0) a(2+c)}
{c(1+ ) +a(2+c) (¢9e’9)}2

Using the above equations, the asymptotic variance covariance matrix X of
MLE is obtained from the inverse of the Fisher information matrix

B 2 2
_E 0 InZL E o°InL
00 00«

2 2
_E o°InL _E 0 In2L
I oada oa ]

1(0,a)= (20)

That is

v(6) cov(8,a) . . -
Z:Lov(e,a) v(a) } SE(@)z (0),SE(a)=4v(a) (21)
Method of Moments

The mean and variance of the misclassified size-biased Borel distribution are

, 1 0
Mean=y, = >+ 1-0)

(1-9)

—a(1-0)b,, g™ (22)

C
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Variance =,
2+20(1-6)~(2c+1)(1-6)°
39-6%) |
- (—4)+ —ab,,g°(1-0) e 23)
(1-0)

X [bC+l g°(1-6)" e‘”}

The recurrence relation of row moments of the misclassified size-biased Borel
distribution is

9o m(ui —c')g"th,,
g’ 06 fu

+ g, (24)

4 —
ur+l -

where g(6), f(6), (), and by are as per (6). By taking different values of r, different
row moments are obtained. Taking r = 1 will obtain the second row moments of the
misclassified size-biased Borel distribution.

, gaw  (m-c)egb,,
My = —>+a
g o6 fu

+(p)’ (25)

Solving (22) and (25) for o and 6 yields moment estimators of a and 6.
The explicit form cannot be obtained for the moment estimators but, by the
method of iteration, the solution for the equations may be obtained.

Asymptotic Variance—Covariance Matrix of Moment Estimators

Denote p; by Hi(0, &) and ), by H2(6, @), i.e.

1, 0
(1-0) (1-0)

H,(0,a)= ) (26)

C

and

:ga_},ti_i_a (“1 _Cl)gH1 D1

2
' 27
g 00 fu +(],t1) (27)
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Then, the asymptotic variance—covariance matrix of moment estimators & and &
are given by

!

V=A"E(A)
v(é) cov(é,&) (28)

where the matrix A is

oH, O0OH,
A_| 00 ba |_[a a (29)
oH, O0OH, a, a,
00 O«
and
2=[ v(m) cov(mzzm;)Hau au} 30)
cov(mj,m;) v(mj) G, Oy
where

! ! 2
VvVim’ :m r=1.2
(mp) =2l vy

cov(m;,m;)=@, rzs=12

and m! is the r'" sample raw moment of the MSBPL distribution, i.e.

I
mr:Ein
i=1
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Bayes Estimation

The ML method, as well as other classical approaches, is based only on the empirical information provided by the data.

However, when there is some technical knowledge on the parameters of the distribution available, a Bayes procedure

seems to be an attractive inferential method. The Bayes procedure is based on a posterior density, say n(a, 6 | x), which

is proportional to the product of the likelihood function L(«, € | X) with a prior joint density, say g(a, ), representing the

uncertainty on the parameters values. Assume before the observations were made knowledge about the parameters a and

6 was vague. Consequently, the non-informative vague prior m1(a) = gi(a) = 1 is applicable to a good approximation.
The non-informative priors of « and 6 are

n(a)=g(a)=1 (31)
m,(0)=g,(0)=1 (32)
Hence, the joint prior of & and « is given by

(33)

If L is the likelihood function indexed by a continuous parameter ® = (6, a) with prior density g(é, a), then the
posterior density for @ is given by
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s
s
—
—
<
N—"
«
—
|
D
~
o
S
o
)

| (0e7) 1+c)™  (2+c) (6e’) |
{1,_1[ ﬁe%_ [((c—i)! e c!( ] (=)
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Using the result given by Gradshtein and Ryzhik (2007, p. 347),

| Be@e/ | } [(“C)C ra <2+C);< WT (1-a)*
n(0]x)=

% (n ) (2 1 -1 e
Zg( j j( (;;j) {((: _Ci)! } BiosninPunr @y +Luty +2:-1)

(35)

where

Q(y+Lu+y+2-n)=1+

(u+y+2)L 11 p+y+2)(m+y+3 V) (u+r7+2)(m+y+3)(m+y+4)

2
(7 +)(r+2)(r+3)(r+4) [ j
(u+7+2)(m+y+3)(m+y+4)(m+y+5)( 4! e

ﬂ(—_v}( (r+1)(r+2) ( ,7} (7+1)(y+2)(y+3) (_::,73j
-7

where
=30 (- I=NX-1)+], u=Yn-N, 77=—sz:ni(i+l)j+ ,}: N(R+1)+ | (36)

From (35), the marginal posterior of o will be
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:|.+C)C_1 (2+C)C (96_6)

I

+a
cl!

(c-1)! } (1-a)™

déo

nC

(2+c)’

c-1

(1+c)

] (c!)’
_a)nmi(

j=0

n

C

J

)

e

aj(2+c)Cj

Ng—J
:| 'B(nc+1+1xJ+1)ﬁ(,t1+l,y+1)(D(7/+1;,u+}/+2;—7])

(1+c)

c-1

ne—j
} ﬂ(,qul,erl)CD(}/+1;,u+7+2;—77)

(c-1)!

c

(2+c)°j

)

J

(c)’

(c)

From (37), the Bayes estimate of « is given by

(1+ c)c'l |

(c-1)! |

Ne—J

37)

ﬂ(nc+1+l~j+l)ﬂ(#+l,;/+1)q) (7/ + 19 H+y+ 2, —77)

(1+c)™

S|
(c—n!} Py ®(r + Ly +2:-n)

da

Ne

-]

ﬁ(nml,ju)ﬂ(m,m)@ (7/ +Lu+y+2, —;7)
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' (c —1)! ﬂ(nc+1+l:j+2)ﬂ(/t+l,y+l)q)(}/ +Lu+y+ 2;—77)

=] 1)’
_BU) (e 1 4 (38)
() (2+¢) | (L+c) | ' ‘
U @) | e | PPl @ity 2o)
Similarly, from (35), the marginal posterior of & will be
1
n(9|x)=jn(a,6’|x)da
0
k i) et | (1+C)C_l (2+C)C(6’e_9) * .
9 4 1_ el
1) ) [(c—l)! S
:J” n ) (2+¢)’| (1+c)” " e
0 L
j—o[ JJ (C!)j [ (C—l)! } ﬂ(”c+1+1~i+1)’8(ﬂ+1,7+1)®(7/+1’u+7+2’_'7)
Ko ) cj c-1 Ne=]
PPN z;g&[(zi:ﬂ-“*l))ﬂ} & (n, (2+c)J (1+c)
0 (1 H) JZ(; J (C!)j (C—l)! ﬂ(”c+1+1-j+1)
(39)

. =
. (n,)(2+c)’ (1+c)°_1 _ .
JZ(;(JJ (ct)’ {(c—l)! Bt iPunrm®(r +Lp+y +25-1)

From (39), the Bayes estimate of 4 is given by
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1
Oss = [ Om(6]x)dO
0

koo T n Cj Sk
Hz.k i(iI-1)+] (1 H)Z _H[(zizlni(Hl))H} - ( jCJ(2+C.)J {(1+C) :l 'B(nc+1+1,i+1)

_jg i) (e | (c-1) N
- _ —
© (@ o) s
jo( j) (ct)’ { (c-1)! BB, @y +Lp+y +25-1)

Ne 2+C 1+c c1 e

0( j | ) [((C_])_)I ] ﬂ(nc+1+1,j+1)'8(u+1,7+2)q)(7+2§ﬂ+7+3;—77)

i= .
i E (40)

n.—J
x (n)(2+c¢)? | (1+¢)
Lo[ Jj (C!)j { (C—l)! ﬁ(“wl*l’i*l)ﬂ(wlyﬁl)@(7+1;'u+7+2;_77)

where y, i, and # are as given in (36) above.
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Simulation Study

One thousand random samples, each of size n, were generated by using Monte
Carlo simulation with different choices of sample size n, 6, a, and value of c =1
from the misclassified size-biased Borel distribution defined in equation (8). Using
these different values of sample size n, 6, and o, we calculated the simulated risk
(SR) and simulated bias of estimators « and 9 by the method of MLE, method of
moments, and Bayes estimation. The simulated results are shown in Tables 1 and
2. The SR is defined as

Conclusion

A comparison was made between different methods of estimation for the
parameters of the misclassified size-biased Borel distribution. From Table 1 and 2,
it was found that the method of maximum likelihood estimator works better
compared to the moment estimator and the Bayes estimator on the basis of SR. As
sample size increases, SR of both parameters of all three methods decreases. For
fixed misclassification error a, as 0 increases, the SR of « and 4 decreases in the
case of maximum likelihood estimation, moment estimation method, and Bayes
estimation. For fixed values of # and sample size n, as « increases, there is not much
difference in the SR of a as well as §. At the same time, if these values were
compared in context of sample size, observe that, for a fixed value of 8 and as a
increases, the SR of a and @ decreases in most of the cases with the increase in
sample size. As sample size increases, the bias in o and 0 decreases in the case of
all the three methods.
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Appendix A

Table 1. Simulated risk of ML, moment, and Bayes estimators for different values of a, 6,
and sample size n

ML Moment Bayes
6 a n SR(6) SR(a) SR(6) SR(a) SR(0) SR(a)
0.03 0.12 20 0.070621 0.687617 0.070009 0.730376 0.428511 0.731791
50 0.017214 0.662598 0.070000 0.716240 0.366045 0.722317
90 0.028486 0.576466 0.070000 0.661494 0.342946 0.729741
0.15 20 0.086849 0.637623 0.090139 0.712136 0.428910 0.774369
50 0.018903 0.615088 0.070000 0.695215 0.366122 0.695103
90 0.016796  0.386507 0.070000 0.649579 0.343211 0.675911
0.20 20 0.072757 0.600000 0.075005 0.681954 0.428803 0.683406
50 0.022814  0.489319 0.070000 0.668798 0.365955 0.653836
90 0.022814  0.489319 0.070000 0.668798 0.365955 0.653836
0.06 0.12 20 0.040157  0.409082 0.042393 0.606705 0.408054 0.659958
50 0.012628 0.391981 0.040017 0.591911 0.349603 0.628596
90 0.015325 0.280505 0.040019 0.524187 0.327791 0.610602
0.15 20 0.034921 0.525708 0.042064 0.564374 0.407451 0.595577
50 0.032482 0.237705 0.040083 0.559160 0.348794  0.565870
90 0.030247  0.194459 0.040000 0.508564 0.327905 0.567689
0.20 20 0.041125 0.453903 0.041515 0.533885 0.408379 0.554755
50 0.031410 0.319943 0.040203 0.521217 0.350368 0.546684
90 0.029152 0.212999 0.040016 0.476619 0.328233  0.531593
0.09 0.12 20 0.031714 0.386623 0.034880 0.413639 0.392743  0.556575
50 0.028941 0.338622 0.029383 0.376251 0.338557 0.558982
90 0.003557 0.010874 0.012466 0.336422 0.320139  0.556492
0.15 20 0.040798 0.301392 0.043413 0.409123 0.392115 0.556858
50 0.023699 0.105444 0.025690 0.347586 0.339796 0.539688
90 0.020707 0.086850 0.021824  0.321968 0.319821 0.520310
0.20 20 0.032107 0.361397 0.032177 0.415253 0.391115 0.504882
50 0.021050 0.240808 0.024129 0.348901 0.339039 0.499720
90 0.014885 0.214971 0.021792 0.326637 0.319959  0.454457
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Table 2. Simulated Bias of ML, Moment and Bayes estimators for different values of a, 6,
and sample size n

ML Moment Bayes
6 a n Bias(6) Bias(a) Bias(6) Bias(a) Bias(6) Bias(a)
0.03 0.12 20 0.070474 0.691185 0.070010 0.699012 0.428432 0.696161
50 0.026334 0.571479 0.070000 0.637222 0.365951 0.619558
90 0.016826  0.555057 0.070000 0.558062 0.342872  0.528030
0.15 20 0.084899 0.613982 0.070120 0.694661 0.428820 0.668716
50 0.017858 0.506054 0.070000 0.684802 0.366023 0.641862
90 0.012158 0.374220 0.070000 0.647191 0.343131 0.604162
0.20 20 0.072757 0.357243 0.070005 0.688818 0.428718 0.667923
50 0.020000 0.348958 0.070000 0.662306 0.365868 0.659111
90 0.002144  0.292983 0.070000 0.622817 0.343073 0.657824
0.06 0.12 20 0.046324 0.193095 0.041704 0.575521 0.407688 0.649596
50 0.042542 0.146035 0.040018 0.550282 0.349271 0.623053
90 0.035325 0.080505 0.040017 0.545392 0.327534 0.622236
0.15 20 0.059598 0.334418 0.041511 0.557115 0.407108 0.685204
50 0.051860 0.290584 0.040073 0.502591 0.348482  0.600330
90 0.015826 0.263941 0.039999  0.482067 0.327645 0.600231
0.20 20 0.058381 0.366643 0.041210 0.422684 0.408050 0.583953
50 0.043795 0.205674 0.040177 0.377713 0.349991 0.569713
90 0.039152  0.202999 0.040012 0.351268 0.327979 0.568386
0.09 0.12 20 0.024845 0.190314 0.018532  0.223233 0.391976 0.542166
50 0.005821 0.282052 0.013171 0.233392 0.337880 0.551094
90 0.003557 0.010874 0.011603 0.210933 0.319659 0.552079
0.15 20 0.040859 0.167709 0.017899 0.196935 0.391373 0.552278
50 0.021317 0.008981 0.013323 0.191992 0.339088 0.538764
90 0.020707 0.008685 0.011186 0.191486 0.319373 0.535741
0.20 20 0.025665 0.115874 0.016674 0.193710 0.390411  0.499345
50 0.019843 0.071383 0.012421 0.183469 0.338378 0.491407
90 0.015508 0.021350 0.011075 0.175713 0.319515 0.490788
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