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General introduction

1

IntRoductIon

Lifestyle factors are modifiable behaviors, including someone’s diet, smoking habits, al-
cohol consumption, physical activity, and others. It has been shown that these lifestyle 
factors are associated with disease risk [1]. For example, high salt intake, the lack of 
physical activity (sedentary behavior), being a smoker, and/or heavy alcohol consump-
tion are associated with a wide range of health outcomes, including most non-commu-
nicable diseases (NCDs) [1, 2]. NCDs, also known as chronic diseases, are the leading 
cause of death worldwide [3]. The risk factors leading to NCDs can be categorized as 
genetics, physiological, environmental, and lifestyle factors. Substantial advances have 
been made in the diagnoses and treatment of these diseases; nevertheless, their preva-
lence continues to increase worldwide. Hence, it would be important to not only focus 
on patients that already have a disease but also on disease prevention. This highlights 
the importance of more in depth research investigating the underlying mechanisms 
of disease risk factors, and subsequently to disease onset. It is impossible, for now, to 
change someone’s genetic information and also the environmental exposures are not 
always easy adaptable. Therefore, the impact of lifestyle behavior should have a more 
prominent role in NCD-related research. Most often, lifestyle information is studied us-
ing information obtained via subjective measurements like self-reported questionnaires 
or interviews. To better understand the lifestyle-related effects on disease, new and/or 
improved objective measurements are required to overcome any possible discrepan-
cies. Additionally, it is not yet clear via which molecular mechanism these lifestyle fac-
tors affect disease onset. It has been shown that the interplay between environmental 
and lifestyle factors together with genetics direct the dynamic epigenome [4]. For that 
reason, epigenetics has been proposed as a possible mechanism linking lifestyle to 
disease risk, possibly via altering gene expression (Figure 1). The integration of genetic, 
epigenetic, and gene expression information while studying disease risk might be the 
solution to disentangle these complex interplays (Figure 1). Moreover, epigenetic 
variation determined by lifestyle factors may provide a suitable resource to develop 
biomarker for predicting such lifestyle factors from human biological material, which 
eventually could become useful in various areas of medical and non-medical research 
and applications, even for investigative purposes in forensics [5].

1.1 genomics and gene expression
1.1.1 Genomics
The human genome consists of the complete set of nuclear deoxyribonucleic acid (DNA), 
the inheritable blueprint for life that together holds the information for cell function 
activity [6]. The total DNA consist of ~3.2 billion base pairs with a >99.5% similarity 
between any two individuals. With the completion of the 1000 Genomes Project, more 
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than 88 million variants in the DNA sequence were discovered. On average, there is a dif-
ference of 4.1 to 5 million sites between any typical genome and the reference genome, 
making any person unique [7]. Monozygotic twins are the only exception to this as they 
share the same DNA sequence. Changes in the DNA sequence can occur in the form of 
single nucleotide polymorphisms (SNPs) or structural variations, including deletions, 
duplications, copy-number variants, insertions, inversions, and translocations [8]. 
Depending on the location of the DNA variation, a variant can affect gene function in 
the form of protein truncation, peptide-sequence alteration, and by altering regulatory 
regions, such as promoters, enhancers, or transcription factor binding sites [7].

Alterations in the DNA sequence can lead to the susceptibility and onset of disease; 
therefore, they are of great interest in disease studies [6, 9, 10]. Due to advances in 
SNP microarray technology development, it became possible to identify genotype 
information for hundreds of thousands SNPs with a single array. These genotype data 
can subsequently be used in polygenic disease studies, in which SNPs in several genes 
play a role. A commonly used approach to investigate these diseases is via genome-wide 
association studies (GWAS), in which the obtained genotypes across the genome from 
participants with the disease of interest are compared to those of non-diseased par-
ticipants in a hypothesis-free approach to identify disease-related genetic variants [11].

1.1.2 Gene expression
The DNA sequence contains genes that are used as a template during the transcription 
process, in which a complementary single-stranded ribonucleic acid (RNA) strand is 
formed (Figure 2) [12, 13]. The complete set of RNA transcripts (transcriptome) reflects 
the gene expression pattern that varies across tissues [14, 15]. The nuclear DNA sequence 
contains around 20,000 protein-coding genes that are transcribed into messenger RNA 

 Figure 1. the conceptual relationship between lifestyle factors, multi-omics layers, and health outcomes. Lifestyle 
factors are associated with multi-omics layers, including epigenetic markers, gene expression levels, and to some extent 
the genetic sequence. Lifestyle factors are also associated with several diseases, including most non-communicable dis-
eases (NCDs), possibly via alterations in the multi-omics layers.



15

General introduction

1

(mRNA) and subsequently, translated into a protein (Figure 2) [12, 13]. As proteins direct 
the activities of cells and functions of the body, changes in gene expression might have 
severe consequences for disease risk. The complete transcriptome is investigated for its 
disease association using a hypotheses-free approach with transcriptome-wide associa-
tion analysis (TWAS). In TWAS, the transcriptome between participants with a disease is 
compared to non-diseased participants to identify disease-related genes. Genetic muta-
tions in the coding regions could affect the gene translation into proteins (Figure 2), 
while a mutation in the non-coding regions could affect the gene transcription process 
[14]. Therefore, when a SNP is associated with a disease, the expression of the host gene 
that contains the SNP could be further investigated for its association with the disease 
of interest.

1.2 the epigenome and epigenetic mechanisms
1.2.1 The epigenome
Besides due to the effect of DNA variation, gene expression can also be altered via 
epigenetic mechanisms on both the transcriptional and translational levels. Epigenetic 
mechanisms change the gene transcription and translation without alterations in the 
DNA sequence [16]. Epigenetics functions in a tissue- or cell-specific manner by control-
ling stable repression of genes not required in specific cell types [17, 18]. In this line, 
epigenetics is an important regulator in mammalian development mechanisms, includ-
ing X-chromosome inactivation, differentiation of pluripotent stem cells, mediating of 
allele-skewed gene expression, such as differential allele expression, and allele-specific 
gene expression, such as imprinting [17-21]. The epigenetic markers studied in this 
thesis include the microRNAs and DNA methylation markers.

 
Figure 2. From dnA sequence to protein. Nuclear DNA contains protein-coding genes that are transcribed into messenger 
RNA (mRNA) and subsequently translated into a protein. During transcription, a variation in the DNA sequence (highlighted 
with blocks) results in an altered mRNA sequence. The translation of the altered mRNA sequence can subsequently lead 
to a different amino acid in the protein chain. For example, the reference mRNA sequence “GUA” codes for the amino acid 
“Val”, while the mutated sequence “GGA” codes for “Gly”.
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1.2.2 MicroRNA biogenesis and gene expression regulation
The transcripts that do not possess any protein-coding capacity, the non-coding (nc) 
RNAs, include epigenetic markers that play an important role in the post-transcriptional 
as well as translational coordination of gene expression [22-25]. So far, the best-char-
acterized ncRNA is the class of microRNAs (miRNAs), which have gained widespread 
attention as important modulators of different biological processes. MiRNAs can be 
encoded from the introns of protein-coding genes, long non-coding transcripts, and the 
chromosomal regions between two genes: the intergenic regions [26-28]. MiRNAs are 
transcribed in the nucleus into primary miRNA (pri-miRNA) and subsequently cleaved 
into a hairpin precursor miRNA (pre-miRNA) that is then exported into the cytoplasm 
[28-31]. Here, the loop structure is cleaved of the pre-miRNA, resulting in a ~22bp 
double-stranded miRNA. After dissociation of the miRNA, the passenger strand is de-
graded and the guide strand (the mature miRNA) is fused into the RNA-induced silencing 
complex (RISC), together with Dicer, TRBP, PACT, and Argonaute (Ago) proteins [22, 28]. 
This RISC complex interacts with the 3’-untranslated region (3’UTR) of target mRNA. 
The “seed” sequence is the core of the mature miRNA (nucleotides 2 to 7-8, from the 
5’ end). Perfect complementarity between this region and the 3’UTR sequence of the 
target mRNA will result in site-specific cleavage of the mRNA [22, 28, 32], while imperfect 
complementarity will repress translational and/or mRNA destabilization (Figure 3) [28, 
33-35]. Alterations in DNA methylation patterns or variation in miRNA-related sequences 
can lead to changes in the miRNA’s biogenesis, secondary structure, free-binding energy, 
and expression, leading to phenotypic changes [36-45]. MiRNAs are selectively sorted 
into extracellular vesicles, including exosomes and microvesicles, providing them a 
stable form for cell secretion to nearby or distant targets (Figure 3) [46]. Thus, miRNAs 
are also found in extra cellular fluids, including plasma, making them easily accessible 
and a possible target for disease biomarkers [47, 48]. The expression of these circulating 
miRNAs could be obtained in an individual manner or a transcriptome-wide approach 
using arrays for disease testing [49].

A more novel approach to identify potentially important miRNAs is via the use of pub-
licly available GWAS statistics data [50]. In this context, the genomic position of human 
miRNAs is obtained using publicly available databases, including FANTOM5 [40], miR-
Base database [51], and ProMiR II [52], and SNPs located in miRNA-related sequences via 
the dbSNP database [53]. By means of publicly available GWAS meta-analysis summary 
statistics, it is possible to identify the association for these miRNA-related SNPs with 
several disease traits.

1.2.3 DNA methylation and gene expression
Another epigenetic regulator is DNA methylation, the most studied epigenetic mecha-
nism, in which DNA methyltransferases (DNMTs) transfer a methyl group (-CH3) from 
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S-Adenosyl methionine to the 5’ position of carbon in cytosines (C) neighboring guanine 
(G) (Figure 4). These sites are referred to as CpG sites (CpGs); 5’-Cytosine-phosphate-
Guanine-3’ [54]. Such a methyl group can affect DNA accessibility for the RNA poly-
merase during the transcription process, resulting in pre-transcriptional alteration of 
gene expression [55]. CpGs associated with changes in gene expression are referred 
to as expression quantitative trait methylation (eQTM). Methylation of CpGs located in 
the promoter, enhancer, or the transcription start site usually silences gene expression; 
conversely, hypomethylation in these regions is generally associated with increased 
transcription (Figure 4) [17]. Therefore, when testing their association with gene expres-
sion, most studies focus on CpGs located in these regions. Due to the importance of 
DNA methylation in regulating crucial aspects of the genome’s function, it is extensively 
studied for its association with complex traits. Experimental samples contain several 
cells in which a single CpG site can be either methylated or not. The proportion of a CpG 
methylated in a sample can be measured using DNA methylation arrays and is used as 
a quantitative trait [56]. Changes in DNA methylation levels at independent CpGs are 
tested for their association with disease, using candidate CpG approaches or large-scale 
epigenome-wide association studies (EWAS) [57].

 

Figure 3. miRnA biogenesis and target mRnA interaction. MiRNAs are transcribed from a miRNA gene in the DNA se-
quence into primary miRNA (pri-miRNA). The pri-miRNA is cleaved into a hairpin precursor miRNA (pre-miRNA) and ex-
ported into the cytoplasm, where the loop structure is cleaved of. After dissociation of the miRNA, the mature miRNA is 
fused into RISC, which interacts with the 3’UTR of the target mRNA. Perfect complementarity between the miRNA “seed” 
sequence and the mRNA 3’UTR sequence results in mRNA cleavage, while imperfect complementarity will repress transla-
tional and/or mRNA destabilization. MiRNAs are secreted from cells sorted into extracellular vesicles to nearby or distant 
targets.
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1.3 dnA methylation-based lifestyle inference
1.3.1 Objective measures for lifestyle factors
The dynamic epigenome is directed by alterations in the genome and by exposure to 
different environmental factors [4], such as a person’s lifestyle habits like tobacco smok-
ing habits and alcohol consumption, but also the exposure from one’s surrounding. 
Smoking is the most studied modifiable lifestyle factor. Tobacco smoking, second-hand 
exposure, and chewing combined is the second-leading risk factor globally for attrib-
utable deaths, accounting for 15.4% (95% CI = 14.6%–16.2%) of all deaths in 2019 [1]. 
Moreover, alcohol consumption is another important modifiable lifestyle factor that is 
a major risk factor for disease development. Alcohol consumption was estimated to be 
the leading risk factor for those aged 25–49 years and the eight-leading risk factor in 
all men, accounting for 2.07 million (95% CI = 1.79–2.37) deaths, and the 14th-leading 
risk factor in women, accounting for 374 thousand (95% CI = 298–461) deaths globally 
in 2019 [1]. Lifestyle information, including smoking and alcohol consumption, is often 
studied as the main exposure for disease risk or as a confounding factor for adjustment. 
However, most studies collect lifestyle data using self-reported questionnaires, which 
are prone to error, usually underreporting negatively viewed lifestyle factors such as 
smoking and alcohol consumption [58]. Therefore, an accurate biomarker that could 
infer this information would be helpful for health care providers and researchers to 
complement, or even replace, self-reported questionnaires.

Blood-based toxicological tests exist for both smoking and alcohol consumption; 
however, they come with several limitations, including short half-time, low prediction 

 

Figure 4. dnA methylation and gene expression. DNA methylation refers to the addition of a methyl group (-CH3) to CpG 
sites. DNA methylation is performed by DNA methyltransferases (DNMTs) that transfer the methyl group from S-Adenosyl 
methionine (SAM). DNA accessibility for the RNA polymerase can be affected by the presence of such methyl group result-
ing in altered gene expression.
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accuracies and/or solely assessing recent and excessive exposure [59-62]. A more recent 
proposed mechanism for lifestyle inference, including smoking and alcohol consump-
tion, is DNA methylation. Several large cohort studies already implemented DNA meth-
ylation measurements in their data collection procedures due to its possible association 
with health outcomes. Therefore, compared to standard blood-based toxicological 
tests, implementing a DNA methylation-based prediction model would not result in 
extra costs and would, thus, have a large benefit for cohort studies.

1.3.2 DNA methylation-based inference of smoking habits
Several EWAS studies have already identified hundreds of CpGs associated with smok-
ing habits [63-81]. The largest EWAS to date was conducted by Joehanes et al. [82], 
implementing a large-scale meta-analysis employing 15,907 participants embedded in 
16 cohorts. In total, 2,623 CpGs were differentially methylated between smokers and 
never smokers (P< 1×10−7). Also, a few studies have already explored the possibility to 
infer smoking habits using DNA methylation [64, 83-89]. These currently available DNA 
methylation-based prediction models come with several limitations, including small 
sample size, limited validation, exclusion of categories in the models, and/or utilizing 
large numbers of CpGs. In particular, Philibert et al. [84] obtained an AUC of 0.99 using 
only the methylation levels of cg05575921 (AHRR), employing 35 non-smokers and 26 
smokers. Similarly, Endo et al. [88] obtained an AUC of 0.96 using a DNAm rate cut-off 
point (58.96%) for cg23576855 (AHRR) for current smoking using 19 never smokers, 7 
former smokers, and 7 current smokers. Although both studies provide high AUCs, the 
use of very small sample size questions the reliability of the obtained prediction accura-
cies, which needs to be established from much larger data.

Smoking prediction models using subsets of categories were developed that will be 
applicable in certain settings. For instance, Shenker et al. [83] focused on distinguishing 
former smokers from never smokers obtaining an AUC of 0.82 (95% CI = 0.64–0.99) in 
the test set (N= 81) and 0.83 (95% CI = 0.70–0.96) in the validation set (N=180). Similarly, 
Zhang et al. [85] used cotinine levels, DNA methylation levels of cg05575921 (AHRR), a 
methylation score, and their combination with cotinine. Discriminating current smokers 
from never smokers obtained for all methods in the validation set (N=500) AUCs ≥0.96, 
while distinguishing former from never smokers resulted in an AUC of 0.54 for cotinine, 
0.78 for cg05575921, and 0.83 for the methylation score. Although models using subsets 
of the categories could be helpful in certain settings, it is important to note that for a 
prediction model to be applicable to the general population it would need to include all 
smoking categories.

A few studies have obtained high accuracies while employing a large number of CpGs. 
For example, Elliot et al. [64] conducted a DNA methylation-based smoking score using 
183 CpGs previously associated with smoking status [66], that can identify smokers with 
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100% sensitivity and 97% specificity in Europeans (N=95). Similarly, Mc Cartney et al. 
[89] used 233 CpGs to distinguish current from never smokers, obtaining an AUC of 0.98 
(95% CI = 0.97–1.0). A large marker set might result in a higher chance of missing values 
in one or more of the markers due to the strict quality controls implemented in cohort 
studies. For example, Elliot et al. [64] used only 183 CpGs out of the 186 CpGs previously 
identified by Zeilinger et al. [66] as the three additional CpGs did not pass quality control 
measures. Also, studies often include a limited sample size, which might result in model 
overfitting when too many predictive markers are included [90].

1.3.3 DNA methylation-based inference of alcohol consumption
Several studies have conducted EWASs on alcohol consumption, alcohol use disorder, 
and alcohol withdrawal [91-101]. The largest EWAS to date was done by Liu et al. [102], 
employing 9,643 participants of European ancestry identifying 363 CpGs (P< 1×10−7) 
associated with alcohol consumption in grams/day. This study also developed alcohol 
prediction models for four alcohol consumption categories: heavy drinker, at-risk drink-
ers, light drinkers, and non-drinkers. Out of 361 CpGs (P< 5×10−6, N= 6,926), 144 CpGs 
and three subsets (78, 23, and 5 CpGs) obtained high prediction accuracies inferring 
subsets of the four alcohol categories. A major limitation of the study was the lack of 
independent validation of the obtained prediction models. Unique marker-weights 
were used during the external replication phase rather than the weights obtained in the 
model building phase. Another limitation of the study is the use of subsets of the four 
alcohol categories. In particular, in the model distinguishing heavy drinkers from non-
drinkers, only data from heavy and non-drinkers were used while excluding the data 
from participants categorized as light and at-risk drinkers.

Similar to the smoking models, Philibert et al. [101] and Endo et al. [88] developed 
alcohol consumption prediction models using a small sample size including 343 and 33 
participants, respectively. Also, McCartney et al. [89] developed a model to distinguish 
light-to-moderate drinkers (N=745) from heavy drinkers (N=150) using 450 CpGs. This 
emphasizes the need for the development of a validated and precise prediction model 
including all possible categories for smoking habits and alcohol consumption based on 
a finite set of DNA methylation markers.

1.3.4 Lifestyle inference as an application in forensic investigations
Although not yet established, molecular biomarkers for lifestyle factors that allow infer-
ring such factors from human biological materials could be helpful in forensic casework, 
particularly for investigative purposes to find unknown perpetrators of crime who in 
principle cannot be identified with forensic DNA profiling [5]. Forensic DNA profiling is 
comparative in nature and uses a set of highly polymorphic autosomal short tandem 
repeats (STRs) [103-105]. In forensic cases, these STR profiles are obtained from bio-
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logical samples collected at crimes scenes and compared to the STR profiles of suspects 
or profiles of known offenders stored in national forensic DNA databases. However, in 
cases where no match is found, because the perpetrator is not amongst the known case 
suspects and is not in the forensic DNA database, comparative DNA profiling fails in 
identifying a perpetrator. In such case, lifestyle information of an unknown perpetrator 
inferred from a biological trace left behind at a crime scene could help narrowing down 
the suspect pool by further detailing the currently considered DNA-predicted externally 
visible characteristic information on age, bio-geographic ancestry, and appearance [5, 
106, 107], thereby providing a very different application of predictive epigenetics with 
benefit to society outside the field of medicine and public health.

1.4 Risk factors for non-communicable diseases
1.4.1 Smoking, epigenetics, and cardio-metabolic traits
Smoking is a major risk factor for disease development, including for non-communicable 
diseases (NCDs) [2]. Smoking attributes to one in six of all deaths resulting from NCDs 
[2]. Cardiovascular disease (CVD) accounts for the largest number of deaths from the 
NCDs with an estimated 17.8 million (95% CI = 17.5–18.0) deaths [3]. Smoking is a major 
risk factor for development of CVD and the cardio-metabolic traits, major biological risk 
factors of CVD [108, 109]. The cardio-metabolic traits include insulin resistance, impaired 
glucose tolerance, hypertension, intra-abdominal adiposity, and dyslipidaemia; defined 
as increased low-density lipoprotein (LDL), decreased high-density lipoprotein (HDL), 
and/or increased triglyceride concentrations [110, 111]. Substantial advances have been 
made in the diagnoses and treatment of these biological risk factors; nevertheless, their 
numbers continue to increase worldwide. Also, the exact molecular mechanisms linking 
smoking to the cardio-metabolic traits and CVD is still unclear. The understanding of 
this mechanism would provide a better insight into the disease etiology. This highlights 
the importance of more in-depth research investigating the underlying mechanisms of 
smoking that lead to these biological risk factors, and subsequently, to disease onset.

Over the recent years, great progress has been made in identifying the independent 
genetic markers associated with the cardio-metabolic traits in large consortiums 
[112-122]. Using hypothesis-free GWAS, changes in the DNA sequence have been 
found explaining a fraction of the variance in coronary artery disease and the cardio-
metabolic traits [112-122]. Not all identified genetic variants affect protein sequences 
but can possibly affect gene regulation via regulatory mechanisms. In this line, changes 
in gene expression, DNA methylation levels, and miRNAs are also associated with the 
cardio-metabolic traits and smoking habits [82, 123-137]. Besides the great progress in 
identifying markers in the independent omics-fields, far less studies have investigated 
the integration of different omics layers. Multi-omics studies can limit passive correla-
tions and provide a more comprehensive view of disease biology.
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1.4.2 Missing variance explained for bone mineral density variation
Another highly prevalent NCD is osteoporosis, which is the most common bone disease 
affecting one in three women and one in five men above 50 years of age, with more 
than 200 million patients with osteoporotic hip fractures worldwide [138, 139]. Osteo-
porosis is characterized by reduced bone mass, disruption of bone micro-architectural, 
deterioration of bone tissue, with a subsequent increase in bone fragility, resulting in 
an increased risk of fractures [140, 141]. The decline in bone mass and prevalence of os-
teoporosis increase with age, especially in postmenopausal women [142]. Bone mineral 
density (BMD) measurements are used as a diagnostic proxy to assess osteoporosis risk 
in the clinical field [143]. BMD is the amount of bone mass per unit volume (volumetric 
density, g/cm3) or per unit area (areal density, g/cm2). Osteoporosis is diagnosed if the 
BMD measured by dual X-ray absorptiometry is more than 2.5 standard deviations below 
the age sex-matched mean [144, 145].

Osteoporosis is a highly heritable and complex polygenic disease. Twin and family 
studies reported high heritability (H2 = 0.5–0.8) for both osteoporosis and BMD [146, 
147]. Using GWAS, changes in the DNA sequence have been identified in association 
with BMD, including femoral neck, lumbar spine, and forearm BMD [148-150], as well 
as sex-specific associations of genetic variants with BMD [151, 152]. So far, 518 loci are 
identified in association with BMD, explaining 20% of its variance [153]. Further research 
is needed to investigate the additional of the explaining variance, possibly via epigenetic 
markers.

AIm oF tHIs tHEsIs And outLInE

The overall aim of this thesis is to investigate epigenetic mechanisms as possible bio-
markers for disease risk, as a possible mediator between lifestyle factors and disease 
risk, and for inferring lifestyle factors from human materials (Figure 5).

chapter 2 of this thesis investigates the possibility of developing lifestyle prediction 
models using DNA methylation markers (blue line in Figure 5). Specifically, chapter 
2.1 focuses on validating previously published methods and markers that were used to 
develop a DNA methylation-based prediction model for alcohol consumption. chapter 
2.2 aims to develop a DNA methylation-based prediction model for smoking habits us-
ing a finite set of CpGs. Specifically, I develop five prediction models able to establishes 
someone’s smoking status, including 1) current vs. non-smokers, 2) current vs. former 
vs. never-smokers, 3) pack-years in current smokers, 4) cessation time in former smok-
ers, and finally, a model that can predict 5) lifetime smoking habits including pack-years 
in current smokers vs. cessation time in former smokers vs. never smokers.
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chapter 3 aims to investigate the possibility of epigenetic alterations as a mechanism 
linking smoking status to cardio-metabolic traits (red lines in Figure 5). Specifically, I 
test the association between smoking-related changes in DNA methylation and gene 
expression and the association between these changes and cardio-metabolic traits.

chapter 4 focuses on identifying miRNAs that are associated with health outcomes 
(green line in Figure 5). In chapter 4.1, I use a multi-omics approach including previ-
ously published large-scale GWAS data, DNA methylation, and miRNA expression data 
to identify miRNAs associated with cardio-metabolic traits. In chapter 4.2, I study the 
association between genetic variants in miRNA-related sequences and BMD using previ-
ously published large-scale GWAS data. Then, I investigate the potential target genes and 
pathways that may mediate the function of identified miRNAs in bone tissue and BMD.

Finally, in chapter 5, I give an overview of the main findings of this thesis, discuss 
methodological issues, and examine the implications of the results.

studY PoPuLAtIon

chapter 2.1 of this thesis used data from five cohort studies embedded in the Biobank-
based Integrative Omics Study (BIOS) consortium [154]; the Rotterdam Study [155], a 
population-based prospective cohort study. The Rotterdam Study was initiated in 1990 
and includes middle-aged and elderly participants living in the Ommoord district in Rot-
terdam, the Netherlands. In total, 14,926 participants were enrolled until 2008 during 
three separated recruitment periods; Cohort on Diabetes and Atherosclerosis Maastricht 
(CODAM) [156], consisting of a selection of 547 subjects from a larger population-based 
cohort including participants of Caucasian descent of 40 years of age and older with 
an moderately increased risk of developing cardio-metabolic diseases; the Netherlands 
Twin Register (NTR) [157], established in 1987 including 52% of all Dutch twin-pairs 
born between 1987 and 2017 translating to an enrolment of around 120,000 twins and 
a roughly equal number of their relatives with a total of 255,729 registered participants 

 
Figure 5. overview of the included study aims in this thesis. In this thesis, I investigate DNA methylation markers for 
lifestyle inference (blue line). Also, I study the impact of smoking-related changes in DNA methylation and gene expression 
on cardio-metabolic traits (red lines). Moreover, I examine the role of epigenetic markers in relation to health outcomes 
(green line).
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as of 2019; Leiden Longevity Study (LLS) [158], includes long-lived siblings of European 
descent together with their offspring and their offspring’s partners including a total of 
944 long-lived siblings from 421 families, together with 1,671 of their offspring and 744 
partners; and Prospective ALS Study Netherlands (PAN) [159], a population-based study 
including patients of 15 year and older that diagnosed with suspected, possible, prob-
able or definite ALS according to the El Escorial criteria and control samples with a total 
of 3,200 participants as of 2016. In addition, we used data from the Cooperative Health 
Research in the Region of Augsburg (KORA)-F4 study [160]. The KORA-F4 study (examined 
2006-2008) is a seven-year follow-up study of the KORA-S4 survey (examined 1999-2001) 
conducted in 3,080 participants living in the region of Augsburg, Southern Germany. 
The external validation of this chapter used data from the Study of Health in Pomerania 
(SHIP)- Trend [161], the second cohort from SHIP including 4,420 participants aged 20 to 
81 years at baseline in 2008; TwinsUK [162], established in 1992 to recruit monozygotic 
and dizygotic same-sex twins. All subjects are Caucasian females and ascertained to be 
free from severe disease at sample collected. In total, more than 13,000 twin participants 
between 16 to 98 years old are included from all regions across the United Kingdom; we 
included additional, non-overlapping participants from the Rotterdam study [155].

chapter 2.2 used data from six cohort studies embedded in the Biobank-based Inte-
grative Omics Study (BIOS) consortium [154]; the Rotterdam Study [155]; CODAM [156]; 
NTR [157]; LLS [158]; PAN [159]; and LifeLines DEEP [163], a sub-cohort of 1,461 partici-
pants from the LifeLines cohort [164]. The external model validation was conducted in 
data from the KORA-F4 study [160], SHIP-Trend [161], and the Generation R study [165], 
a population-based prospective birth-cohort study from fetal life onwards, conducted 
in Rotterdam. In total, 9,778 mothers living in Rotterdam with a delivery date from April 
2002 until January 2006 were enrolled in the study.

chapter 3 used data from the Rotterdam Study [155] in the discovery phase and data 
from the KORA-F4 study [160] in the replication phase.

chapter 4.1 used GWAS summary statistics data from large consortiums, including 
from the Genetic Investigation of Anthropometric Traits (GIANT) consortium [112, 113], 
the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) [114-118], 
the Diabetes Genetics Replication And Meta-analysis (DIAGRAM) consortium [119], the 
Global Lipids Genetics Consortium (GLGC) [120], the Coronary ARtery DIsease Genome 
wide Replication and Meta-analysis plus The Coronary Artery Disease Genetics consor-
tium (CARDIoGRM plusC4D) [121], and the International Consortium for Blood Pressure 
(ICBP) [122]. In addition, data from the Rotterdam study [155] were used.

chapter 4.2 used GWAS summary statistics data from the GEnetic Factors for OSteo-
porosis (GEFOS) Consortium [166], data from the Rotterdam study [155], and data from 
84 non-related postmenopausal ethnic Norwegian women (50–86 years) consecutively 
recruited at the Lovisenberg Deacon Hospital, the Out-patient Clinic, Oslo [167].
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AbstRAct

background: Information on long-term alcohol consumption is relevant for medical and 
public health research, disease therapy, and other areas. Recently, DNA methylation-
based inference of alcohol consumption from blood was reported with high accuracy, 
but these results were based on employing the same dataset for model training and test-
ing, which can lead to accuracy overestimation. Moreover, only subsets of alcohol con-
sumption categories were used, which makes it impossible to extrapolate such models 
to the general population. By using data from eight population-based European cohorts 
(N=4677), we internally and externally validated the previously reported biomarkers and 
models for epigenetic inference of alcohol consumption from blood and developed new 
models comprising all data from all categories.

Results: By employing data from six European cohorts (N=2883), we empirically tested 
the reproducibility of the previously suggested biomarkers and prediction models via 
ten-fold internal cross-validation. In contrast to previous findings, all seven models 
based on 144-CpGs yielded lower mean AUCs compared to the models with less CpGs. 
For instance, the 144-CpG heavy versus non-drinkers model gave an AUC of 0.78±0.06, 
while the 5 and 23 CpG models achieved 0.83±0.05, respectively. The transportability 
of the models was empirically tested via external validation in three independent Euro-
pean cohorts (N=1794), revealing high AUC variance between datasets within models. 
For instance, the 144-CpG heavy versus non-drinkers model yielded AUCs ranging from 
0.60 to 0.84 between datasets. The newly developed models that considered data from 
all categories showed low AUCs but gave low AUC variation in the external validation. For 
instance, the 144-CpG heavy and at-risk versus light and non-drinkers model achieved 
AUCs of 0.67±0.02 in the internal cross-validation and 0.61-0.66 in the external validation 
datasets.

conclusions: The outcomes of our internal and external validation demonstrate that 
the previously reported prediction models suffer from both overfitting and accuracy 
overestimation. Our results show that the previously proposed biomarkers are not yet 
sufficient for accurate and robust inference of alcohol consumption from blood. Overall, 
our findings imply that DNA methylation prediction biomarkers and models need to be 
improved considerably before epigenetic inference of alcohol consumption from blood 
can be considered for practical applications.
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IntRoductIon

Alcohol consumption is a modifiable lifestyle factor associated with morbidity and 
mortality worldwide [1]. It was estimated to be the seventh-leading risk factor for 
disability-adjusted life-years (DALYs) and deaths in 2016, accounting for 5.2% (95% CI 
4.4–6.0) of deaths globally [1]. Various diseases are caused or strongly influenced by 
excessive alcohol consumption, often in a dose-dependent manner, such as different 
forms of cancer, various liver diseases, cardiovascular disease, epilepsy, and unipolar 
depressive disorder [2].

Recent alcohol consumption is detectable by breathalyzers or direct measurement of 
the alcohol concentration in blood and urine; however, such measurements only pro-
vide information on few hours since the last alcohol consumption. For example, ethanol 
can be detected in urine within ten to twelve hours after the last drink, but not later [3]. 
Blood-based toxicological tests for alcohol consumption are also available, which are 
based on direct or indirect biomarkers. A direct biomarker is the result from ethanol 
metabolism or its reaction with other substances in the body, including ethyl glucuro-
nide (EtG), ethyl sulfate (EtS), and phospholipid phosphatidylethanol (PEth). Indirect 
biomarkers are derived from cellular processes that undergo changes as a response to 
alcohol consumption, including carbohydrate-deficient transferrin (CDT), mean corpus-
cular volume (MCV), aspartate-aminotransferase (AST), alanine aminotransferase (ALT), 
and gamma-glutamyl transferase activity (GGT) [4, 5]. It is important to note that these 
direct and indirect biomarkers are specifically useful to determine the extreme cat-
egories, including excessive alcohol consumption or abstinence, and for recent alcohol 
consumption [5]. For example, CDT can distinguish excessive alcohol consumption of on 
average >50–80 gram ethanol per day over a period of 2 weeks [4]. In contrast, there are 
no reliable biomarkers available that can determine overall alcohol consumption habits 
like to distinguish heavy and at-risk drinkers from light and non-drinkers, or drinkers 
from non-drinkers and that are informative for alcohol consumption for longer periods 
of time. Therefore, due to the limited progress in previous alcohol biomarker research, 
information on long-term alcohol consumption is typically still collected using self-
reports, although they are known to be unreliable [6]. Accurate and reliable biomarkers 
that reflects habitual alcohol consumption over months and years are needed to better 
diagnose and treat alcohol-related diseases and for objective exposure assessment in 
studies on alcohol consumption and health [7].

DNA methylation has been proposed as a biomarker for the detection of lifestyle fac-
tors in general [8] and several studies have already shown that alcohol consumption 
is associated with changes in DNA methylation levels in particular [9-12]. A few stud-
ies have also explored the possibility of epigenetic inference of alcohol consumption 
from blood [12-15]. A large benefit from epigenetic-based inference is the increasing 
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availability of DNA methylation information in study participants, as DNA methylation 
is extensively studied for its association with diseases. The most extensive study inves-
tigating the epigenetic association and inference of alcohol consumption was done by 
Liu et al. [12]. In this study, an epigenome-wide association study (EWAS) meta-analysis 
on alcohol consumption was conducted in 9643 individuals of European ancestry from 
blood-derived DNA [12]. The authors identified 363 CpGs significantly associated 
(P<1×10−7) with alcohol consumption levels used as a continuous variable (grams/day). A 
meta-analysis was performed for prediction marker discovery in a subset of 6926 partici-
pants of European ancestry, which identified 361 CpGs (P<5×10−6). The study also reports 
impressively high prediction accuracies, expressed as area under the curve (AUC) esti-
mates, for DNA methylation-based prediction models for categorical alcohol consump-
tion based on sets of 5, 23, 78, or 144 CpG markers plus age, sex, and BMI. These models 
include pairwise combinations of four alcohol consumption categories with the highest 
AUC obtained for the models with the extreme categories. For instance, the reported 
144-CpG model showed discrimination of heavy drinkers versus (vs.) non-drinkers with 
an AUC of 0.91-1.0 (an AUC of 1.0 means completely accurate inference) in the discovery 
dataset and all four replication cohorts as well as 0.86-1.0 for heavy drinkers vs. light 
drinkers [12]. The authors demonstrated increase in AUC with increased number of CpG 
predictors included in the models.

The high prediction accuracies reported by Liu et al. [12] were questioned based on 
methodological grounds by Hattab et al. [16]. Liu et al. were particularly criticized for not 
having used the coefficients from the discovery dataset to determine prediction accura-
cies in the replication datasets, but instead, they re-estimated these coefficients in each 
replication cohort using the same dataset for model training and testing. Hattab et al. 
[16] concluded that the prediction accuracies published by Liu et al. represent overesti-
mates. However, Hattab et al. based their conclusions entirely on simulated data instead 
of empirical data. In a subsequent study, Yousefi et al. [17] found only half of the alcohol 
consumption variance explained by the DNA methylation markers in their independent 
data, compared to the explained variance values reported by Liu et al. [12]. In addition, 
Yousefi et al. [17] generated DNA methylation-derived scores using the coefficients made 
available by Liu et al.; based on these coefficients, they obtained much lower AUCs for 
the same models as reported by Liu et al. For instance, for adults at midlife, the reported 
AUCs were between 0.48 to 0.57 for distinguishing heavy drinkers from non-drinkers and 
AUCs between 0.55 to 0.57 for heavy drinkers vs. light drinkers. Although the Yousefi 
et al. study used empirical data, an important limitation of the study is their relatively 
small sample size, comprising only of 14 heavy drinkers, 67 at-risk drinkers, 748 light 
drinkers, and 54 non-drinkers.

Another source for the Liu et al. [12] AUCs putatively reflecting overestimations is their 
use of category subsets, and therewith participant subsets, in their prediction modeling 
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approach. For instance, for estimating AUC for heavy drinkers vs. non-drinkers, Liu et 
al. only used data from heavy and non-drinkers thereby excluding the data from light 
drinkers and at-risk drinkers. Such use of partial data in prediction modeling is expected 
to result in overestimated prediction outcomes compared to a model that would include 
all available categories. Moreover, models that exclude participants based on their non-
considered categories cannot be applied to the general populations where people with 
the excluded categories exist but can never be inferred correctly because their category 
was excluded from the model.

In the current study, we firstly aimed at replicating the association between alcohol 
consumption and the 363 CpGs previously identified by Liu et al. [12], using data from 
2042 independent participants from five cohorts [18-22]. Then, by using a total of 4677 
individuals from eight European cohorts [18-25], we aimed to thoroughly validate the 
DNA methylation biomarker sets and prediction models for the epigenetic inference 
of alcohol consumption from blood previously used by Liu et al. [12]. In addition, we 
trained and validated two new models including all alcohol consumption categories.

REsuLts

study populations and data sets
For replicating the association between alcohol consumption and the 363 CpGs previ-
ously reported by Liu et al. [12], we used data from 2042 individuals of five European 
cohorts as part of the Biobank-based Integrative Omics Study (BIOS) consortium [18-22, 
26].

For prediction model building and internal validation, we employed a total dataset of 
2883 Europeans, including the 2042 individuals from the BIOS consortium [26] together 
with 841 participants from The Cooperative Health Research in the Region of Augsburg 
(KORA) study (F4) [23]. Only participants with complete alcohol consumption data and 
DNA methylation data of all 144 predictive CpGs were included. Notably, there is no 
overlap between these data and those used by Liu et al. [12] in their prediction marker 
discovery EWAS. This makes our model building dataset completely independent from 
that of Liu et al. The KORA data included here were previously used by Liu et al. for 
prediction replication analysis; thus, its use for model building here provides no data 
dependency problem.

For external validation, we applied data from three European cohorts not applied 
for model training and internal validation: i.e., participants from the Rotterdam Study 
(sub-cohort RS-III-1) [18] (N=648) not included in the BIOS consortium, from the Study of 
Health in Pomerania (SHIP)-Trend cohort (N=433) [24], and two datasets from the Twin-
sUK Study, TwinsUK (N=713) and TwinsUK2 (N=442) [25]. The TwinsUK2 (N=442) dataset 
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comprises a subset of the TwinsUK (N=713) participants but with re-processed DNA 
methylation dataset and a different alcohol consumption collection method (Additional 
file 1: Supplementary Methods). Of note, the TwinsUK and RS-III-1 data were previously 
used by Liu et al. [12] in their prediction marker discovery EWAS that identified the 361 
associated CpGs (P<5×10-6). Testing the inference ability of these 361 alcohol associated 
CpGs by Liu et al. was solely conducted in the Framingham Heart Study data [27], which 
identified the 5, 23, 78, and 144 CpG marker sets used for prediction modelling by Liu et 
al. and therefore here as well. However, since these data were used in the initial marker 
discovery EWAS, we cannot exclude an overestimation effect in our prediction accuracy 
estimates obtained from these two cohorts (see below).

An overview of the datasets included in each analysis step of our study is provided 
in Figure 1, their characteristics are summarized in table 1 and described in detail in 
Additional file 1: Supplementary Methods.

 

External model validation (N=1794) 

SHIP-Trend (N = 433) TwinsUK (N=713) TwinsUK2 (N=442) RS (N=648) 
RS-III-1

Model building and internal model validation (N= 2883)

RS (N=611) 
RS-II-3 and RS-III-2 CODAM (N=159 NTR (N=617) LLS (N=491) PAN (N=164) KORA (N= 841)

Replication of the 363 CpGs associated with alcohol intake (N=2042)

RS (N= 611)
RS-II-3 and RS-III-2 CODAM (N=159) NTR (N=617) LLS (N=491) PAN (N=164)

Figure 1. use of study populations in each analysis. The 363 alcohol-associated CpGs previously identified by Liu et al. 
were replicated using data from 2042 participants of five cohorts studies embedded within the BIOS consortium. An ad-
ditional 841 participants from the KORA F4 study were combined with these 2042 participants and together comprises our 
model building dataset. The model building dataset was used to train the prediction models and to test the reproducibility 
of the prediction models via internal cross-validation. The transportability of the models was tested in the external valida-
tion phase based on 1794 participants from three cohorts that were independent from the data used for model building 
and internal validation. Abbreviations: CODAM, Cohort on Diabetes and Atherosclerosis Maastricht; KORA, Cooperative 
Health Research in the Region of Augsburg study; LLS, Leiden Longevity Study; NTR, Netherlands Twin Register; PAN, Pro-
spective ALS Study Netherlands; RS, Rotterdam Study; SHIP-Trend, Study of Health in Pomerania-Trend; TwinsUK- The 
TwinsUK Study; TwinsUK2- Subset of the TwinsUK Study.
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Replication of alcohol consumption associations
We aimed at replicating the association between alcohol consumption and the 363 CpGs 
previously identified by Liu et al. (P<1×10-7) [12], using data from the BIOS consortium 
(N=2042), which does not overlap with the Liu et al. data. This analysis revealed success-
ful replication of 106 (29%) of these 363 CpGs after applying the Bonferroni-corrected 
significance threshold of P<1.4×10−4 (0.05/363) and 283 (78%) CpGs based on the uncor-
rected nominal significance threshold of P<0.05. All but one (cg06603309) of the 106 
CpGs replicated after Bonferroni correction showed an inverse relationship with alcohol 
consumption, i.e., lower DNA methylation levels were associated with higher alcohol 
consumption, in line with the findings from the initial discovery EWAS by Liu et al. [12].

The top CpG in the Liu et al. discovery EWAS was cg02583484, annotated to the 
heterogeneous nuclear ribonucleoprotein A1 gene (P=1.50×10-19, β=-0.0004), which was 
replicated in our independent dataset with a P-value of 1.16×10-13 and β= -0.0055. In our 
dataset, this CpG had a methylation range with a minimum DNA methylation beta-value 
of 0.1457 and a maximum of 0.4189. However, this marker was not among the 144 CpGs 
used by Liu et al. for inference and thus was not used by us for prediction validation (see 
below). Out of the 144 predictive CpGs, we replicated 29 CpGs (P<1.4×10−4), which were 

table 1: Dataset characteristics used in model building, internal and external validation.

N Age 
(years), 

mean (SD)

Men
(%)

BMI
mean
(SD)

Alcohol gr/
day, Median 
(min, max)

Non-
drinkers

(%)

Light
drinkers

(%)

At-risk
drinkers

(%)

Heavy
drinkers

(%)

Model building and internal validation dataset

RS-II-3/III-2 611 67 (6) 275 (45) 27.8 (4) 8.6 (1, 57) 0 (0) 545 (89) 52 (9) 14 (2)

CODAM 159 66 (7) 86 (54) 28.9 (4) 7.9 (0, 72) 12 (8) 117 (74) 23 (14) 7 (4)

NTR 617 39 (14) 188 (31) 24.6 (4) 5.1 (0, 69) 195 (32) 348 (56) 44 (7) 30 (5)

LLS 491 58 (6) 231 (47) 25.3 (3) 13.0 (0, 90) 36 (7) 309 (63) 98 (20) 49 (10)

PAN 164 62 (9) 100 (61) 26.0 (4) 11.0 (0, 77) 1 (1) 127 (77) 20 (12) 16 (10)

KORA F4 841 61 (9) 415 (49) 28.0 (5) 7.6 (0, 150) 251 (30) 354 (42) 133 (16) 103 (12)

Total dataset 2883 57 (14) 1295 (45) 26.7 (4) 8.0 (0, 150) 495 (17) 1800 (62) 370 (13) 218 (8)

External validation datasets

SHIP-Trend 433 51 (14) 205 (47) 27.2 (4.1) 3.6 (0, 82) 47 (11) 346 (80) 28 (6) 12 (3)

TwinsUK 713 58 (10) 0 (0) 26.7 (5) 2.3 (0, 101) 187 (26) 423 (59) 67 (9) 36 (5)

TwinsUK2 442 59 (9) 0 (0) 26.6 (5) 5.3 (0, 94) 36 (8) 311 (70) 46 (10) 49 (11)

RS-III-1 648 59.6 (8) 298 (46) 27.7 (5) 6.4 (0, 57) 64 (10) 495 (76) 79 (12) 10 (2)

The total model building dataset was also used for internal ten-fold cross-validation. Abbreviations: BMI- body mass index; 
CODAM- Cohort on Diabetes and Atherosclerosis Maastricht; KORA F4- The Cooperative Health Research in the Region of 
Augsburg study; LLS- Leiden Longevity Study; NTR- Netherlands Twin Register; PAN- Prospective ALS Study Netherlands; 
RS- Rotterdam Study; SD- standard deviation; SHIP- Study of Health in Pomerania-Trend cohort; TwinsUK- The TwinsUK 
Study; TwinsUK2- Subset of the TwinsUK Study. The alcohol categories were defined as; non-drinkers were defined as par-
ticipants with no alcohol consumption; light drinkers with an alcohol consumption of 0< g per day ≤28 in men and 0< g per 
day ≤14 in women; and heavy drinkers with an alcohol consumption of ≥42 g per day in men and ≥28 g per day in women.
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all included in the 144-CpG model, 19 in the 78-CpG model, 6 in the 23-CpG model, and 3 
in the 5-CpG model. A summary of the results is presented in Additional file 2: table s1.

A total of 77 genes were annotated to the 106 replicated CpGs after Bonferroni correc-
tion. Gene ontology enrichment analysis via http://geneontology.org/page/go-enrich-
mentanalysis showed that these 77 genes were enriched in two biological processes. 
The ‘negative regulation of cellular macromolecule biosynthetic process’ included 
enrichment of 16 genes (3.49-fold, FDR = 4.91×10-2) and 25 genes were enriched in the 
‘cellular response to chemical stimulus’ (2.63-fold, FDR = 3.80×10-2).

Internal validation of alcohol consumption prediction models
To test the reproducibility of the seven prediction models reported by Liu et al. [12], 
we performed internal validation in our model building dataset via ten-fold cross-
validation. The CpGs included per marker set and their average DNA methylation 
β-value per alcohol consumption category are presented in Additional file 3: table 
s2. The mean AUC±SD obtained by the ten logistic regression models are denoted as 
‘Internal Validation’ in Figure 2, Additional file 4: Figures s1-s5 and Additional file 
5: tables s3-s9. The highest mean AUC of 0.83±0.05 was obtained for both the 5 and 
23-CpG model for heavy drinkers vs. non-drinkers (Figure 2A and supplemental table 
s3). For the other six models, we obtained for all marker sets an average AUC ≤ 0.75 
in three models and ≤ 0.70 in the other three models (Figure 2). Among all predictive 
marker sets, the lowest AUC of 0.61±0.04 was obtained for the 144-CpG model for light 
drinkers vs. non-drinkers (supplemental table s9 and supplemental Figure s5). In all 
seven prediction models, we obtained lower mean AUCs based on 144-CpGs compared 
to the models with lower numbers of CpG predictors. For example, the 144-CpG model 
for heavy drinkers vs. non-drinkers yielded an AUC of 0.78±0.06 compared to 0.83±0.05 
obtained in the 5 and 23-CpG models (Figure 2A and supplemental table s3). Similar 
results were obtained in the other models, and for some of the 78-CpG models, as shown 
in Additional file 4: Figures s1-s5 and Additional file 5: tables s3-s9. Notably, these 
findings contrasts with that of Liu et al., who reported increased prediction accuracies 
with increased numbers of CpG predictors [12].

External validation of alcohol consumption prediction models
Aiming to test the transportability of the prediction models trained in our complete 
model building dataset (N=2883), we performed external validation using data from 
three European cohorts (N=1794) not considered for model building and internal valida-
tion: the Rotterdam study (RS-III-1), SHIP-Trend, and two datasets from the TwinsUK 
study. The obtained AUCs are denoted as ‘External Validation’ in Figure 2, Additional 
file 4: Figures S1-S5 and Additional file 5: Tables S3-S9. The AUCs obtained from 
external validation varied strongly per model between the external validation datasets 
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and differed with those obtained in the internal cross-validation. For example, the 144-
CpG model for the heavy vs. non-drinkers yielded an AUC of 0.80 in RS and 0.84 in SHIP-
Trend, while in TwinsUK and TwinsUK2 they were considerably lower with 0.68 and 0.60, 
respectively, and the mean AUC in the internal cross-validation was 0.78±0.06 (Figure 
2A and Additional file 5: Tables S3). Similarly, the 23-CpG heavy vs. non-drinker model 
yielded AUCs of 0.81, 0.87, 0.65, 0.61, and 0.83±0.05, respectively. The high variance 

 A 

 
 

B 

 
Figure 2. Epigenetic inference of alcohol consumption from blood based on Liu et al. biomarkers and models. Predic-
tion accuracy for alcohol consumption expressed as Area Under the Curve (AUC) for (A) heavy drinkers vs. non-drinkers and 
(B) heavy drinkers vs. light drinkers using the CpG marker sets from Liu et al. [12]. Data from participants who do not fit the 
inferred categories were excluded from the respective prediction models following the approach used by Liu et al. ‘Inter-
nal Validation’: Mean AUC and SD from internal validation using ten-fold cross-validation in our model building dataset. 
‘External Validation’: AUCs from external validation by applying our models trained in the model building dataset to inde-
pendent data from three external validation cohorts (Rotterdam Study, N= 648; SHIP-Trend, N= 433; and TwinsUK, N= 713 
and N= 442). Based on interview or self-reported information, non-drinkers were defined as participants with no alcohol 
consumption; light drinkers with an alcohol consumption of 0< g per day ≤28 in men and 0< g per day ≤14 in women; and 
heavy drinkers with an alcohol consumption of ≥42 g per day in men and ≥28 g per day in women. Abbreviations: RS- The 
Rotterdam Study; SHIP- Study of Health in Pomerania-Trend cohort; TwinsUK- The TwinsUK Study; TwinsUK2- Subset of 
the TwinsUK Study.
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between obtained AUCs in the different external validation datasets was also observed 
in several other models as shown in Additional file 4: Figures S1-S5 and Additional file 
5: tables s3-s9. The high AUC variance we observed in the external validation between 
datasets indicate non-robust performance of these prediction models, when applied to 
independent datasets.

new models for epigenetic inference of alcohol consumption using all 
categories
Finally, we developed two new models for epigenetic inference of alcohol consumption 
from blood by considering all data from all individuals of all four alcohol consumption 
categories in our prediction models, thereby refraining from excluding categories from 
prediction modeling as was done by Liu et al. [12]. To this end, we used all individuals 
from the model building dataset to build and internally validate via ten-fold cross-vali-
dation the models, as well as all individuals from our external validation datasets to ex-
ternally validate the models. This was done for two different models. Model 1 comprised 
all heavy and at-risk drinkers combined vs. all light and non-drinkers combined. Model 
2 included all heavy, at-risk, and light drinkers combined (i.e., all drinkers no matter the 
level of alcohol consumption) vs. all non-drinkers. The average AUCs ±SDs from internal 
cross-validation in the model building dataset were denoted as ‘Internal Validation’ and 
the four AUCs from the four external validation datasets as ‘External Validation’ (Figure 
3 and Additional file 5: Tables S10 and s11).

Regarding model 1 for inferring heavy and at-risk vs. light and non-drinkers, the (mean) 
AUCs from internal cross-validation and from external validations ranged between 0.67-
0.68 and 0.60-0.70, respectively across all marker sets (Figure 3A and Additional file 5: 
table s10). Regarding model 2 for inferring all drinkers (heavy plus risk plus light) vs. 
non-drinkers, the AUCs from the two validation approaches based on the 5-CpG and 
the 23-CpG models were between 0.54-0.55 and 0.54-0.61, respectively. For the 78-CpG 
and the 144-CpG models, similarly low AUCs were seen in the internal validation, be-
tween 0.55-0.56, with slightly higher AUCs in the external validation datasets, between 
0.57-0.63 (Figure 3b and Additional file 5: Table S11). Thus, compared to the Liu et al. 
models based on an approach that leaves out data, the new models based on all data 
achieved generally lower AUCs, while the AUC variance in the external validation was 
much less pronounced between the datasets than observed for the Liu et al. models 
(Figure 2, Additional file 4: Figures S1-S5, and Additional file 5: Table S3-S9).
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dIscussIon

In this study, we firstly performed replication analysis in an independent dataset of the 
EWAS results on alcohol consumption previously reported by Liu et al. [12], which deliv-
ered Bonferroni-corrected significant replication of close to one-third of the previously 
identified CpGs. Our smaller sample size of 2042 compared to 9642 in the Liu et al. study 
might be the reason why we only replicated one-third of the previously identified CpGs. 

 A 

 
B 

 
Figure 3. Epigenetic inference of alcohol consumption from blood based on newly developed models including all 
categories. Prediction accuracy for alcohol consumption expressed as Area Under the Curve (AUC) for (A) heavy and at-risk 
drinkers vs. light and non-drinkers and (B) heavy, at-risk and light drinkers vs. non-drinkers. In these models, all available 
participants from all categories were included, in contrast to Fig. 2. ‘Internal Validation’: Mean AUC and SD from internal 
validation using ten-fold cross-validation in our model building data set. ‘External Validation’: AUCs from external vali-
dation by applying our model trained in the model building dataset to independent data from three external validation 
cohorts (Rotterdam Study, N= 648; SHIP-Trend, N= 433; and TwinsUK, N= 713 and N= 442). For phenotype definition, see 
legend of Fig 2. Abbreviations: RS- The Rotterdam Study; SHIP- Study of Health in Pomerania-Trend cohort; TwinsUK- The 
TwinsUK Study; TwinsUK2- Subset of the TwinsUK Study.
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However, using the nominal significance threshold (P<0.05), we replicated the associa-
tion of close to 80% of these CpGs.

Secondly, by using data from eight population-based cohorts, we performed in-depth 
validation of the biomarkers and models reported by Liu et al. [12] to infer alcohol 
consumption from blood. Reproducibility assesses the degree to which the model fits 
the real patterns rather than random noise in the data [28]. To test for reproducibility of 
the models, we performed internal model validation by implementing a ten-fold cross-
validation scheme. The heavy vs. non-drinkers model obtained the highest average AUCs 
of the seven models in the cross-validation. Interestingly, the 144 and 78-CpG models 
obtained a lower average AUC than the 5 and 23-CpG models. In addition, in all models 
we observed a higher AUC for the models including less CpGs compared to the 144-CpG 
model and to some extent also for the 78-CpG models. In contrast, Liu et al. reported in-
creased prediction accuracies for models with increased number of CpG predictors [12]. 
Our findings provide evidence that these 144-CpG models are over-fitted and thus, likely 
not reproducible. This increased risk for overfitting by including an increasing number 
of CpGs was also suggested by Hattab et al. [16]. Overfitting of a model is more likely to 
be observed when the ratio of the number of variables to the number of samples is small 
[29]. In this context, Harrell et al. [30] suggested that for generalizable binary models, no 
more than one predictor per ten participants in the smallest outcome category should 
be examined when fitting a regression model. As some of the findings of the analysis 
come from partially fitting to the noise on top of the true signal, noise features may be 
assigned nonzero coefficients due to chance associations with response to the training 
set [31]. Overall, the AUCs we achieved via internal cross-validation for the different 
models and marker sets were considerably lower than those reported by Liu et al. [12]. 
Also, the results obtained in our internal validation were much lower compared to the 
results we obtained when applying the same methods as Liu et al., e.g. training and 
testing the model in the same dataset, in our model building dataset (see Additional 
file 6 for results). This confirms previous conclusions [16] that the prediction accuracies 
reported by Liu et al. represent overestimates.

The transportability of the prediction models was tested by applying the models 
(trained in the model building dataset) to four validation datasets from three cohorts. 
Three models yielded an AUC ≤0.75 in the internal validation and in all four external 
validation datasets across all marker sets. For the other four models, a large variability 
in AUCs was obtained between the different datasets. Overall, in these four models, we 
obtained similar to higher AUCs for the Rotterdam Study and SHIP-Trend compared to 
the internal validation, while both TwinsUK datasets provided lower AUCs than the in-
ternal validation. It is important to note that the datasets from the Rotterdam Study and 
the TwinsUK (N=713) were both included in the EWAS for predictive marker discovery by 
Liu et al. [12]. The use of the same participants here and by Liu et al. could have led to an 
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overestimation of the prediction accuracies. Surprisingly, the AUCs we obtained in the 
TwinsUK (N=713) in the current study are in most models much lower than the AUCs we 
obtain in SHIP-Trend and the Rotterdam study. The results obtained in the Rotterdam 
Study were overall more similar to those obtained by SHIP-Trend. These results suggest 
that the use of the same participant, here and by Liu et al., did not positively impact 
the prediction accuracies obtained in our study. The subset of the TwinsUK (N=442) 
includes re-processed DNA methylation data and a different FFQ-based approach for 
alcohol consumption information. Nevertheless, also in this dataset we obtain lower 
AUCs compared to the Rotterdam Study and SHIP-Trend, with very similar result as for 
the total TwinsUK (N=713) dataset. Notably, the AUCs from external validation were 
generally lower than the AUCs reported by Liu et al. [12] and as the similarly high AUCs 
we obtained from our model building dataset, when applying the same methods as Liu 
et al. (see Additional file 6 for results), providing further evidence that the prediction 
accuracies reported by Liu et al. represent overestimates. This is in line with our conclu-
sion from internal validation and as suggested by Hattab et al. [16].

Yousefi et al. [17] estimated DNA methylation-derived scores using the coefficients 
made available by Liu et al. [12] in participants of the Accessible Resource for Integrated 
Epigenomic Studies (ARIES) parental generation at midlife cohort (N = 1049, mean age = 
50.2 ± 5.4 SD) as discovery dataset. A limitation of the study by Yousefi et al. [17] was the 
relatively small sample size in the higher alcohol consumption categories, with only 14 
heavy drinkers and 67 at-risk drinkers. As a result, the lower AUCs obtained by Yousefi et 
al. [17] compared to Liu et al. [12] could possibly be due to the small sample size rather 
than an accurate representation of the true model prediction accuracies. In the current 
study, however, we have implemented 2883 participants, including 495 non-drinkers, 
1800 light drinkers, 370 at-risk drinkers, and 218 heavy drinkers, with an age range of 
19-87 years (mean age 57.4 ± 13.8 SD). By including more participants, especially in 
the categories with higher alcohol consumption, we overcome this possible sample 
size limitation and thus provide a more reliable representation of the models’ predic-
tion accuracies. Yousefi et al. [17] obtained low AUCs from 0.48 to 0.57 to distinguish 
heavy drinkers vs. non-drinkers and 0.55 to 0.57 for heavy drinkers vs. light drinkers in 
adults at midlife. In our external validation, we obtained AUCs from 0.80 to 0.89 in the 
Rotterdam Study, 0.68 to 0.87 in SHIP-Trend, 0.52 to 0.68 in TwinsUK (N=713), and 0.50-
0.63 in TwinsUK2 (N=442) for distinguishing heavy vs. non-drinkers and 0.72 to 0.84 in 
the Rotterdam Study, 0.71 to 0.89 in SHIP-trend, 0.56 to 0.57 in TwinsUK (N=713), and 
0.52-0.55 in TwinsUK2 (N=442) for heavy drinkers vs. light drinkers. The results in the 
Rotterdam Study and SHIP-Trend are overall higher than those obtained by Yousefi et al., 
while the results obtained in the TwinsUK are very similar to those obtained by Yousefi 
et al. In addition, the high variability in the obtained AUCs in our study and the close to 
random inference obtained by Yousefi et al. [17] study suggest that the tested CpGs are 
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not as suitable as previously suggested for achieving transportable and accurate alcohol 
consumption prediction models.

The exclusion from prediction modelling of data from participants who did not fit the 
inferred categories, as done by Liu et al. [12], means that such models cannot be applied 
to the general population, where individuals with the excluded categories exist and can 
never be inferred correctly because their category was not considered in the prediction 
model. Therefore, for a prediction models to be applicable in cohort studies used in 
epidemiology research, or any practical applications in the clinic and beyond, should 
be designed in data that realistically reflects the general population. For that reason, we 
have developed two additional models in which data from all individuals of all alcohol 
categories were included and validated them internally via cross-validation as well as 
externally in independent datasets. The first model for heavy and at-risk drinkers vs. 
light and non-drinkers provided cross-validated AUCs between 0.67 and 0.68 across all 
four CpG marker sets. These results are close to the lower 95% CI of the 450-CpG based 
model previously developed by McCartney et al. [15], which had an AUC of 0.73 (95% 
CI= 0.69–0.78) to distinguish light-to-moderate drinkers from heavy drinkers. Four CpGs 
overlap between this 450-CpG model and the 23-CpG model: cg00252472, cg06690548, 
cg11613559, and cg12825509. In addition, two more CpGs overlap with the 144-CpG 
model; cg11376147 and cg18032812. In the external validation, we obtained AUCs in 
the range of 0.60-0.70 across all marker sets and all external validation cohorts. In the 
second model, which distinguishes heavy, at-risk, and light drinkers vs. non-drinkers, we 
obtained AUCs at 0.54-0.63 in both internal and external validation. Thus, when applying 
appropriate prediction methodology by not excluding participant data and performing 
external validation, the CpG marker sets reported by Liu et al. [12] yield much lower 
prediction accuracies as compared to the AUCs previously published and obtained here 
based on the previous approach.

Our study has strengths and limitations that should be considered when interpreting 
the results. The main strengths of our study are the use of a large dataset from several 
cohorts with similar numbers for the different categories as Liu et al. [12], and the use of 
four datasets for external model validation. Moreover, our findings agree with a previous 
validation study based on a different methodology [17], while our larger dataset im-
proved the limitations of the limited data used in the previous validation study. The main 
limitation of our study, as well as in the previous studies, is that the alcohol consumption 
information is based on interviews or self-reported questionnaires, which are generally 
considered unreliable in terms of underestimating actual alcohol consumption. Regard-
ing the putative inaccuracy of interviews and self-reported alcohol consumption used 
here as phenotypes, we cannot know how error-prone these reports are. In particular, 
it is possible that heavy drinkers might not be able to or might be hesitant or unwilling 
to accurately recall or report their high alcohol consumption. Also, there is variability 



51

DNA methylation-based inference of alcohol consumption

2.1

in the questionnaires regarding the reference time window. For example, KORA partici-
pants were asked about alcohol consumption in the past few days, which may or may 
not be representative of the participants’ long-term alcohol consumption habits. Also, 
non-drinkers may include lifetime non-drinkers but also sober alcoholics; however, it 
is not yet clear how this could affect the obtained DNA methylation patterns. Because 
all available studies, including the EWAS that identified CpGs associated with alcohol 
consumption, used interviews or self-reported alcohol consumption information, this 
is a general limitation that cannot be easily solved, as methods to empirically measure 
alcohol concentrations are not suitable for estimating long-term alcohol consumption. 
Another source of uncertainty may lie in the calculation for alcohol consumption in 
grams/day, which presents a slight variation in the formula used between the different 
cohorts. The variation in alcohol consumption data collection between the cohorts 
might also play a role in the variance we obtain in the prediction AUCs.

Another shortcoming of our study was the inclusion of only participants from Euro-
pean ancestry. As DNA methylation patterns might differ between populations [32], the 
absence of non-European participants during marker discovery and model building 
might prohibit accurate model transportability to non-European populations. Hence, 
future studies would benefit from a trans-ethnic prediction marker discovery, model 
building, and validation.

Overall, our extensive validation testing of the different CpG sets reported by Liu et al. 
[12] for inferring alcohol consumption from blood demonstrates that using appropriate 
prediction methodology regarding both separating datasets for model building and 
model testing by performing internal cross-validation and external validation, and in-
cluding all alcohol consumption categories and individuals in the prediction modelling, 
yields much lower prediction accuracies and with a high variance between validation 
cohorts for the Liu et al. models as were previously published. This allows us to conclude 
that the currently available DNA methylation predictors for alcohol consumption need 
to be improved considerably before epigenetic inference of alcohol consumption from 
blood can be considered for practical applications in the clinic and beyond. Our study 
implies that, currently, we are far away from epigenetic inference of alcohol consump-
tion from blood in research and practical applications, despite EWASs having already 
delivered hundreds of associated CpGs. Thus, further EWASs on alcohol consumption 
are necessary to increase the number of associated CpGs, including replication stud-
ies for the identified CpGs. Established CpGs replicated in several independent studies 
could provide better predictive markers than CpGs identified in one large meta-analysis. 
These CpGs will need to be carefully tested for their value to improve the low accuracy in 
inferring alcohol consumption from blood achieved with the currently available marker 
sets.
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mEtHods

study populations
This study was embedded within the Biobank-based Integrative Omics Study (BIOS) con-
sortium [26], by including participants from the Rotterdam Study (sub-cohorts RS-II-3 
and RS-III-2) (N=611) [18], Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) 
(N=159) [19], the Netherlands Twin Register (NTR) (N=617) [20], the Leiden Longevity 
Study (LLS) (N=491) [21], and the Prospective ALS Study Netherlands (PAN) (N=164) [22]. 
Additionally, we included 841 participants from The Cooperative Health Research in 
the Region of Augsburg (KORA) study (F4) [23]. External validation was conducted in 
independent samples (i.e., not used for model building and internal validation) from the 
Study of Health in Pomerania (SHIP)-Trend cohort (N = 433) [24], two datasets from the 
TwinsUK Study with overlapping participants; TwinsUK (N=713) and TwinsUK2 (N=442) 
[25], and participants from the Rotterdam Study sub-cohort RS-III-1 (N=648) that are not 
included in the BIOS consortium. Alcohol consumption information was obtained via 
interviews or self-reported questionnaires. Cohort specific data collection and dataset 
characteristics are summarized in table 1 and described in detail in the Supplementary 
Methods (Additional file 1).

Microarray-based DNA methylation quantification
DNA was extracted from whole peripheral blood and analyzed with the Illumina Infinium 
Human Methylation 450 K BeadChip (Illumina Inc, San Diego, CA, USA) or the Infinium 
MethylationEPIC BeadChip (Illumina Inc, San Diego, CA, USA) to obtain the DNA methyla-
tion measurements. Details on cohort-specific methods are provided in Supplementary 
Methods (Additional file 1). The methylation proportion of a CpG site was reported as 
the methylation β-value in the range of 0 to 1.

candidate-cpg association study for alcohol consumption and gene 
annotation
Using the data from the BIOS Consortium (N=2042), we tested the association of the 363 
CpGs previously found to be significantly associated (P<1×10-7) with alcohol consump-
tion [12]. Alcohol consumption levels (grams/day) were right-skewed and contained 
non-drinkers; therefore, the log-transformed alcohol consumption (log (g per day+1)) 
was used as the independent variable. The β-values of the 363 CpGs were included as the 
dependent variable and the analysis was adjusted for age, sex, BMI, batch effects (plate, 
plate location, and cohort ID), and Houseman-imputed white blood cell counts (WBC) 
for CD4T cells, CD8T cells, natural killer cells, B-cells, granulocytes, and monocytes [33]. 
The Bonferroni multiple-test corrected 5% significance level of P<1.4×10−4 (0.05/363) was 
applied. All analyses were performed using the statistical package R, version 3.4.3.
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We obtained the genes annotated to the replicated CpGs using the annotation file 
provided by Illumina and performed Gene ontology (http://geneontology.org/page/
go-enrichmentanalysis) enrichment analysis for these genes.

Validation of the previously published prediction models
The BIOS and KORA DNA methylation data were combined as the model building data-
set (N=2883) using the “ComBat” function [34] (R-package “sva” [35]) to adjust for the 
known batches via an empirical Bayesian framework adjusting for age and sex. Then, 
possible confounders were regressed out using linear regression models, obtaining the 
residuals for each CpG adjusted for age, sex, BMI, batch effects (plate, plate location, and 
cohort ID), and Houseman-imputed WBC (CpG = age+ sex+ BMI+ batch effects+ WBC).

The self-reported phenotypic data on alcohol consumption were categorized accord-
ing to their alcohol consumption levels for which we used the same cut-off categories as 
described by Liu et al. [12], to allow for direct comparison of the models’ performance; 
non-drinkers: participants with no alcohol consumption; light drinkers: participants 
with alcohol consumption of 0< g per day ≤28 in men and 0< g per day ≤14 in women; 
at-risk drinkers: participants with alcohol consumption of 28< g per day <42 in men and 
14< g per day <28 in women; heavy drinkers: participants with alcohol consumption of 
≥42 g per day in men and ≥28 g per day in women.

The alcohol categories used in each model were inferred using the same seven predic-
tion models as previously applied by Liu et al. with heavy drinkers vs. all other categories 
separately, i.e., heavy drinkers vs. (1) non-drinkers, (2) light drinkers, (3) pooled individu-
als of light or non-drinkers, (4) at-risk drinkers, as well as two-category combinations 
between the other categories including (5) at-risk drinkers vs. non-drinkers, (6) at-risk 
drinkers vs. light drinkers, and (7) light drinkers vs. non-drinkers. In all models, the for-
mer category was the ‘cases’ (coded as “1”) and the latter was the ‘control’ group (coded 
as “0”). Selecting a subset of categories in prediction modeling and AUC estimation, as 
was done by Liu et al., may limit the possibility to extrapolate the result to the general 
population. Hence, we replicated this approach solely for outcome compatibility rea-
sons. All seven models were trained for the null model, which only includes age, sex, and 
BMI, and subsequently the null model combined with the residuals of the four CpG sets 
(5, 23, 78, or 144 CpGs). The CpGs included per model and the average DNA methylation 
β-values per category are presented in Additional file 3: Table S2.

Internal and external validation of the previously published prediction 
models
We tested the reproducibility (internal validation) and transportability (external valida-
tion) of the prediction models conducted by Liu et al. [12, 28]. First, we adopted a ten-fold 
cross-validation scheme [36] in which the whole model building dataset (N=2883) was 
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randomly distributed into ten non-overlapping subsets. The logistic regression model 
was trained in a combination of nine subsets (90% of the data), which was then applied 
to the remaining subset (10% of the data) to infer the participants’ alcohol status. This 
method results in ten different training (90%) and testing (10%) sets. We trained the 
seven models in the training sets (90%) using binomial regression analysis with the al-
cohol categories (coded as 1/0) as the dependent variable and age, sex, and BMI without 
(the null model) or with a set of (the residuals of the) CpGs as the independent variables 
(Alcohol category = age + sex + BMI (+ResCpGs5, 23, 78, 144)). For this purpose, the “glm” 
function with “binomial” as family and “logit” as link were used. The models were then 
applied to the test set (10%) using the “predict” function. The prediction performance 
of the models was assessed using “roc” (R-package “pROC”) that calculates the AUC per 
model. This method resulted in ten logistic regression models and consequently, ten 
AUCs from which average values were estimated and standard deviation were obtained.

Secondly, we externally validated the models that were trained in the complete 
model building dataset (N=2883) by testing them in four external validation datasets, 
using the “predict” function. The “roc” function (R-package “pROC”) was again used to 
calculate the AUC per model. The independent cohorts used our previously described 
pre-processing procedure by regressing out the potential covariates. The TwinsUK study 
used a linear mixed model to additionally adjust for twin family structure and zygosity 
using random effects. Also, sex was not included in the pre-processing steps because 
solely women were included in the TwinsUK analysis. Notably, according to the above-
described scenarios, both internal and external validations followed the same approach 
previously applied by Liu et al. [12] in that individuals not fitting the inferred categories 
were excluded from the prediction analysis.

Prediction modeling without excluding categories and data
Finally, we trained as well as internally and externally validated two new prediction 
models comprising all individuals in the prediction modeling, i.e., 1) heavy and at-risk 
drinkers vs. light and non-drinkers and 2) heavy, at-risk and light drinkers (i.e. all drink-
ers no matter how much) vs. non-drinkers. These two models were internally validated 
via ten-fold cross-validation and externally validated in four datasets. As age, sex, and 
BMI are already accounted for in the residuals we solely included the four CpG marker 
sets in these models. The coefficients for these models are presented in Additional file 
7: supplementary table s21.
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suPPLEmEntARY mAtERIAL
Figure legend: Figures s1- s5
Prediction accuracy for alcohol consumption expressed as Area Under the Curve (AUC) using the CpG marker sets from Liu 
et al. ‘Internal Validation’: Mean AUC and SD from internal validation using ten-fold cross-validation in our model build-
ing dataset (6 cohorts, N= 2883). ‘External Validation‘: AUCs from external validation by applying our model trained in the 
model building dataset to data from three external validation cohorts (Rotterdam Study, N= 648; SHIP-Trend, N= 433; and 
TwinsUK, N= 713 and N=442). Based on interview or self-reported information, non-drinkers were defined as participants 
with no alcohol consumption; light drinkers with an alcohol consumption of 0< g per day ≤28 in men and 0< g per day ≤14 
in women; and heavy drinkers with an alcohol consumption of ≥42 g per day in men and ≥28 g per day in women. Abbrevia-
tions: RS- The Rotterdam Study; TwinsUK- The TwinsUK Study; TwinsUK2- Subset of the TwinsUK Study; SHIP- Study of 
Health in Pomerania-Trend cohort

Figure s1. Accuracy of epigenetic inference of heavy drinkers vs. light and non-drinkers using different marker sets.
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Figure s2. Accuracy of epigenetic inference of heavy drinkers vs. at-risk drinkers using different marker sets.

Figure s3. Accuracy of epigenetic inference of at-risk drinkers vs. non-drinkers using different marker sets.
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Figure s5. Accuracy of epigenetic inference of light drinkers vs. non-drinkers using different marker sets.

Figure s4. Accuracy of epigenetic inference of at-risk drinkers vs. light drinkers using different marker sets.
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table legend: table s3- table s11
Prediction accuracy for alcohol consumption expressed as Area Under the Curve (AUC) using the CpG marker sets from Liu 
et al. ‘Internal Validation’: Obtained AUCs using ten-fold cross-validation in the model building data set; ‘External Valida-
tion’: AUCs from external validation by applying our model trained in the model building dataset to data from three exter-
nal validation cohorts (Rotterdam Study, N= 648; SHIP-Trend, N= 433; and TwinsUK, N= 713 and N=442). Based on interview 
or self-reported information, non-drinkers were defined as participants with no alcohol consumption; light drinkers with 
an alcohol consumption of 0< g per day ≤28 in men and 0< g per day ≤14 in women; and heavy drinkers with an alcohol 
consumption of ≥42 g per day in men and ≥28 g per day in women. Abbreviations: RS- The Rotterdam Study; TwinsUK- The 
TwinsUK Study; TwinsUK2- Subset of the TwinsUK Study; SHIP- Study of Health in Pomerania-Trend cohort; ABS- Null 
model including only age, body mass index, and sex.

table s3 Accuracy of epigenetic inference of heavy drinkers vs. non-drinkers using different marker sets.

Marker set

Internal External validation

validation RS SHIP-Trend TwinsUK TwinsUK2

144-CpGs 0.78±0.06 0.80 0.84 0.68 0.60

78-CpGs 0.81±0.06 0.85 0.83 0.66 0.63

23-CpGs 0.83±0.05 0.81 0.87 0.65 0.61

5-CpGs 0.83±0.05 0.89 0.79 0.60 0.58

ABS 0.73±0.05 0.81 0.68 0.52 0.50

table s4 Accuracy of epigenetic inference of heavy drinkers vs. light drinkers using different marker sets.

Marker set

Internal External validation

validation RS SHIP-Trend TwinsUK TwinsUK2

144-CpGs 0.73±0.06 0.72 0.84 0.57 0.53

78-CpGs 0.74±0.04 0.76 0.89 0.57 0.53

23-CpGs 0.74±0.04 0.73 0.85 0.57 0.54

5-CpGs 0.72±0.04 0.84 0.77 0.56 0.52

ABS 0.59±0.07 0.76 0.71 0.57 0.55

table s5 Accuracy of epigenetic inference of heavy drinkers vs. light and non-drinkers using different marker sets.

Marker set

Internal External validation

validation RS SHIP-Trend TwinsUK TwinsUK2

144-CpGs 0.73±0.05 0.74 0.85 0.60 0.54

78-CpGs 0.75±0.07 0.76 0.89 0.61 0.55

23-CpGs 0.73±0.12 0.75 0.85 0.60 0.55

5-CpGs 0.72±0.10 0.86 0.78 0.59 0.54

ABS 0.59±0.08 0.78 0.72 0.58 0.55
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table s6 Accuracy of epigenetic inference of heavy drinkers vs. at-risk drinkers using different marker sets.

Marker set

Internal External validation

validation RS SHIP-Trend TwinsUK TwinsUK2

144-CpGs 0.62±0.06 0.66 0.63 0.51 0.53

78-CpGs 0.62±0.05 0.77 0.72 0.53 0.54

23-CpGs 0.66±0.07 0.82 0.73 0.51 0.60

5-CpGs 0.67±0.05 0.88 0.65 0.48 0.57

ABS 0.66±0.06 0.84 0.58 0.54 0.53

table s7 Accuracy of epigenetic inference of at-risk drinkers vs. non-drinkers using different marker sets.

Marker set

Internal External validation

validation RS SHIP-Trend TwinsUK TwinsUK2

144-CpGs 0.69±0.04 0.67 0.67 0.60 0.68

78-CpGs 0.70±0.06 0.62 0.66 0.60 0.67

23-CpGs 0.73±0.04 0.63 0.55 0.57 0.62

5-CpGs 0.73±0.04 0.57 0.56 0.56 0.57

ABS 0.66±0.06 0.57 0.53 0.52 0.53

table s8 Accuracy of epigenetic inference of at-risk drinkers vs. light drinkers using different marker sets.

Marker set

Internal External validation

validation RS SHIP-Trend TwinsUK TwinsUK2

144-CpGs 0.62±0.05 0.58 0.49 0.59 0.66

78-CpGs 0.64±0.05 0.62 0.49 0.59 0.68

23-CpGs 0.65±0.05 0.65 0.50 0.58 0.69

5-CpGs 0.66±0.07 0.67 0.50 0.60 0.68

ABS 0.58±0.06 0.59 0.57 0.47 0.52

table s9 Accuracy of epigenetic inference of light drinkers vs. non-drinkers using different marker sets.

Marker set

Internal External validation

validation RS SHIP-Trend TwinsUK TwinsUK2

144-CpGs 0.61±0.04 0.59 0.54 0.50 0.52

78-CpGs 0.65±0.04 0.58 0.52 0.51 0.54

23-CpGs 0.66±0.03 0.56 0.51 0.52 0.53

5-CpGs 0.67±0.03 0.56 0.53 0.53 0.52

ABS 0.67±0.03 0.54 0.54 0.53 0.54
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table s10 Accuracy of epigenetic inference of heavy and at-risk drinkers vs. light and non-drinkers using different marker 
sets.

Marker set

Internal External validation

validation RS SHIP-Trend TwinsUK TwinsUK2

144-CpGs 0.67±0.02 0.61 0.66 0.61 0.61

78-CpGs 0.68±0.03 0.65 0.70 0.60 0.65

23-CpGs 0.68±0.04 0.65 0.66 0.60 0.63

5-CpGs 0.67±0.05 0.65 0.66 0.60 0.62

table s11 Accuracy of epigenetic inference of heavy, at-risk and light drinkers vs. non-drinker using different marker sets.

Marker set

Internal External validation

validation RS SHIP-Trend TwinsUK TwinsUK2

144-CpGs 0.55±0.04 0.61 0.62 0.57 0.59

78-CpGs 0.56±0.05 0.61 0.60 0.59 0.63

23-CpGs 0.55±0.05 0.58 0.60 0.58 0.57

5-CpGs 0.54±0.04 0.61 0.54 0.58 0.59

Additional supplemental material for this chapter can be found in the online version 
of the paper via https://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/
s13148-021-01186-3. 
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AbstRAct

Inferring a person’s smoking habit and history from blood is relevant for complementing 
or replacing self-reports in epidemiological and public health research, and for forensic 
applications. However, a finite DNA methylation marker set and a validated statistical 
model based on a large dataset are not yet available. Employing 14 epigenome-wide 
association studies for marker discovery, and using data from six population-based 
cohorts (N=3,764) for model building, we identified 13 CpGs most suitable for inferring 
smoking versus non-smoking status from blood with a cumulative Area Under the Curve 
(AUC) of 0.901. Internal five-fold cross-validation yielded an average AUC of 0.897±0.137, 
while external model validation in an independent population-based cohort (N=1,608) 
achieved an AUC of 0.911. These 13 CpGs also provided accurate inference of current 
(average AUCcrossvalidation 0.925±0.021, AUCexternalvalidation0.914), former (0.766±0.023, 0.699) 
and never smoking (0.830±0.019, 0.781) status, allowed inferring pack-years in current 
smokers (10 pack-years 0.800±0.068, 0.796; 15 pack-years 0.767±0.102, 0.752) and infer-
ring smoking cessation time in former smokers (5 years 0.774±0.024, 0.760; 10 years 
0.766±0.033, 0.764; 15 years 0.767±0.020, 0.754). Model application to children revealed 
highly accurate inference of the true non-smoking status (6 years of age: accuracy 0.994, 
N=355; 10 years: 0.994, N=309), suggesting prenatal and passive smoking exposure hav-
ing no impact on model applications in adults. The finite set of DNA methylation mark-
ers allow reliable and accurate inference of smoking habit, with comparable accuracy 
as plasma cotinine use, and smoking history from blood, which we envision becoming 
useful in epidemiology and public health research, and in medical and forensic applica-
tions.
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IntRoductIon

Several studies suggest that tobacco smoking impacts the human epigenome, particu-
larly by changing DNA methylation patterns [1, 2]. DNA methylation is catalyzed by DNA 
methyltransferases (DNMT’s); the carcinogens in cigarette smoke cause double-strand 
DNA breaks and the DNA repair sites recruit DNMT1 [3], which methylates cytosines in 
CpGs adjacent to the repaired nucleotides [4]. Nicotine was shown to down-regulate 
DNMT1, and mRNA and protein expression [5]. Furthermore, cigarette smoke condensate 
increases expression of Sp1, a transcription factor that binds to GC-rich motifs in gene 
promoters, preventing de novo methylation [6-9]. In recent years, various epigenome-
wide association studies (EWASs) have provided a long list of CpGs significantly asso-
ciated with tobacco smoking habits in blood [10]. Although there are strong smoking 
associations across the epigenome, some studies suggest that after smoking cessation, 
DNA methylation patterns can return back to those found in never smokers [11, 12].

Smoking is a well-known risk factor for the development of several diseases [13, 14]. 
Therefore, studies that investigate smoking and its effect on mortality and morbidity rely 
on accurate assessments of smoking exposure. These studies use mainly self-reported 
smoking questionnaires to collect this information, which could result in underestima-
tion and misrepresent the degree of the true smoking exposure [15]. In particular, it is 
possible that specific groups of participants, for instance pregnant women, are more 
reluctant to confide that they smoke [16]. Hence, the ability to reliably and accurately 
infer a person’s smoking habit from blood is relevant in epidemiology and public health 
research as well as in medical practice, because such an approach could complement, 
or even replace, self-reported smoking questionnaires.

Moreover, inference of a person’s smoking habit from blood traces found at crime 
scenes would allow the broadening of DNA investigative intelligence beyond the cur-
rently considered parameters of appearance, bio-geographic ancestry and age, thus 
helping to better find unknown perpetrators of crime who are not identifiable via 
standard forensic DNA profiling [17]. Blood-based toxicological tests for measurement 
of tobacco exposure exist; however, they assess current and acute, rather than habitual, 
smoking [18]. In addition, biomarkers used include nicotine itself or its metabolite coti-
nine, and their accurate detection of current smokers is affected by their short half-lives 
(2-3h versus 15-19h for nicotine and cotinine, respectively) and individual variation in 
metabolic rates [19]. Therefore, when using the cotinine-based approach false-negatives 
can be easily obtained, and also false-positives may occur in former smokers that use 
nicotine replacement therapy [20]. Given these constrains of current toxicology blood 
measures, and considering the recent progress in understanding the impact of smoking 
on epigenetic variation, we envision DNA methylation from blood as a promising ap-
proach for long-term habitual smoking behaviour.
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Although progress has been made in understanding the epigenetic impact of smok-
ing [1], only a limited number of studies have explored the inference of smoking habits 
from blood with DNA methylation markers, albeit with various limitations such as small 
sample size, limited validation, restricting to smokers and non-smokers and not con-
sidering former smokers in the model building, and/or utilizing large numbers of CpGs 
[21-27]. Reliable studies on the validated inference of a person’s smoking habits and 
history from blood with a finite set of DNA methylation markers and based on statistical 
models with large underlying data are not available as of yet. A finite number of DNA 
methylation markers achieving maximal prediction accuracy would be especially ben-
eficial for those practical applications where - due to limited DNA quality and quantity, 
a common problem in forensics - it is impossible to apply standard DNA methylation 
microarray technology [17].

With this study, we aimed to identify a robust, finite set of DNA methylation markers in 
blood and, based on this finite biomarker set, develop accurate, reliable and validated 
statistical models for inferring a person’s tobacco smoking habits and history from blood, 
which we envision becoming useful in future epidemiology and public health research 
as well as medical and forensic applications.

mEtHods

study population
This study was embedded within the Biobank-based Integrative Omics Study (BIOS) 
Consortium [28], which consists of six Dutch cohorts (N=3,118), including the Rotterdam 
Study (RS) (N=584) [29], Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) 
(N=156) [30], The Netherlands Twin Register (NTR) (N=894) [31], Leiden Longevity Study 
(LLS) (N= 625) [32], Prospective ALS Study Netherlands (PAN) (N=167) [33] and LifeLines 
(LL) (N=692) [34]. Additionally, we included another 646 unrelated participants from 
the Rotterdam Study (RS-III-1) not included in BIOS. We externally validated our model 
in the Kooperative Gesundheitsforschung in der Region Augsburg (KORA) study (F4, 
N=1,608) [35], as well as in the Study of Health in Pomerania (SHIP)-Trend (N=244) [36] 
cohort. Characteristics of all cohorts used can be found in Online Resource 1: table s1. 
We additionally tested our model in samples from children included in the Generation R 
Study [37], in particular, we used data from children participating at birth (N=1,111), at 
the age of six years (N=355), and at the age of ten years (N=309), of which 197 overlapped 
between all three time points, providing longitudinal data (Online Resource 1: table 
s2). The smoking status information was obtained using questionnaires. The study 
characteristics are described in detail in Online Resource 2: supplemental methods.
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DNA methylation quantification
DNA was extracted from whole peripheral blood in all studies using standard procedures. 
All studies used the Illumina Infinium Human Methylation450K BeadChip (Illumina Inc, 
San Diego, CA, USA) for epigenome-wide DNA methylation measurements, except the 
SHIP-Trend study, which used the more recent Infinium MethylationEPIC BeadChip 
(Illumina Inc, San Diego, CA, USA). DNA methylation data pre-processing for cohorts in-
cluded in the BIOS consortium were conducted together via the pipeline created by Tobi 
et al.[38, 39]. The DNA methylation data pre-processing in the external validation cohorts 
and the Generation R Study were done independently. The methylation proportion of a 
CpG site was reported as a methylation β-value in the range of 0 (representing com-
pletely non-methylated sites) to 1 (representing completely methylated sites). Further 
study-specific methods can be found in Online Resource 2: supplemental methods.

Ascertainment of smoking-associated cpgs
EWASs using the Illumina Infinium Human Methylation 27K or 450K BeadChip investigat-
ing smoking-induced changes in DNA methylation patterns were reviewed [2, 21, 40-50]. 
We excluded studies [11] that used cohorts included in our model- building dataset, to 
avoid over-estimation of our model. Envisioning future laboratory tool development, 
we only selected robust CpGs hat were (1) highlighted in two or more studies, (2) with at 
least 10% difference in mean or median (depending on availability per EWAS) β- values 
between current smokers and never-smokers (or non-smokers when non-smoking data 
was available) in at least one of the studies, and (3) with the same direction in β- value 
difference between current smokers and never/non-smokers in all studies investigated.

statistical modeling for current smoking habits
Of the total participants considered for model building (Ntotal=5,178), we excluded those 
with (1) missing data for smoking habits (1,206 participants), (2) missing β- values for 
the predictive CpGs (82 participants), or (3) extreme outliers for one or more CpGs 
(mean +/- 4 SD) (126 participants). In the end, we included 3,764 participants in the final 
model building set, who were then categorized based on their smoking habits as (1) 
current smokers or (2) former and never smokers combined. The association between 
the candidate CpGs and smoking habits (smokers vs non- smokers) was replicated in 
our model building dataset using binomial regression analysis adjusted for age and 
sex using the “glm” function with “binomial” as family and “logit” as link. To identify 
the most informative set of DNA methylation predictors from the candidate CpGs, the 
association between the complete set of predictive CpGs and smoking habits was as-
sessed in a binary logistic regression analysis, using the “glm” function with “binomial” 
as family and “logit” as link. Backward elimination procedures were used for the marker 
selection process. We excluded the CpGs one by one based on their absolute z-statistic 
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per regression (calculated by dividing the regression coefficient by its standard error) 
assessed using the “VarImp” function (r-package “caret”). The predictive CpG with the 
lowest absolute z-statistic in the regression was removed. The model was applied to 
the dataset with the “predict” function (type= “response”) and the confusion matrix 
(r-package “caret”) was conducted using a probability threshold of 0.5. The prediction 
performance of the model was additionally assessed using “prediction” and “perfor-
mance” (r-package “ROCR”), the Area Under the Curve (AUC) per model was calculated 
(r-package “ROCR”) and a cumulative AUC profile was conducted for each model to 
obtain a cumulative AUC profile. We selected the best-fit prediction model using a com-
bination of the backward elimination approach and the Chi-squared test. In particular, 
we compared the model including all CpGs (modelFULL) with the model excluding one 
CpGs, (modelFULL-1CpG), this model FULL-1CpG was then compared with the model excluding 
another CpG (modelFULL-2CpGs), following the same order as conducted via the backward 
approach, and so on until we noticed a statistically significant difference between two 
models in the backward approach. Subsequently, we tested the inclusion of age, sex and 
cell counts to the final model.

Former smokers as additional category
Participants included in the model building dataset (N =3,764) without additional 
smoking data, including the age someone stopped smoking (former smokers) or the 
age someone started smoking or the number of cigarettes someone smokes per day 
(current smokers), were excluded, resulting in a dataset including 2,939 participants. 
The association between the previously selected predictive CpGs and the three smoking 
categories was assessed in a multinomial regression analysis, using the “multinom” 
function (r-package “nnet”). We predicted the smoking categories using the “predict” 
function (type= “class”) and the confusion matrix (r-package “caret”) was conducted. 
The AUC per category was conducted using the “predict” function (type= “probs”) and 
“roc” function (r-package “pROC”).

smoking cessation time inference in former smokers
In the former smokers (N=1,332), smoking cessation time was calculated as one’s age 
minus the age one stopped smoking. The participants were split into two categories 
for three models. For model 1, ≥5 years cessation time were coded as “1” and <5 years 
smoking cessation were coded as “0”, for model 2, ≥10 years cessation time were coded 
as “1” and <10 years smoking cessation were coded as “0”, and for model 3, ≥15 years 
cessation time were coded as “1” and < 15 years smoking cessation were coded as “0”. 
The predictions were conducted using the same method as described for the current 
versus non- smokers model. Probability thresholds were set to 0.8733, 0.7650 and 0.6397 
respectively.
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Pack-year inference in current smokers
For the current smokers (N=364) the pack-years were calculated as the number of 
cigarettes smoked per day divided by 20, multiplied by the total years of smoking. The 
participants were categorized into two categories for two models. For model 1, ≥15 pack- 
years were coded as “1” and <15 pack-years coded as “0”, for model 2, ≥10 pack- years 
were coded as “1” and <10 pack-years coded as “0”. The predictions were conducted 
using the same method as described for the current vs non-smokers model.

Pack-years (current-), smoking cessation time (former-) and never smokers
We combined the pack-year inference in current smokers with the cessation time in 
former and never smokers, resulting into five categories in two models (N=2,939) for in-
ferring life-time smoking information. For model 1, the current smokers ≥ 15pack-years 
were coded as “5”, with < 15 pack-years were coded as “4”, the former smokers ≤ 10 years 
smoking cessation were coded as “3”, with > 10 years smoking cessation were coded as 
“2” and never smokers were coded as “1”. In the second model the same categories were 
used except for the pack-years which were now divided in ≥ 10 pack-years (coded as 
“5”) and < 10 pack-years (coded as “4”). The predictions were conducted using the same 
method as described for the current vs former vs never smokers model.

Internal validation of the developed prediction models
For internal validation of the developed predictive models, we adopted a fivefold 
cross-validation scheme [51], in which the whole dataset is first randomly distributed 
into five equal and non-overlapping subsets. Four of the subsets (80% of the data) are 
combined to form a dataset used to train the logistic regression model which is then 
tested by inferring the smoking habits in the remaining dataset (20% of the data). This 
resulted in five different training (80%) and testing (20%) sets. The model was trained in 
the five training sets and applied to corresponding testing sets, resulting in five logistic 
regression models. Subsequently, we used the bootstrap method (r- packages “boot” 
and “parallel”) as additional internal validation to correct for potential overestimation 
of the prediction, since we use the same data for model building and predictions. We 
generated 1,000 bootstrap samples, with replacement from the dataset for which we 
estimated the model and applied each fitted model to the original sample, resulting 
in 1,000 AUC estimates. Thereafter, we recalculated the prediction accuracy by apply-
ing the fitted model to the bootstrap sample itself. The performance in the bootstrap 
sample represents an estimation of the apparent performance, and the performance in 
the original sample represents test performance. The difference between the average of 
the two conducted AUCs is a stable estimate of the optimism. We corrected for predic-
tion overestimation by subtracting the optimism from the apparent AUC, to obtain an 
improved estimate of the prediction AUC [52, 53].
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External validation of the developed prediction models
We externally validated our prediction models in two independent cohorts from Ger-
man- European origin. The full models were validated in the KORA F4 study (N=1,608). 
Additionally, we externally validated our models in the SHIP-Trend study (N=244). In 
this cohort, the EPIC methylation array was used which does not include all CpGs of the 
450K array. We therefore first generated the prediction models based on the overlapping 
CpGs in the model building dataset and subsequently externally validated them in the 
SHIP-Trend dataset.

Comparing performance of CpG-based model with cotinine level cut-off
We compared the outcomes of the CpG model to infer current vs non-smokers with 
the outcomes using a cotinine level cut-off of 50 ng/mL [54, 55] and applied smoking 
information from self-reports as reference. We employed a subset of our model building 
dataset (N=488 participants included in NTR [56]) in which both DNA methylation levels 
and cotinine levels were available. First, participants were categorized as smokers when 
their plasma cotinine levels were > 50 ng/mL, or as non- smokers with cotinine levels ≤ 
50 ng/mL, threshold according to previous studies including the used cotinine data [54, 
55]. Second, the current vs non- smokers CpG model was applied to this subset, obtain-
ing the inferred smoking status for the participants. Third, we compared the obtained 
smoking status for both models with the information obtained from the self-reported 
questionnaires and computed the sensitivity and specificity per model.

Application of the developed prediction model in newborns and young 
children
Studies have shown the impact of prenatal smoking exposure on the DNA methylation 
pattern of the offspring [57] and the ability of predicting maternal smoking status using 
these patterns [58]. In this context, we wanted to test the effect of prenatal exposure on 
model application in adults. Hence, when an adult does not smoke, but was exposed to 
prenatal smoking, do we predict this person indeed as a true non-smoker? To test for 
this putative impact of exposure to prenatal smoking on epigenetic inference of smok-
ing habits using our model, we tested our model in umbilical cord blood of newborns 
(N=1,111), and in whole blood of children at the ages of six (N=355) and 10 years (N=309). 
We used five different analyses to evaluate the effects of active smoking of the mothers 
and passive smoking of the mothers (i.e. smoking of others in the mother’s home and 
work environment) during pregnancy on smoking habit inference using our model. In 
our first analysis, we did not take the smoking habits of the pregnant mothers or others 
in the pregnant mother’s home and work environment into account and all children 
were coded as non-smokers. The proportion of accurately predicted cases was calcu-
lated using a probability threshold of 0.5. In each of the following analyses, we coded 
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the children “1” if their parents met the smoking habit criteria, otherwise they were 
coded as “0”. So, in the second analysis, only sustained maternal smoking throughout 
pregnancy was considered. Therefore, the children of mothers that smoked during the 
whole pregnancy were coded as “1”. In the third analysis, we additionally included the 
children of mothers who stopped smoking when they realized that they were pregnant 
by coding these children as “1”. In the fourth analysis, we additionally included smoking 
of the father and/or others in the mother’s household / at work (> 1h per day) during 
pregnancy (i.e. passive smoking). In the fifth analysis, we assessed the sole effect of 
passive smoking i.e., where the mother did not smoke but the father or someone else 
in the house or at work (> 1h per day) smoked during the pregnancy of the mother. For 
197 children, DNA methylation levels were measured at all three time points, i.e. birth, 6 
years of age and 10 years of age; hence, we repeated the previous models again in these 
children to allow a direct comparison of the findings at these three time points in the 
same individuals.

REsuLts

Ascertaining candidate dnA methylation markers for inferring smoking 
habits from blood
We inspected 14 published EWASs on tobacco smoking habits (Ntotal= 7,015) [2, 21, 
40-50] to identify smoking-associated CpGs as candidate DNA methylation markers for 
prediction modeling of smoking habits. CpGs were selected as candidate prediction 
markers if they met three criteria as mentioned in the method section. This procedure 
highlighted 20 top smoking-associated CpGs as candidate markers used for further 
analyses (table 1). The differences in β-values between smokers and never- /non-
smokers reported previously for these 20 top smoking-associated CpGs are illustrated 
in Figure 1.

building cpg-based models for inferring smoking habit and history from 
blood
Following the replication of the association between the CpGs and smoking habits 
(smokers vs non- smokers) after adjusting for age and sex (Online source table 3), we 
assessed the predictive effect of the selected 20 candidate markers in the model build-
ing dataset (N=3,764). Starting with a model including all 20 CpGs, the CpG with the 
lowest z-value per model was sequentially removed, and the AUC was calculated for 
each model to obtain a cumulative AUC profile (table 1, Figure 2).
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To identify the minimal number of CpGs required to achieve maximum prediction 
accuracy, we additionally used Chi-squared tests. Applying this backward approach, 
the first significant difference between two models was noted when we compared the 
model with and without cg09935388 (table 1, Figure 2). The combined marker elimina-
tion approach resulted in a finite set of DNA methylation markers comprising 13 CpGs 
(table 1, Figure 2). The AUC for the identified 13-CpG model was 0.901 for distinguish-
ing between smokers versus non-smokers (for other prediction accuracy measures, see 
table 2). The remaining 7 CpGs raised the cumulative AUC only on the 4th decimal i.e. 
from 0.9010 to 0.9016 (table 1, Figure 2). Hence, this finite set of 13 CpGs was used for 
subsequent prediction modeling. Using the 13-CpG model, we inferred the smoking sta-
tus of the participants included in our model building dataset; the inferred probabilities 
are presented in a histogram in Figure 3, where each probability bin is overlaid with the 
percentage of accurately inferred smoking habits in that probability range.

table 1. top 20 smoking-associated cpgs from 14 previous EwAss considered here for marker sub-selection and 
their contributions to smoking inference from blood.

cpg Id chr:position♦♦ gene Id♦♦♦ Location of cpg cumulative Auc

cg05575921♦ 5:373,378 AHRR Gene body 0.8801

cg13039251♦ 5:32,018,601 PDZD2 Gene body 0.8888

cg03636183♦ 19:17,000,585 F2RL3 Gene body 0.8883

cg12803068♦ 7:45,002,919 MYO1G Gene body 0.8889

cg22132788♦ 7:45,002,486 MYO1G Gene body 0.8934

cg06126421♦ 6:30,720,080 NA - 0.8929

cg21566642♦ 2:233,284,661 NA - 0.8957

cg23576855♦ 5:373,299 AHRR Gene body 0.8967

cg15693572♦ 3:22,412,385 NA - 0.8982

cg05951221♦ 2:233,284,402 NA - 0.8989

cg01940273♦ 2:233,284,934 NA - 0.8998

cg12876356♦ 1:92,946,825 GFI1 Gene body 0.9005

cg09935388♦ 1:92,947,588 GFI1 Gene body 0.9010

cg19572487 17:38,476,024 RARA 5’UTR 0.9012

cg19859270 3:98,251,294 GPR15 Gene body (1st Exon) 0.9015

cg18146737 1:92,946,700 GFI1 Gene body 0.9015

cg21161138 5:399,360 AHRR Gene body 0.9015

cg23480021 3:22,412,746 NA - 0.9016

cg21188533 3:53,700,263 CACNA1D Gene body 0.9015

cg03274391 3:22,413,232 NA - 0.9015
♦ CpGs included in our final 13 CpG model
♦♦ Genome coordinates provided by Illumina (GRCh37/hg19)
♦♦♦ According to the Illumina Infinium HumanMethylation450K annotation file
NA not annotated to any gene according to the Illumina InfiniumHumanMethylation450K annotation file
AUC Area under the Curve
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Figure 1. DNA methylation β- value differences between smokers and never-smokers for the top 20 smoking-associ-
ated cpgs. Previously reported differences in β-values in mean or median (depending on availability per EWAS) between 
smokers and never-smokers (or non-smokers ¤ when non-smoking data was available) for the selected 20 top-associated 
CpGs obtained from the 14 reviewed EWASs on smoking habits that did not include samples used here for model building.

table 2. outcomes of the two-category-model (smokers vs. non-smokers) for inferring smoking habits from blood 
based on cpgs.

13-cpg model 10-cpg model♦

model building data set
(n=3,764)

External
validation

model building data set
(n=3,764)

External
validation

model
building

five-fold cross-
validation

koRA
(n=1,608)

model
building

five-fold cross-
validation

sHIP-trend
(n= 244)

Accuracy$

(95% cI) ± SD
0.923

(0.914, 0.931)
0.921±0.008

0.926
(0.912, 0.938)

0.917
(0.908, 0.926)

0.917±0.011
0.873

(0.825, 0.912)

Specificity 0.976 0.976±0.005 0.983 0.975 0.975±0.006 0.995

sensitivity 0.585 0.577±0.044 0.580 0.548 0.551±0.042 0.412

Auc 0.901 0.897±0.137 0.911 0.896 0.893±0.012 0.888
♦ three CpGs (cg06126421, cg22132788 and cg05951221) are not included in the EPIC methylation microarray dataset from 
SHIP-Trend, this model is included here to demonstrate a second external validation in SHIP next to KORA with the full 13-
CpG model. $ proportion accurately inferred smoking habits, 95% confidence interval (CI). Cross-validation analysis results 
are presented as mean ± standard deviation. AUC Area under the Curve
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Adjusting the prediction model for age resulted in a minor AUC increase from 0.901 
to 0.907, adjusting for sex from 0.901 to 0.903 and including both age and sex in the 
model increased the AUC slightly from 0.901 to 0.911 (Online Resource 1: table s4). Ad-
ditionally, we tested the influence of cell counts on the model accuracy. In the subset of 
participants for which cell count measures were available (N=3,402), our 13-CpG model 
without cell counts achieved an AUC of 0.906. Including the cell count measurements for 
monocytes, granulocytes and lymphocytes in our 13-CpG model, the AUC was almost 
identical at 0.907 (Online Resource 1: table s5). Since age, sex and cell counts only had 
a minor impact on the prediction accuracy, these three non-epigenetic factors were not 
considered in the final model used in the subsequent analyses. Next, we considered 

Figure 2. Cumulative AUC profile for smoking habit inference from blood based on the top 20 CpGs.
The 20 CpGs were selected from previous EWASs on smoking habits (see Figure 1) and were tested in the model-building 
set (N=3,764). Presented is the cumulative contribution of each of the selected 20 CpGs to the model-based smoking habit 
inference, shown as the AUC plotted against the number of CpGs included in the binary logistic regression model. In the 
model selection process, first all CpGs were included, and using backward elimination procedures, those with the lowest 
z-statistic per model were removed one by one. After 13 CpGs, the AUC plateaus; therefore, and by considering the results 
from Chi2 testing, these 13 CpGs were used for further analyses.
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former smokers as an additional, separate category in the prediction model building 
based on the finite set of 13 CpGs, resulting in a three-category prediction model. To 
this end, we considered a subset of 2,939 participants for which the relevant smoking 
habit information was available. We obtained for the current smokers (N=364) an AUC 
of 0.928, for the former smokers (N=1,332) 0.772, and for the never smokers (N=1,243) 
0.835 (for other accuracy measures, see table 3).

table 3. outcomes of the three-category-model for inferring smoking habits from blood based on cpgs.

Model building data set (N=2,939): model building 13-CpG model

never (n=1,243) Former (n=1,332) current (n=364)

Specificity 0.746 0.770 0.997

Sensitivity 0.780 0.652 0.668

AUC 0.835 0.772 0.928

Model building data set (N=2,939): five-fold cross-validation 13-CpG model

never (n=1,243) Former (n=1,332) current (n=364)

Specificity 0.739±0.017 0.766±0.053 0.975±0.008

Sensitivity 0.769±0.060 0.643±0.039 0.669±0.056

AUC 0.830±0.019 0.766±0.023 0.925±0.021

External replication in KORA (N=1,608): 13-CpG model

never (n=675) Former (n=707) current (n=226)

Specificity 0.539 0.870 0.980

Sensitivity 0.916 0.392 0.615

AUC 0.781 0.699 0.914

Model building data set (N=2,939): model building 10-CpG model♦

never (n=1,243) Former (n=1,332) current (n=364)

Specificity 0.749 0.737 0.974

Sensitivity 0.751 0.648 0.626

AUC 0.825 0.753 0.922

Model building data set (N=2,939): five-fold cross-validation 10-CpG model♦

never (n=1,243) Former (n=1,332) current (n=364)

Specificity 0.745±0.013 0.735±0.042 0.975±0.010

Sensitivity 0.747±0.050 0.645±0.026 0.627±0.025

AUC 0.823±0.018 0.748±0.023 0.919±0.019

External replication in SHIP-Trend (N=244): 10-CpG model♦

never (n=101) Former (n=92) current (n=51)

Specificity 0.490 0.822 0.990

Sensitivity 0.891 0.315 0.451

AUC 0.778 0.654 0.882

Cross-validation analysis results are presented as mean ± standard deviation
AUC Area under the Curve
♦ three CpGs (cg06126421, cg22132788 and cg05951221) are not included in the EPIC methylation microarray dataset from 
SHIP-Trend
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Additionally, we calculated smoking cessation time for the former smokers (N=1,332), 
and used the 13-CpGs to infer smoking cessation for ≥5 years (N=1160) vs <5 years 
(N=172), which resulted in an AUC of 0.793, for ≥ 10 vs <10 years smoking cessation time 
(N=1028 and N= 304, respectively) an AUC of 0.778 was obtained and for ≥15 vs <15 years 
smoking cessation time (N=887 and N= 445, respectively) an AUC of 0.779 was obtained 
(table 4). Furthermore, for the current smokers (N=364) we calculated the pack-years 
(see methods) and used the 13 CpG markers to infer pack-years for ≥ 15 pack-years 
(N=210) vs <15 pack-years (N=154), which resulted in an AUC of 0.815. For ≥10 vs <10 
pack-years (N=246 and N= 118, respectively) an AUC of 0.846 was obtained (table 5).

Finally, we combined the pack-years in current smokers, smoking cessation in former 
smokers with the never smokers (N=2,939) into one model for life-time smoking infor-
mation inferring. We obtained for the current smokers with ≥15 pack-years (N=210) an 
AUC of 0.949, <15 pack-years (N=154) an AUC of 0.869, in former smokers with ≤10 years 
smoking cessation (N=311) an AUC of 0.793, with >10 years smoking cessation (N=1021) 
an AUC of 0.739 and the never smokers (N=1,243) an AUC of 0.835 (table 6). We obtained 
for the current smokers with ≥ 10 pack-years (N=246) an AUC of 0.948, < 10 pack-years 
(N=118) an AUC of 0.863, former smokers with ≤ 10 years smoking cessation (N=311) an 
AUC of 0.794, with > 10 years smoking cessation (N=1021) an AUC of 0.739, and the never 
smokers (N=1,243) an AUC of 0.835 (table 6).

Figure 3. Inferred probability of being a smoker versus the percentage of correctly inferred smoking habits.
Histogram of predicted probabilities in our model building dataset (N=3,764), probabilities determined using the 13 CpGs 
included in the final prediction model. The y-axis presents the number of individuals for whom the predicted probability of 
being a smoker was within the given probability range (x-axis). The red dots present the percentage of individuals in each 
probability bin that were accurately inferred using a > 0.5 probability threshold for being a smoker.



79

DNA methylation-based inference of smoking habits

2.2

ta
bl

e 
4.

 o
ut

co
m

es
 o

f t
he

 tw
o-

ca
te

go
ry

 m
od

el
 fo

r i
nf

er
ri

ng
 sm

ok
in

g 
hi

st
or

y 
in

 fo
rm

er
 sm

ok
er

s f
ro

m
 b

lo
od

 b
as

ed
 o

n 
13

 c
pg

s.

Fo
rm

er
 <

5y
 v

s F
or

m
er

 ≥
5y

Fo
rm

er
 <

10
y 

vs
 F

or
m

er
 ≥

10
y

Fo
rm

er
 <

15
y 

vs
 F

or
m

er
 ≥

15
y

m
od

el
 b

ui
ld

in
g 

da
ta

 se
t

(n
=1

,3
32

)
Ex

te
rn

al
va

lid
at

io
n

m
od

el
 b

ui
ld

in
g 

da
ta

 se
t

(n
=1

,3
32

)
Ex

te
rn

al
va

lid
at

io
n

m
od

el
 b

ui
ld

in
g 

da
ta

 se
t

(n
=1

,3
32

)
Ex

te
rn

al
va

lid
at

io
n

m
od

el
 b

ui
ld

in
g

fiv
e-

fo
ld

cr
os

s-
va

lid
at

io
n

ko
RA

(n
=6

52
)

m
od

el
bu

ild
in

g
fiv

e-
fo

ld
cr

os
s-

va
lid

at
io

n
ko

RA
(n

=6
52

)
m

od
el

bu
ild

in
g

fiv
e-

fo
ld

cr
os

s-
va

lid
at

io
n

ko
RA

(n
=6

52
)

Ac
cu

ra
cy

$

(9
5%

 c
I) 

± 
SD

0.
72

5
(0

.7
00

, 0
.7

49
)

0.
71

5±
0.

02
0

0.
83

0
(0

.7
99

, 0
.8

58
)

0.
73

0
(0

.7
05

, 0
.7

53
)

0.
72

1±
0.

02
9

0.
79

9
(0

.7
66

, 0
.8

29
)

0.
73

2
(0

.7
07

, 0
.7

56
)

0.
71

8±
0.

01
6

0.
75

9

Sp
ec

ifi
ci

ty
0.

71
5

0.
69

1±
0.

09
0

0.
49

4
0.

69
4

0.
68

2±
0.

06
3

0.
47

1
0.

66
3

0.
64

4±
0.

03
3

0.
44

9

se
ns

iti
vi

ty
0.

72
7

0.
71

8±
0.

02
6

0.
87

9
0.

74
0

0.
73

3±
0.

02
6

0.
90

0
0.

76
7

0.
75

6±
0.

01
5

0.
90

2

Au
c

0.
79

3
0.

77
4±

0.
02

4
0.

76
0

0.
77

8
0.

76
6±

0.
03

3
0.

76
4

0.
77

9
0.

76
7±

0.
02

0
0.

75
4

$  p
ro

po
rt

io
n 

ac
cu

ra
te

ly
 in

fe
rr

ed
 sm

ok
in

g 
ha

bi
ts

, 9
5%

 c
on

fid
en

ce
 in

te
rv

al
 (C

I)
Cr

os
s-

va
lid

at
io

n 
an

al
ys

is
 re

su
lts

 a
re

 p
re

se
nt

ed
 a

s m
ea

n 
± 

st
an

da
rd

 d
ev

ia
tio

n
AU

C 
Ar

ea
 u

nd
er

 th
e 

Cu
rv

e



Chapter 2.2

80

ta
bl

e 
5.

 o
ut

co
m

es
 o

f m
od

el
 a

pp
lic

at
io

ns
 to

 in
fe

r s
m

ok
in

g 
hi

st
or

y 
in

 in
 c

ur
re

nt
 sm

ok
er

s (
n

=3
64

) f
ro

m
 b

lo
od

 b
as

ed
 o

n 
cp

gs
.

m
or

e 
or

 le
ss

 th
an

 1
0 

pa
ck

-y
ea

rs

13
-c

pg
 m

od
el

10
-c

pg
 m

od
el

♦

M
od

el
 B

ui
ld

in
g

N
=3

64
fiv

e-
fo

ld
Cr

os
s-

va
lid

at
io

n
KO

RA
 F

4
N

=2
24

M
od

el
 B

ui
ld

in
g

N
=3

64
fiv

e-
fo

ld
Cr

os
s-

va
lid

at
io

n
SH

IP
-T

re
nd

N
= 

41

Ac
cu

ra
cy

$
0.

82
4

0.
78

3±
0.

05
0.

81
3

0.
80

8
0.

77
0±

0.
03

5
0.

80
5

(9
5%

 C
I)

(0
.7

81
, 0

.8
62

)
(0

.7
55

, 0
.8

61
)

(0
.7

6,
 0

.8
47

)
(0

.6
51

, 0
.9

12
)

Sp
ec

ifi
ci

ty
0.

64
4

0.
57

7±
0.

13
1

0.
34

3
0.

60
2

0.
54

8±
0.

14
0.

77
8

Se
ns

iti
vi

ty
0.

91
1

0.
88

2±
0.

04
5

0.
89

9
0.

90
7

0.
87

9±
0.

04
6

0.
81

3

AU
C

0.
84

6
0.

80
0±

0.
06

8
0.

79
6

0.
83

4
0.

80
9±

0.
03

9
0.

83
7

m
or

e 
or

 le
ss

 th
an

 1
5 

pa
ck

-y
ea

rs

13
-c

pg
 m

od
el

10
-c

pg
 m

od
el

♦

M
od

el
 B

ui
ld

in
g

N
=3

64
fiv

e-
fo

ld
Cr

os
s-

va
lid

at
io

n
KO

RA
 F

4
N

=2
24

M
od

el
 B

ui
ld

in
g

N
=3

64
fiv

e-
fo

ld
Cr

os
s-

va
lid

at
io

n
SH

IP
-T

re
nd

N
= 

41

Ac
cu

ra
cy

$
0.

73
3

0.
71

9±
0.

09
3

0.
78

6
0.

72
8

0.
70

9±
0.

05
9

0.
65

9

(9
5%

 C
I)

(0
.6

85
, 0

.7
78

)
(0

.7
26

, 0
.8

38
)

(0
.6

79
, 0

.7
73

)
(0

.4
94

, 0
.7

99
)

Sp
ec

ifi
ci

ty
0.

61
7

0.
60

0±
0.

20
4

0.
45

5
0.

59
7

0.
57

5±
0.

14
3

0.
53

3

Se
ns

iti
vi

ty
0.

81
9

0.
80

5±
0.

04
2

0.
89

4
0.

82
4

0.
80

8±
0.

03
5

0.
73

1

AU
C

0.
81

5
0.

76
7±

0.
10

2
0.

75
2

0.
78

6
0.

75
7±

0.
07

7
0.

77
9

♦
 T

hr
ee

 C
pG

s (
cg

06
12

64
21

, c
g2

21
32

78
8 

an
d 

cg
05

95
12

21
) a

re
 n

ot
 in

cl
ud

ed
 in

 th
e 

EP
IC

 m
et

hy
la

tio
n 

m
ic

ro
ar

ra
y 

da
ta

se
t f

ro
m

 S
H

IP
-T

re
nd

.
$ pr

op
or

tio
n 

ac
cu

ra
te

ly
 in

fe
rr

ed
 sm

ok
in

g 
ha

bi
ts

; 9
5%

 C
I, 

co
nfi

de
nc

e 
in

te
rv

al
; A

U
C,

 A
re

a 
un

de
r t

he
 C

ur
ve

,
Cr

os
s-

va
lid

at
io

n 
an

al
ys

is
 re

su
lts

 a
re

 p
re

se
nt

ed
 a

s m
ea

n 
± 

st
an

da
rd

 d
ev

ia
tio

n.



81

DNA methylation-based inference of smoking habits

2.2

Table 6. Outcomes of the five-category-model for inferring smoking habits and history from blood based on 13 CpGs.

Never vs Former >10 years vs Former =< 10 years vs <15 Pack-years vs >=15 Pack-years

Model building data set (N=2,939)

never
(n=1,243)

F > 10y
(n=1,021)

F ≤10y
(n=311)

<15PY
(n=154)

≥15PY
(n=210)

Specificity 0.712 0.777 0.979 0.987 0.967

Sensitivity 0.817 0.554 0.206 0.299 0.724

AUC 0.835 0.739 0.793 0.869 0.949

Model building data set five-fold cross-validation

Specificity 0.711±0.022 0.775±0.036 0.977±0.009 0.984±0.009 0.963±0.014

Sensitivity 0.809±0.047 0.545±0.040 0.199±0.042 0.274±0.128 0.695±0.064

AUC 0.832±0.014 0.731±0.026 0.779±0.018 0.855±0.046 0.947±0.016

External replication in KORA (N=1,551)

never
(n=675)

F > 10y
(n=488)

F≤10y
(n=164)

<15 PY
(n=55)

≥15PY
(n=169)

Specificity 0.534 0.830 0.994 0.994 0.979

Sensitivity 0.927 0.299 0.122 0.018 0.728

AUC 0.788 0.650 0.791 0.710 0.955

Never vs Former >10 years vs Former =< 10 years vs <10 Pack-years vs >=10 Pack-years

Model building data set (N=2,939)

never
(n=1,243)

F > 10y
(n=1,021)

F ≤10y
(n=311)

<10 PY
(n=118)

≤10PY
(n=246)

Specificity 0.714 0.776 0.981 0.994 0.963

Sensitivity 0.817 0.554 0.193 0.220 0.772

AUC 0.835 0.739 0.794 0.863 0.948

Model building data set five-fold cross-validation

Specificity 0.709±0.023 0.774±0.034 0.980±0.006 0.992±0.003 0.960±0.008

Sensitivity 0.808±0.045 0.542±0.042 0.194±0.043 0.206±0.066 0.758±0.067

AUC 0.831±0.014 0.730±0.027 0.780±0.018 0.847±0.047 0.946±0.023

External replication in KORA (N=1,551)

never
(n=675)

F > 10y
(n=488)

F ≤10y
(n=164)

<10 PY
(n=35)

≥10PY
(n=189)

Specificity 0.535 0.827 0.994 0.998 0.977

Sensitivity 0.926 0.299 0.110 0.000 0.683

AUC 0.788 0.651 0.791 0.694 0.943

Cross-validation analysis results are presented as mean ± standard deviation
AUC Area under the Curve, F Former smokers, PY pack-years
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Validating cpg-based models for inferring smoking habit and history 
from blood
We validated the newly developed prediction models based on the 13 selected CpGs 
via both internal and external validation procedures. Internal validation was carried 
out in the model building set using fivefold cross-validation and bootstrapping. For the 
two-category model (smokers vs non-smokers), the optimism from bootstrap internal 
validation was 0.0032, resulting in a bootstrap-adjusted AUC of 0.898 (0.901-0.0032), 
see table 2 for other accuracy measures and cross- validation results. For the three-
category model (smokers vs former smokers vs never smokers) the bootstrap conducted 
optimisms are 0.0032 for current smokers, 0.0063 for former smokers and 0.0036 for 
never smokers resulting in bootstrap adjusted AUCs of 0.925 (0.928-0.0032) for current 
smokers, 0.766 (0.772-0.0063) for former smokers and 0.831 (0.835-0.0036) for never 
smokers (table 3).

For the smoking cessation time inference in former smoker, (1) for ≥5 vs <5 years 
smoking cessation the bootstrap optimism was 0.0170 resulting in a bootstrap-adjusted 
AUC of 0.776 (0.793-0.0170); (2) for ≥10 vs <10 years smoking cessation the bootstrap 
resulted in an optimism of 0.0112, giving a bootstrap-adjusted AUC of 0.767 (0.778 - 
0.0112); (3) ≥15 vs <15 years smoking cessation the bootstrap resulted in an optimism of 
0.0096, giving a bootstrap-adjusted AUC of 0.769 (0.779 - 0.0096) (table 4). For the two 
pack-year models, (1) the bootstrap optimism for ≥15 vs < 15 pack- was 0.029 resulting 
in a bootstrap-adjusted AUC of 0.786 (0.815- 0.029); and (2) for ≥10 vs < 10 pack-years 
the bootstrap resulted in an optimism of 0.026, giving a bootstrap-adjusted AUC of 
0.820 (0.846- 0.026) (table 5). Finally, for the life-time smoking information inferring, 
we obtained for ≥15 pack-years a bootstrap optimism of 0.0034 resulting in a bootstrap-
adjusted AUC of 0.946 (0.949- 0.0034), for <15 pack-years a bootstrap-adjusted AUC 
of 0.860 (0.869- 0.0091), for ≤10 smoking cessation a bootstrap-adjusted AUC of 0.782 
(0.793- 0.0106), >10 years smoking cessation a bootstrap optimism of 0.0075 resulting 
in a bootstrap-adjusted AUC of 0.732 (0.739- 0.0075) and for never smokers a bootstrap-
adjusted AUC of 0.831 (0.835- 0.0037) (table 6). For the second five-category model, very 
similar results were obtained (table 6).

External validation was performed in independent samples of two population-based 
studies, KORA and SHIP-Trend. In KORA (F4, N=1,608), an AUC of 0.911 was achieved for 
the full 13-CpG two-category model (table 2). In SHIP-Trend (N=244), an AUC of 0.888 
was obtained for the two-category model based on a subset of ten CpGs, since the EPIC-
array applied for SHIP-Trend is missing three of the 13 CpGs (cg06126421, cg22132788 
and cg05951221). This 10-CpG model in the model building set gave a cross-validated 
average AUC of 0.893±0.012 (table 2). External validation of the three-category model in 
the KORA study (F4, N=1,608) achieved an AUC of 0.914 for the current smokers (N=226), 
0.699 for the former smokers (N=707), and 0.781 for the never smokers (N=675) (table 3). 
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The three-category model validation in SHIP-Trend for the 10-CpG model resulted in an 
AUC of 0.882 for current smokers (N=51), 0.654 for former smokers (N=92), and 0.778 for 
never smokers (N=101) (table 3). For comparison, in the model building set, this three 
category 10-CpG model gave a cross-validated average AUC of 0.919±0.019 for current 
smokers, 0.748±0.023 for former smokers, and 0.823±0.018 for never smokers (table 3). 
External validation of smoking cessation time inference in former smokers in the KORA 
study (N=652) resulted in an AUC of 0.760 for ≥5 vs <5 years of smoking cessation time, 
an AUC of 0.764 for ≥10 vs <10 years of smoking cessation time, and of 0.754 for ≥15 vs 
<15 years of smoking cessation time (table 4). Furthermore, we externally validated the 
prediction of pack-years in the current smokers of the KORA study (F4, N=224) and ob-
tained an AUC of 0.752 for inferring ≥15 vs<15 pack-years and an AUC of 0.796 for ≥10 vs 
<10 pack-years (table 5). The pack-year validation in the current smokers of SHIP-Trend 
(N=41) for the 10-CpG model resulted in an AUC of 0.779 for ≥15 vs < 15 pack-years (AUC 
of 0.757±0.077 in the model building set) and an AUC of 0.837 for ≥10 vs<10 pack-years 
(AUC of 0.809±0.039 in the model building) (table 5). The external validation of the five-
category models in the KORA study resulted for the current smokers with ≥15 pack-years 
in an AUC of 0.955, for <15 pack-years an AUC of 0.710, for ≤10 years smoking cessation 
an AUC of 0.791, >10 years smoking cessation an AUC of 0.650 and for never smokers an 
AUC of 0.788. For the second five-category model, we obtained in the KORA study an AUC 
of 0.943 for ≥10 pack-years, of 0.694 for <15 pack-years, an AUC of 0.791 for ≤10 years 
smoking cessation, of 0.651 ≥10 years smoking cessation and an AUC of 0.788 for never 
smokers (table 6).

comparing cpg-based with cotinine-based inference of smoking habit
In a subset of 488 participants for which we had CpG, cotinine and smoking information 
available, we compared our validated CpG-based prediction model for current vs non-
smokers with the use of a cotinine cut-off to determine current smoking, using smoking 
information from self-reported questionnaires as reference. Using our CpG-model, we 
accurately inferred 87 of the 140 smokers and 344 of the 348 non-smokers (sensitivity 
of 0.621 and specificity of 0.989) compared to 105 of the 140 smokers and 342 of the 
348 non-smokers using the cotinine level cut-off of 50 ng/mL (sensitivity of 0.750 and 
specificity of 0.983). Out of the 87 accurately inferred smokers with our CpG model, 
75 (86%) were also accurately selected as smokers based on cotinine, and out of the 
105 participants correctly selected with cotinine as smokers, 75 (71%) were accurately 
inferred as smokers with our CpG model. For the non-smokers, out of the 344 accurately 
inferred with our CpG model, 340 (99%) were also selected with cotinine as non-smokers, 
and 340 (99%) out of the 342 accurately selected non-smokers with cotinine, were ac-
curately inferred as non-smokers with our CpG model. Finally, when comparing all three 
methods (questionnaires/cotinine levels/DNA methylation prediction), 340 participants 
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were highlighted as non-smokers and 75 as smokers with all three methods, 12 were 
selected as smokers based on questionnaires and DNA methylation inference, 30 as 
smokers with both questionnaires and cotinine, 2 were determined as smokers with 
both cotinine and DNA methylation inference, whereas 23 were determined as smokers 
with questionnaires only, 2 as smokers with DNA methylation inference only, and 4 as 
smokers with cotinine only.

Investigating prenatal smoking exposure effects on CpG-based inference 
of smoking habit
Next, we investigated the putative effect of prenatal smoking exposure and passive 
smoking on the epigenetic inference of smoking habits achievable with our validated 
model. When applying our model to the DNA methylation data at time of birth collected 
from cord blood, the proportion of children accurately inferred as non-smokers was 
surprisingly low at 0.114 (N=1,111) (Online Resource 1: table s6). We then classified 
children whose mothers smoked throughout pregnancy as “smokers”, and obtained an 
AUC of 0.773, with a high sensitivity of 0.981 and a low specificity of 0.131. The AUC 
decreased to 0.664 when additionally considering mothers who stopped smoking when 
they became aware of their pregnancy (generally in the first trimester), and decreased 
further to 0.591 when additionally considering passive smoking of the mother during 
pregnancy; assessing the latter solely, an AUC of 0.460 was obtained, reflecting random 
prediction.

Additionally, we applied our model to data of children from the Generation R Study 
obtained from blood collected at the ages of 6 (N=355) and 10 (N=309) years. In contrast 
to the results for newborns obtained from cord blood, we found that the proportion of 
six- and ten-year-old children accurately inferred as non-smokers with our model was 
very high at 0.994 for both age groups (table 7). This suggests no impact of prenatal 
smoking exposure nor passive smoking exposure during early childhood on the model 
performance. Subsequently, we applied our model to those 197 children for which 
epigenetic data were available from serial samples collected at birth, 6, and 10 years of 
age. The proportion of children that with our model accurately inferred as non-smokers 
at birth was 0.112, whereas it was 0.994 at six and 0.995 at 10 years of age, which was 
highly similar to the results obtained from the total datasets available for these three 
time points. The β-values per CpG for the model building set and the three time points 
in Generation R are shown in Online Resource 3: Figures s1-15.
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dIscussIon

In this study, we introduce a robust, finite set of DNA methylation markers and carefully 
validated statistical models based on reasonably large population-based data, which 
together allow accurate and reliable inference of a person’s tobacco smoking habit and 
history from blood DNA.

Previous studies have identified numerous CpGs associated with tobacco smoking 
in blood, and showed that DNA methylation patterns of specific genes are modified 
by smoking habits [2, 21, 40-50]; here we took advantage of these EWASs as a marker 
discovery resource. From the 20 top smoking-associated CpGs consistently highlighted 
in previous EWASs and by using new population-based cohort data not overlapping with 
these previous EWASs, we identified a robust, finite set of 13 CpG markers as being most 
suitable for inferring a person’s smoking habit from blood DNA. Eight of these 13 CpGs 
are annotated to five known genes i.e., AHRR (2 CpGs), GFI1 (2), MYO1G (2), F2RL3 (1) and 
PDZD2 (1), while the remaining 5 CpGs are not annotated to any coding regions. The 
highest AUC (0.880) for a given CpG among the 13 biomarkers in the model was achieved 
for cg05575921, which, together with one other CpG in the model (cg23576855), is lo-
cated in the AHRR gene. The AHRR gene was shown to interact with the aryl hydrocarbon 
receptor (AHR), the induction point for the xenobiotic pathway, which includes several 
P450 enzymes, and is responsible for the degradation of environmental toxins [59-61]. 
Notably, AHRR provides the strongest epigenetic response to tobacco smoking known 
today [59, 62].

While a few previous studies have investigated DNA methylation markers for inferring 
smoking habits from blood, they all suffered from one or more limitations, including 
small sample size, limited model validation, exclusion of the former smoker category 
from the prediction model building, using a large number of CpGs and others [21-26]. 
For example, Philibert et al. [23] reported on the performance of five CpGs yielding 
AUCs 0.86-0.99 but only using 61 subjects. Notably, all five CpGs were among the 20 
markers investigated in our study and are also included in our final 13-CpG model. For 
cg05575921, Philibert et al. estimated an AUC of 0.99 [23]; when testing this DNA meth-
ylation marker in our model building set of 3,764 samples, a considerably lower AUC 
of 0.8801 was achieved. In another study, Elliot et al. [21] reported a methylation score 
based on 183 CpGs to distinguish between current, former and never smokers, with a 
sensitivity of 100% and a specificity of 97% using 96 subjects only. When generating 
the methylation score using the methods described by Elliot et al., and applying it to 
our model building set (N=3,764), we obtained a specificity of 0.864 and sensitivity of 
0.747 with an AUC of 0.806, considerably lower than reported by Elliot et al. These two 
examples illustrate that previously reported prediction accuracies obtained from stud-
ies using small sample size likely reflect overestimation caused by small sample size. 
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Given the relatively larger sample size for model building and internal validation, and for 
external validation with independent samples as utilized here, our results demonstrate 
that the new 13-CpG model introduced here provides more robust and reliable accuracy 
outcomes than previously reported models.

Previous studies have shown that DNA methylation patterns can be altered by age, sex 
and various lifestyle factors other than tobacco smoking [63, 64]. Additionally, recent 
papers suggest that the change in DNA methylation measurements due to smoking are 
mainly caused by the smoking induced changes in cell types [65-68]. We therefore tested 
the impact of age, sex, and cell counts on the model performance and found that these 
covariates only provide a slight increase in the prediction accuracy our model provides. 
Notably, a model that does not consider sex, age, and cell counts is beneficial for those 
applications where (some of) this information is not easily available, such as in forensics.

A recent study reported that the DNA methylation of most CpGs returns to never smok-
er levels within 5 years of smoking cessation, while some do not go back completely [11]. 
Also, previous work demonstrated that there is an association between smoking cessa-
tion time and smoking pack-years with DNA methylation scores [65, 69]. We therefore 
tested to what degree the 13 selected CpGs can distinguish former smokers from current 
smokers and never-smokers, and how well they allow inferring smoking history such as 
smoking cessation time and pack-years. Our results demonstrate that our 3-category 
model allows as first the inference of the former smoking category (smoking cessation 
between 0.1 and 58.86 years) together with current smokers and never smokers and 
also a more in depth inference possibility for cessation time categories as of more vs less 
than 5, 10 and 15 years of smoking cessation, although not as accurately as current and 
never smokers, as may be expected. The 13 CpGs also allowed accurate prediction of 
the pack-years in current smokers with a high AUCs for distinguishing between more or 
less than 10 pack-years, and for distinguishing between more or less than 15 pack-years. 
Finally, we show, to the best of our knowledge, for the first time an inference model able 
of inferring life-time smoking information in one model including the never smokers, 
cessation time in former smokers and pack-years in current smokers. Thus, the finite set 
of 13 DNA methylation markers and models we introduce here not only allow inferring 
information on current smoking or non-smoking status, but additionally provide infor-
mation on former smoking and cessation time, smoking intensity in current smokers, 
and can additionally, as the first model to date, also provide complete life-time smoking 
information as of five different smoking categories.

Cotinine is the primary metabolite of nicotine and is therefore used as a reliable 
measurement for current smoking [19]. However, due to the short half-live of cotinine 
(between 15-19h), a false-negative prediction of current smoking can be easily obtained 
when there is a long time between the last cigarette and blood drawn [19]. In addition, 
former smokers that use nicotine replacement therapy to reduce the motivation to 
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smoke and for nicotine withdrawal symptoms, might result in false-positive predictions 
since cotinine, nicotine’s metabolite, will still be traceable [20, 70]. Finally, due to protein 
instability over time, cotinine levels would only be accurately measurable in fresh blood 
samples, which are not always available such as in forensic investigations. Zhang et al. 
[24] showed that both DNA methylation and cotinine can accurately distinguish current 
from never smokers, but also emphasized that only DNA methylation is able to provide 
more in depth life-time smoking information. In line with this, we show in the current 
study that using both cotinine (sensitivity 0.750, specificity 0.983) and DNA methylation 
(sensitivity 0.621, specificity 0.989) we can infer current smokers with high accuracy. 
However, the sensitivity of our CpG model is slightly lower than the use of the cotinine 
cut-off in this subset. Nonetheless, with the upcoming availability of DNA methylation 
data in large cohort studies, the availability of a reliable smoking inference model, giv-
ing extending life-time smoking information inference, would be more widely accessible 
than information on cotinine levels.

Maternal smoking during pregnancy has been shown to influence fetal DNA methyla-
tion patterns [57, 71], which in principle could affect epigenetic inference of smoking 
habits in adults. Additionally, it is shown that maternal smoking status can be predicted 
from DNA methylation retrieved from newborns [72, 73]. Therefore, we employed data 
from the Generation R study to test the influence of prenatal smoking exposure on the 
inference of smoking status in adolescence. Hence, we tested our prediction model 
using epigenetic data from cord blood collected at time of birth, and peripheral blood 
collected at 6 and 10 years of age [37]. Our results showed that at the age of 6 years, 353 
of the 355 children were correctly inferred as non-smokers (accuracy of 0.994), and at 
the age of 10 years 307 of the 309 children (accuracy of 0.994) were correctly inferred as 
non-smokers. This might indicate that prenatal smoking exposure and passive smoking 
exposure does not affect DNA methylation levels to such an extent that they are detected 
with our inference model. At time of birth, our model incorrectly inferred 984 (88.57%) 
of the 1,111 children as smokers (accuracy of 0.114). To test whether the newborns were 
inferred wrongly as smokers due to prenatal smoking exposure, we further classified the 
newborns as smokers when their mothers smoked throughout pregnancy (N=161). This 
resulted in a high AUC (0.773), with high sensitivity (0.981) but low specificity (0.131). Re-
trieving this low specificity while correcting for prenatal smoking exposure may indicate 
that the incorrect smoking inference of newborns achieved with our model can only in 
part be explained by smoking exposure during pregnancy. Other explanations may be 
developmental effects, and perhaps the tissue difference between whole blood and cord 
blood and therefore the difference in cell composition, given that the applied model was 
developed using whole blood [74]. Previous studies have shown specific changes in DNA 
methylation during early childhood that were explained by developmental effects [71, 
75]. In any case, given that envisioned applications of epigenetic inference of smoking 
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habit in medical and forensic practice, as well as in most epidemiological and public 
health research, are typically performed in adults, our findings in children of advanced 
age imply that our model will indeed deliver smoking habit information of the adult 
individual tested, independent of prenatal smoking exposure or other effects.

The main strengths of our study are (1) the use of robust DNA methylation markers 
highlighted in multiple epigenome-wide association studies, (2) the use of independent 
population-based studies for marker discovery, model building and external model vali-
dation, and (3) the employment of thousands of samples for model building and valida-
tion. We therefore expect that the high prediction accuracy (AUC of 0.911) obtained from 
the full 13-CpG model in the KORA samples used for external validation reflects a realistic 
characterization of the performance of our model. This is also supported in part by the 
SHIP-Trend outcomes (AUC of 0.888) of the partial 10-CpG model. As the Illumina 450K 
array on which our marker selection was initially based is no longer available, the SHIP-
Trend results using 10-CpG subset from the current Infinium MethylationEPIC BeadChip 
indicate that this sub-model would be applicable to new studies moving forward.

This study, however, does not come without limitations. Our model is based on 
smoking habit data retrieved from self-reported questionnaires, which are generally 
considered unreliable in terms of underestimating actual smoking levels [15]. Regarding 
the putative inaccuracy of self-reported smoking habits used here as phenotypes, we 
cannot know how error-prone these reports are. In particular, it is possible that specific 
groups of volunteers, for instance pregnant women such as those involved in the Gen-
eration R Study, are more reluctant to confide that they smoke [16]. However, we did not 
use the Generation R Study data for model building or validation purposes. Moreover, 
we included cotinine data to confirm the self-reported smoking habits for subset of 
participants (N = 488). Overall, we expect that smoking phenotype inaccuracy did not 
strongly impact the performance outcomes of our models. Lastly, all but one of the stud-
ies included in the model building and model validation are population-based studies, 
which therefore can include participants with various diseases. Though, due to the large 
sample sizes used for model building and validation, we expect that disease status does 
not strongly impact our model performance. Another limitation for the pack-year model 
is the formula used to calculate the pack-years. For this estimation, the number of ciga-
rettes the participant currently smokes is used, which might have changed over the life 
span, and if so, this phenotypic variation is not considered. Additionally, the start-age 
is used to calculate the number of years someone smoked or has been smoking, which 
might be prone to recall bias especially for elderly people.

We envision that future works may provide targeted laboratory tools for analysing the 
13 CpGs included in our final model in different types of blood samples and possible 
translation to different tissues, as is recently already shown to be promising for our 
top hit CpG (cg0557592) in saliva [76]. This would enhance the spectrum of practical 
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applications of epigenetic smoking habit inference. Given the finite set of DNA methyla-
tion markers introduced here, it is impractical to apply genome-wide DNA methylation 
microarrays just for the purpose of analyzing 13 CpGs. Moreover, there can be blood 
samples where microarrays do not produce reliable DNA methylation data, such as 
when the amount of DNA is low and/or the DNA is degraded such as DNA obtained from 
crime scene traces [17]. Hence, the future development of a fast and cheap labora-
tory tool that allows the reliable targeted analysis of the 13 CpGs highlighted here by 
employing a technology that can handle low quality and/or quantity DNA would be 
valuable. Foreseeing the future development of such a lab tool, we only included CpGs 
with at least a β-value difference ≥10% in mean or median (depending on availability per 
EWAS) in at least one published EWAS, to ensure detectability of the DNA methylation 
differences with targeted analysis technologies currently available [77, 78]. We view the 
positive results on epigenetic inference of smoking habits from blood presented here 
as a promising starting point for inferring more lifestyle factors using DNA methylation 
markers within the concept of epigenetic fingerprinting [17]. This requires continuous 
progress in identifying candidate DNA methylation predictors of lifestyle factors via 
dedicated EWASs, the subsequent use of these biomarkers in prediction modeling and 
validation studies to generate reliable and accurate models such as that reported here 
for tobacco smoking, and the development of robust and sensitive lab tools that allow 
the successful analysis of the DNA samples of interest, including those of limited quality 
and quantity.
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table s1. characteristics of the dataset used for model building, internal (n=3,764) and external validation 
(n=1,852).

study no. of individuals Females (%) Average age (sd)

model building and internal validation dataset (dutch Europeans)

Two-category model Total 3,764 2,148 (57.07) 53.65 (15.45)

Smokers 511 304 (59.49) 49.66 (15.36)

Non-smokers♦ 3,253 1,844 (56.69) 54.27 (15.38)

Three-category model Total 2,939 1,670 (56.82) 55.76 (15.17)

Smokers 364 218 (59.89) 52.53 (14.51)

Former smokers 1,332 646 (48.50) 61.06 (10.75)

Never smokers 1,243 807 (64.92) 51.02 (17.40)

External model validation dataset (german Europeans)

koRA F4 Total 1,608 831 (51.68) 60.93 (8.83)

Two-category model

Smokers 226 106 (46.90) 57.02 (6.79)

Non-smokers♦ 1,382 725 (52.46) 61.57 (8.96)

Three-category model

Smokers 226 106 (46.90) 57.02 (6.79)

Former smokers 707 277 (39.18) 61.02 (8.96)

Never smokers 675 448 (66.37) 62.14 (8.93)

sHIP-trend Total 244 127 (52.0) 51.3(13.8)

Two-category model

Smokers 51 29 (56.9) 45.7 (11.8)

Non-smokers♦ 193 95 (50.8) 52.8 (13.9)

Three-category model

Smokers 51 29 (56.9) 45.7 (11.8)

Former smokers 92 31 (33.7) 53.3 (13.3)

Never smokers 101 67 (66.3) 52.3 (14.5)
♦Non- smokers: Former smokers and never smokers combined
SD standard deviation.
SHIP –Trend Study of health in Pomerania,
KORA (F4) Kooperative Gesundheitsforschung in der Region Augsburg F4 Study
Model building and validation set contains participant data from 6 cohorts; Cohort on Diabetes and Atherosclerosis Maas-
tricht (CODAM), LifeLines (LL), Leiden Longevity Study (LLS), Netherlands Twin Register (NTR), Prospective ALS Study Neth-
erlands (PAN), Rotterdam Study (RS).
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Table S2. Characteristics of Generation R Study data used for investigating the effect of prenatal smoking exposure.

sample set no. of
individuals

Females
(%)

maternal smoking
during pregnancy

Paternal / other smoking
during pregnancy

whole
pregnancy

Until first
trimester

never Yes no ♦missing

Birth 1,111 545 (49.1) 161 106 844 465 598 48

6 years old 355 185 (52.3) 46 39 270 130 194 31

10 years old 309 150 (48.5) 35 37 237 112 170 27

Serial samples♦♦ 197 95 (48.2) 24 26 147 73 119 5
♦ Participants without information on paternal / passive smoking exposure.
♦♦ Serial samples of 197 children measured at all three time-points

table s3. Association and prediction results of the top 20 cpgs in the model building dataset (n=3,764).

Independent association with 
smoking habits♦♦

Association in the full model with 
smoking habits♦♦♦

marker Coefficient p-value Coefficient p-value

cg05575921 ♦ -17.443 < 2.22e-16 -18.270 < 2.22e-16

cg13039251 ♦ 9.241 < 2.00e-16 5.492 2.81e-05

cg03636183 ♦ -13.909 < 2.22e-16 6.755 2.86e-05

cg12803068 ♦ 6.479 < 2.00e-16 -9.766 6.07e-10

cg22132788 ♦ 9.800 < 2.22e-16 13.670 5.27e-10

cg06126421 ♦ -9.415 < 2.22e-16 4.658 3.02e-05

cg21566642 ♦ -20.218 < 2.22e-16 -3.677 0.033

cg23576855 ♦ -4.390 < 2.22e-16 -1.598 0.001

cg15693572 ♦ 4.189 < 2.22e-16 2.368 0.055

cg05951221 ♦ -13.816 < 2.22e-16 4.751 0.012

cg01940273 ♦ -16.834 < 2.22e-16 -5.432 0.017

cg12876356 ♦ -4.741 < 2.22e-16 5.444 0.015

cg09935388 ♦ -7.205 < 2.22e-16 -3.213 0.023

cg19572487 -10.216 < 2.00e-16 -0.666 0.518

cg19859270 -47.049 < 2.00e-16 -2.716 0.456

cg18146737 -4.602 < 2.22e-16 -0.980 0.606

cg21161138 -17.857 < 2.22e-16 -0.937 0.598

cg23480021 4.741 < 2.22e-16 -0.362 0.874

cg21188533 3.638 < 2.22e-16 0.106 0.870

cg03274391 4.715 < 2.22e-16 0.140 0.916
♦ CpGs included in our final model
♦♦ The association between the selected CpG sites and smoking habits (smokers vs non- smokers) is tested in our dataset 
using binominal regression adjusted for age and sex (e.g. smoking ~ CpG1 + age + sex)
♦♦♦ The statistical summary from the full model; testing the association between smoking habits (smokers vs non- smok-
ers) and all 20 CpGs included in our model building procedure using binominal regression (smoking ~ CpG1-20)
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table s4. Prediction results when including age and sex in the model.

13 cpgs 13 cpgs + Age 13 cpgs + sex 13 cpgs + Age + sex

Accuracy$ 0.923 0.925 0.925 0.923

(95% CI) (0.914, 0.931) (0.916, 0.933) (0.916, 0.933) (0.915, 0.932)

Specificity 0.976 0.975 0.976 0.976

Sensitivity 0.585 0.603 0.595 0.589

AUC 0.901 0.907 0.903 0.911
$ Proportion accurately inferred smoking habits
95% CI: confidence interval; AUC: Area under the Curve.

table s5. Prediction results when including cell count in the model .

13 cpgs 13 cpgs + cell count

Accuracy$ 0.925 0.925

(95% CI) (0.915, 0.933) (0.916, 0.934)

Specificity 0.975 0.975

Sensitivity 0.616 0.618

AUC 0.906 0.907

The table shows prediction results by including cell count in the model in 3,402 participants (477 current smokers and 
2,925 non- smokers).
$ Proportion accurately inferred smoking habits
95%CI: confidence interval; AUC: Area under the Curve.
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table s6. model application to children from the generation R study at time of birth using cord blood.

birth (n=1,111) birth (n=197)

whole dataset serial samples

Child non-smoking (all “0”) Accuracy$ 0.114 0.112

Sustained prenatal smoking of 
mother throughout pregnancy

N

Specificity
Sensitivity
AUC

0: 950
1: 161
0.131
0.981
0.773

0: 173
1: 24
0.121
0.958
0.751

Sustained prenatal smoking of 
mother throughout pregnancy or
mother stopped smoking
when aware of pregnancy

N

Specificity
Sensitivity
AUC

0: 844
1: 267
0.133
0.944
0.664

0: 147
1: 50
0.129
0.940
0.571

Active or passive smoking of 
mother during pregnancy♦

N

Specificity
Sensitivity
AUC

0: 576
1: 535
0.135
0.908
0.591

0: 108
1: 89
0.148
0.932
0.562

Only passive smoking of mother 
during pregnancy♦♦

N

Specificity
Sensitivity
AUC

0: 843
1: 268
0.110
0.873
0.460

0: 158
1: 39
0.120
0.923
0.512

♦ Active smoking: sustained smoking of mother throughout pregnancy or until mother became aware of pregnancy, gener-
ally in the first trimester, passive smoking: smoking of others in the pregnant mother’s household or at her place of work
♦♦ Passive smoking: mother never smoked during pregnancy but others smoked in the pregnant mother’s household or 
at her place of work
$ Proportion of children correctly predicted as non-smokers
AUC: Area under the Curve

Additional supplemental material for this chapter can be found in the online version of 
the paper via https://link.springer.com/article/10.1007%2Fs10654-019-00555-w.
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AbstRAct

background: Tobacco smoking is a well-known modifiable risk factor for many chronic 
diseases, including cardiovascular disease (CVD). One of the proposed underlying mech-
anism linking smoking to disease is via epigenetic modifications, which could affect the 
expression of disease-associated genes. Here, we conducted a three-way association 
study to identify the relationship between smoking-related changes in DNA methylation 
and gene expression and their associations with cardio-metabolic traits.

Results: We selected 2,549 CpG sites and 443 gene expression probes associated with 
current versus never smokers, from the largest epigenome-wide association study and 
transcriptome-wide association study to date. We examined three-way associations, 
including CpG versus gene expression, cardio-metabolic trait versus CpG, and cardio-
metabolic trait versus gene expression, in the Rotterdam study. Subsequently, we repli-
cated our findings in The Cooperative Health Research in the Region of Augsburg (KORA) 
study. After correction for multiple testing, we identified both cis- and trans-expression 
quantitative trait methylation (eQTM) associations in blood. Specifically, we found 
1,224 smoking-related CpGs associated with at least one of the 443 gene expression 
probes, and 200 smoking-related gene expression probes to be associated with at least 
one of the 2,549 CpGs. Out of these, 109 CpGs and 27 genes were associated with at 
least one cardio-metabolic trait in the Rotterdam Study. We were able to replicate the 
associations with cardio-metabolic traits of 26 CpGs and 19 genes in the KORA study. 
Furthermore, we identified a three-way association of triglycerides with two CpGs and 
two genes (GZMA; CLDND1), and BMI with six CpGs and two genes (PID1; LRRN3). Finally, 
our results revealed the mediation effect of cg03636183 (F2RL3), cg06096336 (PSMD1), 
cg13708645 (KDM2B), and cg17287155 (AHRR) within the association between smoking 
and LRRN3 expression.

conclusions: Our study indicates that smoking-related changes in DNA methylation 
and gene expression are associated with cardio-metabolic risk factors. These findings 
may provide additional insights into the molecular mechanisms linking smoking to the 
development of CVD.
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IntRoductIon

Tobacco smoking is a major modifiable risk factor for premature death and non-commu-
nicable diseases worldwide (1). With almost 18 million deaths in 2017, cardiovascular 
diseases (CVD) account for the largest number of deaths of non-communicable diseases 
(2). Smoking is also associated with cardio-metabolic traits, such as dyslipidemia, hy-
pertension, insulin resistance, and obesity, which are major risk factors leading to CVD 
(3, 4). Furthermore, persistent smoking has an excessive impact on DNA methylation (5-
7) and gene expression (8-10), which their alterations are also linked to cardio-metabolic 
traits and risk of CVD (11-16).

Extensive studies have shown the independent association of smoking with DNA 
methylation, gene expression levels, and disease risk. In this context, smoking is as-
sociated with alteration in DNA methylation levels of several genes related to type 2 
diabetes (17) and coronary artery disease (18). Additionally, smoking-related CpGs have 
a strong association with all-cause and cardiovascular mortality (19). Nevertheless, 
much less research has investigated smoking-related changes in DNA methylation and 
gene expression concurrently and in relation to health outcomes. A recent study identi-
fied a link between smoking-related DNA methylation and gene expression changes 
with metabolic health (20). Their results indicate possible molecular pathways in which 
smoking affects disease development.

In this study, we hypothesized that smoking-related modifications in DNA meth-
ylation and gene expression are associated with each other and, additionally, with 
cardio-metabolic traits. Hence, we first determined three-way associations, including 
CpGs vs. gene expression, cardio-metabolic traits versus CpGs, cardio-metabolic traits 
versus gene expression. To this end, we selected CpGs and gene expression probes as-
sociated with current versus never smokers using the largest published epigenome-wide 
association study (EWAS) (6) and transcriptome-wide association study (TWAS) (8) to 
date. Next, we used data from the Rotterdam Study to test the expression quantitative 
trait methylation (eQTM) association between the selected CpGs and gene expression 
probes. Subsequently, we tested the association for these CpGs and genes with different 
cardio-metabolic traits, including lipids, glycemic indices, blood pressure, and obesity-
related traits. Moreover, we performed mediation analysis to test the mediating effect 
of (1) DNA methylation in the association between smoking and cardio-metabolic traits, 
(2) gene expression in the association between smoking and cardio-metabolic traits, 
and (3) DNA methylation in the association between smoking and expression levels of 
smoking-related genes. To test the validity of our findings, we further replicated our 
results in an independent cohort, The Cooperative Health Research in the Region of 
Augsburg (KORA) study.
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REsuLts

An overview of our study design is illustrated in Figure 1. The discovery dataset con-
sisted of 1,412 participants with DNA methylation data from the two sub-cohorts of the 
Rotterdam study; RS-II and RS-III. Of these, 716 participants from RS-III had also gene 
expression data (21). The replication dataset comprises 1,727 participants with DNA 
methylation data, of whom 687 also had gene expression data, from the KORA study (F4) 
(22). Both the discovery and replication cohorts consisted of both males and females 
(53.3%) and current, former and never smokers. In the current study, the former and 
never smokers are combined in the non-smoker category (83.6%). General characteris-
tics of the study population are listed in table 1.
 

 

 
Figure 1. schematic overview of the study design. In the current paper, previously identified CpGs by the largest avail-
able EWAS (6) and genes by the largest available TWAS (8) associated with current versus never smokers were used to test 
the link between smoking and cardio-metabolic traits. To this end, we first examined the association between smoking 
and alterations in gene expression (A). Second, we checked the association between the smoking-related CpGs and the 
smoking-related gene expression probes (A). Third, the smoking-related CpGs and gene expression probes that were in 
eQTM with each other were tested for their association with cardio-metabolic traits (B).
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correlation between smoking-related changes in dnA methylation and 
gene expression
We selected 2,623 CpGs previously reported as being significantly (P<1×10-7) dif-
ferentially methylated between smokers and never smokers (6). Of these, 2,549 CpGs 
passed the quality control in the Rotterdam Study. Furthermore, we selected 502 gene 
expression probes that were differently expressed between smokers and never smokers 
(FDR<0.05), and replicated in an independent dataset as part of the same study (8). Of 
these, 443 gene expression probes passed quality control in the Rotterdam Study. Then, 
we investigated the eQTM associations to test the possible impact of smoking-related 
DNA methylation changes on the smoking-related genes, or vice versa. To this end we 
computed the residuals for both the CpGs and gene expression probes. Then, we tested 
the association between all the smoking-related CpGs with all the smoking-related 
gene expression probes. Here, we investigated cis-eQTMs in which the CpG regulates 

table 1. Population characteristics

discovery dataset Replication dataset

gene 
expression
data set

dnA 
methylation
data set

gene 
expression
data set

dnA 
methylation
data set

N 716 1,412 687 1,727

Female 389 (54.3%) 791 (56.0%) 339 (49.3%) 882 (51.0%)

Age (years) 59.8 (±8.1) 63.6 (±8.1) 69.1 (±4.4) 61.0 (±8.8)

BMI (kg/m2) 27.6 (±4.6) 27.7 (±4.4) 28.9 (±4.5) 28.1 (±4.8)

WHR 0.9 (±0.1) 0.9 (±0.1) 0.9 (±0.1) 0.9 (±0.1)

Current smokers 193 (27.0%) 266 (18.0%) 53 (7.7%) 250 (14.5%)

Triglycerides (mmol/L) 1.5 (±0.9) 1.5 (±0.8) 1.5 (±0.9) 1.5 (±1.1)

HDL-cholesterol (mmol/L) 1.4 (±0.4) 1.5 (±0.4) 1.4 (±0.4) 1.5 (±0.4)

LDL-cholesterol (mmol/L) 3.9 (±1.0) 3.8 (±1.0) 3.7 (±0.9) 3.6 (±0.9)

Total cholesterol (mmol/L) 5.6 (±1.1) 5.5 (±1.0) 5.8 (±1.0) 5.7 (±1.0)

Lipid lowering medication (yes) 190 (26.5%) 404 (28.6%) 172 (25.0%) 283 (16.4%)

Systolic blood pressure (mm Hg) 134.2 (±19.8) 139.5 (±21.5) 128.7 (±19.4) 124.8 (±18.7)

Diastolic blood pressure (mm Hg) 82.8 (±11.4) 83.6 (±11.5) 74.7 (±10.0) 76.1 (±10.0)

Anti-hypertensive medication (yes) 215 (30.0%) 517 (36.6%) 383 (55.7%) 650 (37.6%)

Glucose (mmol/L) 5.6 (±1.0) 5.6 (±1.1) NA NA

Insulin (pmol/L) 96.0 (±63.0) 89.3 (±56.6) 88.2 (±122.0) 81.3 (±91.0)

Anti-diabetic medication (yes) 39 (5.4%) 95 (6.7%) 76 (11.1%) 134 (7.8%)

Values are presented as mean ±(SD) or N (%)
BMI, body mass index; WHR, waist to hip ratio; HDL, High-density lipoproteins;
LDL, Low-density lipoprotein
The participants included in the gene expression data are a subset of the total DNA methylation dataset
NA, not applicable; the associations with glucose levels in model 2 from the discovery did not pass the significance thresh-
old
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transcription of a neighboring gene (≤ 250Kb from each side of the transcription start 
site). Also, we studied the trans-eQTM association in which a CpG regulates distant 
genes located >250Kb of the transcription start site (23). Notably, out of the 2,549 
smoking-related CpGs, 1224 were associated with at least one of the gene expression 
probes at the significance threshold of P< 4.4×10-8 (0.05/443×2,549). Of the 443 tested 
gene expression probes, 200 probes were significantly associated with at least one of 
the 2,549 CpGs, after correcting for multiple testing (Additional file 1: Table S1). The 
R code to generate the residuals for the CpGs and gene expression probes, and for the 
eQTM analysis are included in Additional File 2.

To examine the possible enrichment due to the smoking effect, we further tested 
if the number of significant eQTM associations is higher while using smoking-related 
CpGs and genes, compared to the number of eQTM associations while using randomly 
selected CpGs and genes. When testing the association between the 2,549 smoking-
related CpGs with 443 randomly selected gene expression probes, we found that only 
325 CpGs are associated with at least one of these gene expression probes and 186 gene 
expression probes with at least one smoking-related CpG. Using the chi-square test of 
independence to compare the use of smoking-related gene expression probes versus 
randomly selected gene expression probes, we obtained for the CpGs (1,224 vs. 325, 
respectively) P< 1.0×10-5 and for the genes expression probes (200 vs. 186, respectively) 
a P-value of 0.38. Similarly, when testing the association between 2,549 randomly se-
lected CpGs with the 443 smoking-related gene expression probes, we found only 465 
CpGs associated with at least one smoking-related gene expression probe, and 19 gene 
expression probes with at least one smoking-related CpG. Using the chi-square test of 
independence, comparing the use of smoking-related CpGs versus randomly selected 
CpGs, we found a significant difference (P<1.0×10-5) for both the CpGs (1,224 vs. 465, 
respectively) and the gene expression probes (200 vs.19, respectively). These results 
indicate enrichment of smoking-related genes in smoking-related DNA methylation 
sites and vice versa.

The replication in the KORA study confirmed the association of 134 smoking-related 
CpGs with at least one gene expression probe and 50 smoking-related gene expression 
probes with at least one smoking-related CpG, after correcting for multiple testing, at 
the significance threshold of P< 2.04×10-7 (0.05/200×1,224).

Association of smoking-related changes in dnA methylation and gene 
expression with cardio-metabolic traits
We tested the association of the 1,224 CpGs and the 200 gene expression probes with 
cardio-metabolic traits, including high-density lipoprotein (HDL), low-density lipopro-
tein (LDL), triglycerides (TG) and serum cholesterol, fasting glucose and insulin levels, 
systolic blood pressure (SBP) and diastolic blood pressure (DBP), waist to hip ratio 
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(WHR) and body mass index (BMI) in the Rotterdam Study. After adjusting for age, sex, 
blood cell count, and technical covariates (model 1), we found significant associations 
between 202 out of the 1,224 smoking-related CpGs and any cardio-metabolic trait at 
P<4.08×10-5 (0.05/1224) (n= 1,412 participants) (Additional file 3: table s2). Among 
these, we observed associations with HDL (126 CpGs), TG (84 CpGs), glucose (2 CpGs), 
insulin (10 CpGs), DBP (1 CpG), WHR (21 CpGs), and BMI (16 CpGs). After further adjust-
ment for BMI and relevant medication in the model 2, associations with 109 CpGs 
remained significant, including HDL (58 CpGs), TG (35 CpGs), DBP (1 CpG), WHR (6 CpG), 
and BMI (16 CpG same as model 1) (Additional file 3: table s3). The R code to test the 
association between cardio-metabolic traits and the CpGs are included in Additional 
File 4. We pursued replication in the KORA study for the CpGs reaching significance in 
the model 2 and found that 26 CpGs surpassed the nominal significance (P< 0.05, n= 
1,727 participants), including 8 CpGs for HDL, 8 CpGs for TG, 4 CpGs for WHR, and 7 
CpGs for BMI (table 2, Additional file 3: table s3). The direction of associations with 
cardio-metabolic traits was consistent in all 26 replicated CpGs. Based on the stringent 
Bonferroni-adjusted P-value threshold, the replication signals were significant at 2 CpGs 
for TG (P< 0.05/35=1.43×10-3), 3 CpGs for WHR (P< 0.05/6=8.33×10-3), and 4 CpGs with BMI 
(P< 0.05/16=3.13×10-3) (table 2 and Figure 2).

Furthermore, out of the 200 smoking-related gene expression probes 39 (35 genes) 
were significantly associated with at least one cardio-metabolic trait at P< 2.5×10-4 
(0.05/200) in the Rotterdam Study (n=716 participants) (Additional file 2: table s4). 
In the Illumina HumanHT-12 Expression BeadChip array, some of the annotated genes 
have more than one probe. Therefore, we adjusted the analysis for the number of 
probes we tested and provided both the probe ID and annotated gene in the tables. Of 
the 39 probes, we found associations with HDL (15 genes), LDL (1 gene), TG (18 genes), 
cholesterol (1 gene), glucose (3 genes), insulin (13 genes), WHR (6 genes), and BMI (14 
genes). After further adjustments in model 2, the associations of 29 probes (27 genes) 
remained significant, including HDL (5 genes), LDL (1 gene), TG (14 genes), cholesterol 
(1 gene), and insulin (2 genes), for the association with BMI nothing changed (14 genes) 
(Additional file 3: table s5). The R code to test the association between cardio-meta-
bolic traits and the gene expression probes is included in Additional File 5. Replication 
in the KORA study for the gene expression probes that reached significance in model 
2 showed 21 probes (19 genes) that passed the nominal significance (P< 0.05, n= 687 
participants). These include 2 genes for HDL, 13 genes for TG, 1 gene for insulin, and 
10 genes for BMI (table 3, Additional file 3: table s5). The direction of the association 
between gene expression and cardio-metabolic traits was consistent for all these genes. 
Based on the stringent Bonferroni-adjusted P-value in which we adjusted for the num-
ber of probes, the replication signal was significant at 2 genes for HDL (P< 0.05/5=0.01), 
11 genes for TG (P< 0.05/15=3.33×10-3), 1 gene for insulin (P< 0.05/2=0.03) and 4 genes 
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table 2. cpg sites associated with cardio-metabolic traits in dnA methylation analysis.

cpg chr:position* gene Id** trait model 1 model 2 Replication

Effect P-value Effect P-value Effect P-value

cg04716530 16:30485684 ITGAL HDL 0.01700 2.02E-07 0.01550 6.34E-06 0.00014 9.82E-04

cg07826859 7:45020086 MYO1G HDL 0.01440 6.79E-06 0.01390 3.61E-05 0.00018 1.61E-03

cg26724967 16:3115223 IL32 HDL 0.01290 2.89E-06 0.01220 2.34E-05 0.00015 1.63E-03

cg16391678 16:30485597 ITGAL HDL 0.01520 1.03E-06 0.01400 1.60E-05 0.00013 5.14E-03

cg16519923 16:30485810 ITGAL HDL 0.01980 8.23E-08 0.01790 3.44E-06 0.00012 9.75E-03

cg10310310 7:157367150 PTPRN2;MIR153-2 HDL 0.01130 4.49E-06 0.01060 4.05E-05 0.00011 1.96E-02

cg24323726 3:111314186 ZBED2;CD96 HDL 0.01300 4.84E-07 0.01230 5.32E-06 0.00009 3.41E-02

cg07929642 16:89390685 ANKRD11 HDL 0.01650 1.87E-07 0.01550 3.13E-06 0.00009 4.25E-02

cg21566642 2:233284661 - tg -0.01990 3.89E-05 -0.02150 1.91E-05 -0.01967 1.14E-05

cg04716530 16:30485684 ITGAL tg -0.01370 1.23E-06 -0.01220 3.58E-05 -0.00380 5.34E-04

cg27409015 2:158114424 GALNT5 TG 0.01660 8.39E-07 0.01490 2.16E-05 0.00683 1.50E-03

cg06635952 2:70025869 ANXA4 TG 0.01300 9.06E-07 0.01280 3.36E-06 0.00502 5.95E-03

cg11095027 11:1297066 TOLLIP TG 0.00996 2.72E-05 0.01040 2.64E-05 0.00375 7.82E-03

cg26219092 8:134388022 - TG 0.01050 2.37E-06 0.00991 2.05E-05 0.00285 1.73E-02

cg10919522 14:74227441 C14orf43 TG -0.01410 7.90E-09 -0.01260 7.97E-07 -0.00491 1.91E-02

cg22635096 21:46550644 ADARB1 TG 0.01370 6.61E-08 0.01300 8.65E-07 0.00392 3.55E-02

cg00310412 15:74724918 SEMA7A wHR -0.05000 3.96E-05 -0.07150 1.95E-07 -0.06952 4.54E-05

cg04424621 6:27101941 HIST1H2BJ wHR -0.06490 1.06E-05 -0.07360 1.03E-05 -0.07191 5.73E-05

cg04583842 16:88103117 BANP wHR 0.12600 5.29E-08 0.12500 1.56E-06 0.06802 3.71E-03

cg13755776 11:3602845 - WHR -0.08530 1.03E-06 -0.08200 3.33E-05 -0.04521 3.71E-02

cg17287155 5:393347 AHRR bmI 0.00117 8.69E-06 NA NA 0.00053 3.11E-06

cg26361535 8:144576604 ZC3H3 bmI 0.00155 1.85E-07 NA NA 0.00102 2.38E-05

cg06096336 2:231989800 PSMD1;HTR2B bmI 0.00168 9.51E-07 NA NA 0.00111 1.66E-04

cg13708645 12:121974305 KDM2B bmI 0.00152 6.72E-07 NA NA 0.00089 1.01E-03

cg25649826 17:20938740 USP22 BMI 0.00086 1.63E-05 NA NA 0.00041 3.15E-03

cg24539517 10:121161258 GRK5 BMI 0.00149 2.95E-05 NA NA 0.00078 4.33E-03

cg03636183 19:17000585 F2RL3 BMI 0.00160 3.04E-05 NA NA 0.00063 3.40E-02

The table shows 26 CpGs that are associated to at least one cardio-metabolic trait and in eQTM with at least one smoking 
related gene-expression probe.
Only CpGs significantly associated in both models and nominally significant (P< 0.05) in the replication are presented in 
this table.
HDL, high-density-lipoprotein; TG, triglycerides; WHR, waist to hip ratio; BMI, body mass index; NA, Not applicable (because 
of adjusting for BMI).
Model 1: Adjusted for age, sex, cell count and technical covariates. Model 2: Model 1 + BMI and relevant medication.
We did not correct for additional covariates when testing the association for BMI
P-value threshold for discovery P< (0.05/1,224=) 4.08×10-5

P-value threshold for replication: HDL; P< (0.05/58=)8.62×10-4, TG; P< (0.05/35=)1.43×10-3, WHR; P< (0.05/6=)8.33×10-3, BMI; 
P< (0.05/16=)3.13×10-3

CpGs that are presented bold passed the replication P-value threshold in 1,727 participants of the KORA study
* Genome coordinates provided by Illumina (GRCh37/hg19), ** According to the Illumina Infinium HumanMethylation450K 
annotation file
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for BMI (P< 0.05/16=3.13×10-3). Several of these genes were associated in model 2 with 
more than one cardio-metabolic trait and were replicated at least at the nominal signifi-
cance (P< 0.05). For example, KLRB1 (ILMN_2079655), ITM2C (ILMN_2366041), and CD3D 
(ILMN_2261416) were associated with both TG and BMI, and OCIAD2 (ILMN_1700306) 
was associated with both HDL and TG, and EFHD2 (ILMN_1761463) was associated with 
HDL, TG, and BMI (table 3 and Figure 2).

Next, we explored whether there is an overlap in the results obtained with DNA meth-
ylation and gene expression data, which possibly explain the link between smoking 
and cardio-metabolic traits. table 4 shows the overlap of the replicated association of 
cardio-metabolic traits with gene expression, which were both also associated with the 
smoking-related CpGs, indicating a three-way association (Figure 1). Additional file 3: 
table s6 displays the three-way association as obtained in our discovery dataset. For 
example, we found in the Rotterdam Study overlapping association of serum HDL levels 
with four CpGs (cg01305745, cg06177555, cg07990556, and cg16448702) and expression 

 
Figure 2. the overlap of smoking-related cpgs and genes in association with cardio-metabolic traits.
In the current study, 2,549 smoking-related CpGs and 443 smoking-related gene expression probes were included. Of 
these, 1,224 CpGs and 200 gene expression probes showed eQTM association. We found the association for 26 CpGs and 
19 genes (21 expression probes) with at least one cardio-metabolic traits, which surpassing the nominal significance (P 
< 0.05) in the KORA replication study.
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table 3. gene expression probes associated with cardio-metabolic traits.

Probe Id gene Id* chr.* trait

model 1 model 2 Replication

Effect P-value Effect P-value Effect P-value

ILmn_1700306 OCIAD2 4 HdL -0.4114 8.39E-07 -0.3573 5.15E-05 -0.0040 9.20E-05

ILmn_1761463 EFHD2 1 HdL 0.4668 1.60E-07 0.3576 0.00013 0.0022 1.38E-03

ILmn_2261416 CD3D 11 tg 0.9089 2.22E-15 0.8328 3.84E-12 0.3233 2.58E-15

ILmn_2079655 KLRB1 12 tg 1.1666 6.48E-14 1.0518 1.01E-10 0.3946 4.09E-15

ILmn_1779324 GZMA 5 tg 1.0562 1.99E-09 1.0033 6.01E-08 0.2734 2.06E-13

ILmn_1761463 EFHD2 1 tg -0.4238 2.59E-09 -0.3434 3.54E-06 -0.1298 9.99E-13

ILmn_1700306 OCIAD2 4 tg 0.3413 3.32E-07 0.2998 1.93E-05 0.1691 7.64E-10

ILmn_1808939 RPS6 9 tg 0.6145 5.58E-11 0.5687 7.54E-09 0.3001 1.17E-09

ILmn_1812191 C12orf57 12 tg 0.4392 1.37E-05 0.3897 0.00023 0.1772 1.07E-07

ILmn_1776181 BIRC3 11 tg 0.6940 2.86E-10 0.6176 8.34E-08 0.1473 4.89E-07

ILmn_1813836 DARS 2 tg 0.2657 9.37E-07 0.2878 4.67E-07 0.0894 3.18E-06

ILmn_1669927 ICOS 2 tg 0.2859 6.88E-06 0.2692 5.75E-05 0.0925 2.95E-04

ILmn_2198878 INPP4B 4 tg 0.2950 2.99E-07 0.2853 2.53E-06 0.0668 5.93E-04

ILMN_2366041 ITM2C 2 TG -0.5648 6.81E-09 -0.4159 3.35E-05 -0.0818 6.33E-03

ILMN_1680453 ITM2C 2 TG -0.5880 5.50E-08 -0.4295 0.000124 -0.0818 7.05E-03

ILMN_2352563 CLDND1 3 TG 0.3877 4.61E-05 0.4003 6.52E-05 0.0656 3.53E-02

ILmn_2079655 KLRB1 12 Insulin 0.7694 7.01E-09 0.6393 5.21E-05 0.2120 5.59E-05

ILmn_1766657 STOM 9 bmI 0.0549 3.85E-07 NA NA 0.0196 2.56E-08

ILmn_1671891 PID1 2 bmI -0.0425 7.23E-09 NA NA -0.0137 3.27E-06

ILmn_2366041 ITM2C 2 bmI -0.0577 1.86E-09 NA NA -0.0123 9.53E-05

ILmn_1773650 LRRN3 7 bmI -0.0669 3.77E-05 NA NA -0.0162 1.70E-03

ILMN_1661599 DDIT4 10 BMI -0.0658 2.75E-07 NA NA -0.0096 4.06E-03

ILMN_2048591 LRRN3 7 BMI -0.0604 1.46E-05 NA NA -0.0086 6.95E-03

ILMN_2377669 CD247 1 BMI -0.0370 5.95E-05 NA NA -0.0058 8.01E-03

ILMN_2109197 EPB41L3 18 BMI -0.0322 0.000112 NA NA -0.0072 1.12E-02

ILMN_2261416 CD3D 11 BMI 0.0458 6.47E-05 NA NA 0.0107 1.37E-02

ILMN_2079655 KLRB1 12 BMI 0.0669 1.63E-05 NA NA 0.0122 2.29E-02

ILMN_1761463 EFHD2 1 BMI -0.0339 1.46E-06 NA NA -0.0038 4.68E-02

The table shows 21 probes annotated to 19 genes that are significantly associated with cardio-metabolic traits and in 
eQTM with at least one smoking related CpG.
Only probes significantly associated in both models and nominally significant (P< 0.05) in the replication are presented in 
this table. HDL, high-density-lipoprotein; TG, triglycerides; BMI, body mass index; NA, Not applicable
(because of adjusting for BMI). We did not correct for additional covariates when testing the association for BMI.
Model 1: Adjusted for age, sex, cell count, RNA quality score and technical covariates. Model 2: Model 1 + BMI and relevant 
medication.
P-value threshold P< (0.05/200=) 2.25×10-4; P-value threshold for replication: HDL; P< (0.05/5=)0.01, TG; P< (0.05/15=)3.33×10-

3, Insul; P< (0.05/2=)0.03, BMI; P< (0.05/16=)3.13×10-3.
Genes that are presented bold passed the replication p-value threshold in 687 participants of the KORA study.
*According to the by Illumina provided annotation file
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levels of three genes (EFHD2, PRF1, and OSBPL5). Likewise, we found the association of 
TG levels with 18 CpGs and six genes (ICOS, GZMA, C12orf57, CD3D, CLDND1, and EFHD2). 
Finally, we found BMI to be associated with 16 CpGs and five genes (LRRN3, EFHD2, PID1, 
STOM, and CD3D) (Additional file 3: Table S6). Of these, we were able to replicate the 
three-way association of TG with DNA methylation levels of cg04716530 and expres-
sion levels of GZMA, and DNA methylation levels of cg21566642 and expression levels 
of CLDND1 in the KORA study. Furthermore, we found BMI to be associated with DNA 
methylation levels of 6 CpGs and expression of two genes (LRRN3 and PID1) (table 4).

In the three-way association (table 4), we also identified CpGs associated with 
expression levels of genes far approximate from their annotated gene/loci. We did a 
lookup for the identified CpGs for eQTM association using data from the BIOS-BBMRI 
database (http://www.genenetwork.nl/ biosqtlbrowser/). Here we found cis- eQTMs 
between cg17287155 and expression of EXOC3 and between cg03636183 and expression 
of F2RL3. In the Rotterdam Study, both EXOC3 and F2RL3 gene expression probes did not 
pass the QC. Hence, we could not test the influence of these genes in the identified eQTM 
associations in a three-way analysis.

table 4. the dnA methylation sites associated with gene expression.

gene Expression*  dnA methylation ** eQtm***

ProbeId Effect P-value trait cpg Effect P-value Coeff P-value

ILmn_1779324 ( GZMA) 1.0033 6.01E-08 TG cg04716530 -0.0122 3.58E-05 -11.7641 6.91E-12

ILMN_2352563 ( CLDND1) 0.4003 6.52E-05 TG cg21566642 -0.0215 1.91E-05 -5.1957 3.54E-19

ILmn_1671891 ( PID1) -0.0425 7.23E-09 BMI cg03636183 0.0016 3.04E-05 -3.9797 1.28E-11

ILmn_1773650 ( LRRN3) -0.0669 3.77E-05 BMI cg03636183 0.0016 3.04E-05 -16.4622 3.46E-41

 cg06096336 0.0017 9.51E-07 -15.0031 2.91E-24

 cg13708645 0.0015 6.72E-07 -9.5025 2.31E-09

 cg17287155 0.0012 8.69E-06 -26.2306 3.09E-54

 cg25649826 0.0009 1.63E-05 -14.4989 3.43E-08

    cg26361535 0.0016 1.85E-07 -12.549 2.30E-11

ILMN_2048591 ( LRRN3) -0.0604 1.46E-05 BMI cg03636183 0.0016 3.04E-05 -14.4435 2.67E-43

 cg06096336 0.0017 9.51E-07 -11.5428 1.40E-19

 cg13708645 0.0015 6.72E-07 -8.2627 1.36E-09

 cg17287155 0.0012 8.69E-06 -21.4408 1.19E-48

The table shows an overview of the overlap of the hits with nominal significant (P< 0.05) replication in KORA in all three 
association analyses, including the association between 1) DNA methylation and cardio-metabolic traits, 2) gene expres-
sion and cardio-metabolic traits, and 3) the eQTM results for the gene and CpG that are associated with the same cardio-
metabolic trait. P-value thresholds in the discovery for DNA methylation P< (0.05/1,224=)4.08×10-5, gene expression P< 
(0.05/200=)2.25×10-4 and for eQTM P< (0.05/(443×2,549))=4.4×10-8. P-value thresholds in the replication for TG; gene expres-
sion P< (0.05/15=)3.33×10-3, DNA methylation P< (0.05/35=)1.43×10-3, and BMI; gene expression P< (0.05/16=)3.13×10-3, DNA 
methylation P< (0.05/16=)3.13×10-3, and eQTM P< (0.05/(1,224×200)=)2.04×10-7 Results that are presented bold passed the 
replication P-value threshold in the KORA study * Expression probe ~ cardio-metabolic trait + age, sex, cell count, RNA qual-
ity score, technical covariates, BMI and relevant medication ** CpGs ~ cardio-metabolic trait + age, sex, cell count, technical 
covariates, BMI and relevant medication *** Expression probe ~ CpGs + age, sex TG, triglycerides; BMI, body mass index
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mediation analysis for smoking-related cpgs and genes associated with 
cardio-metabolic traits
As shown in Figure 3, we used mediation analysis to investigate the effect of DNA meth-
ylation and gene expression, independently, in the association between smoking and 
cardio-metabolic traits. Also, we tested the mediating effect of DNA methylation in the 
association between smoking and gene expression. In total, we conducted three differ-
ent models; first, gene expression as a mediator in the observed association between 
smoking and cardio-metabolic traits (A1 and A2 in Figure 3); second, DNA methylation 
as a mediator in the observed association between smoking and gene expression (B1 
and B2 in Figure 3); and third, DNA methylation as the mediator in the association 
between smoking and cardio-metabolic traits (C1 and C2 in Figure 3). We conducted the 
average causal mediation effect (ACME), average direct effect (ADE), and the proportion 
mediated (Prop. med.), which are illustrated in table 5 (and Additional file 3: table s7). 
The ADE reflects the effect of smoking on the tested outcome that does not depend on 
the mediator. The R code for the mediation analyses is included in Additional File 6 and 
an example input file is provided in Additional file 7.

The mediation effect of the three-way associations as obtained in our discovery da-
taset (Additional file 1: Table S6) are provided in Additional file 3: Table S7. Out of 
the 124 mediation analysis conducted, there was significant mediation effect in 69 of 
them in the Rotterdam Study (Additional file 3: Table S7). Of these, we were able to 
replicate the mediating effect of cg01305745 (VKORC1) and cg16448702 (INPP5D) in the 
association between smoking and PRF1 expression (ILMN_1740633).

Also, we identified the mediating effect of cg16448702 (INPP5D) in the association 
between smoking and OSBPL5 (ILMN_1802151). Furthermore, we replicated the me-
diation effect of 9 CpGs in the association between smoking and LRRN3 expression 
(ILMN_1773650 and ILMN_2048591) (Additional file 3: Table S7). Finally, of the repli-
cated three-way associations as shown in table 4, we were able to replicate the media-

 
Figure 3. schematic overview of the mediation analyses. We used mediation analysis to test the mediation effect of 
gene expression in the association between smoking and cardio-metabolic traits (A1 and A2). Furthermore, we tested the 
mediation effect of DNA methylation in the associations between smoking and gene expression (B1 and B2) and the media-
tion effect of DNA methylation in the association between smoking and cardio-metabolic traits (C1 and C2).



115

Smoking, epigenetics, and cardiometabolic traits

3.1

tion effect of cg03636183 (F2RL3), cg06096336 (PSMD1; HTR2B), cg13708645 (KDM2B), 
and cg17287155 (AHRR) in the association between smoking and LRRN3 expression 
(table 5). We conducted the ρ at which ACME is 0, to test the models’ sensitivity. Here, 
we obtained ρ’s in the range between -0.1 and -0.5, and 0.1 and 0.4. A value of ρ close to 
0 indicates that the assumption we made is sensitive to violations (24).

dIscussIon

The associations of smoking, gene expression, and DNA methylation with cardio-
metabolic traits have been studied independently and reviewed in great detail (11, 25-
28); however, the overlap between epigenetics and transcriptomics in the association 
between smoking and cardio-metabolic traits has been studied much less. This study 
investigated the relationship between previously identified smoking-related changes 
in DNA methylation (6) and gene expression (8), followed by their associations with 
cardio-metabolic traits within two population-based cohort studies. In this line, we first 
showed several significant cis- and trans-eQTM associations between smoking-related 
CpGs and gene expression probes. Furthermore, we replicated 26 smoking-related CpGs 
and 19 smoking-related genes (21 probes) associated with cardio-metabolic traits. 
Moreover, we showed three-way association of TG with two CpGs and two genes (GZMA 
and CLDND1), and BMI with six CpGs and two genes (PID1 and LRRN). Finally, our study 

Table 5. Mediation effect of DNA methylation and gene expression in the association between smoking and cardio-
metabolic traits.

mediator outcome AcmE
(95%cI)

AdE
(95%cI)

Total Effect
(95%cI)

Prob. med.
(95%cI)

ρ at 
which
AcmE 
is 0*

cg03636183
(F2RL3)

ILMN_1773650
(LRRN3)

0.6835
(0.4731/0.8869)

1.9603
(1.5832/2.3822)

2.6438
(2.2907/3.0048)

0.2585
(0.1767/0.3432)

-0.3

cg06096336
(PSMD1;HTR2B)

ILMN_1773650
(LRRN3)

0.1237
(0.0263/0.2396)

2.5202
(2.1796/2.849)

2.6438
(2.2907/3.0048)

0.0468
(0.0102/0.0886)

-0.4

cg13708645
(KDM2B)

ILMN_1773650
(LRRN3)

0.0768
(0.025/0.1408)

2.5671
(2.2153/2.9309)

2.6438
(2.2907/3.0048)

0.0290
(0.0092/0.0533)

-0.1

cg17287155
(AHRR)

ILMN_1773650
(LRRN3)

0.6357
(0.4798/0.8094)

2.0081
(1.6771/2.333)

2.6438
(2.2907/3.0048)

0.2405
(0.1835/0.3036)

-0.5

cg06096336
(PSMD1;HTR2B)

ILMN_2048591
(LRRN3)

0.0992
(0.0198/0.1915)

2.2838
(1.9578/2.5975)

2.3830
(2.0445/2.721)

0.0416
(0.0085/0.0779)

-0.3

cg17287155
(AHRR)

ILMN_2048591
(LRRN3)

0.5004
(0.3828/0.6542)

1.8826
(1.5691/2.2123)

2.3830
(2.0445/2.721)

0.2100
(0.1603/0.2724)

-0.4

The table shows the results of mediation analysis, in which current smoking is always used as exposure and are adjusted 
for age and sex.
ACME; Average Causal Mediation Effect, ADE; Average Direct Effect, Prop. Med; Proportion mediated
* ρ at which ACME is 0 indicates how sensitive our model is to the non-unmeasured confounding assumption.
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demonstrated a mediating effect of 4 CpGs (cg03636183, cg06096336, cg13708645, and 
cg17287155) in the association between smoking and the BMI-related gene LRRN3.

Our results showed a three-way association between TG with the decrease in DNA 
methylation levels of cg21566642 and the increase in expression levels of CLDND1. In 
this line, smoking was associated with an increase in the expression of CLDND1 (8) and 
a decrease in cg21566642 DNA methylation levels (6); and here, we showed the inverse 
relation between CLDND1 expression and methylation levels at cg21566642. The ex-
pression of CLDND1, a tight junction protein, is shown to be highly increased in human 
Colon cancer samples and cell lines, and also positively correlated with tumor growth 
and disease progression (29). The inverse association between DNA methylation levels 
at cg21566642 and smoking was previously shown in blood samples with cross-tissue 
replications in adipose tissue and skin tissue (20). Additionally, cg21566642 is inversely 
associated with CVD risk (30), all-cause mortality (31), and with left ventricular mass 
(LVM) index in young adults (32). LVM index is an important cardiac remodeling trait that 
is an intermediate phenotype for heart failure. In line with this, an increased LVM index 
is associated with high levels of TG (33, 34) and with an increased risk of depressed left 
ventricular ejection fraction, coronary heart disease, congestive heart failure, and stroke 
(35, 36).

In the three-way association for BMI, we found that smoking is associated with 
lower BMI, indicating that current smokers are less likely to be obese than never smoker, 
which has been reported in several previous studies as well (37-39). Our results further 
showed that cg03636183 (F2RL3) was positively associated with BMI and negatively as-
sociated with the expression of PID1 and LRRN3. Smoking was inversely associated with 
cg03636183 (6) and positively with PID1 and LRRN3 expression (8). Here we found an 
inverse relation between cg03636183 and expression levels of PID1 and LRRN3. Due to 
the quality control implemented within the Rotterdam Study gene expression profiling 
data, gene expression data on F2RL3 was not available. Therefore, we could not test if 
the association of cg03636183 with PID1 and LRRN3 expression levels was independent 
or via a downstream effect of F2RL3 expression. Nonetheless, the inverse correlation 
between DNA methylation levels at cg03636183 and expression of F2RL3 was previously 
shown (20). This might indicate that the identified eQTM associations are, at least partly, 
via F2RL3 expression. F2RL3 encodes the protease-activated receptor-4 (PAR-4), a protein 
expressed in various tissues that introduce platelet activation, intimal hyperplasia, and 
inflammation (40). Furthermore, the expression of F2RL3 was associated with metabolic 
disease risk phenotypes, including a negative association with visceral fat mass and a 
positive association with total fat mass and android-to-gynoid fat ratio (20). Addition-
ally, the inverse association between DNA methylation levels at cg03636183 and smok-
ing has been shown in blood samples with cross-tissue replications in adipose and skin 
tissues (20). The inverse relation between DNA methylation levels at cg03636183 and 
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TG (41), all-cause mortality (31), lung cancer incidence and mortality (42), as well as 
total mortality and cardiovascular mortality (43) was also previously identified. Also, a 
smoking-related decrease in cg03636183 methylation levels appears to increase serum 
levels of IL-18 (44). IL-18 promotes the synthesis of IL-6, which stimulates the produc-
tion of serum CRP (45, 46). The increase of IL-18 and IL-6 leads to a higher risk ratio 
for CHD development (47). Moreover, the increase in serum CRP concentrations results 
in increased risk ratios for CHD, ischaemic stroke, vascular mortality, and non-vascular 
mortality (48).

Two of the CpGs, cg26361535 (ZC3H3) and cg25649826 (USP22), for which we found 
a three-way association with BMI and LRRN3, have been reported to be positively as-
sociated with BMI (49). Both CpGs are cross-tissue replicated in adipose tissue and in 
isolated adipocytes for obese cases versus normal-weight controls. The association with 
cg26361535 was in the same direction and for cg25649826 in the opposite direction as 
obtained in our results (49). Additionally, both CpGs were positively associated in blood 
with weight, WHR, glucose, insulin, TG, and CRP, and negatively with HDL. Furthermore, 
cg26361535 was positively associated with SBP and DBP (49) and all-cause mortality 
(31).

Finally, we identified a three-way association between BMI, an increase in meth-
ylation levels at cg17287155 (AHRR), and LRRN3 expression. Smoking is negatively 
associated with DNA methylation levels at cg17287155 (6) and, as we replicated here, 
positively associated with BMI (50). Notably, in the eQTM look-up we found a cis– eQTM 
for cg17287155 with the expression of EXOC3, instead of with its annotated gene (AHRR). 
AHRR is a well-studied gene in relation to smoking (5) and is a key regulator of the Xe-
nobiotic metabolism pathway responsible for detoxification of polyaromatic hydrocar-
bons (PAHs) in tobacco smoke (51, 52). Nevertheless, EXOC3 overexpression increases 
insulin-induced glucose uptake in adipocytes (53), indicating a possible link for EXOC3 
with CVD related risk factors. Further research is needed to verify the eQTM-associations 
for cg17287155 with EXOC3 and its impact on the eQTM-associations identified in the 
current study.

The identified associations and mediating effects in our study indicate a possible 
regulatory effect of DNA methylation on the expression levels of genes far from the 
neighboring methylation site, which so-called trans-regulatory effect of methylated CpG 
sites on gene expression (54). So far, most previous studies have limited their research 
to the correlation between gene expression and DNA methylation at CpGs located in the 
nearby regions and in the gene body, or the cis-regulatory effect. In this line, a recent 
study has shown the trans-regulatory effect of DNA methylation in the associations 
with gene expression and chronic obstructive pulmonary disease (54). Therefore, future 
research is needed with a broader methodological approach, including examining pos-
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sible trans-regulatory effects to gain more insight into the epigenetic regulatory effects 
in disease studies.

This study has strengths as well as limitations that should be considered when in-
terpreting the results. The main strengths of this study include the availability of DNA 
methylation data in a large sample of adults from the general population overlapping 
with transcriptomic and clinical data. Another strength is the use of the largest available 
EWAS (6) and TWAS (8) to date for selecting the CpGs and genes of interest associated 
with smoking. A limitation of the current study could be that data on smoking habits are 
retrieved from questionnaires, which might be underestimating actual smoking levels 
possibly leading to information bias (55-57). This self-reporting bias can arise due to 
several reasons, such as recall bias in which a participant might not remember the true 
exposure or social desirability bias in which participants deliberately underestimate 
due to the socially stigmatized nature (57). However, we expect the underestimation 
to be primarily quantitative and should not significantly impact the current versus non-
smoker categorization we used in this study. Also, the questionnaires used for smoking 
data-collection did not include information regarding passive smoking, which is a risk 
factor for CVD (58). As a result, we were not able to adjust for the passive-smoking effect 
in our analysis. As these participants are included in the non-smoker group, this might 
have underestimated the true effect.

Furthermore, due to the nature of the current study we have included the same par-
ticipants in all mediation analyses and have used the mediator and exposure measure-
ments on the same time-point; therefore, we cannot rule out reverse causality. Another 
limitation is that DNA methylation and gene expression levels were only measured at 
baseline; hence, we have no access to pre-measurement covariates. Consequently, 
we could not further adjust our models without risking the adjustment of a mediator, 
which could explain the ρ values close to 0 we obtained in a subset of our models in 
the sensitivity analysis. However, we did include additional adjustments (e.g. BMI and 
relevant medication) in the association analysis between cardio-metabolic traits with 
DNA methylation and gene expression, indicating the robustness of the identified three-
way associations. Also, due to the stringent quality control in the Rotterdam Study, we 
were not able to test the impact of the cis- eQTM genes in the identified eQTMs. Finally, 
the use of whole-blood for the quantification of DNA methylation and transcriptomics 
associated with smoking and cardio-metabolic traits could be a limitation, since DNA 
methylation and gene expression are tissue-specific. Nonetheless, these data from other 
tissues are currently not available in the majority of population-based studies including 
the two participating cohorts in this study.
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concLusIon

In this study, we tested the association of smoking-related changes in DNA methylation 
and gene expression with cardio-metabolic traits. We found a three-way association 
of TG and BMI with CVD-relevant CpG sites and genes. Our results may provide further 
insight into the possible molecular cascades linking smoking to metabolic risk factors 
leading to CVD. Further research is warranted to conduct experimental research on the 
molecular mechanisms of the impact of smoking on cardiovascular disease and its risk 
factors through changes in DNA methylation and gene expression levels.

mEtHods

study population
The discovery data set comprised a total of 1,412 participants included in the Rotterdam 
Study; the design from the Rotterdam Study has been described elsewhere (21). Briefly, 
in 1990 all residents of Ommoord, a district in Rotterdam, aged 55 years and older, were 
invited for participation (RS-I). In 2000, the cohort was extended with participants who 
had reached the age of 55 years or who had moved into the district (RS-II). An additional 
group was invited in 2006, from the age of 45 years and older (RS-III). Participants have 
been re-examined every 3–4 years. In the current study, we used data from the third visit 
from RS-II (RS-II-3) and the first and second visit of RS-III (RS-III-1 and RS-III-2). In total, 
DNA methylation measurements of 1,412 participants from RS-III-1, RS-II-3, and RS-III-2 
were included in our analysis. Additionally, gene expression data was available for 716 
participants included in RS-III-1. Smoking information was collected via self-reported 
questionnaires, additional data collection details are described in Additional file 8.

The replication data comprised a total of 1,717 participants included in The Coopera-
tive Health Research in the Region of Augsburg (KORA) study. The KORA study is a series 
of independent population-based epidemiological surveys and follow-up studies of 
participants living in the region of Augsburg, Southern Germany. The KORA F4 study, 
a 7-year follow-up study of the KORA S4 survey (examined 1999-2001), was conducted 
between 2006 and 2008. The standardized examinations applied in the survey have 
been described in detail elsewhere (21). A total of 3,080 subjects with ages ranging from 
32 to 81 years participated in the examination. In a random subgroup of 1,802 KORA 
F4 subjects, the genome-wide DNA methylation patterns were analyzed as described in 
Additional file 3. Smoking information was collected via self-reported questionnaires, 
additional data collection details are described in Additional file 8.
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dnA methylation data
DNA methylation in the Rotterdam Study and KORA study was extracted from whole 
peripheral blood and DNA methylation measurements were obtained using the Illumina 
Infinium Human Methylation 450K BeadChip (Illumina Inc, San Diego, CA, USA). The DNA 
methylation pre-processing procedures are described in Additional file 3. The methyla-
tion proportion of a CpG site was reported as a methylation β-value in the range of 0 
to 1. Genome coordinates provided by Illumina (GRCh37/hg19) were used to identify 
independent loci.

In the current study, CpGs of interest were selected using a recent EWAS (6) investigat-
ing the association between tobacco smoking and changes in DNA methylation values in 
the epigenome. In total, 2,623 CpG sites were identified as being significantly (P<1×10-7) 
differentially methylated between smokers and never smokers. In the Rotterdam Study, 
2,549 out of the 2,623 CpGs passed the quality control and are included in this study 
(Additional file 3: table s8).

RnA expression data
In the Rotterdam Study, RNA was isolated from whole blood and gene expression profil-
ing was performed using the IlluminaHumanHT-12v4 Expression Beadchips (Illumina, 
San Diego, CA, USA). The expression dataset is available at Gene Expression Omnibus 
(GEO) public repository under the accession GSE33828: 881 samples are available for 
analysis. In KORA F4, total RNA was extracted from whole blood and the Illumina Human 
HT-12 v3 Expression BeadChip (Illumina, San Diego, CA, USA) was used for gene expres-
sion profiling (59). A more detailed description is implemented in Additional file 8.

In the current study, genes of interest were selected using a previous TWAS testing 
the association between gene expression and current versus never-smoking status (8). 
In this TWAS, the meta-analysis was performed on all transcripts with matching gene 
Entrez IDs. Employing a significance threshold of FDR<0.05, 886 significant gene Entrez 
IDs were identified, of which 387 replicated in an independent dataset. Employing the 
annotation file provided by the Illumina (HumanHT-12_V4), we found 502 gene expres-
sion probes to be annotated to these gene Entrez IDs out of which 443 were present in 
the Rotterdam Study and were included in the current study (Additional file 8: table 
s9).

correlation between dnA methylation and gene expression
Since DNA methylation and gene expression may affect each other (i.e. eQTMs), we 
tested the association between 2,549 CpGs and 443 gene expression probes linked to 
smoking in participants who had both methylation and gene expression data available 
in the Rotterdam Study (N= 716). We regressed out age, sex, blood cell counts (fixed 
effect), and technical covariates (random effect) on the normalized beta-values of the 
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CpGs and separately on the mRNA expression levels using a linear mixed model analysis. 
The association between the residuals of DNA methylation (independent variable) and 
gene expression (dependent variable) was examined using a linear regression model. 
The robust Bonferroni-corrected P-value threshold for a significant association was P< 
4.4×10-8 (0.05/(443×2549)).

Additionally, we randomly selected 443 gene expression probes from the IlluminaHu-
manHT12v4 Expression Beadchips, and 2,549 CpGs from the Illumina Human 450K array, 
that were available in the Rotterdam Study. Using the same methods mentioned above, 
we tested the association between the 2,549 smoking-related CpGs with the 443 ran-
domly selected gene expression probes, and the association between 2,549 randomly 
selected CpGs with the 443 smoking- associated gene expression probes. The chi-square 
test of independence was used to test possible enrichment for the smoking effect.

Association of dnA methylation and gene expression with cardio-
metabolic traits
We studied the relationship of cardio-metabolic traits with (1) smoking-CpGs associ-
ated with at least one smoking-gene probe, and (2) smoking-gene probes associated 
with at least one smoking-CpG. We included the following cardio-metabolic related 
phenotypes: HDL, LDL, TG, serum cholesterol, fasting glucose and insulin levels, SBP, 
DBP, WHR, and BMI.

First, we tested the association between the smoking-related CpGs (dependent vari-
able) with the cardio-metabolic traits (exposure variable) using linear mixed effects 
models (LME4 package in R). The selected covariates in model 1 with fixed effects were 
age, sex, and cell counts for granulocytes, lymphocytes and monocytes. Array number 
and position number on array were added in the model as covariates with random effect 
to correct for batch effect. In model 2, we additionally adjusted for BMI and relevant 
medication, including for lipid exposures (lipid-lowering medication), for glycemic traits 
(glucose-lowering medication), for SBP and DBP (lipid-lowering medication and anti-
hypertensives, diuretics, beta-blockers, calcium channel blockers, and RAAS modifying 
agents).

Second, we tested the association between gene expression (dependent variable) and 
the cardio-metabolic traits (exposure variable) using linear mixed-effects models (LME4 
package in R), adjusting for age, sex, blood cell counts (granulocytes, lymphocytes, and 
monocytes), RNA quality score and batch effect. In model 2, we additionally adjusted for 
BMI and relevant medication (as described for DNA methylation).

Third, we combined our EWAS and TWAS results and showed the obtained three-way 
association; CpG versus gene expression; cardio-metabolic trait versus CpG; cardio-met-
abolic trait versus gene expression. For the CpG versus gene expression, we did a lookup 
for the identified CpGs to identify possible cis- eQTM associations using data from five 
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Dutch biobanks (BIOS-BBMRI database) in a total of 3,841 whole blood samples (http://
www.genenetwork.nl/ biosqtlbrowser/).

mediation analysis
CpGs and gene expression probes associated with each other and associated with the 
same cardio-metabolic trait were reviewed in three mediation analyses (Figure 3); 
(1) the mediation of gene expression in the association between smoking status and 
the cardio-metabolic trait, (2) the mediation of DNA methylation in the association 
between smoking status and gene expression changes, and (3) the mediation of DNA 
methylation in the association between smoking status and the cardio-metabolic trait. 
In all three analyses, we included the same participants, current versus non-smokers 
as exposure and all models are corrected for age and sex. In the first analysis, we used 
the gene expression as potential mediator and the cardio-metabolic trait as outcome. 
In the second analysis, we used DNA methylation as possible mediator and the gene 
expression as outcome. In the third analysis, we used DNA methylation as possible 
mediator and the cardio-metabolic trait as outcome. We used the “mediate” function in 
the mediation package in R (60), using the bootstrap method including 1000 simulations 
and confidence intervals using the BCa method (61). The proportion mediated describes 
the average magnitude of indirect association between smoking status and the gene 
expression or cardio-metabolic trait attributed through changes in DNA methylation or 
gene expression relative to the average total association, and it is calculated by dividing 
the average causal mediation effect by the average total effect (62). Asymptotic 95% 
confidence intervals (CI) were obtained from nonparametric bootstrapping with 1000 
iterations. These mediation analyses assumed no additional unmeasured confounding; 
however, if unobserved variables confound the models, the unmeasured confounding 
assumption is violated. Therefore, we used the sensitivity analysis included in the me-
diation package using the “medsens” function conducted by varying the values of ρ and 
determine the ρ at which ACME is 0 per model. Obtaining a value of ρ close to 0 indicates 
that the assumption is sensitive to violations, meaning that having a confounder with 
a higher correlation than the value of ρ, the assumption of no additional unmeasured 
confounding likely does not hold (24).

Replication in the koRA study
The identified associations in the Rotterdam Study were replicated using the same mod-
els in the KORA study. The adjustment for blood cell counts (monocytes, granulocytes, 
and lymphocytes) was based on Houseman estimates rather than laboratory measure-
ments (63). Furthermore, principal components were used to adjust for technical covari-
ates rather than plate number and position on array.
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statistical analysis
All analyses were performed using the statistical package R. The eQTM analysis and the 
associations of the cardio-metabolic traits with smoking-related CpGs and genes were 
conducted in R (version 3.2.0) under a Linux operating system, using the “LME4” pack-
age (version 1.1-16) and the “parallel” package (version 3.2.0). The mediation analyses 
were conducted in R studio Desktop (version 3.2.0) under Windows operating system 
using the “mediation” package (version 4.4.6.). Data collection and related statistical 
methods are provided in Additional file 8.
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suPPLEmEntARY mAtERIAL

Supplemental material for this chapter can be found in the online version of the paper 
via https://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/s13148-020-
00951-0.
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AbstRAct

MicroRNAs (miRNAs) are non-coding RNA molecules that regulate gene expression. 
Extensive research has explored the role of miRNAs in the risk for type 2 diabetes (T2D) 
and coronary heart disease (CHD) using single-omics data, but much less by leverag-
ing population-based omics data. Here we aimed to conduct a multi-omics analysis to 
identify miRNAs associated with cardiometabolic risk factors and diseases. First, we 
used publicly available summary statistics from large-scale genome-wide association 
studies to find genetic variants in miRNA-related sequences associated with various 
cardiometabolic traits, including lipid and obesity-related traits, glycemic indices, blood 
pressure, and disease prevalence of T2D and CHD. Then, we used DNA methylation and 
miRNA expression data from participants of the Rotterdam Study to further investigate 
the link between associated miRNAs and cardiometabolic traits. After correcting for 
multiple testing, 180 genetic variants annotated to 67 independent miRNAs were associ-
ated with the studied traits. Alterations in DNA methylation levels of CpG sites annotated 
to 38 of these miRNAs were associated with the same trait(s). Moreover, we found that 
plasma expression levels of 8 of the 67 identified miRNAs were also associated with the 
same trait. Integrating the results of different omics data showed miR-10b-5p, miR-148a-
3p, miR-125b-5p, and miR-100-5p to be strongly linked to lipid traits. Collectively, our 
multi-omics analysis revealed multiple miRNAs that could be considered as potential 
biomarkers for early diagnosis and progression of cardiometabolic diseases.
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IntRoductIon

Type 2 diabetes mellitus (T2D) is a complex metabolic disease that is characterized by 
insulin resistance and impairment of insulin secretion, which leads to hyperglycemia. 
The presence of T2D leads to a two- to four-fold increase risk of developing coronary 
heart disease (CHD) (1), which is among the leading causes of morbidity and mortality 
worldwide (2). Many risk factors are identified as mediators of these diseases, including 
hypertension, dyslipidemia, central adiposity and elevated blood glucose, which are 
together known as cardiometabolic traits (3). Despite substantial advances in diag-
nosis and widely prescribed drugs for these diseases, their rate continue to increase 
worldwide, emphasizing the need for deeper insights into underlying mechanisms and 
innovative therapeutic strategies. Cardiometabolic traits and diseases have underlying 
genetic components and many loci have been discovered through large-scale genome- 
and epigenome-wide association studies (4, 5). However, most of the identified genetic 
variants do not affect protein sequences, but are thought to affect gene regulation. One 
of the potential regulatory mechanisms involved might be microRNAs (miRNAs).

MiRNAs represent a class of small non-coding RNAs, which function as post-tran-
scriptional regulators of gene expression via targeting the 3’ untranslated region of 
target transcripts (6). Over the past years, miRNAs have emerged as key regulators of 
biological processes underlying T2D and CHD. In this context, aberrant expression and 
function of miRNAs, such as miR-33, miR-208, miR-133, and miR-124, have been shown 
to be associated with lipid metabolism, insulin secretion, myocardial infarction and T2D 
(7-9). Most of the disease-associated miRNAs have been discovered in cells originated 
from tissue of interest in small number of samples or animal studies. But advances in 
high-throughput technologies make it possible to study miRNAs in a population-based 
manner. In particular cell-derived vesicles, known as exosomes, release miRNAs in the 
blood stream that are very stable and can be used as biomarkers for disease (10).

Similar to other regulatory RNA molecules, the function and expression of miRNAs 
can be affected by genetic variants. Single-nucleotide polymorphisms (SNPs) can occur 
at various stages of the miRNA biogenesis including precursor- and mature miRNA se-
quences (11) as well as within regulatory elements, such as promoter regions (12). Also, 
DNA methylation can control transcription, which have been reported to be associated 
with the expression level of miRNAs (13). In this context, epigenome-wide association 
studies (EWAS) have shown that altered DNA methylation within miRNA promoters is 
associated with miRNAs expression levels and therewith modify disease risk (14). How-
ever, previous studies are mainly based on single omics data or small sample size (15, 
16). As each type of omics data provides associations that can be useful for detecting 
development or progression of disease, integrating different omics layers can limit pas-
sive correlations and provide a more comprehensive view of the disease biology.
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In this study, we applied a multi-omics approach to identify miRNAs associated 
with cardiometabolic traits. First, we identified genetic variants in miRNA sequences 
and their potential regulatory regions associated with different cardiometabolic risk 
factors and diseases using genetic association data from the available genome-wide 
association studies (GWAS). We then integrated population-based DNA methylation and 
miRNA expression data from the Rotterdam Study to link omics layers, strengthening 
the association of the identified miRNAs with cardiometabolic traits. We envision that 
the identified miRNAs could be considered as potential biomarkers for early diagnosis 
of cardiometabolic diseases.

mEtHods

A graphical overview of the multi-omics approach used in this study is illustrated in 
Figure 1.

 

Figure 1. overview of the multi-omics layers used in this study.
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Retrieval of snPs in miRnA-related regions
The primary transcripts of miRNAs for the processing to mature miRNAs are approxi-
mately 3-4kb in length (17). We collected the genomic position of all human miRNAs 
employing the miRBase database (v21) (18), ProMiR II (19) and FANTOM5 (12). Using db-
SNP database (20), we extracted 18,545 SNPs located in +/-2kb of the precursor miRNA 
sequences (pre-miRNA) of 1,554 known miRNAs. Of these, 2,420 SNPs are located in 
pre- and mature sequences of miRNAs. Genetic variants have been found to alter miRNA 
expression and are known as miRNA expression quantitative trait loci (miR-eQTLs). To 
this end, we included 5,528 miR-eQTLs that change the expression of 221 mature miRNA 
using data from the Framingham Heart Study (FHS) (21) and from the Ottawa Hospital 
Bariatric Centre (22).The FHS focused on cis-miR-eQTLs, of which the majority was 
located 300-500kb away from their target miRNA. Nikpay et al. (2019) investigated both 
cis-miR-eQTLs and trans-miR-eQTLs, however, they reported likewise FHS that most cis-
miR-eQTLs were distal regulators of the miRNAs. There were 83 miR-eQTLs overlapping 
with the SNPs in +/-2kb of the precursor miRNA sequence. Altogether, 23,990 unique 
SNPs were included in our analysis.

The genomic location of miRNAs can be discriminated among intergenic and intragen-
ic. Roughly half of the known miRNAs are found to be transcribed from intergenic regions 
of the genome, suggesting that these miRNAs are transcribed under independent con-
trol of regulatory elements (23). The intragenic miRNAs are embedded within sequences 
of protein-coding genes, including intronic and exonic regions. If the intragenic miRNA 
and its host gene share the same promoter, the miRNA is likely to be co-expressed with 
the host gene (24). Here, the genomic location of the identified miRNAs was obtained 
using miRIAD (25).

genome-wide Association studies of cardiometabolic traits
Cardiometabolic risk factors and diseases in this study were classified into four specific 
trait groups based on their shared pathophysiology and underlying pathways. These 
include (i) Anthropometric traits: body mass index (BMI), waist to hip ratio (WHR) and 
waist circumference (WC); (ii) Glycemic traits: fasting glucose (FG), glucose 2 hours (G2H), 
fasting insulin (FI), proinsulin (Pro-Ins), hemoglobin A1c (HbA1c), homeostatic model as-
sessment of insulin resistance (HOMA-IR), β-cell function (HOMA-β), and type 2 diabetes 
mellitus (T2D); (iii) Lipid traits: low-density lipoprotein (LDL), high-density lipoprotein 
(HDL), total serum cholesterol (TC), and triglycerides (TG); and (iv) Cardiovascular traits: 
coronary artery disease (CAD), diastolic (DBP), and systolic blood pressure (SBP). To 
test the association of miRNA-related SNPs with cardiometabolic traits, we used pub-
licly available GWAS summary statistics. A description of GWAS meta-analysis data and 
corresponding consortia used in this study is provided in supplementary table s1. To 
obtain the number of independent SNPs, we used the linkage disequilibrium (LD) based 
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SNP pruning in PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/), in which we 
excluded the SNPs with R2 > 0.7. Bonferroni correction was used to adjust for multiple 
testing based on the number of independent SNPs available in the GWAS data (HapMap 
or 1000G project imputed data).

Prioritization of miRnA-related snPs associated with cardiometabolic 
traits
For miRNA-related SNPs significantly associated with cardiometabolic traits, we per-
formed in silico analysis to prioritize the SNPs that are more likely to be functional in 
their corresponding loci based on the following criteria: (i) association between the 
miRNA-related SNP and the cardiometabolic trait, (ii) association between the miRNA-
related SNP and the expression level of miRNA/miRNA hosting gene, and (iii) expres-
sion of the miRNA in tissues relevant to cardiometabolic traits. In this regard, regional 
association plots were generated (using LocusZoom web tool, Version 1.1) to visualize 
the physical position and evaluate the association of the cardiometabolic traits with the 
miRNA-related SNP and its proxy SNPs (R2 > 0.8) in the corresponding locus: (i) To explore 
whether the SNP is associated with the expression of related miRNA or miRNA hosting 
genes in relevant tissues (e.g., adipose tissue, liver, pancreas, muscle and blood), we 
used eQTL data from GTEx Portal (), (ii) We used two online databases; miRmine and Hu-
man miRNA tissue atlas (26, 27) to test where a miRNA is expressed in tissues relevant to 
cardiometabolic traits (e.g., adipose tissue, liver, pancreas, muscle, and blood), (iii) The 
Vienna RNAfold algorithm was used to check miRNA secondary structure and free energy 
changes with wild-type and mutant alleles of SNPs located in miRNA sequences (28).

determination of methylation quantitative trait loci (me-QtLs)
To determine if the identified SNPs have an effect on the methylation levels of CpG sites 
(me-QTLs), we used data of a recent me-QTL study performed in five cohorts, includ-
ing the RS, with a total of 3,841 individuals (29). We incorporated both cis-me-QTLs 
and trans-me-QTLs. Where cis-me-QTLs were defined as the effect of SNPs on the meth-
ylation levels of a CpG sites no further than 250kb apart, trans-me-QTLs were defined as 
the effect of distal SNPs on the CpG methylation levels. Details on the me-QTL mapping 
are described elsewhere (29). We tested if the cardiometabolic-associated SNPs found in 
the current study were identified as me-QTLs.

dnA methylation analysis in the Rotterdam study
The Rotterdam Study (RS) is a large prospective population-based cohort study con-
ducted among middle-aged and elderly people in the suburb Ommoord in Rotterdam, 
the Netherlands. In 1989, 7,983 inhabitants aged 55 and older were recruited in the first 
cohort (RS-I) (78% of 10,215 invitees). In 2000, the RS was extended with a second cohort 
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of 3,011 participants that moved to Ommoord or turned 55 years old (RS-II). In 2006, 
the third cohort (RS-III) was initiated in which inhabitants aged 45-54 years were invited 
and included 3,932 participants. A detailed description of RS can be found elsewhere 
(30). In the current study, we used DNA methylation data from a random subset (n = 
717) of the third visit of RS-II (RS-II-3) and second visit of RS-III (RS-III-2) and a random 
subset (n = 721) of the first visit of RS-III (RS-III-1). There was no overlap in participants. 
The RS has been approved by the institutional review board (Medical Ethics Committee) 
of the Erasmus Medical Center and by the review board of The Netherlands Ministry of 
Health, Welfare and Sports. All participants gave written consent before participation in 
the study. Participant characteristics are presented in supplementary table s2.

DNA was extracted from whole peripheral blood using standardized salting out 
methods, of which 500ng was bisulfite treated using the Zymo EZ-96 DNA methylation 
kit (Zymo Research, Irvine, CA, USA). Bisulfite converted DNA was hybridized to the Il-
lumina Human 450K array (Illumina, San Diego, CA, USA), according to manufacturer’s 
protocol. Data preprocessing was performed using an R programming pipeline based on 
the pipeline developed by Touleimat and Tost (31). The genome coordinates provided 
by Illumina (GRCh37/hg19) were used to identify independent loci. We extracted 12,939 
unique CpGs located in +/-2kb of the pre-miRNA sequences using the Illumina450K array 
annotation file as provided by Illumina (32). Among these, 12,617 CpGs were located in 
the regulatory region of 1,269 miRNAs and 450 CpGs were located in the pre- and mature 
sequence of 391 miRNAs. We tested the association of these CpGs with different cardio-
metabolic traits using linear mixed models. Data collection on these traits in the RS is 
described in supplementary methods. The models were adjusted for age, gender, cur-
rent smoking, blood cell counts (monocytes, granulocytes, lymphocytes) as fixed effects 
and technical covariates as random effects. Models were further adjusted for covariates 
per group as follows: (i) for Anthropometric traits we adjusted WC and WHR for BMI, 
(ii) for Glycemic traits we adjusted for BMI and diabetic medication, (iii) for Lipid traits 
we adjusted for BMI and lipid medication, and (iv) for Cardiovascular traits we adjusted 
for BMI, blood pressure lowering medication and lipid medication. A candidate-based 
approach was used to sought overlap between identified miRNAs. A nominal p-value of 
<0.05 was found to be significant.

determination of miR-eQtms
To identify association between the methylation level of CpGs and the expression of 
miRNAs (miR-eQTMs), we used miR-eQTM data from a recent study (13). The latter study 
analyzed associations of expression levels of 283 miRNAs with methylation of CpGs from 
3,565 individuals, in which they identified 227 miR-eQTMs at FDR < 0.01. We tested if any 
of the cardiometabolic-associated CpGs in the current study was among the identified 
miR-eQTM (13).
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MiRNA expression profiling in the Rotterdam Study
We performed miRNA expression analysis in 2,000 RS participants, including a random 
subset (n = 1,000) of the fourth visit of RS-I (RS-I-4) and a random subset (n = 1,000) of 
the second visit of RS-II (RS-II-2). Plasma miRNA levels were determined using the HTG 
EdgeSeq miRNA Whole Transcriptome Assay (WTA), which measures the expression of 
2,083 mature human miRNAs (HTG Molecular Diagnostics, Tuscon, AZ, USA) and using 
the Illumina NextSeq 500 sequencer (Illumina, San Diego, CA, USA). The WTA charac-
terizes miRNA expression patterns, and measures the expression of 13 housekeeping 
genes, that allows flexibility in data normalization and analysis. Quantification of miRNA 
expression was based on counts per million (CPM). Log2 transformation of CPM was used 
as standardization and adjustment for total reads within each sample. MiRNAs with Log2 
CPM < 1.0 were indicated as not expressed in the samples. The lower limit of quantifica-
tion (LLOQ) was used to select well-expressed miRNAs. The LLOQ level was based on a 
monotonic decreasing spline curve fit between the means and standard deviations of all 
miRNAs. In our definition well-expressed miRNA levels in plasma were those with >50% 
values above LLOQ. Out of the 2,083 measured miRNAs, 591 miRNAs were expressed at 
good levels in plasma.

The miRNAs significantly associated with cardiometabolic traits, in the genetic asso-
ciation studies, were tested for the association of their plasma expression levels with the 
same cardiometabolic trait(s). Linear models were used to test the association between 
available continuous traits in the RS (incl. BMI, WC, WHR, FG, HDL, TC, SBD, and DBP) 
and miRNA expression. Additionally, we used binomial models to test the association 
between disease prevalence (incl. T2D and CHD) and miRNA expression. We used the 
cardiometabolic traits as dependent variable and plasma miRNAs level as explanatory 
variable, adjusting for age, gender and current smoking. Models were further adjusted 
for covariates per group as follows: (i) for Anthropometric traits we adjusted WC and 
WHR for BMI, (ii) for Glycemic traits we adjusted for BMI and diabetic medication, (iii) 
for Lipid traits we adjusted for BMI and lipid medication, and (iv) for Cardiovascular 
traits we adjusted for BMI, blood pressure lowering medication and lipid medication. 
A candidate-based approach was used to sought overlap between identified miRNAs. A 
nominal p-value of <0.05 was found to be significant.

In addition, we extracted strongly validated target genes, defined as being validated 
by western blot and/or luciferase reporter assay, of the identified miRNAs from the 
miRTarBase database (33). Next, we extracted SNPs in these target genes and tested 
their associations with cardiometabolic traits using summary statistics of previously 
mentioned GWAS data.



141

MicroRNAs associated with cardiometabolic disorders

4.1

REsuLts

Association of miRnA-snPs with cardiometabolic traits and diseases
Out of 23,990 miRNA-related SNPs, 2,358 independent SNPs were present in the GWAS data 
based on HapMap and 8,652 independent SNPs were present in the 1000G project. Bonfer-
roni correction was used to set the significance threshold, at p-value <2.12×10-5 (0.05/2,358) 
for GWAS with HapMap imputed data and p-value < 5.78×10-6 (0.05/8,652) for GWAS with 
1000 Genomes project imputed data. Of these, 180 SNPs annotated to 67 miRNAs passed 
the significance threshold to be associated with at least one cardiometabolic trait (table 
1). Out of the 180 identified SNPs, 89 SNPs were located in +/-2kb of 57 primary miRNA 
transcripts (supplementary table s3) and 92 SNPs were among the previously reported 
miR-eQTLs of 15 mature miRNAs (supplementary table s4). Manhattan plots illustrated 
in Figure 2 present the miRNA-annotated genetic variants associated with lipid traits and 
the prevalence of T2D and CHD. table 2 shows the top miRNA-related SNPs associated 
with cardiometabolic traits, which were annotated to 20 miRNAs.

 

Figure 2. manhattan plots showing the association of miRnA-snPs with t2d, cAd, and lipid traits. The association 
miRNA-related SNPs and cardiometabolic traits were examined using the publicly available GWAS data. We reported the 
most significantly associated miRNA of each SNP loci. The horizontal red line indicates the study significance threshold. 
(A) Manhattan plot showing the association of miRNA-SNPs with T2D in which 12 SNPs in 8 miRNAs passed the significant 
threshold. (B) Manhattan plot showing the association of miRNA-SNPs with CAD in which 13 SNPs in 9 miRNAs passed the 
significance threshold. (C) Manhattan plot showing the association of miRNA-SNPs with lipid traits in which 107 SNPs in 36 
miRNAs passed the significant threshold. When SNPs were present in more traits, the most associated SNP was plotted.
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In order to prioritize miRNA-related SNPs based on potential functionality in relation to 
the associated cardiometabolic traits, we created regional association plots to visualize 
the LD of miRNA SNP with the top SNP in the corresponding locus (Figure 3). We found 
three top SNPs in their loci, including rs7117842 associated with TC (p = 2.48×10-15, β = 
0.029) and located ~512kb upstream of miR-100-5p/miR-125b-5p (Figure 3A), rs1997243 
associated with TC (p = 2.72×10-10, β = 0.033) and located ~21kB upstream of miR-339-3p 
(Figure 3b), and rs7607369 associated with BMI (p = 1.10×10-7, β = -0.016) and located 
~11.7kb upstream of miR-26b-5p (Figure 3c). These three SNPs were previously identi-
fied as miR-eQTLs that change the expression levels of related miRNAs in blood (21). In 
addition, rs4722551 located ~2kb upstream of miR-148a shows the strongest association 
with LDL (p = 3.95×10-14, β = 0.039) on the Chr7p15.2 locus (Figure 3d).

table 1. description of genome-wide association studies (gwAs) of cardiometabolic traits and associated miRnA 
single-nucleotide polymorphisms (snPs).

Phenotype consortium snPs in +/-
2kb miR*

snPs in 
miR-seq*

snPs in 
miR-QtL*

Associated 
miR loci†

Anthropometric traits

Body-mass index GIANT(34) 9 0 9 7

Waist to hip ratio GIANT(35) 2 1 1 4

Waist circumference GIANT(35) 10 0 1 8

glycemic traits

Glucose fasting MAGIC(36) 3 0 1 4

Glucose after 2h MAGIC(37) 0 0 0 0

Insulin fasting MAGIC(36) 1 0 2 2

Proinsulin MAGIC(38) 3 0 4 3

HbA1c MAGIC(39) 1 0 15 4

HOMA-IR MAGIC(40) 0 0 0 0

HOMA-β MAGIC(40) 0 0 0 0

Type 2 diabetes DIAGRAM(41) 12 0 1 8

Lipid traits

LDL GLGC(42) 22 1 20 11

HDL GLGC(42) 12 1 23 9

Total cholesterol GLGC(42) 26 1 40 13

Triglyceride GLGC(42) 8 1 27 7

cardiovascular traits

CAD CARDIoGRM plusC4D(43) 10 0 2 4

DBP ICBP(44) 3 0 - 2

SBP ICBP(44) 2 0 - 2

Shown are SNPs located within +/-2kb of primary miRNA transcripts, pre- and mature miRNA sequences, miRNA-eQTL 
SNPs).
* Number of SNPs that passed the significance threshold (p-value <2.12x10-5 for SNPs imputed with HapMap and p-value 
<5.78x10-6 for SNPs imputed with 1000G)
† Number of independent loci.
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Moreover, rs174561 has previously been reported by (22) to change the expression of 
miR-1908-5p. We found this SNP, located in the coding sequence of miR-1908-5p, to be 
associated with lipid traits (LDL, HDL, TC, and TG), and rs11614913, located in the coding 
sequence of miR-196a2-3p, to be associated with WHR. These two variants have previ-
ously been reported to be associated with lipid traits and WHR and have been suggested 
to change the miRNA structure and expression (45). We also found a suggestive associa-
tion between rs58834075, located in the pre-miR-656 sequence (T > C, Chr14:101066756) 
and T2D (p = 6.30×10-5, β = -0.170). The miRNA secondary structure and free energy 
changes of both wild-type and mutant alleles of these three SNPs (rs174561, rs11614913 
and rs58834075) are illustrated in supplementary Figure s1.

table 2. the top 20 miRnAs with single-nucleotide polymorphisms (snPs) in related regions association with car-
diometabolic traits.

miRnA SNPID Chr. Position Alleles
(A/R)

Annotated
gene

Associated
trait

Effect P value

miR-6886† rs17248720 19 11198187 C/T LDLR LDL 0.226 2.40x10-148

miR-6863† rs13306673 16 56900931 C/T SLC12A3 HDL 0.098 2.76x10-48

miR-4263† rs2305929 2 28113911 G/A BRE TG 0.064 1.13x10-44

miR-6773† rs8057119 16 68268836 T/C ESRP2 HDL 0.072 5.21x10-40

miR-611† rs174538 11 61560081 G/A THEM258 LDL 0.050 1.07x10-34

miR-1908-5p‡ rs174548 11 61571348 C/G FADS1 LDL 0.047 2.29x10-31

miR-10b-5p/126-5p‡ rs532436 9 136149830 A/G ABO LDL 0.079 4.02x10-30

miR-4721† rs4788099 16 28763228 G/A TUMF BMI 0.031 1.09x10-24

miR-4531† rs6509170 19 45159636 C/A LOC107985305 LDL 0.127 1.54x10-22

miR-199a-1† rs11085748 19 10927540 T/C DNM2 LDL 0.055 1.46x10-19

miR-4999† rs7254882 19 8359822 C/T MIR4999 HDL 0.033 6.66x10-18

miR-4639† rs3757354 6 16127407 C/T MYLIP LDL 0.038 2.09x10-17

miR-640† rs1000237 19 19518316 T/A GATAD2A TG 0.033 1.61x10-16

miR-3161† rs79837139 11 48000780 C/T PTPRJ HDL 0.062 2.99x10-16

miR-100-5p/125b-5p‡ rs7117842 11 122663796 C/T UBASH3B TC 0.029 2.48x10-15

miR-148a† rs4722551 7 25991826 C/T MIR148A LDL 0.039 3.95x10-14

miR-139† rs11605042 11 72700619 A/G ARAP1 Pro-Ins -0.053 5.24x10-13

miR-3941† rs71486610 10 124134803 C/G PLEKHA1 T2D -0.081 3.30x10-11

miR-6745† rs901750 11 47209472 A/G PACSIN3 HDL 0.024 3.95x10-11

miR-196a-2-3p* rs11614913 12 53991815 C/T MIR196A2 WHR 0.029 6.90x10-11

* SNP located in pre- and mature miRNA sequence
† SNP located within +/- 2kb of primary miRNA transcript
‡ miR-eQTL SNPs



Chapter 4.1

144

Identification of methylation quantitative trait loci (me-QTLs)
We identified 29 cis-me-QTL effects for 47 independent CpGs at FDR < 0.05 (49 SNP-CpG 
pairs). Among these, we found 14 cis-me-QTLs that were associated with both the ex-
pression level of 8 miRNAs and the methylation level of 26 CpGs (supplementary table 
s5). In total there were 7 cis-me-QTLs (for 8 CpGs) that were associated with a cardio-
metabolic trait in the current study (table 3). Furthermore, 4 trans-me-QTL effects for 21 
independent CpGs were found at FDR < 0.05 (27 SNP-CpG pairs) (supplementary table 
s5). Two out of the four trans-me-QTL were miR-eQTL SNPs (rs174548 for miR-1908-5p 
and rs1997243 for miR-339-3p). None of the associated CpGs in trans were found in the 
current study to be associated with cardiometabolic traits.

 

Figure 3. Regional plots showing the association of four top miRnA-snPs with cardiometabolic traits. The most sig-
nificant SNP in the region, according to P-value, is represented by a purple diamond, and the degree of linkage disequi-
librium of other SNPs in the region to the lead SNP is representative by the color scale shown in the legend. Genes are il-
lustrated below. The associated miRNA is illustrated with a red box. (A) Regional plot showing the association of rs7117842 
located ~512kb upstream of miR-100-5p/125b-5p with TC, LDL and HDL on the Chr11q24.1 locus. (B) Regional plot showing 
the association of rs1997243 located ~21kb upstream of the primary transcript of miR-339-3p with TC and HDL on the 
Chr7p22.3 locus. (C) Regional plot showing the association of rs7607369 located ~11.7kb upstream of the primary tran-
script of miR-26b-5p with BMI and TG on the Chr2q35 locus. (D) Regional plot showing the association of rs472551 located 
~2kb upstream of the primary transcript of miR-148a with LDL, TG, and TC on the Chr7p15.2 locus.
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testing dnA methylation and expression of miRnAs associated with 
cardiometabolic traits
To access the relationship between miRNAs and cardiometabolic traits in other omics 
layers, we performed a candidate-based test to check whether the 67 identified miRNAs, 
with SNPs associated with cardiometabolic traits, show also association between DNA 
methylation and miRNA expression with cardiometabolic traits. Using DNA methylation 
data from 1,438 RS participants, we found 278 CpG sites annotated to 64 out of the 67 
miRNAs, to be associated with any cardiometabolic trait (supplementary table s6). By 
integrating our DNA methylation results with the GWAS data, we observed an overlap 
of 38 miRNAs (79 CpGs) that had both a SNP and a CpG associated with the same trait 
(supplementary table s7). The CpG site showing the most significant association was 
cg15616915 which is located in the regulatory region of miR-26b and is positively associ-
ated with TG (p = 1.59×10-4, β = 0.009). We found 16 cardiometabolic-associated CpGs 
that are annotated to more than one miRNA. For example, cg03722243 associated with 
BMI (p = 1.55×10-3, β = 0.001) is annotated to miR-489 and miR-653, which are clustered 
on chromosome 7. In addition, cg15334028 associated with WC, HDL, LDL, and TG is 
annotated to three miRNAs (miR-638, miR-6793, and miR-4748) on chromosome 19.

We identified two CpGs that are associated with the expression level of miRNAs (miR-
eQTM) at FDR < 0.01. The most significant cis-miR-eQTM, cg26363555 has been reported 
to be negatively associated with both miR-125b-5p (~2kb downstream) and miR-100-5p 
(~50kb upstream) expression levels (13). The CpG cg26363555 was positively associated 
with FG (β = 0.012) and DBP (β = 2.00×10-4) and negatively associated with HDL (β = 
-0.004) in the RS. In addition, cg03891346 has been reported to be negatively associated 
with the expression level of miR-100-5p (~53kb downstream) (13). This CpG, which is 
also annotated to MIR125B1, was positively associated with WC (β = 5.00×10-4) in the RS.

Table 3. Identified me-QTLs with cardiometabolic-associated CpGs.

miRnA snPId cpg cis†/
trans

miR-
eQtL 
snP*

snP associated with 
cardiometabolic trait

cpg associated with 
cardiometabolic 
trait

miR-611 rs174538 cg16150798 Cis - FG, LDL, HDL, TG, TC WC

miR-588 rs9388486 cg20229609 Cis - T2D SBP, DBP

miR-1908-5p rs174548 cg03921599 Cis √ FG, HbA1c, LDL, HDL, TG, TC LDL, TC

miR-199a-1 rs3786719 cg02907064 Cis - LDL, TC LDL

miR-6745 rs901750 cg00724111 Cis - HDL FI, SBP, DBP

miR-8073 rs3809346 cg22382805 Cis - CAD FI

miR-653, miR-489 rs2528521 cg06934092 Cis - BMI FG, FI, TC

miR-8073 rs3809346 cg19700260 Cis - CAD DBP

Shown are 7 me-QTLs associated with methylation levels of 8 cardiometabolic-associated CpG sites.
* miR-eQTL SNP is associated to change the expression of miRNA level
† SNP and CpG are located not further away than 250kb
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Next, we tested whether the 67 identified miRNAs show differential expression 
in plasma in relation to the associated cardiometabolic trait(s). Of the 67 miRNAs, 
we could only test the association of 28 mature miRNAs that were well-expressed in 
plasma and of which the phenotype of interest was available in the RS. Of these, plasma 
levels of 22 miRNAs were nominally associated with at least one cardiometabolic traits 
(supplementary table s8). Furthermore, out of the 67 miRNAs, we found 12 differently 
expressed mature miRNAs to be associated with the same trait (table 4). Plasma levels 
of miR-126-3p, miR-126-5p, miR-10b-5p, miR-148a-3p, miR-199a-1-3p, miR-199a-1-5p, 
miR-125b-5p, and miR-100-5p were positively associated with serum TC levels. In con-
trast, miR-6886 was negatively associated with serum TC levels. A negative association 
between miR-126-5p and miR-126-3p and CHD was found. Furthermore, we observed a 
negative association between miR-4681 levels and WC. An overview of the number of 
associated miRNAs using different omics data is illustrated in Figure 4.

Furthermore, out of 22 miRNAs that were associated with at least one cardiometabolic 
trait, we found validated target genes for 14 miRNAs. We tested the association between 
these target genes and cardiometabolic traits using summary statistics GWAS data. After 
correcting for multiple testing, based on the number of tested SNPs in the target genes 
of a miRNA, we found 24 unique target genes for 9 of the 14 miRNAs to be associated 
with cardiometabolic traits (supplementary table s9).

table 4. Plasma expression levels of miRnAs associated with cardiometabolic traits.

miRnA Effect P value Associated trait

miR-126-3p 0.379 1.09x10-14 TC†

miR-10b-5p 0.352 3.30x10-11 TC†

miR-126-5p 0.258 3.75x10-11 TC†

miR-148a-3p 0.189 8.01x10-06 TC†

miR-199a-1-3p 0.171 3.38x10-05 TC†

miR-125b-5p 0.159 2.43x10-03 TC†

miR-100-5p 0.141 3.15x10-03 TC†

miR-6886-3p -0.083 9.49x10-03 TC†

miR-126-5p -0.365 1.24x10-02 CHD‡

miR-4681 -0.440 2.13x10-02 WC*

miR-199a-1-5p 0.074 3.38x10-02 TC†

miR-126-3p -0.385 3.54x10-02 CHD‡

Model 1: adjusted for: age, gender, current smoking
* Model 1 + BMI
† Model 1 + BMI, lipid medication
‡ Model 1 + BMI, blood pressure lowering medication, lipid medication
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Finally, we sought overlapping miRNAs that were associated with the same cardiomet-
abolic trait in the three different omics analyses (supplementary table s10). Since not 
all related phenotypes were available within the RS and not all miRNAs were expressed, 
we tested 64 miRNAs that had DNA methylation sites and 22 mature miRNAs that were 
available for miRNA expression analyses using the RS. We found five miRNAs, including 
miR-10b-5p, miR-148a-3p, miR-100-5p, miR-125b-5p, and miR-6886 that had at least one 
CpG and of which the expression was also associated with the same cardiometabolic 
trait. After prioritization based on the suggested criteria for potential functionality, miR-
10b-5p, miR-148a-3p, miR-125b-5p, and miR-100-5p were highlighted as the most likely 
miRNAs involved in the pathogenesis of risk factors for T2D and CHD (table 5).

dIscussIon

In this study, we integrated different population-based omics data (including genetics, 
epigenetics and miRNA expression) to identify miRNAs associated with cardiometabolic 
traits. Genetic variants related to 67 miRNAs were associated with the studied traits. 
Alterations in DNA methylation of CpG sites annotated to 38 of these miRNAs and plasma 
expression levels of 8 of them were also associated with the same trait. In principle, 
the association between a miRNA and trait of interest in more than two layers of omics 
may strengthen its potential to play a role in the disease underlying mechanisms. In 
this context, we sought to identify overlap between miRNAs that were associated with 
the same cardiometabolic trait across different approaches. This integration analysis 
revealed the correlation between four miRNAs (miR-10b-5p, miR-148a-3p, miR-125b-5p, 
and miR-100-5p) and lipid traits.

MiR-10b-5p is a highly conserved miRNA across multiple species and is located inside 
the homeobox D cluster on chromosome 2. A recent study showed a mediating role for 
miR-10b between obesity and primary breast cancer (46). Moreover, previous research 
in mice found a negative regulatory role of miR-10b on cholesterol efflux via targeting 

 

Figure 4. overview of miRnAs associated with cardiometabolic traits by integrating three omics layers.
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the ATP binding cassette transporter gene (ABCA1) (47). MiR-10b has been also shown to 
be involved in the progression of atherosclerosis, which is a major cause of cardiovas-
cular disease (48). We found a genetic variant (rs532436;A > G) annotated to the Alpha 
1-3-N-acetylgalactosaminyltransferase (ABO) gene to be positively associated with 
LDL, TC, CAD, and T2D. The ABO gene has been linked to cholesterol absorption and 
cardiovascular disease (49). Rs532436, located on chromosome 9, has been reported 
as trans-miR-eQTL for miR-10b-5p (22). In this study, we further showed that a CpG site 
(cg25820279) annotated to Homeobox D3 (HOXD3), is located in the regulatory region of 
miR-10b and is associated with total cholesterol levels in serum. In addition, the expres-
sion level of miR-10b-5p in plasma showed a positive association with total cholesterol 
levels, which further support the crucial role of miR-10b-5p in lipid metabolism.

MiR-148a-3p has been shown to control the LDL uptake and cholesterol efflux through 
affecting the expression of low-density lipoprotein receptor (LDLR) (50). Moreover, in 
vivo studies in mouse models have confirmed that miR-148a-3p is upregulated in adi-
pogenesis and highly expressed in liver tissue (51). We found rs4722551, located ~2kb 
upstream of miR-148a, associated with LDL, TC and TG. It has been suggested previously 
that a large part of regulatory elements such as promoter regions are located within 
+/-2kb of pre-miRNAs (17). Rs4722551 has previously been reported to be positively as-
sociated with serum lipid levels via cis-miR-eQTL in liver tissue (52)). Our findings may 
shed light on the mechanism that associates the rs4722551 risk allele (T >C) with an 
increased miR-148a-3p expression, which is subsequently associated with higher serum 
cholesterol levels. Furthermore, our results showed a CpG site (cg18188200) in the 
regulatory region of miR-148a to be associated with LDL, TC, and TG and demonstrated 
that the plasma expression level of miR-148a-3p is also associated with total serum cho-
lesterol levels. These data are in line with the findings from previous studies reporting a 
functional role for miR-148a-3p in lipid metabolism confirmed by various in vivo and in 
vitro validation experiments (50, 52).

We found strong associations of rs7117842, located ~512kb upstream of miR-100-
5p/125b-5p, with TC, LDL, and HDL, suggesting these two miRNAs to play a role in lipid 
metabolism. The SNP has been previously shown to be negatively associated with the 
expression levels of miR-100-5p and miR-125b-5p in blood (21). In our analysis, plasma 
expression levels of miR-100-5p and miR-125b-5p are positively associated with TC. 
These findings could be interpreted in a way that carrying the risk allele of rs7117842 
(T > C) is associated with decreased expression of miR-100-5p/125b-5p, which is associ-
ated with a reduced increase of total serum cholesterol levels. In addition, cg26363555, 
located in the promoter region of miR-125b-5p, was previously reported to act as miR-
eQTM by changing the expression levels of both miR-100-5p and miR-125b-5p (13). We 
found cg26363555 associated with HDL in the RS. In addition, cg03891346 annotated to 
MIR125B1 was reported to be associated with the expression level of miR-100-5p (13). 
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Our DNA methylation analysis results showed the association between cg03891346 and 
waist circumference in the RS. Our findings are partly in line with previous research 
investigating the role of miR-125b-5p on adipogenesis where it is observed that miR-
125b-5p downregulates the anti-adipogenic gene MMP11 in human, indicating that miR-
125b-5p via MMP11 positively regulate adipogenesis (53) . Conversely, the same study 
demonstrated a direct effect of reduction in fat accumulation through overexpression 
of miR-125b-5p (53). In addition to the role of miR-125b-5p on lipid metabolism in hu-
man, its regulatory role has been investigated in other organisms including zebrafish 
and mice. Over-expression of miR-125b in zebrafish is linked to lipid metabolism in 
brain, heart and liver tissue (54). This study observed that overexpression of miR-125b 
inhibits osteoblastic differentiation and promotes fat synthesis. Moreover, the expres-
sion of miR-125b is activated by estrogen via ERα in vitro and in vivo in mice, in which 
they demonstrated that miR-125b can limit fat accumulation in liver tissue (55). These 
contradictory findings may implicate that miR-125b-5p plays an important role in lipid 
metabolism via a complex molecular cascade. However, the role of miR-100-5p in regard 
to lipid metabolism and cardiovascular disease yet to be further investigated. Since 
miR-100-5p and miR-125b-5p are located in the same locus on chromosome 11, it could 
be possible that miR-125b-5p is the driving miRNA in relation to the associated lipid 
traits. Future research is warranted to confirm the regulatory role of miR-100-5p in lipid 
metabolism.

The main strengths of this study include the use of robust data from the large-scale 
GWAS studies and multi-omics implementation of a large sample size in the Rotterdam 
Study, which indicates with more confidence that miRNAs are involved in the patho-
physiology of cardiometabolic diseases. Our study, however, does not come without 
limitations. First, our study design is based on associations rather than causations, 
therefore this approach does not prove that the identified miRNAs play a causal role in 
the studied traits. To test for causal inferences between miRNAs and disease risk, future 
studies should test mediating effects and incorporate functional follow-up experiments. 
Furthermore, our study design was based on a cross-sectional approach, which means 
that individuals included in this study were not free of CHD or T2D. In regard to test 
whether the identified miRNAs are associated with the risk of developing disease, future 
longitudinal studies are warranted. Another limited factor is that we were unable to link 
all identified miRNAs with epigenetic and expression analyses in the RS, since not all phe-
notypic data were available for each trait of interest nor were all miRNAs well-expressed 
in plasma. In addition, different sub cohorts of the RS were used for DNA methylation 
and miRNA expression analysis due to the availability of data. DNA methylation and 
miRNA signatures are dynamic over time and could have yield in confounding results. 
The challenge of this multi-omics approach includes the intra-individual variation and 
thereby lack of generalizability between datasets. However, the sub cohorts of RS-II and 
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RS-III are extensions of the RS-I cohort. Previous epigenetic (DNA methylation) studies 
using the RS data showed that the results are replicated after additional adjustment 
for sub cohort (56-58). This may indicate that the intra-individual differences between 
variables in these RS sub cohorts have not significantly affected by exposing to differ-
ent environmental factors. Yet in an optimal setting one should apply the multi-omics 
analysis in the same individuals and the same timeframe. Furthermore, we used whole 
blood to determine DNA methylation and plasma to check expression levels of miRNAs, 
which are not the most relevant tissue for cardiometabolic traits. This could have re-
sulted in overlooking some of the miRNAs, but the found associations are comparable 
because both analyses were performed in the same tissue. In an optimal setting one 
should examine the observed associations using next-generation sequencing cover-
ing all miRNAs in target tissues (e.g., adipose tissue, heart, pancreas and liver). Such 
infrastructure is not yet available in large epidemiologic studies with validated clinical 
data. However, for the use of miRNAs as targets for early diagnosis or progression of T2D 
and CHD, blood might be a very good test tissue since it is a non-invasive method for 
biomarker measurements in clinical diagnosis. In addition, regarding potential missed 
cardiometabolic-associated SNPs, our study could have benefited from denser genotyp-
ing methods including 1000 Genomes project or the Haplotype Reference Consortium 
(HRC).

concLusIon

In this study, we systematically examined the association of miRNAs with cardiometa-
bolic risk factors and diseases using population-based genetic, DNA methylation and 
miRNA expression data. By integrating these omics data we found several cardiometa-
bolic- associated miRNAs, such as miR-10b-5p, miR-148a-3p, miR-125b-5p, and miR-100-
5p involved in lipid metabolism, that can be viewed as potential biomarkers for early 
diagnosis or progression of T2D and CHD. Future experimental studies are warranted to 
elucidate pathways underlying the link between these miRNAs and cardiometabolic risk 
factors such as dyslipidemia, central adiposity and elevated blood glucose levels.
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suPPLEmEntARY mAtERIAL

supplementary table 1. description of gwAs meta-analysis and consortia used in this study Phenotype.

consortia sample size All candidate
snPs in gwAs

Anthropometric traits

Body-mass index GIANT 241,258 2,549

Waist to hip ratio GIANT 241,258 2,531

Waist circumference GIANT 241,258 2,533

Glycemic traits

Glucose fasting MAGIC 133,010 2,639

Glucose after 2h MAGIC 45,854 48

Insulin fasting MAGIC 108,557 2,637

Pro-insulin MAGIC 10,701 2,506

HbA1c MAGIC 123,665 887

HOMA-IR MAGIC 46,186 64

HOMA-β MAGIC 46,186 37

Type 2 diabetes DIAGRAM 26,676 cases/ 132,532 controls 10,690

Lipid traits

Low-density lipoprotein GLGC 173,000 2,377

High-density lipoprotein GLGC 187,000 2,385

Total cholesterol GLGC 187,000 2,385

Triglyceride GLGC 178,000 2,376

Cardiovascular traits

Coronary artery disease CARDIoGRMplusC4D 60,801 cases/ 123,504 controls 10,706

Diastolic blood pressure ICBP 71,255 2,345

Systolic blood pressure ICBP 71,255 2,345
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supplementary table 2. Participant characteristics of the Rotterdam study for dnA methylation analysis and miRnA 
expression profiling DNA methylation.

dnA methylation dnA methylation miRnA expression P value*

(RS-II-3 & RS-III-2) (RS-III-1) (RS-I-4 & RS-II-2)

N 717 721 1999

Female 413 (57.6%) 391 (54.2%) 1141 (57.1%) <0.001

Age (years) 67.5 (5.93) 59.8 (8.16) 71.6 (7.58) <0.001

BMI (kg/m2) 27.7 (4.12) 27.6 (4.63) 27.7 (4.11) 0.905

Waist circumference 94.4 (12.00) 93.75 (12.92) 93.6 (11.98) 0.142

WHR 0.9 (0.09) 0.9 (0.08) 0.9 (0.09) <0.001

Current smoking (yes) 76 (10.6%) 193 (26.8%) 288 (14.4%) <0.001

Triglycerides (mmol/L) 1.5 (0.79) 1.5 (0.88) NA 0.298

HDL-cholesterol (mmol/L) 1.5 (0.44) 1.4 (0.41) 1.4 (0.39) <0.001

LDL-cholesterol (mmol/L) 3.7 (0.94) 3.9 (1.00) NA <0.001

Total cholesterol (mmol/L) 5.5 (1.02) 5.6 (1.07) 5.6 (0.99) 0.004

Lipid lowering medication (yes) 225 (31.4%) 191 (26.5%) 450 (22.5%) <0.001

Systolic blood pressure 144.8 (21.91) 134.2 (19.76) 148.2 (20.82) <0.001

Diastolic blood pressure 84.4 (11.66) 82.8 (11.38) 79.6 (10.84) <0.001

Coronary heart disease 28 (3.9%) 46 (6.4%) 214 (10.7%) <0.001

Anti-hypertensive medication (yes) 310 (43.2%) 217 (30.1%) 880 (44.0%) <0.001

Glucose (mmol/L) 5.7 (1.11) 5.6 (1.04) 5.8 (1.09) 0.001

Insulin (pmol/L) 82.6 (48.26) 96.0 (63.04) NA <0.001

Prevalence type 2 diabetes 96 (13.4%) 74 (10.3%) 278 (13.9%) 0.04

Anti-diabetic medication 59 (8.2%) 39 (5.4%) 132 (6.6%) 0.0985

Values are presented as mean ±(SD) or N (%). *Differences between groups were addressed using ANOVA in the case vari-
ables were available among three groups. Student’s T-tests in the case variables were available in two groups. NA: Not 
Available
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supplementary Figure I. Predicted secondary structure of miRnA wild type and variant. Location of the SNP is dem-
onstrated by an arrow. The red part shows the mature sequence and the blue part shows the rest of the pre-miR. The 
corresponding minimum free energy (MFE) is illustrated with the thermodynamic ensemble ΔG. A, Secondary structure 
of miR- 196a2-3p wildtype and variant (rs11614913) located in mature miRNA sequence. MFE changes by -4.6kcal/mol. B, 
Secondary structure of miR-656 wildtype and variant (rs58834075) located in precursor miRNA sequence. MFE changes 
by -0.6kcal/mol. C, Secondary structure of miR-1908-5p wildtype and variant (rs174561) located in precursor miRNA se-
quence. MFE changes by +3.2kcal/mol.

Additional supplemental material for this chapter can be found in the online version of 
the paper via https://www.frontiersin.org/articles/10.3389/fgene.2020.00110/full.
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AbstRAct

MicroRNAs (miRNAs) are small non-coding RNA molecules that post-transcriptionally 
regulate the translation of messenger RNAs. Given the crucial role of miRNAs in gene ex-
pression, genetic variants within miRNA-related sequences may affect miRNA function 
and contribute to disease risk. Osteoporosis is characterized by reduced bone mass, and 
bone mineral density (BMD) is a major diagnostic proxy to assess osteoporosis risk. Here, 
we aimed to identify miRNAs that are involved in BMD using data from recent genome-
wide association studies (GWAS) on femoral neck, lumbar spine and forearm BMD. Of 242 
miRNA-variants available in the GWAS data, we found rs11614913:C > T in the precursor 
miR-196a-2 to be significantly associated with femoral neck-BMD (p-value = 9.9 × 10−7, 
β = −0.038) and lumbar spine-BMD (p-value = 3.2 × 10−11, β = −0.061). Furthermore, our 
sensitivity analyses using the Rotterdam study data showed a sex-specific association of 
rs11614913 with BMD only in women. Subsequently, we highlighted a number of miR-
196a-2 target genes, expressed in bone and associated with BMD, that may mediate the 
miRNA function in BMD. Collectively, our results suggest that miR-196a-2 may contribute 
to variations in BMD level. Further biological investigations will give more insights into 
the mechanisms by which miR-196a-2 control expression of BMD-related genes.
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IntRoductIon

Osteoporosis is characterized by reduced bone mass and micro-architectural degradation 
of bone tissue, resulting in increased bone fragility, with a consequent increase in fracture 
susceptibility (1). This is a common disease affecting one in three women and one in five 
men worldwide (2). Incidence and development of osteoporosis increases exponentially 
with age (3). The disease is diagnosed by common imaging modalities, and therefore, 
might be modifiable to prevent fractures (3,4). A major diagnostic proxy to assess osteo-
porosis risk in the clinical field is bone mineral density (BMD) measurements, especially in 
skeletal sites where osteoporotic fractures occur more frequently (i.e., lumbar spine, hip 
and forearm) (5). Genetic studies have estimated that 50–85% of the variance in BMD can 
be attributed to genetic factors (6). A number of protein-coding genes as well as non-cod-
ing genes have been posited to contribute to osteoporosis or decreased BMD (7,8,9,10). 
Functional genetics have also demonstrated eight genes that could explain up to 40% of 
BMD variation in postmenopausal osteoporosis and involve risk of fracture (11,12).

MicroRNAs (miRNAs) are small non-coding RNAs, approximately ~22 nucleotides long, 
which post-transcriptionally regulate gene expression. Together, they are estimated to 
regulate more than half of the genes in our genome (13). miRNAs’ mode of action involves 
imperfect matching of the “seed region” (nucleotides 2–8 from the 5′ end of mature miRNA 
sequence) with a partially complementary sequence located at the 3′ UTR of target mRNA, 
resulting in translational inhibition and/or mRNA degradation (14). It has been shown 
that genetic variants in miRNAs contribute to disease risk (14,15,16,17). Polymorphisms 
in miRNA genes are presumed to alter miRNA biogenesis and consequently change the 
expression of the miRNA target genes (14,15). This altered gene expression might result 
in phenotypic variation (18). There are strong indications that miRNAs influence BMD 
levels by regulating several genes involved in bone-related pathways (19). For example, 
miR-146a has been shown to regulate TRAF6 and IRAK1 genes involved in apoptosis (20). 
In osteoclasts, these genes mediate IL-1β-induced activation of NF-κB signaling, which in 
turn promotes osteoclast activity and survival (21,22). Furthermore, previous candidate 
gene studies have shown that genetic variants within miRNA genes (e.g., miR-146, miR-
125a, miR-27a, miR-433) are associated with osteoporosis and bone cell activity, possibly 
through altering the miRNA expression levels or function (9,23,24,25,26).

In the present study, we hypothesized that genetic variants in miRNAs affect miRNA-
mediated regulation of genes involved in BMD. To test this hypothesis, we performed a 
genome-wide scan for miRNA variants associated with BMD using data from the recent 
genome-wide association studies (GWAS) on femoral neck, lumbar spine and forearm 
BMD (7). We found a genetic variant in pre-miR-196a-2 significantly associated with 
BMD. Subsequently, we performed in silico analyses to investigate whether miR-196a-2 
and its putative target genes may contribute to BMD variation.
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REsuLts

A Variant in miR-196a-2 Associates with bmd
A total of 2340 variants in miRNA-related sequences were collected by combination of 
a literature review and miRNASNP database (27). In parallel, we extracted summary 
statistics data from the recent GWAS meta-analysis on three BMD phenotypes, includ-
ing femoral neck (FN-BMD), lumbar spine (LS-BMD) and forearm (FA-BMD), provided by 
Genetic Factors of Osteoporosis (GEFOS) consortium (7). Out of 2340 miRNA variants, 
90 single-nucleotide polymorphisms (SNPs) were available in the GWAS data. Using the 
SNAP Web tool, we extracted the proxy SNPs (R2 > 0.8 and distance < 200 kb in 1000 
Genomes project) for 152 of the unavailable variants. We studied the association of 
these 242 miRNA SNPs with BMD phenotypes. One of the SNPs passed the Bonferroni 
significance threshold of 2.1 × 10−4 (0.05/242). This includes rs11614913:C > T in miR-
196a-2 which is significantly associated with FN-BMD (p-value = 9.9 × 10−7, β = −0.038) 
and LS-BMD (p-value = 3.2 × 10−11, β = −0.061). This analysis indicated that individuals 
carrying the rs11614913 minor allele T are more prone to have lower BMD. No signifi-
cant association was identified between the miRNA variants and FA-BMD. A simplified 
scheme of the pipeline used for the identification of miRNA SNPs associated with the 
BMD phenotypes is shown in Figure 1.

the Potential Impact of rs11614913 on the miR-196a-2 structure and 
Function
We generated the hairpin structures of hsa-miR-196a-2 containing either the major al-
lele C or the minor allele T at rs11614913 site using the Vienna RNAfold algorithm (28). 
We observed 4.6 kcal/mol difference in the minimum free energy (MFE) of the thermo-
dynamic predicted structure of pre-miR-196a-2 with the minor allele T compared to the 
wild type allele C (Figure 2). The analysis suggests that the investigated variant may 
affect the stability of miR-196a-2. In this line, it has been demonstrated previously that 
rs11614913-T decreases miR-196a-2 expression in different cell lines (29, 30).

Associaton of miR-196a-2 target genes with bmd
Through leveraging the GEFOS GWAS data and using a candidate gene approach, we 
tested the association of genetic variants in 457 putative target genes of miR-196a-2 with 
FN-BMD and LS-BMD. table 1 shows the top ten target genes of miR-196a-2 with the 
most significant association with the BMD phenotypes. Using RNA-seq gene expression 
data of 86 hip bone (iliac crest) biopsies, we found evidence for expression of eight out 
of the ten highlighted target genes of miR-196a-2 in bone (Figure 3) (12). Among the 
bone-expressed targets, JAG1 passed the significance threshold, based on the number 
of variants in the tested miR-196a-2 target genes (table 1). This analysis may suggest 
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that JAG1 is more likely to mediate the downstream effect of miR-196a-2 in relation 
to BMD. Moreover, a number of genes have been demonstrated experimentally (i.e., 
by luciferase reporter assay, Western blot or qPCR) to be regulated by miR-196a-2. As 
shown in supplementary table s1 some of these genes are shown to be involved in 
either osteogenesis or bone function and may mediate the miR-196a-2 effect on BMD. 
We checked the correlation of rs11614913 with expression level of its surrounding genes 
as shown by GTEX portal (http://www.gtexportal.org/home/) and found the association 
of SNP with expression of HOXC8 and HOXC-AS1 across different tissues.

 
Figure 1. A simplified diagram of the pipeline used to identify miRNA genetic variants associated with BMD. FN-BMD: 
Femoral neck bone mineral density; LS-BMD: Lumbar spine bone mineral density; FA-BMD: Forearm bone mineral density; 
SNP: Single-nucleotide polymorphism; GWAS: Genome-wide association studies.
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sensitivity Analyses for rs11614913 in miR-196a-2 using the Rotterdam 
study data
Previous studies have reported sex-specific association of genetic variants with BMD 
(31,32). Furthermore, some studies have shown difference in sex response to musco-
skeletal cell development, mediated by influence of steroid hormones (33,34). In order 
to investigate the potential difference in association between the miR-196a-2 variants 
and BMD across sexes, we performed a sensitivity analysis using the Rotterdam study 
(RS) data. The baseline characteristics of the RS participants are shown in table 2. A 
total of 6,145 participants (3524 woman and 2621 men) from the three RS cohorts were 
eligible for this analysis (individuals with data available for rs11614913 and Dual X-ray 
Absorptiometry (DXA) imaging on FN-BMD and LS-BMD). Mixed linear regression analysis 
was carried out in sex-stratified data to investigate the association between rs11614913 
and the BMD phenotypes (table 3). In the basic model (adjusting for age, cohort, weight, 
waist to hip ratio and height) there was a significant association between rs11614913 
and FN-BMD only in women (p-value = 0.003; β = 0.009; (95%Confidence Interval, CI) 
= 0.003, 0.014). The association remained significant for women in the second model 
(further adjusting for alcohol, smoking status and drugs used for treatment of bone dis-
eases) (p-value = 0.003; β = 0.008; (95%CI) = 0.003, 0.014). We also tested the association 
between rs11614913 and LS-BMD and found, again, a clear significance only in women 
in the basic model (p-value = 0.023; β = 0.010; (95%CI) = 0.001, 0.019) and the second 
model (p-value = 0.026; β = 0.010; (95%CI) = 0.001, 0.018) (table 3). Next, we further 
adjusted the second model for sex-hormones to see whether the miRNA variant is linked 
to sex-hormones (table 3). The association in females remained significant after further 

 

Figure 2. schematic view of the predicted pre-miR-196a-2 hairpin structure containing the snP major allele c or mi-
nor allele t. The minimum free energy (MFE) change of the thermodynamic ensemble (ΔG) is shown. The red part indicates 
mature sequence and the blue part shows the rest of pre-miRNA sequence.
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adjustment for five sex-hormones (Model 3) involved in the steroidogenesis pathway. 
These results suggest that there is sex specificity in the association of miR-196a-2 with 
BMD.

 
Figure 3. Expression of the highlighted miR-196a-2 target genes and positive controls (sP7, mEPE, RunX2, sost 
and sPP1) in RnA-seq data consisting of 86 hip bone (iliac crest) biopsies. The expression data are shown in the metric 
Log10 FPKM (fragments per kilobase of transcript per million mapped reads).

table 1. Putative target genes of miR-196a-2 (3p and 5p) that are associated with Fn-bmd and Ls-bmd.

miRnA Id Associated Phenotype
Associated 
target genes

p-Value in 
gwAs data

top snP

miR-196a-3p

FN-BMD

JAG1 1.8 × 10−5 rs2235811

MACROD2 2.0 × 10−6 rs365824

SP1 4.2 × 10−5 rs4759334

LS-BMD

JAG1 4.7 × 10−9 rs2235811

ATF7 6.3 × 10−5 rs1078358

MACROD2 8.1 × 10−5 rs6110288

miR-196a-5p

FN-BMD

FRMD4B 5.6 × 10−4 rs1564757

NEDD4L 9.6 × 10−4 rs533502

BIRC6 1.2 × 10−3 rs6737916

LS-BMD

COL24A1 2.6 × 10−3 rs1359419

RSPO2 3.1 × 10−3 rs446454

DIP2A 3.3 × 10−3 rs2330593

Leading SNPs within each target gene associated with BMD in GEFOS GWAS data are shown. Significantly associated genes, 
after Bonferroni correction for multiple testing (p-value <7.0 × 10−6), are depicted in bold.
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dIscussIon

Recent studies have shown that miRNAs are important regulators of genes linked to bone 
remodeling and osteoporosis development (35,36,37,38,39). Different approaches have 
been used in previous studies to identify miRNAs involved in osteoporosis, including 

table 2. demographic characteristics of the Rotterdam study cohorts.

Variables men women

FN-BMD (g/cm2) 0.95 (0.14) 0.87 (0.14)

LS-BMD (g/cm2) 1.20 (0.19) 1.08 (0.19)

Age (years) 65.71 (10.45) 66.29 (10.61)

Weight (kg) 85.55 (12.85) 73.11 (13.09)

WHR 0.95 (0.07) 0.84 (0.07)

Height (cm) 176.41 (7.01) 162.73 (6.50)

Alcohol (g/day) 9.29 (3.57–20.00) 4.29 (0.54–10.00)

DHEA (nmol/L) 11.82 (7.32) 12.31 (7.65)

DHEAS (nmol/L) 3200.18 (1757.16) 2099.17 (1337.77)

Androstenedione (nmol/L) 3.24 (1.27) 2.70 (1.29)

Testosterone (nmol/L) 17.53 (5.78) 0.90 (0.45)

Estradiol (pmol/L) 96.93 (33.82) 38.86 (33.18)

Smoking

never smoker 1125 (42.9%) 2071 (58.8%)

former smoker 1039 (39.7%) 841 (23.9%)

current smoker 456 (17.4%) 612 (17.4%)

Bone drugs
no 2607 (99.5%) 3400 (96.5%)

yes 13 (0.5%) 124 (3.5%)

Values are mean (standard deviation), numbers (percentages) or median (interquartile range (IQR)); used for alcohol only. 
FN-BMD: Femoral neck bone mineral density; LS-BMD: Lumbar spine bone mineral density; WHR: Waist to hip ratio; Bone 
drugs: drugs used for treatment of bone diseases; DHEA: dehydroepiandrosterone; DHEAS: dehydroepiandrosterone sul-
fate.

table 3. Association between rs11614913 and bmd phenotypes in participants of the Rotterdam study.

Phenotype model
men women combined

β 95%cI p-Value β 95%cI p-v β 95%cI p-Value

FN-BMD

M1 0.004 −0.003, 0.011 0.257 0.009 0.003, 0.014 0.003 0.007 0.003, 0.012 0.002

M2 0.004 −0.003, 0.011 0.267 0.008 0.003, 0.014 0.003 0.007 0.003, 0.012 0.002

M3 0.004 −0.004, 0.011 0.319 0.008 0.003, 0.014 0.003 0.007 0.002, 0.011 0.003

LS-BMD

M1 0.005 −0.006, 0.016 0.380 0.010 0.001, 0.019 0.023 0.009 0.002, 0.016 0.011

M2 0.004 −0.007, 0.015 0.423 0.010 0.001, 0.018 0.026 0.009 0.002, 0.016 0.012

M3 0.003 −0.008, 0.014 0.573 0.009 0.001, 0.018 0.038 0.008 0.001, 0.015 0.020

Model 1 (M1) is adjusted for age, cohort, weight, waist to hip ratio (WHR) and height. Model 2 (M2) is adjusted for M1 + alco-
hol, smoking status (current, former and never smoker) and drugs used for treatment of bone diseases. Model 3 (M3) is ad-
justed for M2 + estradiol, testosterone, androstenedione, DHEA, and DHEAS. “Combined” was additionally adjusted for sex.
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miRNA expression profiling (38,40) and candidate gene association studies (41). In this 
study, we have conducted a genome-wide scan investigating the association of miRNA 
genetic variants with BMD using GWAS data (7). This method represents a valuable, 
extended and complementary approach to previous methods used in the identification 
of miRNAs associated with BMD.

Our results showed that rs11614913 in the stem region of pre-miR-196a-2 is sig-
nificantly associated with FN-BMD and LS-BMD. Lack of significant association between 
rs11614913 within pre-miR-196a-2 and forearm BMD could be attributed to the small 
sample size in GWAS (n = 8143) compared to FN-BMD (n = 32,735) or LS-BMD (n = 28,498) 
in the discovery cohorts (7), or differences in bone remodeling between anatomical sites. 
It has been shown that loaded and unloaded bone (forearm) have distinct transcrip-
tional activities (42,43). The location of rs11614913 in pre-miR-196a-2 is likely to affect 
the miRNA processing by enzyme Dicer, and subsequently alter the expression of mature 
miR-196a-2 (44,45). Polymorphisms in pre-miRNA sequences have been shown to cause 
either a destabilization of the interaction due to changes in the free binding energy or 
a change in target accessibility due to alternations in the miRNA secondary structure 
(19,46,47). Our in silico analysis showed differences in the MFE between the predicted 
structure of pre-miR-196a-2 mutants and the wild type, suggesting the variant’s minor 
allele may diminish the stability of pre-miR-196a-2. In agreement with this conjecture, 
previous studies have established the impact of rs11614913 polymorphism (C/T) on 
the miR-196a-2 expression levels (29,30,44,45,48). Zhibin Hu et al., have reported that 
rs11614913 wild-type allele (C) is associated with statistically significant increase in 
mature miR-196a-2 expression, while studying 23 human lung cancer tissue samples 
(30). They also showed that rs11614913 could affect binding of the mature miR-196a-2 
to its candidate target mRNA (30). Furthermore, Zhao Hauanhuan et al., observed the 
same trend of rs11614913*CC genotype to increase the mature miR-196a-2 expression 
in different phenotypes of breast cancer (29). Likewise, Hoffman et al., experimentally 
demonstrated that rs11614913 mutant allele (T) is associated with statistically signifi-
cant decrease in miR-196a-2 expression in breast cancer patients (44). Another study by 
Vinci et al., presented coherent results of rs11614913*TT decreasing miR-196a-2 expres-
sion levels in lung cancer patients (48). In addition, Xu et al., determined that rs11614913 
affects the expression of miR-196a-2 and consequently, expression of its downstream 
target gene HOXB8 (49). They hypothesized that the variant might have an impact on miR-
196a-HOXB8-Shh signaling pathway, and therefore, be associated with congenital heart 
disease susceptibility (49). In other studies, the miR-196a-2 polymorphism rs11614913 
has been linked to various phenotypic variations, ranging from several types of cancer 
(30,44,45,50) to increased risk for cardiovascular disease (49,51,52,53,54). These data 
strongly suggest an important functional impact of rs11614913 on miR-196a-2 expres-
sion and function that in turn might affect the risk and/or progression of disease.



Chapter 4.2

170

MiR-196a is shown to be expressed from HOX clusters loci in mammals and HOX genes 
in turn are shown to be targets of miR-196a (19,55). The HOX genes play critical roles in 
limb development and skeletal patterning (56,57). The miRNA has been also shown to 
play a role in brown adipogenesis of white fat progenitor cells through targeting HOXC8 
(58). It has been proven that the miRNA regulates HOXC8 at both mRNA and protein 
levels (55). In an independent study, Kim et al., observed that adding miR-196-a inhibi-
tors to osteoblast cells in culture causes a significant increase in HOXC8 protein levels, 
with subsequent increased proliferation and decrease in osteogenic differentiation 
(59). These data suggest upregulation of HOXC8 in the miR-196a-2 variant carriers, of 
significance for osteogenic differentiation. Accordingly, Dong-Li Zhu et al., have recently 
shown that miR-196a-2 is expressed in osteoblasts and experimentally demonstrated 
that FGF2, previously identified as a susceptibility gene for osteoporosis in Caucasians 
(60), is a direct target of miR-196a-2 in the Chinese population (8). Their experiments 
proved that miR-196a-2 had an influence on FGF2 mRNA in hFOB1 cells, which is a hu-
man fetal osteoblastic cell line (8).

In addition to previously validated targets of miR-196a-2 involved in osteogenesis, 
we highlighted a number of putative target genes associated with BMD with a potential 
to mediate the miR-196a-2 effect in BMD. Among them, JAG1 passed the significant 
threshold to be associated with BMD and is expressed in bone. The JAG1 gene has been 
previously reported to be associated with increased BMD and suggested as a candidate 
gene for BMD regulation in diverse ethnic groups (61). Future experimental studies are 
needed to explore the postulated miR-196a-2-mediated regulation of the gene in bone 
tissue or cell lines.

We performed sex-stratified analysis using the Rotterdam study data to get insight into 
sex specificity for BMD variation on the miR-196a-2 polymorphism. In the sex-combined 
analysis, we observed significant association of rs11614913 with BMD phenotypes. How-
ever, sex-stratified analysis revealed that the association is mainly driven by women. We 
acknowledge that the observed association in women may have been driven by a lower 
number of men (our cohort contains 903 more women than men), however, sample size 
of 6145 should be sustainable to address sex difference. Notably, the miR-196a-2 poly-
morphism rs11614913 with combination of rs3746444 in miR-499a have been reported 
previously to be involved in the multiple sclerosis severity, where the association shows 
only female sex specificity (62). Multiple sclerosis and osteoporosis share a surprising 
number of risk factors (63,64,65) and genetics might be one of them, although the inter-
play of the two miRNA variants and their impacts on gene interaction should be taken 
in consideration when interpreting the results regarding sex specificity. Considering the 
sexual dimorphism of bone (31,66), these data might indicate a potential for further 
clinical and biological investigations regarding the role of miR-196a-2 underlying BMD 
variation.
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This study has some strengths and limitations that need to be considered in inter-
pretation of the reported results. The major strength of this study is leveraging genetic 
data from the recent GWAS of BMD phenotypes that enabled us legitimate statistical 
power for detection of miRNA-related variants associated with BMD. The main limitation 
that needs to be addressed is lack of experimental studies in relevant tissues or cell 
lines. MiRNA-related SNPs might be only utilitarian if the target mRNA is expressed in 
the same tissue (67). Thereby, further biological investigations warrant better insights 
into the mechanisms by which miR-196a-2 control expression of genes involved in BMD.

mEtHods

genome-wide Association studies on bmd Phenotypes
The summary statistics from the recent GWAS meta-analysis on FN-BMD (n = 32,735), LS-
BMD (n = 28,498) and FA-BMD (n = 8143) provided by GEFOS consortium were extracted 
(7). The GEFOS consortium is a collective effort of numerous research groups combining 
GWAS data, in order to identify osteoporosis susceptibility alleles that regulate BMD 
and fracture risk (7). The GEFOS consortium performed meta-analysis of whole genome 
sequencing, whole exome sequencing and deep imputation of genotype data in order to 
determine low-frequency and rare variants associated with risk factors for osteoporosis. 
The collaboration within the GEFOS has resulted in producing files with summary statis-
tics for approximately 10 million genetics variants (the 1000 Genomes/UK10K reference 
panel) in 53,236 individuals (7). More details on datasets and participants are described 
in detail elsewhere (7).

Identification of Genetic Variants in miRNA-Encoding Sequences
A dataset of single-nucleotide polymorphisms (SNPs) in miRNA-related sequences was 
created by combining miRNASNP (http://www.bioguo.org/miRNASNP/) (27) and the 
literature review (searching in PubMed for miRNA genetic variants). Precursor miRNA 
sequences (pre-miRNA) undergo cleavage by enzyme Dicer, yielding to mature miRNAs 
(13), therefore we screened all variants located in human pre-miRNA and mature miRNA 
sequences. The methodology was explained in details elsewhere (68). Variants with mi-
nor allele frequency (MAF) >0.01 were included. Variants with smaller MAF were illegible 
due to low imputation quality and issue of being underpowered in further studies. In 
total, 2340 miRNA variants were extracted. Of these, 242 variants were available in the 
GEFOS GWAS data and were therefore investigated further for their associations with 
BMD phenotypes.
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miRnA target genes Associated with bmd Phenotypes
Once a miRNA variant was found to be significantly associated with BMD phenotypes, 
we searched for the miRNA target genes. We postulated that some of the miRNA target 
genes may mediate the downstream effect of miRNA in relation to BMD phenotypes. 
In order to identify target genes of miRNAs, putative target genes were extracted from 
combining TargetScan v7.1 (http://www.targetscan.org/vert_71/) and miRDB (http://
mirdb.org/) database (69). Target genes present in both databases were selected for 
further investigation. Any supplementary information, such as miRNA conservation 
between species, host genes, miRNA sequences was collected from TargetScan (v7.1). 
Both context score and conserved target sites were used to rank the miRNA target genes. 
In addition, the online database, miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/) 
provides information on various functional experiments, such as microarrays, western 
blot, and reported assays performed between miRNAs and their target genes (70). We 
used miRTarBase to search for functional experiment confirming the putative interac-
tion between miRNAs of interest and their target genes. A candidate gene approach was 
performed by leveraging the GWAS data on BMD phenotypes (7) and to investigate the 
association between genetic variants in the miRNA target genes and BMD. In addition, 
we evaluated the expression of selected target genes in the bone tissue. Dataset used for 
gene expression was created out of 86 iliac biopsies (12).

The Variant Effect on the Pre-miRNA Structure
The secondary structure of pre-miRNA is critical for the miRNA production. The Vienna 
RNAfold algorithm (ViennaRNA package 2.0) was used to predict the impact of miRNA 
variants on the hairpin stem-loop structure of pre-miRNAs (28). The ViennaRNA package 
2.0 is available to the public domain and relies on numerous algorithms for prediction 
and analysis of RNA secondary structures (71). The program calculates the shift in 
minimum free energy (MFE) of the thermodynamic ensemble in the hairpin structure of 
miRNA (wild type and mutant) (72). The shift in MFE is likely to be related to the function, 
as it can result in instability of miRNA.

the Rotterdam study data
The Rotterdam study (RS) is a population-based cohort study, with main goal of identify-
ing chronic disabling conditions of the middle aged and elderly people (73). Participants 
were interviewed at home and went through an extensive set of examinations, including 
bone mineral densitometry, sample collections for in-depth molecular and genetic 
analysis (73). The RS includes three sub-cohorts. We used the data from the baseline, 
second and third cohort (RS-I-4, RS-II-2, and RS-III-1). For all participants, DXA-based 
BMD measurements were collected for FN-BMD and LS-BMD. The RS does not include 
data on FA-BMD since this site is used for prediction of osteoporosis only when data is 
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not available for FN-BMD or LS-BMD due to numerous reasons (e.g., patients either being 
obese, men with hyperparathyroidism or receiving androgen-deprivation therapy (ADT) 
for prostate cancer) (74). Furthermore, determinants were assessed either by physical 
examinations, collection of blood samples, or by questionnaires. Participants were 
included if they had FN-BMD or LS-BMD measurements, which resulted in combination 
of three cohorts (RS-I-4, RS-II-2, and RS-III-1). We used multiple linear regression in sex-
stratified dataset to examine the association between the candidate miRNA variant and 
BMD phenotypes (separately). Our analysis was adjusted for all potential confounders 
in three models.

concLusIons

The results of this study suggest that miR-196a-2 polymorphism (rs11614913:C > T) is 
associated with reduced FN-BMD and LS-BMD. We highlighted a number of target genes 
that may mediate miR-196a-2 function in influencing BMD. The identified miR-196a-2 
might have a future implication in the clinical field related to diagnosis and treatment of 
osteoporosis. Future biological studies will give insight into the mechanisms by which 
miR-196a-2 may control expression of bone-related genes. Collectively, our study pro-
vides further understanding of the miRNA-mediated regulation of BMD.
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suPPLEmEntARY mAtERIALs

Supplemental material for this chapter can be found in the online version of the paper 
via https://www.mdpi.com/1422-0067/18/12/2529/htm.
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5.1 mAIn FIndIngs And IntERPREtAtIons

The overall aim of this thesis is to investigate epigenetic mechanisms as a possible 
biomarker for disease risk, as a possible mediator between lifestyle factors and disease 
risk, and for inferring lifestyle factors from human materials.

I investigated the inference of alcohol consumption and smoking habits from DNA 
methylation patterns. Also, I studied if smoking-related changes in DNA methylation 
and gene expression patterns are associated with each other and with cardio-metabolic 
traits in a three-way association. Using multi-omics data, I studied miRNAs that could 
play a role in cardio-metabolic traits and bone mineral density. In this chapter, the main 
findings of these studies are summarized, the main methodological considerations are 
discussed, and future perspectives are provided.

5.1.1 dnA methylation-based lifestyle inference
Negative lifestyle factors/variables are modifiable habits that are associated with dis-
eases risk. Lifestyle information from patients or study participants is often obtained us-
ing self-reported questionnaires or during interviews, which are both error-prone. DNA 
methylation-based prediction models are proposed as an alternative to complement or 
overcome the use of self-reported questionnaires to obtain lifestyle information [1-11]. 
So far, developed DNA methylation-based prediction models suffer from statistical and 
population limitations [12]. chapter 2 of this thesis focuses on the development and/
or validation of DNA methylation-based prediction models for alcohol consumption 
(chapter 2.1) and smoking habits (chapter 2.2). In chapter 2.1, I validated the DNA 
methylation-based prediction models for alcohol consumption published by Liu et al. 
[2]. In the study by Liu et al., participants were categorized into four alcohol consump-
tion categories, of which subsets (2 or 3 categories) were inferred using seven prediction 
models implementing four DNA methylation marker sets. The model validation in four 
independent studies used unique marker-weights in each study by employing the same 
dataset for model training and testing, resulting in impressively high AUCs in both model 
building and model validation. In the study implemented in chapter 2.1, I validated 
the four markers sets (5, 23, 78, and 144 CpGs) and the seven prediction models. By 
employing the same methods, of training and testing the models in the same dataset, 
I obtained very similar results compared to the original study. Nevertheless, I argued 
that using unique weights for each CpG and model per validation cohort rather than 
using the marker-weights obtained in model building overestimates the true prediction 
accuracy. In this line, I tested the transportability of the models using data independent 
from our model building dataset to test the prediction accuracies. Here, I obtained much 
lower AUCs compared to the originals study. Also, I obtained a high variance in AUCs 
between the different external validation datasets. The results obtained in this study 
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suggest that the previously published prediction markers are unreliable or provide only 
low accuracies. Therefore, the markers are not yet suitable for the accurate prediction 
of alcohol consumption, indicating that the previously published AUCs by Liu et al. are 
strongly overestimated.

In chapter 2.2, I aimed to develop a robust prediction model for smoking status. 
Several studies have already shown the possibility to develop a prediction model for 
smoking status obtaining high AUCs, all with limitations [3-10]. Here, I selected 13 CpGs 
that were independently replicated and resulted in the highest prediction accuracy 
(AUC=0.90) to distinguish smokers from non-smokers (former and never smokers com-
bined) in our model building dataset. Using internal validation and external validation, 
I obtained very similar results of 0.90±0.14 and 0.91, respectively. I used an arbitrary 
probability cut-off of 0.50 to categorize smokers, which resulted in the model building 
dataset in a sensitivity of 0.59 and a specificity of 0.98. The sensitivity of a prediction 
model reflects the true positive cases, while the specificity represents the true negative 
cases. The sensitivity and specificity of a binomial prediction model depend on a cut-off 
point (0.5 in our smoking prediction model). Therefore, they inversely change when 
using another cut-off, e.g., when the sensitivity increases, the specificity will decrease. 
The AUC reflects the overall model accuracy and provides a better understanding of how 
well the model performs [13-15].

Several other studies have investigated DNA methylation-based prediction of smoking 
status, all with low sample size or the exclusion of smoking categories from their mod-
els [3-6, 9, 10]. The top smoking-related CpG, cg05575921 (AHRR), was used in several 
previous smoking predictors [3, 5, 6, 8, 10]. For instance, Philibert et al. [5] obtained an 
AUC of 0.99 using only the methylation levels of this specific CpG (cg05575921; AHRR) 
employing 35 non-smokers and 26 smokers. The sole use of cg05575921 (AHRR), pro-
vided in our model building dataset an AUC of 0.88 distinguishing smokers (N=511) from 
non-smokers (3,764). These results support our original hypothesis that using a small 
sample size could provide highly overestimated prediction accuracies.

A more recent study by Sugden et al. [8] used 2,623 CpG previously identified by 
Joehanes et al. [1], obtaining an AUC of 0.77 for distinguishing never from ever smok-
ers in participants at age 38. Although this study did include all smoking categories, 
the use of 2,623 CpGs risks overfitting of the models and missing values of one of the 
markers is likely to occur. Also, distinguishing smokers from non-smokers, as done in 
our model (AUC= 0.90), might provide more clinically relevant information. The similar 
results obtained between our model building dataset and the external validation shows 
the accuracy and robustness of our model. The use of all smoking categories provides 
a broad range of possible applications for our model, including the general population.

In summary, the results in chapter 2.1 and chapter 2.2 demonstrate the possibility 
of using DNA methylation markers (CpG sites) to develop prediction models for lifestyle 
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factors that are transportable to independent datasets. However, it also shows the im-
portance of using replicated predictive markers, a large diverse model building dataset, 
and of implementing strict internal and external validation methods. Specifically, for the 
models to be transportable to independent datasets, it would be important to test the 
replication of the markers in independent data. The combination of markers that have 
been independently replicated in several studies will likely provide a more robust and 
transportable model compared to a model including markers discovered in one study. 
In this line, Liu et al. [2] selected their predictive markers from only one meta-analysis, 
which resulted in a non-transportable model. In contrast, I selected independently rep-
licated predictive markers using data from 14 EWASs [3, 16-27] (chapter 2.2), obtaining 
a model that provided similar AUCs in model building, internal validation, and external 
validation. I would, therefore, suggest using the 13 population-based prospective 
cohorts embedded in the study by Liu et al. [2] to select the CpGs that (suggestively) 
replicate in multiple studies. The independent replication in several studies will provide 
a finite but more robust marker set than the inclusion of CpGs that reach (suggestive) 
significance in one large meta-analysis. Also, a model that includes too many predictive 
markers compared to the number of observations is more likely to be over-fitted [28], 
which likely partially explains the poor prediction results obtained when applying the 
78 and 144-CpG alcohol models to independent datasets (chapter 2.1). Finally, the de-
veloped models by Liu et al. only included subsets of the alcohol categories, which are 
difficult to extrapolate to the general population. Similarly, category subsets have been 
used before in papers developing alcohol consumption and smoking status prediction 
models [7, 10, 11]. Studies should focus on models that would be beneficial in a wide 
range of settings, as was done in chapter 2.2. Therefore, future studies are needed to 
develop new alcohol consumption prediction models using the correct statistical meth-
ods and all available categories and study participants [12].

In addition, future studies would be needed to test the generalizability of our smoking 
prediction models in participants of non-European ancestry. Also, by using the same 
13 CpGs, I developed as first a model that can predict lifetime smoking information, 
including pack-years in current smokers, smoking cessation in former smokers, and the 
never smokers. Although I obtained very interesting results for this lifetime smoking 
model, further research would be needed using a much larger sample. Due to the use 
of five categories, only a limited number of participants were available in the different 
pack-year categories.

Most large cohort studies already collect blood samples from their participants, which 
could be used for DNA methylation measurements. Hence, I believe our model will 
especially be useful in these studies due to easy access. This emphasizes the possible 
importance for future development of DNA methylation-based prediction models for 
other lifestyle factors. In this thesis, I specifically focus on smoking habits and alcohol 
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consumption; however, it is important to note that several other lifestyle factors are 
also associated with disease risk [29]. For example, of all DALYs in 2019, 11.9% (95% CI 
9.6–14.5) is attributed to the combined burden of diet quality, physical inactivity, and 
high BMI. This indicates how important diet and physical activity is for the current health 
state and future disease risk. For these lifestyle factors and for many more, question-
naires are most often used for data collection. It would also be important to develop 
alternative methods to collect this information. For instance, information on physical 
activity can be obtained via specific questionnaires (e.g. LASA Physical Activity Ques-
tionnaire (LAPAQ) [30]) or via an accelerometer. In the Rotterdam study, it was shown 
that overall total physical activity was underestimated in the questionnaire compared 
to the use of a triaxial accelerometer (GeneActiv; ActivinsightsLtd, Kimbolton, UK) 
[31]. These results show the importance of objective measurements, also in protective 
lifestyle factors. Future studies are needed to investigate the impact of other lifestyle 
factors on disease risk and DNA methylation and the possibility to infer these factors 
using DNA methylation patterns.

5.1.2 smoking, epigenetics, and cardio-metabolic traits
In chapter 3, I investigated if smoking-related alterations in DNA methylation and gene 
expression are associated with each other and with cardio-metabolic traits. I selected 
smoking-related CpGs and genes previously found to be associated with current vs. 
never smokers in the largest EWAS and TWAS to date [1, 32]. The use of previously 
identified smoking-related CpGs and genes provided a broader starting point compared 
studies that start with new marker-identification in a smaller sample size. For instance, 
a previous study only identified 42 smoking-related CpGs and genes in 542 subjects [33]. 
Using previously identified markers, I was able to select 2,549 smoking-CpGs and 443 
smoking-gene expression probes as candidate markers. This made it possible to have 
a broader look into the expression quantitative trait methylation (eQTM) associations 
between these smoking-related CpGs and genes. In most studies, the eQTM associations 
are solely tested for CpGs located in the promoter, enhancer, the transcription start site, 
or the gene body of the CpG annotated gene, as this is associated with altered gene 
expression [34]. I tested the association between all smoking-CpGs with smoking-genes 
and showed several significant cis- and trans-eQTM associations.

For the eQTM associated CpGs and genes, I tested the association with cardio-
metabolic traits and found 26 smoking-related CpGs and 19 smoking-related genes (21 
probes) associated with a cardio-metabolic trait. Next, I looked for an overlap in the 
obtained results, indicating a three-way association in which a CpG is associated with a 
gene and both are associated with the same trait. I found for triglycerides two associa-
tions and for BMI I found several three-way associations. Several of these markers were 
previously identified to be associated with CVD-related outcomes.
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In summary, by combining DNA methylation and gene expression data, I was able to 
identify several three-way associations for CpGs and genes that have previously been 
associated with CVD-related risk factors and death. Our results suggest that smoking-
related changes in DNA methylation and gene expression are important molecular path-
ways in which smoking can affect cardio-metabolic traits. Nevertheless, future studies 
are needed to validate the results obtained in our study. Specifically, I identified several 
cis- and trans-eQTM associations; however, only 134 out of the 1,224 CpGs and 50 out 
of the 200 gene-probes passed the Bonferroni corrected significance threshold in inde-
pendent data. In both discovery and replication datasets, around 700 participants were 
available with both gene expression and DNA methylation data. Future studies would 
benefit from a larger sample size, possibly via meta-analysis followed by independent 
replication. Due to the identification of several trans-eQTMs, I would propose a broad-
ening of the current approach of investigating only the cis-regulatory effect. I believe 
that this approach might help to identify unknown molecular paths that are currently 
being ignored. Studies should focus on investigating the direction and causality of these 
eQTM associations to determine if the alterations in DNA methylation levels induce the 
changes in gene expression or vice versa. Also, it would be important to investigate 
further if the identified trans-eQTM associations are indeed trans-regulatory effects or 
possibly reflect a downstream effect. Finally, functional studies are needed to verify the 
observed impact of smoking on these CpGs and genes and to validate their downstream 
effect on cardio-metabolic traits.

5.1.3 disease-related miRnAs
5.1.3.1 SNPs in miRNA-related sequences
In chapter 4, I used summary statistics from large-scale GWAS to identify genetic vari-
ants in miRNA-related sequences in association with cardio-metabolic traits [35-45] 
(chapter 4.1) and bone mineral density (BMD) traits (femoral neck, lumbar spine, and 
forearm BMD) [46] (chapter 4.2). The use of publicly available GWAS strongly increased 
our study power to identify disease-related SNPs in miRNA-related sequences. However, 
mutations in miRNA-related sequences are rare and possibly population-specific and 
are therefore not all present in available GWAS summary statistics. This was also evident 
in the studies included in this thesis. In chapter 4.1, I selected 23,990 SNPs in miRNA-
related sequences (within +/- 2kb of primary miRNAs sequences). Only 2,358 SNPs were 
present in HapMap imputed GWAS statistics and 8,652 in the 1000 Genomes consortia 
imputed GWAS statistics [35-45]. In chapter 4.2, I selected 2,340 variants within primary 
and mature miRNAs sequences. Only 90 SNPs were available in the BMD-GWAS data, 
which used a novel imputation reference panel generated by the UK10K and 1000 
Genomes consortia [46-48]. The comprehensiveness and accuracy of genetic imputa-
tions are dependent on the reference information. Large efforts have already been done 
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to gain extensive haplotype information in several populations [47-49]. However, the 
occurrence of these haplotypes can vary between populations or might be population-
specific. Thus, larger collaborations (trans-ethnic studies) and denser genotyping (such 
as TopMed reference panel) are needed to cover more sequences in the genome from 
different populations to improve the human haplotype map, and thereby the quality 
and accuracy of imputation. Although this limitation, the statistical power that comes 
with the inclusion of thousands of participants in each GWAS makes our approach a 
good initial step for marker selection to identify important miRNA-related SNPs associ-
ated with diseases.

5.1.3.2 MiRNAs in association with cardio-metabolic traits
Using these GWAS summary statistics data, I identified 180 SNPs annotated to 67 miRNAs 
in association with at least one cardio-metabolic trait (chapter 4.1). When testing the 
DNA methylation of annotated CpGs and the expression of these miRNAs, I identified five 
miRNAs (including miR-10b-5p, miR-148a-3p, miR-100-5p, miR-125b-5p, and miR-6886), 
which had at least one annotated CpG and of which the expression was associated with 
the same group of cardio-metabolic traits in blood. Some of the identified miRNAs were 
previously identified in association with a cardio-metabolic related trait.

5.1.3.3 Disease-related DNA variation in precursor miR-196a-2
CVD and osteoporosis are both complex age-related disorders and share some common 
pathogenic mechanisms [50]. In this line, I identified the same mutation (rs11614913:C > 
T) in the precursor (pre-) miR-196a-2 positively associated with waist to hip ratio (WHR) 
(chapter 4.1) and negatively associated with femoral neck-BMD and lumbar spine-BMD 
(chapter 4.2). This would indicate that minor Allele T carriers have a lower BMD and 
a higher WHR. Overweight and obesity are protective for aging-related bone loss and 
a low BMI is associated with an increased risk for future fracture [51]. However, recent 
evidence suggests that an increase in abdominal obesity is associated with an increase 
in hip fracture [52, 53]. Our results possibly suggest that the identified SNP (rs11614913) 
might be involved in this WHR-related increased risk for osteoporosis. It is important 
to note that the associations of rs11614913 with WHR and BMD are obtained in cross-
sectional data analysis. Therefore, it is impossible to determine any causality from these 
results. Future studies are needed to investigate if rs11614913 affects both WHR and 
BMD independently or if its association with BMD is a possible downstream effect of the 
increased WHR.

Rs11614913 is located in the stem region of pre-miR-196a-2 and is shown to affect the 
miRNA processing and subsequently alter the expression of mature miR-196a-2 [54, 55]. 
Also, rs11614913 has been reported to affect the binding of the mature miR-196a-2 to its 
target mRNA [55, 56]. One of these experimentally validated target genes is Heme Oxy-
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genase 1 (HMOX1). I identified a positive association between the expression of HMOX1 
and HDL and a negative association with triglycerides in our discovery dataset (chapter 
3.1). This same gene was previously identified with mesenchymal stem cell differen-
tiation into osteoblasts, osteoclastogenesis, and bone resorption [57-59]. Studies have 
shown a positive association between BMD and triglycerides levels and a negative as-
sociation with HDL levels [60, 61]. In addition, a large systematic review shows a positive 
association between total cholesterol and risk of bone fracture and that individuals with 
a decreased level of HDL (<40 mg/dL) have a lower risk of bone fracture compared with 
those with a normal level [62]. Future studies are needed to investigate miR-196a-2 as 
a potential regulator linking alterations in BMD and lipid profile. It would be important 
to further validate HMOX1 as target gene of miR-196a-2 in both blood tissue and bone 
tissue and its regulatory effect in both BMD and lipid levels.

In summary, these results might indicate that the identified pre-miR-196a-2 plays an 
important role in the underlying mechanisms linking CVD and osteoporosis. Also, our re-
sults provide further evidence of the interaction between multi-omics layers in disease 
pathology, showing the importance of expanding the current approaches in disease 
studies of the sole use of one omics-layer. Finally, our results show that the publicly 
available GWAS data could be used as an important starting point for miRNA selection 
and should be further explored in future studies, possibly identifying more important 
miRNAs involved in different diseases.

5.2 mEtHodoLogIcAL consIdERAtIons

5.2.1 study population
The studies in this thesis were embedded in large population-based cohorts. The spe-
cific study design of cohort studies provides the availability to a wide range of exposure 
variables and disease outcomes over a long follow-up period. This makes it possible 
to investigate risk factors for disease in both a cross-sectional and longitudinal man-
ner. Also, with the inclusion of younger participants, the long-follow up period makes 
it possible to investigate causal factors in age-related diseases. However, this design is 
also subjected to selection bias in which the correlation between exposure and outcome 
varies between the participants included in the study and those that were eligible for 
the study [63]. For example, loss-to-follow-up bias can occur due to the long follow-up 
period and non-response bias when non-participants vary from participants in an es-
sential manner. In this case, more healthy individuals will often participate in this type 
of studies compared to individuals with a harmful lifestyle [63-65].

In this thesis, I investigated alterations in DNA methylation levels and gene expres-
sion, including protein-coding genes and miRNAs, in cross-sectional associations. 
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This approach restricts us from defining any causal relationships between the studied 
variables. Moreover, the dynamic epigenome is influenced by both external and internal 
effects. Although the large efforts made to correct for confounding effects, as in any 
observational study, it is impossible to rule out residual confounding. The cumulative 
environmental exposure influence epigenetic markers, which possibly affect gene ex-
pression, and can contribute to the onset of complex diseases. The prospective design 
of cohort studies, as included in this thesis, provides large-scale environmental expo-
sure data, which would make it possible to identify risk factors before the occurrence of 
the event of interest. Unfortunately, most cohort studies have limited DNA methylation 
and gene expression data and most often without follow-up measurements. Repeated 
measurements at different time points of DNA methylation and gene expression levels 
may provide further evidence if DNA methylation affect gene expression or vice versa. 
Similarly, repeated measurements of DNA methylation and gene expression levels could 
possibly provide insights into their involvement in the lifestyle-related health risk.

5.2.2 Epigenetics and gene expression tissue of choice
Genetic data is coherent across tissues, though, both epigenetic and transcriptomic 
data are tissue-specific [66-68]. As blood is more feasible to collect from study partici-
pants, it is the most often collected tissue. It is, therefore, used for DNA methylation and 
gene expression profiling in large cohort studies. Whole blood contains a mixture of red 
blood cells, white blood cells, and platelets. Of these, only the white blood cells, the 
leukocytes, have a nucleus and therefore DNA. A whole blood sample varies in leukocyte 
proportions, which have a different function and thus a different epigenetic pattern 
depending on the sample donor. While testing epigenetic associations, it is, therefore, 
important to correct for these cell-type proportions; otherwise, it might be possible that 
the observed associations actually reflect cell-type differences instead of the epigenetic 
alterations [69].

I used genetic, epigenetic, and transcriptomic data obtained from blood in the stud-
ies in this thesis. When I investigated the association between disease and epigenetic 
alterations, I adjusted the models for cell count measurement or houseman predicted 
cell composition [70]. In chapter 2.1, I validated the previously used methods by Liu 
et al. [2] that included, among others, the correction for cell count. In chapter 2.2, I 
developed an easy-to-access prediction model for smoking status in blood. As smoking 
is also associated with changes in cell count [71-73], I included a sensitivity analysis to 
test the impact of cell count in smoking inference. I obtained a slight increase in predic-
tion AUC from 0.906 to 0.907. This suggests that for smoking inference, cell count might 
not be as important as for association analysis. In chapter 4.1, I used DNA methylation 
and miRNA expression in blood to investigate possible miRNAs associated with cardio-
metabolic traits. The detection of these markers in blood could subsequently lead to 
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miRNAs as biomarkers for early disease diagnosis. In both the biomarker potential and 
the miRNA target prediction, blood might be the most promising tissue as it is a non-
invasive method making the collection of a test sample feasible. Nevertheless, while 
investigating possible disease-related pathways, the associations obtained in blood 
samples should be further examined in relevant cells or disease-related tissues to vali-
date the true mechanisms involved.

5.2.3 data measurements and analysis in prediction modeling and 
association studies
More participants with more data and more measurements seem to be the future to an-
swer most health-related research questions. However, the sole use of large datasets will 
not automatically provide robust associations that will be applicable in every popula-
tion. In this line, the use of markers that have been identified in one large study but with-
out independent replication does not automatically result in robust prediction markers 
(chapter 2.1). Therefore, it is important that associations and prediction models are 
being replicated and validated using independent data. Several large studies have been 
conducted identifying CpGs with a large range of outcomes. Unfortunately, studies often 
only provide the results that reached Bonferroni corrected significance in the replication 
phase. This limits the possibility using the summary statistics in downstream analysis, 
meta-analysis, and for studies to look up their hits for independent replication. Another 
limitation in replication and validation is the between-study variability. Different co-
horts have different methods for variable definitions, calculation, and measurements. 
For example, the use of population-specific food frequency questionnaires (FFQ), array 
data normalization, and measured vs. predicted white blood cell count.

5.2.4 Lifestyle factor information collection and implementation
5.2.4.1 Lifestyle factor assessment
Lifestyle factors are known to be associated with health outcomes and are, therefore, 
often studied as main exposure or to control for confounding effects. Due to the com-
prehensive data collection in large studies, lifestyle information is most often collected 
using self-reported questionnaires as they are cheap and fast. Unfortunately, they are 
also prone to underestimation of the true exposure when it comes to negative lifestyle 
factors, causing information bias [63, 74, 75]. Self-reporting bias is a crucial problem 
in the assessment of most observational research study designs. Bias can arise due to 
several reasons, including the recall period, selective recall, sampling approach, and 
social desirability [75]. Specifically, participants might not remember the true exposure 
(recall bias) or perhaps deliberately underestimate due to its socially stigmatized nature 
(social desirability). Therefore, misclassification and/or underestimation of the true 
exposure might influence the effect estimate [75].
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5.2.4.2 Smoking assessment and implementation
Smoking is the best-studied lifestyle factor as it is a major modifiable risk factor for 
several diseases [76]. As there is no standardized smoking categorization, different 
definitions for smoking exposure are used. For instance, smokers vs. never-smokers is 
often used as exposure variable, as this results in the largest effect estimate. Moreover, 
sometimes ever smokers (current and former smokers) are tested against never smokers 
or current smokers vs. non-smokers (former and never smokers). In addition, long-term 
heavy smoking has a stronger effect on health and epigenetic markers compared to 
social smoking; nonetheless, both participants will be categorized as smokers, which 
results in a wide variation of smoking effect [4]. Using pack-years for current smokers 
could be a solution; however, the formula used to calculate pack-years also suffers from 
limitations, as it does not consider the variability in the number of cigarettes smoked per 
day over the years and the difference in the tobacco content per cigarette.

5.2.4.3 Alcohol consumption assessment and implementation
Alcohol consumption information is most often acquired using food frequency ques-
tionnaires (FFQ), in which participants provide the average consumption of alcohol 
beverages per time-period. Most studies use alcohol as a continuous variable as alcohol 
consumption in grams/day, or alcohol consumption categories derived from this con-
tinuous variable. A standardized method can be used to obtain the alcohol consumption 
in grams/day variable from the FFQ data, in which it is assumed that every drink con-
tains the same amount of alcohol when the appropriate glass is used. A more elaborate 
translation of the FFQ information is via the use of a food composition table. The use of 
different calculation methods for the continuous variable leads to a variation between 
studies. In addition, this could lead to misclassification during categorization and could 
affect the external validity, the generalizability of the obtained results.

5.2.4.5 Underestimation of lifestyle factors
A main issue of data collection using self-reported questionnaires and interviews is the 
underreporting of undesired behaviors and the overreporting of desired behaviors. For 
instance, a smoker is more likely to report the use of ten cigarettes per day, while it is 
in reality 20 cigarettes, compared to reporting to be a non-smoker. This will likely not 
affect the epigenetic inference of smoking status categorized as current, former, and 
never smokers. However, this might affect pack-year calculations and subsequently 
in-accurate inference. Alcohol consumption is often used as a continuous variable; 
therefore, quantitative underestimation will greatly impact the inner-variable variance. 
In addition, underestimation of the alcohol consumption might lead to misclassification 
of the true alcohol consumption category.
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It is important to note that, in addition to smoking habits and alcohol consumption, 
most lifestyle factors are associated with disease risk [29]. Unfortunate, information 
regarding these lifestyle factors is also often obtained using questionnaires. It would be 
important to investigate the possible underestimation of these factors and subsequently 
develop alternative data collection methods.

5.3 PotEntIAL ImPLIcAtIons And FutuRE dIREctIons

5.3.1 Early life follow-up for disease biomarker discovery
Non-communicable diseases (NCDs) are the leading cause of death worldwide, contrib-
uting to 73.4% (95% CI 72.5–74.1) of the total deaths in 2017 [77]. Although extensive 
research has been done on NCDs, incidence rates keep rising worldwide [77]. A large 
number of population-based cohort studies have been initiated to investigate the un-
derlying mechanisms of these diseases. Most studies are focused on the middle-aged 
and elderly population, but more recently also the number of birth cohorts increase. 
New markers are needed to be able to detect participants at risk for diseases, preferably 
during the pre-disease stage or even at the healthy stage. At that point, patients with 
a high-risk profile might still be able to make lifestyle changes to avoid disease onset, 
with that enhance their quality of life, and reduce their economic burden and its social 
impact. The possibility of following participants from the pre-natal stage throughout 
life will provide unique opportunities to detect early markers leading to disease in later 
life. Also, the inclusion of new cohorts with younger participants at baseline in existing 
population-based studies will open the possibility to follow participants during the 
healthy stage, the pre-disease stage until disease onset, and thereafter.

5.3.2 underlying molecular mechanism involved in non-communicable 
diseases
It is well known that most NCDs have an underlying genetic compound. Large efforts 
have been done so far in thousands of individuals providing several disease-related 
genetic mutations. However, the total variance explained in most complex diseases is 
still limited, and there is a substantial missing heritability of complex diseases yet to 
be discovered. In addition, several mutations identified by GWAS are silent mutations 
or non-functional, e.g. they have no impact on the protein sequence, providing evi-
dence that other functional variants (LD proxies) or mechanisms play a role in disease 
pathology. In both published work and as presented in this thesis, evidence shows the 
importance of epigenetics as a molecular mechanism underlying disease pathology.

Unlike genetics, epigenetic modifications are dynamic and can change over time 
due to environmental exposure or disease state. Although most cohort studies already 
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include epigenetic data of participants, this data is most often only present in a small 
sample size, at a single time point, or with a limited follow-up time. Extending this data 
by including epigenetic and transcriptomic data from the same participants over a long 
follow-up time could make it possible to identify alterations useful as disease biomark-
ers. For example, it would be possible to identify epigenetic markers that already show 
alterations while patients do not yet suffer any disease-related symptoms. This informa-
tion could, after thorough validation, in the future be used in clinical practice together 
with standard health biomarkers to provide disease risk assessments to patients. The 
combination of genetic and epigenetic profiling in personalized medicine might be the 
future in clinical practice to provide patients disease-risk assessments and possibly 
provide a more personalized warning for future events.

5.3.3 Epigenetics in clinical practice
The increasing evidence showing the important influence of epigenetics in disease 
pathology also raises the hypothesis that these markers could be used to treat the 
disease. Although the large number of CpGs and miRNAs identified in association with 
NCDs, there are also several limitations for translating these associations to therapeutic 
targets that should be overcome. As mentioned above, most studies have been con-
ducted in a single time point with limited validation and without causality testing. It 
is important to note that the sole use of a cross-sectional epigenetic association with 
a disease cannot rule out reverse causation. Application of causal inference methods 
(Mendelian randomization) could also help confirm the direction and causality of identi-
fied DNA methylation sites and miRNAs in the development of diseases. In addition, 
most miRNA investigations are done in small sample size, troubling the translation to 
population-based data. Future studies should invest in large-scale collaborations, as is 
done for GWAS, to increase study power. For this, it would be important to reduce the 
between-study variability. It would be beneficial to expand the current knowledge re-
garding using different normalization and statistical methods in each cohort. Most large 
cohorts already use the standardized Illumina HumanMethylation450K or its successor, 
the Human MethylationEPIC BeadChip, for DNA methylation quantification. However, 
several normalization methods are available. Similarly, there are several methods avail-
able to quantify circulating miRNAs and their normalization [78]. More research is 
needed to study the impact of different normalization methods on the replication of the 
results. Another important issue is that a CpG can be broadly methylated and a miRNA 
expressed, which might have several adverse effects in different tissues. Therefore, 
total inhibition of a certain marker will have severe effects on other mechanisms than 
solely on the intended target. More research is needed into a tissue-specific delivery 
system and the identification of markers that are only active in the intended target 
tissue. Moreover, close collaborations between dry and wet-lab teams would make it 
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possible to instantly investigate the identified epigenetic markers in cell lines providing 
confirmative findings.

5.3.4 Lifestyle-induces alterations in epigenetic mechanisms
There is only limited knowledge at which rate epigenetic markers are affected by 
lifestyle factors, nor is it clear how the adaptation to a healthier lifestyle impacts these 
patterns. In this context, longitudinal research is needed to investigate the impact of 
lifestyle changes on epigenetic markers and how this subsequently reflects the impact 
on disease susceptibility, e.g. is the damage already done or can we alter our epigenetic 
health. Long-term follow-up data would provide a better insight into these mechanisms 
and subsequently into the epigenetic mechanisms linking lifestyle to disease risk.

5.3.5 dnA methylation-based lifestyle inference in forensic 
investigations
In large cohort studies, DNA methylation measurements are often available from, a 
subset of, the participants. However, in clinical settings or forensic cases, DNA methyla-
tion measurement using arrays is not cost-effective. Also, the obtained DNA in forensic 
cases is often of low quantity and/or degraded, lowering the possibility of accurate DNA 
methylation quantification using arrays. I have provided a robust DNA methylation-
based prediction model for smoking habits using only 13 CpGs, which would be a good 
starting point for a laboratory tool for lifestyle inference. A specific laboratory tool that 
only quantifies these 13 CpGs improves cost-efficiency and increases the possibility of 
accurate quantification in crime scene samples. Currently, forensic applications omit 
age, bio-geographic ancestry, and appearance, including eye, hair, and skin color [79, 
80]. Lifestyle information could help to give a more complete picture of the unknown do-
nor of a crime scene sample that may allow tracing the suspect and thus allow forensic 
DNA profiling to find out if he/she is the sample donor [81]. In addition, lifestyle factor 
inference for forensic application could benefit from transportability to different tissues, 
as a blood sample is not always available in this setting. Consequently, future studies 
are needed to investigate the possible translation of DNA methylation array data to a 
technology that can handle low quality and/or quantity DNA and for model translation 
to different tissues.
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EngLIsH summARY

Lifestyle factors are associated with an increased risk of CVD, leading to almost 18 mil-
lion deaths worldwide each year. Epigenetics is proposed as a possible mechanism in 
which these lifestyle factors could lead to disease and their risk factors. In this thesis, 
I used prediction methods to investigate the possibility of DNA methylation-based 
inference of lifestyle factors, such as cigarette smoking and alcohol drinking, and ap-
plied multi-omics approaches to investigate DNA methylation markers and microRNAs 
in association with health outcomes such as cardio-metabolic traits and bone mineral 
density.

In chapter 2.1, I validated the statistical methods used to obtain previously published 
alcohol prediction models by Liu et al., which did not implement any internal or exter-
nal validation methods. I found that when implementing a ten-fold cross-validation 
scheme as internal validation, the models including fewer CpGs obtained higher AUCs 
compared to the full CpG models, suggesting overfitting of the published models. The 
application of these models to independent datasets yielded much lower AUCs than 
previously published and with high variance between the four validation datasets with 
an overall lower AUC in the TwinsUK datasets. These results indicate the overestimation 
of the published AUCs and, with that, the need for a new prediction model for alcohol 
consumption before epigenetic inference of alcohol consumption can be considered for 
practical applications.

In chapter 2.2, I investigated the possibility of DNA methylation-based inference 
of a person’s smoking status. I identified 13 CpGs that can distinguish smokers from 
non-smokers with comparable accuracy as cotinine, a generally accepted smoking 
biomarker. The same 13 CpGs were able to infer cessation time in former smokers and 
pack-years in current smokers. Finally, I showed that these markers could infer lifetime 
smoking information. These models obtained high AUCs in both the model building data 
set and in two independent cohorts, showing the possibility for DNA methylation-based 
lifestyle inference.

In chapter 3.1, I implemented a multi-omics approach to investigate the association 
for smoking-related changes in DNA methylation and gene expression with cardio-met-
abolic traits. I identified several significant cis- and trans-eQTM associations. Of these, 
I found 26 smoking-related CpGs and 21 smoking-related probes (19 genes) associated 
with a cardio-metabolic trait. I also identified three-way associations in which a CpG is 
associated with a gene and both are associated with the same trait. Specifically, I found 
for triglycerides a three-way association with two CpGs and two genes and for BMI 
with six CpGs and two genes. Finally, I implemented mediation analysis to investigate 
these three-way associations further and found a mediating effect for four CpGs in the 
association between smoking and changes in LRRN3 expression. These results suggest 
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an important role for alterations in the epigenome and transcriptome in the association 
between smoking and cardio-metabolic traits.

In chapter 4.1, I implemented a multi-omics approach to investigate miRNAs that are 
associated with cardio-metabolic traits. I used summary statistics from previous large-
scale GWASs and identified 180 SNPs annotated to 67 miRNAs associated with at least 
one cardio-metabolic trait. Then, I identified 278 CpGs annotated to 64 miRNAs, and the 
expression of 22 miRNAs associated with a cardio-metabolic trait. In total, I identified 
an overlap for five miRNAs, including miR-10b-5p, miR-148a-3p, miR-100-5p, miR-125b-
5p, and miR-6886, with at least one annotated CpG, and of which the expression were 
both associated with the same cardio-metabolic trait. Our results provide five potential 
biomarkers that could be of great interest in future studies.

In chapter 4.2, I used summary statistics from large-scale GWASs on BMD and iden-
tified rs11614913 located in miR-196a-2 to be associated with femoral neck-BMD and 
lumbar spine-BMD. In addition, I showed a sex-specific association for rs11614913 with 
BMD in women. Finally, I showed an association for JAG1 expression, a potential target 
gene of miR-196a-2, with BMD variation in the hipbone. These results suggest that miR-
196a-2 changes are associated BMD, possibly via altered JAG1 expression.
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Samenvatting

6

nEdERLAndsE sAmEnVAttIng

Leefstijlfactoren zijn geassocieerd met een verhoogd risico op hart- en vaatziekten, wat 
jaarlijks wereldwijd leidt tot bijna 18 miljoen sterfgevallen. Epigenetica wordt gesug-
gereerd als een mogelijk mechanisme waardoor deze leefstijlfactoren kunnen leiden 
tot ziektes en hun risicofactoren. In dit proefschrift heb ik gebruik gemaakt van pre-
dictiemodellen om te onderzoeken of het mogelijk is om op basis van DNA-methylatie 
iemands leefstijlfactoren, zoals roken en alcoholconsumptie, vast te stellen. Daarnaast 
heb ik door middel van multi-omics methodes DNA-methylatie markers en microRNAs 
onderzocht in associatie met cardio-metabole risicofactoren en botdichtheid.

In Hoofdstuk 2.1 heb ik de statistische methoden gevalideerd die door Liu et al. 
werden gebruikt in eerder gepubliceerde alcoholpredictiemodellen waarin geen in-
terne en externe validatiemethoden waren geïmplementeerd. Ik ontdekte dat bij het 
implementeren van een tienvoudige kruisvalidatie als interne validatie de modellen met 
minder CpGs hogere AUCs behaalden in vergelijking met de modellen waarin alle CpGs 
zijn inbegrepen. Dit wijst op over-fitting van de gepubliceerde modellen. Het toepassen 
van deze modellen op onafhankelijke datasets leverde veel lagere AUCs op dan eerder 
gepubliceerd en met een hoge variatie tussen de vier validatiedatasets met een algeheel 
lagere AUC in de TwinsUK-datasets. Deze resultaten bevestigen de overschatting van 
de gepubliceerde AUCs en daarmee de noodzaak voor de ontwikkeling van een nieuw 
predictiemodel voor alcohol inname voordat op DNA-methylatie gebaseerde inferentie 
van alcoholconsumptie kan worden overwogen voor toepassingen in de praktijk.

In Hoofdstuk 2.2 onderzocht ik de mogelijkheid van op DNA-methylatie gebaseerde 
inferentie van iemands rookstatus. Ik identificeerde 13 CpGs die rokers van niet-rokers 
kunnen onderscheiden met een vergelijkbare nauwkeurigheid als cotinine, een alge-
meen geaccepteerde biomarker voor roken. Dezelfde 13 CpGs waren in staat om de tijd 
sinds stoppen te bepalen in voormalige rokers en pakjaren in rokers. Ten slotte toonde ik 
aan dat deze markers informatie over levenslang rookgedrag kunnen vaststellen. Deze 
modellen behaalden hoge AUCs in zowel de trainingsdataset als in twee onafhankelijke 
cohorten wat de mogelijkheid aantoont voor op DNA-methylatie gebaseerde leefstijlin-
ferentie.

In Hoofdstuk 3.1 heb ik een multi-omics methode geïmplementeerd om aan roken 
gerelateerde veranderingen in DNA-methylatie en genexpressie te onderzoeken in as-
sociatie met cardio-metabolische risicofactoren. Ik heb verschillende significante cis- en 
trans-eQTM associaties geïdentificeerd, waarvan 26 aan roken gerelateerde CpGs en 21 
aan roken gerelateerde probes (19 genen) geassocieerd zijn met een cardio-metabole 
risicofactor. Daarnaast heb ik drieweg-associaties geïdentificeerd waarin een CpG is 
geassocieerd met een gen en beide zijn geassocieerd met dezelfde risicofactor. Ik vond 
voor triglyceriden een drieweg-associatie met twee CpGs en twee genen en voor BMI met 
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zes CpGs en twee genen. Ten slotte heb ik mediatie-analyses geïmplementeerd om deze 
drieweg-associaties verder te onderzoeken en een mediërend effect gevonden voor vier 
CpGs in de associatie tussen roken en veranderingen in LRRN3 expressie. Mijn resultaten 
suggereren een belangrijke rol voor veranderingen in het epigenoom en transcriptoom 
in de associatie tussen roken en cardio-metabole risicofactoren.

In Hoofdstuk 4.1 heb ik een multi-omics methode geïmplementeerd om miRNAs te 
onderzoeken in associatie met cardio-metabole risicofactoren. Hiervoor gebruikte ik 
samenvattende statistieken van eerder gepubliceerde grootschalige GWASs en identifi-
ceerden 180 SNPs geannoteerd aan 67 miRNAs in associatie met ten minste één cardio-
metabole risicofactor. Vervolgens identificeerde ik 278 CpGs geannoteerd aan 64 miRNAs 
en de expressie van 22 miRNAs in associatie met een cardio-metabole risicofactor. In 
totaal heb ik een overlap geïdentificeerd voor vijf miRNAs, waaronder miR-10b-5p, miR-
148a-3p, miR-100-5p, miR-125b-5p en miR-6886, met ten minste één geannoteerde CpG 
en waarvan de expressie was geassocieerd met dezelfde cardio-metabole risicofactor. 
Mijn resultaten presenteren vijf potentiële biomarkers die van groot belang kunnen zijn 
in toekomstige studies.

In Hoofdstuk 4.2 gebruikte ik samenvattende statistieken van grootschalige GWASs 
over botdichtheid en identificeerden rs11614913 in miR-196a-2 in associatie met femur-
hals- botdichtheid en lumbale wervelkolom- botdichtheid. Daarnaast toonden ik een 
geslacht specifieke associatie aan voor rs11614913 met botdichtheid in vrouwen. Ten 
slotte toonden ik een associatie aan voor JAG1-expressie, een potentieel doelwit gen 
van miR-196a-2e, met variatie in botdichtheid in het heupbeen. Mijn resultaten sugge-
reren dat veranderingen in miR-196a-2 geassocieerd zijn met botdichtheid, mogelijk via 
wijzigingen in JAG1-expressie.
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Epigenetic regulation and inference of Lifestyle Factors and Health
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they are easily extrapolated towards the general public. (This thesis)    
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reasonable accuracy. (This thesis)  

3.	 Smoking-induced	epigenetic	and	gene	expression	alterations	affect	cardio-meta-
bolic health. (This thesis) 

4. Investigating multi-omics layers concurrently in relation to health and disease 
outcomes will provide better insights into underlying molecular pathways. (This 
thesis)

5. Publicly available summary statistics from genome-wide association studies pro-
vide	a	valuable	 resource	 for	 the	 identification	of	microRNAs	 involved	 in	complex	
traits. (This thesis)

6. The impact of positive lifestyle changes towards a healthier life should have a more 
prominent role in the medical practice. 
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precision medicine.  
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