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Cross-Cohort Automatic Knee MRI
Segmentation With Multi-Planar U-Nets

Mathias Perslev, MSc,1* Akshay Pai, PhD,1,2 Jos Runhaar, PhD,3

Christian Igel, PhD,1 and Erik B. Dam, PhD1,2

Background: Segmentation of medical image volumes is a time-consuming manual task. Automatic tools are often tailored
toward specific patient cohorts, and it is unclear how they behave in other clinical settings.
Purpose: To evaluate the performance of the open-source Multi-Planar U-Net (MPUnet), the validated Knee Imaging
Quantification (KIQ) framework, and a state-of-the-art two-dimensional (2D) U-Net architecture on three clinical cohorts
without extensive adaptation of the algorithms.
Study Type: Retrospective cohort study.
Subjects: A total of 253 subjects (146 females, 107 males, ages 57 � 12 years) from three knee osteoarthritis (OA) studies
(Center for Clinical and Basic Research [CCBR], Osteoarthritis Initiative [OAI], and Prevention of OA in Overweight Females
[PROOF]) with varying demographics and OA severity (64/37/24/53/2 scans of Kellgren and Lawrence [KL] grades 0–4).
Field Strength/Sequence: 0.18 T, 1.0 T/1.5 T, and 3 T sagittal three-dimensional fast-spin echo T1w and dual-echo
steady-state sequences.
Assessment: All models were fit without tuning to knee magnetic resonance imaging (MRI) scans with manual segmenta-
tions from three clinical cohorts. All models were evaluated across KL grades.
Statistical Tests: Segmentation performance differences as measured by Dice coefficients were tested with paired, two-
sided Wilcoxon signed-rank statistics with significance threshold α = 0.05.
Results: The MPUnet performed superior or equal to KIQ and 2D U-Net on all compartments across three cohorts. Mean Dice
overlap was significantly higher for MPUnet compared to KIQ and U-Net on CCBR (0:83�0:04 vs. 0:81�0:06 and
0:82�0:05), significantly higher than KIQ and U-Net OAI (0:86�0:03 vs. 0:84�0:04 and 0:85�0:03Þ, and not significantly
different from KIQ while significantly higher than 2D U-Net on PROOF (0:78�0:07 vs. 0:77�0:07, P¼ 0:10, and
0:73�0:07Þ. The MPUnet performed significantly better on N¼ 22 KL grade 3 CCBR scans with 0:78�0:06 vs. 0:75�0:08
for KIQ and 0:76�0:06 for 2D U-Net.
Data Conclusion: The MPUnet matched or exceeded the performance of state-of-the-art knee MRI segmentation models
across cohorts of variable sequences and patient demographics. The MPUnet required no manual tuning making it both
accurate and easy-to-use.
Level of Evidence: 3
Technical Efficacy: Stage 2
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Recent advances in machine learning have pushed auto-
matic segmentation tools close to human performance

for medical image analysis.1,2 This includes the automatic
quantification of cartilage compartments from magnetic res-
onance imaging (MRI) scans, which facilitates robust, large-
scale quantitative studies of osteoarthritis (OA).3 Until
recently, most validated automatic segmentation software,
such as the Knee Imaging Quantification (KIQ) framework,

were specialized and relied at least partially on task-specific
knowledge.4 Gan et al review a range of successful classical
approaches based on, for example, random forests, deform-
able models, graph-based algorithms, and atlas registra-
tion.3,5–8 With advances in deep learning it is now possible
to create automatic segmentation models given sufficient
training examples alone.9 Numerous deep learning based
approaches have been suggested in recent years alone.
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The majority consider models from the family of fully con-
volutional networks (FCNs) in the popular encoder-decoder
architecture, typically inspired by the U-Net.10–13 The
FCN-centered methods for knee MRI segmentation vary in
complexity, ranging from using a single-stage U-Net to
combining several U-nets (eg, both two-dimensional [2D]
and three-dimensional [3D]) and shape model refinement
steps (eg, a 2D U-Net followed by shape model refinement
used to identify regions of interest which are then seg-
mented by a 3D U-Net followed by another shape model
refinement step).11,13–16 Different strategies have been
employed to render deep learning on 3D data efficient and
to cope with limited training data. To increase the effi-
ciency of 3D FCNs, it has been suggested to operate on
overlapping patches or on down-sampled scans.17 Another
strategy is to employ a 2D FCN to segment each scan slice
independently.11–14 The 2D approach has been extended in
different ways including considering multiple planes or 3D
surface model optimization schemes.14–16,18–20

Despite a vast number of existing deep learning based
methods for OA segmentation (often shown to perform accu-
rately compared to human annotators), no method has seen
widespread clinical adaptation. While such adaptation is com-
plex due to practical, ethical, and legal factors, central research
problems related to the models themselves also remain. For
instance, it is largely unclear how different models and
methods compare even on a single cohort. Which type of
model should be perused for clinical validation for a given task?
Second, it is even less clear if one model designed to work well
on a single dataset can also be expected to work well in other
clinical scenarios, for example, on data from new patient
cohorts, scanner sequences, or scanner manufactures.

The 2019 OA MRI segmentation challenge made one
attempt toward addressing the former problem.21 A range of
deep-learning-based methods were compared and evaluated
for knee MRI segmentation on a single cohort. Multiple
methods were found to perform at clinically applicable levels.
Surprisingly, the challenge demonstrated that even the simple
2D U-Net baseline model was highly competitive.22 This
result indicates that many deep learning based approaches are
viable when tuned to a specific dataset, and that the method
need not be very complex.

As for the second problem, however, it is unclear how the
2D U-Net and other challenge methods (often using more
complex setups with, eg, cascaded models or multiple post-
processing steps) would perform when trained on new clinical
cohorts (eg, a smaller set of annotated scans or knees with dif-
ferent levels of OA severity) without re-tuning of the hyper-
parameters, or when trained across multiple cohorts at once.
The robustness of a model under such cross-cohort scenarios is
crucial when adapting it for clinical practice, as tuning a neural
network model for new data typically requires both compute
resources and access to technical experts.

The purpose of this study was to investigate the cross-
cohort performance and robustness of state-of-the-art (classi-
cal as well as deep learning based) automatic knee segmenta-
tion methods. Its primary focus was on the recently proposed
Multi-Planar U-Net (MPUnet) model. The MPUnet extends
the popular 2D U-Net with a unique data-resampling tech-
nique, and has been found able to output accurate segmenta-
tions across clinical cohorts (and different segmentation tasks)
without hyperparameter-tuning.23,24 It scored a top-position
in the 2019 OA MRI segmentation challenge and a top-5
position in the 2018 Medical Segmentation Decathlon.21,24

The MPUnet is hyperparameter search free in the sense that
the default settings have proven to give good results on vari-
able medical image segmentation tasks, so no machine learn-
ing expertise is required to train the MPUnet on new data.
These findings indicated that the MPUnet could serve as an
accurate, yet easy-to-use tool for robust cross-cohort knee
MRI segmentation also in clinics with limited access to tech-
nical experts.

To test this hypothesis, this study investigated the per-
formance and robustness of the MPUnet as compared to
other state-of-the-art models for OA segmentation when
applied across cohorts without manual adaptation of model-
or optimization hyperparameters. A total of four OA segmen-
tation models were considered:

1. The default MPUnet.23 The MPUnet relies on a single
2D U-Net (fully convolutional neural network) model fit
to 2D image slices sampled isotropically along V = 6
viewing planes through the image volume. The amount of
training data increases V times, but the different views of a
volume are not independent of each other. In this way the
extension of the training data resembles data augmenta-
tion.25 Random elastic deformations are applied to a sub-
set of the sampled images to further augment the training
dataset, see Fig. S1 in the Supplemental Material.26 Dur-
ing optimization, images from all planes are fed to the (a
priori plane-agnostic) model without additional informa-
tion about the corresponding image plane, see Figure 1.
This training setup forces the model to learn to segment
the medical target of interest as seen from multiple views.

FIGURE 1: (a) Visualization of a set V of sampled view axis unit
vectors. (b) Illustration of images sampled along one view. (c)
Illustration of multiple images sampled along multiple unique
views. Adapted from Perslev et al.23
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When segmenting a new scan, the model first predicts
along each plane in the isotropic scanner space creating a
set of V full segmentation volumes for each input scan.
The V segmentation suggestions are combined into one
final output using a learned fusion model. The single neu-
ral network model thus plays the role of V experts in an
ensemble-like method. The approach is illustrated in Fig-
ure 2. The output of the MPUnet is considered the final
segmentation with no postprocessing steps applied. The
MPUnet and its optimization is described in further detail
in the Supplemental Material. Additional technical details
are given by Perslev et al.23

2. The MPUnet using only a single view (the sagittal view).
This corresponds to training a simple 2D U-Net but using
the augmentation strategy (ie, random elastic deforma-
tions) and training pipeline of the MPUnet. This
ablatation study tests the effectiveness of including addi-
tional views.

3. The validated KIQ automatic segmentation method.4,8

The KIQ method was developed and extensively validated
over many years and is partly based on task-specific
knowledge on cartilage segmentation. The framework first
aligns the considered scan to a reference knee MRI model
using rigid multi-atlas registration. Gaussian derivative fea-
tures are then computed within regions of interest for each
segmentation compartment individually. The computed
features support voxel-wise classifications using compart-
ment specific classifiers, and largest connected component
analysis is used to select final segmentation volumes for
each compartment.

4. A 2D U-Net as implemented by Panfilov et al which rep-
resents state-of-the-art performance on the Osteoarthritis
Initiative (OAI) dataset,13 see Materials and Methods sec-
tion. The optimization hyperparameters, including loss
function, learning rate, weight decay, batch size, number
of epochs, and so on, have been tuned for the OAI
dataset, and this comparison thus allows to study how the
popular 2D U-Net transfers to other datasets without re-
tuning of its hyperparameters. The Panfilov 2D U-Net

performs slice-wise segmentation in the sagittal view with-
out postprocessing of the obtained masks. Random aug-
mentations, such as gamma corrections, scaling and
bilateral filtering, are applied during training.

This study aimed to investigate how each of these models
perform when applied with default hyperparameters across
three distinct OA cohorts to measure their robustness to scan-
ner- and patient demographic variations. Average model per-
formance across all scans in a cohort and as a function of
Kellgren and Lawrence (KL) grades were compared.27 Finally,
the ability of the MPUnet to learn segmentations across mul-
tiple cohorts at once was investigated.

Materials and Methods
Cohorts
The performance of all segmentation models were evaluated on three
distinct cohorts of MR knee scans:

1. OAI cohort subset consisting of 88 baseline scans and 88 follow-
up scans with approximately 1-year interval. Scans were acquired
using a Siemens 3 T Trio (Erlangen, Germany) scanner and a
sagittal 3D dual-echo steady-state (DESS) with water excitation
sequence. The cohort consists of 45 males and 43 females of ages
61�10 years and body mass indexes (BMIs) 31:1�4:6. All
enrolled participants either had or were at increased risk of devel-
oping OA. OA severity was assessed for 44 baseline scans with 0/
2/10/30/2 scans of KL grades 0–4.

2. Center for Clinical and Basic Research (CCBR) consisting of 140
scans from 140 subjects.28 Scans were acquired using a 0.18 T
Esaote C-Span scanner (Genova, Italy) and a Turbo 3D T1w
sequence. The cohort consists of 78 females and 62 males of ages
55�15 and BMIs 25:8�4:0. Enrolled participants had both
healthy knees and varying degrees of OA with 50/24/13/22/0
scans of KL grades 0–4.

3. Prevention of OA in Overweight Females (PROOF) consisting
of 25 knees imaged with 1.5 T Simens Symphony (Erlangen,
Germany), 1.5 T Siemens Magnetom Essenza (Erlangen, Ger-
many), and 1.0 T Phillips Intera (Eindhoven, Netherlands) scan-
ners using a 3D sagittal DESS sequence with water excitation.29

Women aged 50–60 years with BMI ≥ 27 and free of knee OA

FIGURE 2: Model overview. In the inference phase, the input volume (left) is sampled on 2D isotropic grids along multiple view axes.
The model predicts a full volume along each axis and maps the predictions into the original image space. A fusion model combines
the proposed segmentation volumes into a single final segmentation. Adapted from Perslev et al.23

3

Perslev et al.: Knee MRI Segmentation With MPUnets



(according to clinical American College of Rheumatology criteria)
were included in the original study. The sub-cohort considered
here consists of 25 females of ages 56�3 and BMIs 32:2�4:1
and 12/11/1/1/0 scans of KL grades 0–4.

Cohort statistics are summarized in Table 1. MRI sequence details
are given in Table 2. All MRIs of right knees were mirrored to
resemble left knees. Informed consent was given by all participants
for inclusion into any of the original study cohorts. All data

TABLE 1. Overview of Study Populations

No. of
Scans

No. of
Subjects

No. of
Compartments

Age (years),
mean � SD

BMI,
mean � SD

Sex
(M/F) (%)

OAI 176 88 6/8a 61 � 10 31.1 � 4.6 51/49

CCBR 140 140 2 55 � 15 25.8 � 4.0 44/56

PROOF 25 25 6 56 � 3 32.2 � 4.1 0/100

Statistics were computed over 88, 140, and 25 subjects for the OAI, CCBR, and PROOF cohorts, respectively.
OAI = Osteoarthritis Initiative; CCBR = Center for Clinical and Basic Research; PROOF = Prevention of OA in Overweight
Females.
aThe Tibia bone was only annotated in the 88 baseline scans. In the baseline scans, the Medial & Lateral Femoral Cartilages were anno-
tated separately, whereas in the 88 follow-up scans the Femoral Cartilage was annotated as a single compartment.

TABLE 2. Overview of Cohort MRI Sequences

Cohort OAI CCBR PROOF

Scanner Siemens Trio Esaote C-Span Siemens Symphony
Siemens Magnetom Essenza
Phillips Intera

Vendor location Erlangen, Germany Genoa, Italy Erlangen, Germany
Erlangen, Germany
Eindhoven, Netherlands

Scan 3D DESS Turbo 3D T1w 3D DESS

Field strength (T) 3.0 0.18 1.5
1.5
1.0

Acquisition time (min) 10 10 5–10

Plane Sagittal Sagittal Sagittal

Fat suppression Water Excitation None Water excitation

Field of view (mm) 140 180 160

Number of slices 160 110 50–62

Voxel size (mm3) 0.700 � 0.365 � 0.365 0.781a � 0.703 � 0.703 1.500 � 0.420 � 0.420
1.500 � 0.500/0.625 � 0.500/0.625
1.500 � 0.310 � 0.310

Flip angle (�) 25 40 25

Bit depth 12 8 12

Echo/Repetition time
(msec/msec)

4.7/16.3 16/50 6.0/19.5
8.0/21.4
11.3/22.3b

aVariable slice thicknesses in 0.703–0.938 mm, typically 0.781 mm.
bMinor variations in echo/repetition times in 11.1–11.4 msec/22.2–22.6 msec.
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considered in this study were handled and processed in accordance
with the relevant data sharing agreements for each study.

Radiological Assessment and Segmentation

OAI. The tibial medial and tibial lateral cartilages (TMC and TLC),
femoral medial and femoral lateral cartilages (FMC and FLC), medial
and lateral menisci (MM and LM), and patellar cartilage (PC) were man-
ually segmented in all 176 scans by iMorphics (Manchester, UK). The
tibia bone (TB) was further annotated in the 88 baseline scans. In the
baseline scans FMC and FLC were annotated separately, whereas in the
88 follow-up scans the femoral cartilage was annotated as a single com-
partment. KL grades were assessed for all scans by trained radiologists
from the David Felson Lab, School of Medicine, Boston University.

CCBR. TMC and FMC were manually segmented in all scans by
trained radiologist Paola C Pettersen (PCP) (Denmark). KL grades
were assessed by PCP for 109 out of the total 140 scans.

PROOF. TMC, TLC, FMC, FLC, PC, and TB were segmented in
all scans by clinical epidemiologist and trained physiotherapist
Dieuwke Schiphof (DS) of Erasmus Medical Center, Rotterdam
University. KL grades were assessed by DS for all scans.

Segmentation results on TB are reported in Results section
but not further discussed, because the compartment is easily seg-
mented by all considered methods.

Segmentation Models
Four segmentation models were evaluated on each of the three MRI
cohorts: 1) A default MPUnet model using V ¼ 6 planar views (see
the Supplemental Material for details)23; 2) A V ¼ 1 MPUnet using
only the sagittal view to test the effect of using multiple views; 3)
the KIQ automatic segmentation framework4,8; and 4) a 2D U-Net
as implemented by Panfilov et al13 marking the state-of-the-art in
deep learning for knee MRI segmentation. The MPUnet and KIQ
framework were applied with default settings across all cohorts. The
2D U-Net was applied with optimization hyperparameters as in Pan-
filov et al13 using the codebase (https://github.com/MIPT-Oulu/
RobustCartilageSegmentation) provided by the authors with the fol-
lowing exceptions: 1) the input image sizes were modified from the
default 300� 300 on the OAI dataset to 256� 256 on CCBR (to
match the size of those scans) and 336� 336 on PROOF (bilinear
resampling was used to down-sample PROOF images from their
original variable sizes of 320� 320, 384� 384, or 512� 512
depending on scan; the resampled pixel size was set to
0.47� 0.47mm). The size of the images input to the 2D U-Net
matched those of the MPUnet on corresponding datasets. 2) A com-
mon batch-size of 32 was used across the datasets (down from 64)
to allow the larger 336� 336 PROOF images to fit in our GPU
memory. 3) The learning rate was reduced to 0.0005 (down from
0.001 on OAI) and the number of training epochs increased to 150
(up from 50 on OAI) when training on the PROOF dataset due to
severe overfitting observed using the default parameters on this small
dataset. 4) Random horizontal flips were disabled in the augmenta-
tion pipeline (leaving random gamma corrections, scaling and bilat-
eral filtering) as all MRI images considered here were mirrored to
resemble right knees as described earlier.

Experiments and Statistical Analysis
All models were trained and evaluated on each of the three study
cohorts individually. The MPUnet was further evaluated in a cross-
cohort setup. The trained models were applied to a subset of the
data held out during training to test their generalization properties.

Single Cohort Setup
On CCBR and OAI, all models were trained and evaluated on a
fixed dataset split. On PROOF, all models were trained and evalu-
ated in a leave-one-out (LOO) cross-validation (25-fold CV) setup
(training 25 model instances each evaluated on a single, held-out
testing scan). We considered fixed training/testing splits and cross-
validation strategies for each dataset as Dam et al.4 The CCBR
dataset was split into 30 training and 110 evaluation images and the
OAI dataset was split into 44 training and 44 evaluation images.
The MPUnet was further evaluated using larger training datasets
facilitated by either a cross-validation setup with more folds (for
CCBR and OAI) or through training on additionally images taken
from a different dataset (for PROOF). Specifically, we included 88
images taken from the OAI dataset and added them to the training
dataset of PROOF to investigate if the publicly available OAI dataset
could reduce the need for new manual segmentations when applying
the MPUnet on a new cohort.

Cross-Cohort Setup
A single instance of the MPUnet model was trained on MRIs from
the OAI, CCBR and PROOF datasets simultaneously. For OAI and
CCBR, we used the same fixed dataset splits defined above in the
single-cohort setup. We also included all 25 PROOF images into
the training set to expose the model to as many and variable images
as possible. The model was evaluated on the test-set images of
CCBR and OAI. We did not evaluate on PROOF images as no
fixed dataset split is available for this small dataset. The cross-cohort
model segments only the tibial- and femoral medial cartilages, as
those are the only two annotated compartments of the CCBR
cohort.

Evaluation
Model performances were compared using the Dice-Sørensen coeffi-
cient (Dice),30,31 which ranges from 0 to 1 with values close to 1
indicating a perfect segmentation overlap between the predicted and
ground truth masks. Dice coefficients were computed for each com-
partment and for each patient scan separately and reported as sum-
mary statistics across patients. Specifically, for each segmentation
class the mean, standard deviation, and minimum observed Dice
coefficients across subjects were considered. Similar statistics were
computed for all scans sub-divided by KL grade classification scores
to investigate the effect of OA on model performances.

Statistical Tests
Statistical tests were conducted to assess for differences in the
observed median performance scores on each individual compart-
ment of each dataset (CCBR, OAI, and PROOF) between:

1. The MPUnet and KIQ/2D U-Net for models trained in the sin-
gle-cohort setup with limited data (ie, when the MPUnet and
KIQ/2D U-Net were trained and evaluated on identical datasets).
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2. The MPUnet trained in the single-cohort setup with limited and
with additional training data.

3. The MPUnet trained in the single-cohort setup with limited data
and the MPUnet trained under the cross-cohort setup.

All reported P-values were computed from paired, two-sided
Wilcoxon signed-rank statistics unless explicitly stated otherwise.
The Wilcoxon test is a nonparametric test and suitable for compar-
ing Dice scores, which are not normally distributed. Performance
differences were considered statistically significant at P-value thresh-
old α¼ 0:05. In all cross-validation experiments, each scan in a
dataset appears in the test-set of a single fold, and the entire dataset
is predicted once and used for computation of evaluation metrics
and subsequent statistical tests. In CV the individual hold-out
datasets are not statistically independent of each other, because the
hold-out data in one fold is in the training data of all other folds.
This has to be taken into account in when interpreting the statistical
results (eg, see the recent work by Bates et al32).

Results
Single-Cohort Experiments
Table 3 summarizes the segmentation performance of the
MPUnet, KIQ, and 2D U-Net methods on all three study
cohorts (see Tables 1 and 2). When trained on the same
number of samples, the MPUnet performed significantly bet-
ter in terms of the mean macro Dice scores (mean across
compartments and patients) on the OAI dataset compared to
KIQ (0:86�0:03 vs. 0:84�0:04, P < 0:05), the 2D U-Net
(0:86�0:03 vs. 0:85�0:03, P < 0:05), and the single-view
MPUnet (0:86�0:03 vs. 0:85�0:03, P < 0:05Þ. The
MPunet performed significantly better on the CCBR dataset
compared to KIQ (0:83�0:04 vs. 0:81�0:06, P < 0:05),
the 2D U-Net (0:83�0:04 vs. 0:82�0:05, P < 0:05), and
the single-view MPunet (0:83�0:04 vs. 0:81�0:06,
P < 0:05). The MPUnet performed significantly better on the
PROOF dataset compared to the 2D U-Net (0:78�0:07 vs.
0:73�0:07, P < 0:05) and the single-view MPunet
(0:78�0:07 vs. 0:75�0:08, P < 0:05) and indifferent from
KIQ (0:78�0:07 vs. 0:77�0:07, P ¼ 0:10).

Table 3 also details the performance of all methods on
each individual compartment across the three datasets and
shows the minimal Dice scores observed for the compartment
across all subjects in the cohort. Across a total of 14 segmen-
tation compartments (tibia bone excluded as it is easily seg-
mented by all methods), the MPUnet performed significantly
better than the KIQ model on 11 compartments (TMC,
TLC, FMC, FLC, PC, MM, and LM on OAI; TMC and
FMC on CCBR; FLC and PC on PROOF; P < 0:05 for all)
and with no significant difference on the remaining 3 (TMC,
P ¼ 0:97, TLC, P ¼ 0:17, and FMC, P ¼ 0:09, all on
PROOF). The MPUnet performed significantly better than
the Paniflov 2D U-Net on 10 compartments (FMC, PC,
MM, and LM on OAI; FMC on CCBR; TMC, TLC, FMC,
FLC, and PC on PROOF; P < 0:05 for all) and with no

significant difference on the remaining 4 (TMC, P ¼ 0:16,
TLC, P ¼ 0:06, FLC, P ¼ 0:09 on OAI; TMC, P ¼ 0:18 on
CCBR). The MPUnet performed significantly better than its
single-view counterpart on 12 compartments (TMC, FMC,
FLC, PC, MM, and LM on OAI; TMC and FMC on
CCBR; TMC, TLC, FMC, and FLC on PROOF; P < 0:05
for all) and with no significant difference on the remaining 2
(TLC, P ¼ 0:06 on OAI; PC, P ¼ 0:19 on PROOF). None
of the other models performed significantly better than the
MPUnet on any compartment.

Table 4 details the performance of each model on the
CCBR, OAI, and PROOF datasets grouped by KL grade
assessments of each scan. Figure 3 shows box-plot Dice score
distributions for each compartment of the CCBR dataset as
segmented by the MPUnet, KIQ, and 2D U-Net models
similarly grouped by KL grades. Box-plot figures for the OAI
and PROOF datasets are shown in Figs. S2 and S3 in the
Supplemental Material.

On the CCBR dataset, all models had decreasing aver-
age performance for increasing KL grades with mean Dice
scores across N ¼ 50 KL-0 grade scans and N ¼ 22 KL-3
grade scans dropping from 0:84�0:03 to 0:75�0:08 for
KIQ, from 0:84�0:03 to 0:76�0:06 for the 2D U-Net,
from 0:84�0:02 to 0:73�0:06 for the single-view MPUnet,
and from 0:85�0:03 to 0:78�0:06 for the V ¼ 6 MPUnet
(P < 0:05 for all, Mann–Whitney U test). The MPUnet had
significantly higher average performance on CCBR KL-3
grade scans compared to both KIQ, 2D U-Net and the single
view MPUnet (P < 0:05 for all).

On the OAI dataset, for all models there was a nonsig-
nificant difference between their performances on KL-2
(N ¼ 10) and KL-3 (N ¼ 30) grade scans (KIQ: 0:84�0:04
and 0:83�0:04, P ¼ 0:43; 2D U-Net: 0:85�0:04 and
0:85�0:03, P ¼ 0:37; MPUnet (V ¼ 1): 0:84�0:03 and
0:85�0:03, P ¼ 0:30; MPUnet (V ¼ 6): 0:86�0:03 and
0:86�0:04, P ¼ 0:43; Mann–Whitney U tests). The
MPUnet had significantly higher average performance com-
pared to all other models on the KL-3 group scans with
0:86�0:04 vs. 0:83�0:04 for KIQ, 0:85�0:04 for the 2D
U-Net and 0:85�0:03 for the single-view MPUnet
(P < 0:05 for all). On KL-2 scans the MPUnet performed sig-
nificantly better than the single-view MPUnet (0:86�0:04
vs. 0:84�0:03, P < 0:05) and indifferent from both KIQ
(0:86�0:04 vs. 0:84�0:04, P ¼ 0:23) and 2D U-Net
(0:86�0:04 vs. 0:85�0:04, P ¼ 0:16). No statistics were
computed for KL-1 or KL-4 scans as the sample sizes of N ¼
2 were too small.

On the PROOF dataset, the MPUnet performed indif-
ferent from KIQ on both N ¼ 12 KL-0 scans (0:77�0:07
vs. 0:76�0:06, P ¼ 0:08) and N ¼ 11 KL-1 scans
(0:78�0:07 vs. 0:77�0:09, P ¼ 0:41) and significantly bet-
ter than the 2D U-Net (0:77�0:07 vs. 0:74�0:06,
P < 0:05) and single-view MPunet (0:77�0:07 vs.
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0:74�0:08, P < 0:05) on KL-0 scans and significantly better
than 2D U-Net (0:78�0:07 vs. 0:72�0:08, P < 0:05) and
indifferent from the single-view MPUnet (0:78�0:07 vs.
0:76�0:08, P ¼ 0:07) on KL-1 scans. No statistics were
computed for the N ¼ 1 KL-2 or N ¼ 1 KL-3 scans as the
sample sizes were too small.

Figure 4 displays a surface model fit to the manual and
MPUnet predicted segmentation masks on a single subject of
the OAI cohort. The output was generated by the MPUnet
trained in the fixed-split setup (model trained with less data)
and having the mean Dice on this image closest to the mean
performance over the OAI cohort. Thus, the figure shows the
typical performance of the model. An animation showing a
rotation of the predicted segmentation compartments is also
available in the Supplemental Material (Video S1).

Single-Cohort Experiments: Training with
Additional Data
Table 3 also summarizes the performance of the MPUnet
model when trained on larger versions of the CCBR, OAI
and PROOF datasets. On CCBR, the average Dice scores
improved slightly from 0:84�0:04 to 0:85�0:04 on TMC
and from 0:82�0:05 to 0:83�0:04 on FMC with the
inclusion of additional training data, while the worst-case per-
formance decreased on TMC and increased on FMC. On the
OAI dataset, the 5-CV models obtained slightly lower Dice
scores than the single-split model on average (0:86�0:03 vs.
0:85�0:03). However, for both CCBR and OAI, direct sta-
tistical comparisons were not made, because the evaluation
datasets differ.

On the PROOF dataset, the addition of 88 OAI scans
(significantly different in both resolution, noise level and con-
trast compared to the scans of PROOF) to the training set
significantly improved average Dice scores on FLC (from
0:80�0:07 to 0:83�0:04, P < 0:05) and PC (from 0:79�
0:07 to 0:81�0:04, P < 0:05), nonsignificantly increased
average Dice scores on TLC (from 0:72�0:13 to
0:73�0:13, P ¼ 0:44) and FMC (from 0:78�0:08 to
0:79�0:09, P ¼ 0:09) and nonsignificantly decreased perfor-
mance on TMC (from 0:79�0:06 to 0:78�0:08,
P ¼ 0:58). The mean macro Dice scores were significantly
improved from 0:78�0:07 to 0:79�0:06 (P < 0:05Þ.

Cross-Cohort Experiment
Table 5 summarizes the performance sores of an MPUnet
model trained on images from all the OAI, CCBR and
PROOF datasets simultaneously and evaluated on test-set
images from OAI and CCBR. The cross-cohort model mat-
ched the performance of its specialized counterpart on the
CCBR dataset (mean macro Dice scores of 0:83�0:04 and
0:83�0:04, respectively, P ¼ 0:71) while the cross-cohort
MPUnet model showed significantly decreased, but still high,
performance compared to its specialized counterpart on theTA
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OAI dataset (0:84�0:04 and 0:86�0:03, respec-
tively, P < 0:05).

Discussion
In this study, three models for automatic MRI knee segmen-
tation were evaluated across three clinical cohorts. Each
model was applied as-is without prior tuning of its hyper-
parameters to simulate a clinical scenario in which the model
is to be applied in a new setting (eg, in a new clinic, for a

new scanner or for a new segmentation task), but where man-
ual tuning of the model’s hyperparameters is not feasible (eg,
due to lack of technical experts, computational resources or
time). The MPUnet was hypothesized to perform well under
these restrictions, because it was designed for participation in
the 2018 Medical Segmentation Decathlon.24 Participating
models were tasked to solve highly variable medical segmenta-
tion tasks without (manual) task-specific modifications. The
MPUnet ranked 5th without expensive hyperparameter tun-
ing24 (see in the Supplemental Material for details). In addi-
tion, the MPUnet later scored a top position in the 2019 OA
MRI segmentation challenge using the same set of
hyperparameters.21

Here, the MPUnet was compared to the validated KIQ
method as well as a state-of-the-art 2D U-Net implementa-
tion for knee MRI segmentation by Panfilov et al13 on the
OAI, CCBR and PROOF datasets. The considered cohorts
varied in both patient demographics, size and scanner
sequences, see Tables 1 and 2. All three models were able to
reach high performance on both the CCBR and OAI
datasets. However, the MPUnet reached a significantly higher
mean macro Dice score on the OAI and CCBR datasets com-
pared to both KIQ and the 2D U-Net. None of the compari-
son models reached significantly higher Dice scores on any
individual compartment across the datasets. The performance

FIGURE 3: Box-plots showing the distribution of Dice scores for the MPUnet, KIQ, and the 2D U-Net on the CCBR dataset grouped
according to the KL-grade score of the individual MRIs. (a) Dice scores on the Femoral Medial Cartilage. (b) Dice scores on the Tibial
Medial Cartilage. (c) Macro Dice scores.

FIGURE 4: Surface models visually comparing the expert
annotated segmentation (b) to the annotations of MPUnet (c) on
an average performing sample of the OAI dataset. (a) Shows a
reference coronal slice from the MRI volume with KL grade = 3.
See also the Supplemental Material for a rotating animation of
the predicted segmentation compartments.
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scores of the MPUnet were only slightly below the best of
models submitted to the 2019 OA MRI segmentation chal-
lenge (a set of models which included the MPUnet itself) on
the same dataset. There, models achieved mean Dice scores
in the range of 0.86–0.88 but on fewer segmentation com-
partments than considered in this study (ie, the 2019 OA
MRI segmentation challenge task was simpler).21 In the chal-
lenge, only four compartments were segmented while eight
were segmented here. The MPUnet even performed slightly
better than the 2D U-Net model, which was tuned specifi-
cally for the OAI dataset, and has reported the highest (to
our knowledge) mean Dice scores so far with 0:90�0:02 on
femoral cartilage, 0:90�0:03 on tibial cartilage, 0:87�0:05
on patellar cartilage and 0:86�0:03 on menisci.13 It is
important to note that the re-trained version of the 2D U-
Net model applied to the OAI dataset in this work scores sig-
nificantly lower on average. Again, this is due to the different
number of segmentation compartments considered (four and
eight, respectively). For instance, the models trained here
must separate the femoral cartilage into both a medial and

lateral sub-compartment which is a harder task with uncer-
tainty even in the ground-truth labelling.

Interestingly, the KIQ and the MPUnet performed
equally good on the small and variable (N ¼ 25) PROOF
dataset without requiring modifications (for reference, the
menisci have previously been automatically segmented with a
mean Dice of 0.75 on the same dataset, but a direct compari-
son is not possible as the menisci were not segmented here33).
The 2D U-Net model, however, experienced significant over-
fitting when trained using its default parameters. Overfitting
was decreased by lowering the learning rate and increasing
the number of training epochs, but still the obtained 2D U-
Net model performed significantly worse than both KIQ and
the MPUnet. This result illustrates the premise of this paper,
namely that adapting automatic segmentation models in prac-
tice is challenging. While the 2D U-Net model of Panfilov
et al. is one of the best models fit so far on the OAI dataset
for the segmentation of the four considered compartments,
that result alone does not provide a guarantee that the model
will work well on other, for example, smaller, datasets or even
the same dataset with a different number of segmentation
compartments. With systematic hyperparameter tuning, the
2D U-Net model could likely be brought to a high perfor-
mance also on the PROOF dataset, but such a process may
not be feasible in many clinical settings. The KIQ model,
although slightly inferior on average to the 2D U-Net on the
CCBR and OAI datasets, does not suffer from this limitation
when transferred to the small PROOF dataset. This is likely
because the framework builds on expert knowledge of knee
segmentation, which acts as a strong prior when learning a
new dataset. Therefore, the KIQ framework requires less data
compared to the 2D U-Net, which must learn from scratch
how to segment the 25 new MRIs. Interestingly, the
MPUnet, which is also a deep-learning model based on the
2D U-Net and accordingly must also learn from scratch on
the small PROOF dataset, did surprisingly well and even out-
performs the KIQ framework as measured by the average
Dice scores. The MPUnet’s robustness and ability to learn
from small datasets may result from its unique multi-planar
data augmentation strategy. This is supported by the observa-
tion that the single-view MPUnet model performs signifi-
cantly worse than the normal (6 viewed) MPUnet model on
all datasets, and often below both KIQ and the 2D U-Net.

The average performance of automatic knee MRI seg-
mentation models are likely to drop for knees of increasing
KL grades as increased OA severity may cause the target com-
partments to vary abnormally in both shape and volume.
Consequently, the robustness and clinical relevance of any
automatic model is reflected above all in its performance on
high KL-grade scans. This study systematically investigated
the performance of all models as a function of KL grades 0 to
3. The considered cohorts contained too few scans of KL
grade 4 for statistical analysis. On both the OAI and CCBR

TABLE 5. Cross-Cohort Experiment: Segmentation
Performance Across Subjects in the Test-Splits of OAI
and CCBR of a Single MPUnet Model Instance Trained
on MRIs From All of the CCBR, OAI, and PROOF
Cohorts

Method MP

Training images 30 CCBR + 44 OAI + 25 PROOF

Evaluation images 110 CCBR 44 OAI

Tibial medial
cartilage

0.84 � 0.05 0.83 � 0.06

0.59 0.59

P = 0.49 P < 0.05

Femoral medial
cartilage

0.82 � 0.05 0.85 � 0.05

0.68 0.66

P = 0.07 P < 0.05

Macro Dice 0.83 � 0.04 0.84 � 0.04

0.66 0.72

P = 0.71 P < 0.05

Accuracy is given as the Dice volume overlap showing mean
� SD and minimum values. P-values compare the per-compart-
ment mean Dice scores of the cross-cohort model to the
MPUnet trained and evaluated on the individual cohorts.
Individual scores where the cross-cohort model scores better
than the respective specialized MPUnet model are marked
in bold.
OAI = Osteoarthritis Initiative; CCBR = Center for Clinical
and Basic Research; PROOF = Prevention of OA in Over-
weight Females.
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cohorts, the MPUnet had a significantly higher average per-
formance on knees with moderate OA (KL-3) as compared to
all other models. None of the other models performed signifi-
cantly better than the MPUnet on any individual KL-grade
group across the datasets.

On the CCBR dataset, all considered models dropped
in performance as a function of KL grade. On the OAI and
PROOF datasets, however, the picture is less clear. For
instance, the MPUnet performed similar on KL-2 (N ¼ 10)
and KL-3 (N ¼ 30) OAI scans, but with only N ¼ 2 KL-1
and N ¼ 2 KL-4 grade scans available it could not be con-
cluded if there is an overall decreasing trend or not. Similarly,
a decreasing trend could not be concluded on the PROOF
data due to the limited number of available scans of KL
grades 2 and 3.

As the performance of deep learning models generally
improves with increasing amounts of training data, the poten-
tial for further improvement of the MPUnet performance was
tested by training separate instances of the model on larger
training datasets. As expected, increasing the size of the
PROOF training dataset (by using more folds in CV)
increased performance as measured by most metrics on all
compartments. On the OAI dataset, the performance instead
dropped slightly. In both cases, however, a direct comparison
is difficult because the evaluation sets differ (evaluation on a
fixed test-set vs. CV). Interestingly, including 88 MRIs from
the OAI dataset into the PROOF training set significantly
improved the macro Dice performance of the MPUnet. The
cross-cohort experiment further showed that a single instance
of the MPUnet can learn to segment knee MRIs from two
different scanner sequences and patient cohorts with high per-
formance on both. These results suggest that a great potential
exists to obtain robust and clinically applicable models by
training on larger, merged knee MRI datasets even if they dif-
fer with regards to, for example, scanner sequences, clinical
site, and cohort demographics. This strategy of mixing even
highly variable training datasets has recently led to the devel-
opment of robust & clinically applicable models in the field
of automated sleep analysis.34 Given the demonstrated high
performance of the MPUnet across clinical cohorts, MRI
sequences and KL grades, such a model, if trained on enough
and variable data, is perhaps achievable also for knee MRI
segmentation and could ultimately serve as a ready-to-use,
robust model for general knee MRI segmentation.

The pre-trained MPUnet models are made available.
These models may be used directly or serve as initializations
for training new models. This transfer learning can help build-
ing well generalizing models for new data even if the new
dataset is very small.

Limitations
This study considered mean Dice scores as a direct proxy for
general knee MRI segmentation performance. Further studies

should be made to address if the presented observations hold
also for other clinically relevant metrics such as surface dis-
tances, volumes, and so on. Ultimately, future studies should
address if the segmentation masks obtained by deep learning
allow for accurate assessments of pathologies such as OA asso-
ciated cartilages. In addition, this study did not include data
from all major producers of MRI scanners (eg, GE
Healthcare). Finally, it is a limitation of the study that data
selection was done retrospectively.

Conclusion
This study found that the MPUnet improves on the state-of-
the-art in knee MRI segmentations across cohorts without
the need for manual adaptations. It was found accurate even
on high KL-grade scans and could learn across multiple
cohorts at once. This robustness of the MPUnet makes it
practical and applicable also for research groups with limited
specialist knowledge of deep learning, because the framework
may be easily adapted to new data or even applied directly
using one of the pre-trained models that were made available.
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