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Multicollinearity and a Ridge Parameter 
Estimation Approach 

Ghadban Khalaf 
King Khalid University 

Abha, Saudi Arabia 
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One of the main goals of the multiple linear regression model, Y = Xβ + u, is to assess the 
importance of independent variables in determining their predictive ability. However, in 
practical applications, inference about the coefficients of regression can be difficult 
because the independent variables are correlated and multicollinearity causes instability 
in the coefficients. A new estimator of ridge regression parameter is proposed and 
evaluated by simulation techniques in terms of mean squares error (MSE). Results of the 

simulation study indicate that the suggested estimator dominates ordinary least squares 
(OLS) estimator and other ridge estimators with respect to MSE. 
 
Keywords: OLS, ridge regression, multicollinearity, simulation; MSC 62J07, 62J05 

 

Introduction 

Consider the general linear regression model 

 

 01Y X u     (1) 

 

where Y is an (n × 1) vector of observations on the dependent variable, β0 is a 

scalar intercept, 1 is an (n × 1) vector with all components equal to unity, X is an 

(n × p) matrix of regression variables of full rank p, β is the unknown parameter 

vector of regression coefficients, and u ~ N(0, σ2I) is an (n × 1) vector of 

unobservable errors. Because the interest is in estimating β, omit the constant term 

β0 in order to keep the notation simple. 

The OLS estimator for the regression parameters is given by 

 

  
1ˆ X X X Y


   (2) 
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If any X's are highly correlated (or, multicollinear), the matrix becomes non-

orthogonal, the inversion unstable and the inverse or estimated fractions highly 

sensitive to random error, and therefore, the OLS solution in (2) has inflated 

values of the coefficients of regression. Such a regression can be used for 

prediction, but is worthless in the analysis and interpretation of the individual 

predictors role in the model. In practice, multicollinearity almost always exists but 

is typically overlooked or ignored. The following overview stages the later 

proposed approaches. 

Multicollinearity 

Multicollinearity is a high degree of correlation among several independent 

variables. It commonly occurs when a large number of independent variables are 

incorporated in a regression model. Only existence of multicollinearity is not a 

violation of the OLS assumptions. However, a perfect multicollinearity violates 

the assumption that the X matrix is full ranked, making OLS, given by (2), 

impossible, because when the model, defined by (1), is not full ranked, then the 

inverse of X cannot be defined, there can be an infinite number of least squares 

solutions. Symptoms of multicollinearity may be observed in the following 

situations: 

 

1. Small changes in the data produce wide swings in the parameters 

estimates. 

2. Coefficients may have very high standard errors and low 

significance levels even though they are jointly significant and the R2 

for the regression is high. 

3. Coefficients may have the wrong sign or implausible magnitude, 

Green (2000). 

 

The consequences of multicollinearity are that the variance of the model (i.e. 

the error sum of squares) and the variances of coefficients are inflated. As a result, 

any inference is not reliable and the confidence interval becomes wide. Hence, 

even though the OLS estimator of β is the minimum variance unbiased estimator, 

its MSE will still be large if multicollinearity exists among the independent 

variables. 

To detect multicollinearity, in fact there is no clear-cut criterion for 

evaluating multicollinearity of linear regression models. We may compute 
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correlation coefficients of independent variables. But high correlation coefficients 

do not necessarily imply multicollinearity. We can make a judgment by checking 

related statistics, such as variance inflation factor (VIF) and condition number 

(CN), where 

Variance Inflation Factor 

The VIF is given by 

 

 
2

1
, 1,2, ,

1 i

VIF i p
R

 


 (3) 

 

and 2

iR  represents the squared multiple correlation coefficients when Xi (the ith 

column of X) is regressed on the remaining (p – 1) regressor variables. 

The VIF shows how multicollinearity has increased the instability of the 

coefficient estimates (Freund and Littell, 2000). In other words, it tells us how 

inflated the variance of the coefficient is, compared to what it would be if the 

variable were uncorrelated with any other variable in the model (Allison, 1999). 

However, there is no formal criterion for determining the bottom line of the VIF. 

Some argue that VIF greater than 10 roughly indicates significant 

multicollinearity. Others insist that magnitude of model's R2 be considered 

determining significance of multicollinearity. Klein (1962) suggested an 

alternative criterion that 2

iR  (the coefficient of determination for regression of the 

ith independent variable) exceeds R2 of the regression model. In this vein, if VIF is 

greater than 1/(1 − R2), then multicollinearity can be considered statistically 

significant. 

Condition Number 

To quantify the seriousness of multicollinearity, computation of the eigenvalues, 

λi, of the matrix X'X is recommended, because the degree of collinearity of any 

data set is indicated the CN, which is given by 

 

 1

p

CN



  (4) 

 

where λ1 is the largest eigenvalue of the matrix X'X and λp is the smallest 

eigenvalue of X'X. 
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A set of eigenvalues of relatively equal magnitudes indicates that there is 

little multicollinearity (Freund and Littell, 2000). A zero eigenvalue means perfect 

collinearity among independent variables and very small eigenvalues implies 

severe multicollinearity. In other words, an eigenvalue close to zero (less than 

0.01, say) or CN greater than 50 indicates significant multicollinearity. Belsley et 

al. (1980) insist 10 to 100 as a beginning, and maintains that collinearity affects 

estimates. 

There are several ways to solve the problem of multicollinearity. Some of 

them are 

 

1. Changing specification by omitting or adding independent variables. 

2. Obtaining more data (observations) if problems arise because of a 

shortage of information. 

3. Transforming independent variables by taking logarithmic or 

exponential. 

4. Trying biased estimated methods such as ridge regression estimation. 

The ridge regression estimator has a covariance matrix smaller than 

that of OLS (Judge, et al., 1985) 

Ridge Regression and a New Proposed Ridge Parameter  

Although the OLS estimator is BLUE, it is not necessarily closest to β, because 

linearity and unbiasedness are not irrelevant for closeness, particularly when the 

input matrix of the design is multicollinear. For orthogonal data, the OLS 

estimator for β in the linear regression model is strongly efficient (getting 

estimates with minimum MSE). But in the presence of multicollinearity, the OLS 

efficiency can be reduced and hence an improvement upon it would be necessary 

and desirable. Thus it is natural to look at biased estimator for an improvement 

over the OLS estimator because it is meaningful to focus on small MSE as the 

relevant criterion, if a major reduction in variance can be obtained as a result of 

allowing a little bias. This is precisely what the ridge regression estimator can 

accomplish. 

Ridge regression, due to Hoerl and Kennard (1970), amounts to adding a 

small positive quantity, say k, to each of the diagonal elements of the matrix X'X. 

The resulting estimator is 
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    
1ˆ k X X kI X Y


    (5) 

 

where k is a positive scalar. When k = 0, (5) reduces to the unbiased OLS 

estimator given by (2). 

Considering  ˆ k  with regards to MSE 

 

         
   

2 2
2 2

2 2
1 1

ˆ ˆ ˆ
p p

i i

i ii i

k
MSE k Var k Bias k

k k

 
   

  

   
 

    

 

It is known that, as k increases from zero, the MSE initially decreases to a 

minimum, and then increases with increasing k. Hence, there always exists a 

minimum. Thus it is quite helpful allowing a small bias in order to achieve the 

main criterion of keeping the MSE small. 

When using ridge estimates, the choice of k in (5) is important and several 

methods have been proposed for this purpose (see, e.g., Hoerl & Kennard, 1970; 

McDonald & Galarneau, 1975; Nomura, 1988; Hag & Kibria, 1996; Khalaf & 

Shukur, 2005; Muniz & Kibria, 2009; Khalaf, 2011; Khalaf, 2013; Khalaf & 

Iguernane, 2014). 

Hoerl and Kennard (1970) suggested that the best method for achieving an 

improved estimate (with respect to MSE) is by choosing 

 

 
2

2

max

ˆˆ
ˆ

k



  (6) 

 

where max̂  denote the maximum of βi and 
2  is the usual estimate of σ2, defined 

by 

 

 
   

2

ˆ ˆ

ˆ
1

Y X Y X

n p

 



 


 

  

 

and referred to henceforth as the HK estimator. They proved that there exists a 

k > 0 such that the sum of the MSEs of all  ˆ
i k  is smaller than the 

corresponding term of ˆ
i , the OLS estimator, i.e. 
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      2 1

1

ˆ ˆ ˆ
p

i

i

MSE k MSE   



     

 

Khalaf and Shukur (2005) suggested a new method of estimating k as a 

modification of equation (6), as follows 

 

 
 

2

max

2 2

max max

ˆˆ
ˆˆ

KSk
n p

 

  


 
 (7) 

 

where λmax is the largest eigenvalue of the matrix X'X. They concluded the ridge 

estimator using (7) performed very well and was substantially better than any 

estimators included in their study. 

In the light of above, which indicates the satisfactory performance of ˆ
KSk  

with the potential for improvement, modification of the ridge estimator using ˆ
KSk  

(the KS estimator) by taking its square root is suggested. This proposed estimator 

(the KSM estimator) is 

 

 ˆ ˆ
KSM KSk k  (8) 

 

To investigate the performance, relative to the OLS and other ridge 

estimators given by (6) and (7), of the new ridge estimator given by (8), we 

calculate the MSE using the following equation 

 

 

   
1

ˆ ˆ
R

i
iMSE

R

   



 




 (9) 

 

where ̂  is the estimator of β obtained from OLS or other ridge estimators, and R 

equals 5000 which corresponds to the number of replicates used in the simulation. 

Simulations  

Consider the true model Y = Xβ + u. Here u ~ N(0,σ2I) and the independent 

variables are generated from 
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  
1
221 , 1,2, , , 1,2, ,ij ij ipx z z i n j p       (10) 

 

where zij are generated using the standard normal distribution. Here, we consider 

four values of ρ corresponding to 0.7, 0.9, 0.95 and 0.99. The dependent variable 

is then determined by 

 

 0 1 1 , 1,2, ,i i p ip iy x x u i n         (11) 

 

where n is the number of observations, ui are i.i.d. pseudo-random numbers, and 

β0 is taken to be zero. Parameter values are chosen such that 2

1

1
p

j

j




 , which is a 

common restriction in simulation studies (McDonald and Galarneau, 1975; Muniz 

and Kibria, 2009). Sample sizes selected are n = 10, 25, 50, 85, 200 and 1000, 

with 4 or 7 independent variables. The variance of the error terms is taken as 

σ2 = 0.01, 0.1, and 0.5.  Ridge estimates are computed using the different ridge 

parameters given in (6) and (7). Because the proposed estimator (8) is a 

modification of (7), this estimator is included for purposes of comparison. The 

MSE of the ridge regression parameters is obtained using (9). This experiment is 

repeated 5000 times. 

Result  

All factors chosen to vary in the design of the experiment affect the estimated 

MSE. As expected, increasing the degree of correlation leads to a higher 

estimated MSE, especially when n is small and σ2 = 0.01. This increase is much 

greater for OLS than for ridge regression estimators. 
 
 
Table 1a. Estimated MSE when p = 4 and ρ = 0.7 

 

 
σ2=0.01 

 
σ2=0.1 

 
σ2=0.5 

n OLS HK KS KSM   OLS HK KS KSM   OLS HK KS KSM 

10 16114 5236 6140 31 

 

156.00 52.00 60.00 7.00 

 

6.320 3.030 3.220 1.850 

25 3799 1242 2153 27 

 

39.00 15.00 23.00 5.90 

 

1.560 1.170 1.240 0.990 

50 1722 597 1248 32 

 

17.00 7.00 12.00 5.00 

 

0.690 0.600 0.620 0.560 

85 988 344 806 36 

 

9.70 4.60 8.00 4.10 

 

0.390 0.360 0.370 0.340 

200 399 141 363 42 

 

4.00 2.40 3.60 2.60 

 

0.161 0.156 0.157 0.153 

1000 77 28 76 35   0.77 0.67 0.75 0.70   0.032 0.031 0.031 0.031 
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Table 1b. Estimated MSE when p = 4 and ρ = 0.9 

 

 

σ2=0.01 

 

σ2=0.1 

 

σ2=0.5 

n OLS HK KS KSM   OLS HK KS KSM   OLS HK KS KSM 

10 46391 14512 15254 41 

 

478.0 149.0 156.0 8.0 

 

18.000 6.700 7.000 2.500 

25 11854 3692 4695 29 

 

114.0 37.0 46.0 5.7 

 

4.700 2.500 2.700 1.600 

50 5179 1678 2607 27 

 

52.0 18.0 27.0 5.3 

 

2.120 1.480 1.560 1.170 

85 2967 969 1778 25 

 

29.0 11.0 18.0 4.9 

 

1.190 0.950 0.990 0.820 

200 1184 380 885 26 

 

12.0 5.1 9.2 4.0 

 

0.482 0.439 0.446 0.410 

1000 233 75 216 36   2.3 1.6 2.2 1.7   0.094 0.092 0.093 0.090 

 
 
Table 1c. Estimated MSE when p = 4 and ρ = 0.95 

 

 
σ2=0.01 

 
σ2=0.1 

 
σ2=0.5 

n OLS HK KS KSM   OLS HK KS KSM   OLS HK KS KSM 

10 99744 29610 30311 51 

 

957.00 282.00 289.00 9.00 

 

39.000 12.000 13.000 3.000 

25 24979 7538 8527 32 

 

240.00 74.00 84.00 6.00 

 

9.000 4.100 4.400 2.000 

50 10642 3290 4305 26 

 

108.00 36.00 46.00 5.40 

 

4.330 2.380 2.570 1.570 

85 6109 1945 2925 23 

 

60.00 20.00 29.00 5.00 

 

2.480 1.650 1.760 1.250 

200 2498 802 1543 22 

 

24.00 9.00 15.00 4.60 

 

1.010 0.830 0.858 0.724 

1000 494 163 426 31   4.82 2.60 4.21 2.64   0.192 0.185 0.186 0.179 

 
 
Table 1d. Estimated MSE when p = 4 and ρ = 0.99 
 

 
σ2=0.01 

 
σ2=0.1 

 
σ2=0.5 

n OLS HK KS KSM   OLS HK KS KSM   OLS HK KS KSM 

10 533881 156406 157056 84 

 

5352.0 1605.0 1612.0 12.0 

 

218.0 67.0 67.3 5.0 

25 130105 39322 40154 46 

 

1325.0 417.0 425.0 7.4 

 

54.0 16.0 17.0 3.0 

50 59142 18290 19221 32 

 

593.0 189.0 199.0 6.5 

 

23.0 8.0 8.4 2.5 

85 33685 10461 11481 25 

 

330.0 105.0 160.0 5.7 

 

13.0 5.1 5.4 2.1 

200 13727 4394 5464 17 

 

137.0 43.0 54.0 5.1 

 

5.4 2.7 3.0 1.6 

1000 2637 814 1575 16   26.0 9.0 16.0 4.4   1.0 0.8 0.9 0.7 

 
 
Table 2a. Estimated MSE when p = 7 and ρ = 0.7 

 

 
σ2=0.01 

 
σ2=0.1 

 
σ2=0.5 

n OLS HK KS KSM   OLS HK KS KSM   OLS HK KS KSM 

10 74818 24592 25042 110 

 

768.00 238.00 242.00 19.00 

 

29.00000 10.00000 11.00000 4.20000 

25 8804 3457 4423 46 

 

89.00 37.00 46.00 10.00 

 

3.54000 2.76000 2.81000 2.13000 

50 3618 1508 2367 48 

 

36.00 17.00 24.00 8.70 

 

1.44000 1.31000 1.32000 1.17000 

85 1998 848 1506 52 

 

19.00 10.00 15.00 7.40 

 

0.78300 0.74400 0.74800 0.69900 

200 795 337 691 63 

 

7.90 5.50 7.00 4.80 

 

0.31700 0.31100 0.31200 0.30300 

1000 152 67 148 60   1.52 1.39 1.48 1.35   0.06110 0.06094 0.06096 0.06060 
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Table 2b. Estimated MSE when p = 7 and ρ = 0.9 

 

 

σ2=0.01 

 

σ2=0.1 

 

σ2=0.5 

n OLS HK KS KSM   OLS HK KS KSM   OLS HK KS KSM 

10 235966.0 68291.0 68644.0 136.0 

 

2224.0 658.0 661.0 27.0 

 

91.0000 28.1000 28.2000 6.4000 

25 26871.0 10240.0 11090.0 49.0 

 

273.0 105.0 113.0 12.0 

 

10.0000 6.2000 6.3000 3.5000 

50 10990.0 4275.0 5224.0 39.0 

 

110.0 45.0 54.0 10.0 

 

4.3800 3.2900 3.3400 2.3900 

85 6112.0 2430.0 3321.0 38.1 

 

59.0 25.0 33.0 8.8 

 

2.4200 2.0500 2.0700 1.6700 

200 2430.0 966.0 1624.0 40.0 

 

23.0 11.0 16.0 7.0 

 

0.9790 0.9120 0.9170 0.8300 

1000 466.0 185.0 410.0 57.0   4.6 3.5 4.2 3.1   0.1878 0.1852 0.1854 0.1816 

 
 
Table 2c. Estimated MSE when p = 7 and ρ = 0.95 

 

 
σ2=0.01 

 
σ2=0.1 

 
σ2=0.5 

n OLS HK KS KSM   OLS HK KS KSM   OLS HK KS KSM 

10 516796 152429 152764 171 

 

4818.0 1430.0 1434.0 35.0 

 

192.000 62.400 62.600 9.300 

25 57214 21072 21887 55 

 

582.0 219.0 227.0 15.0 

 

23.000 10.000 11.000 4.500 

50 22961 8791 9736 41 

 

231.0 91.0 100.0 12.0 

 

9.200 5.600 5.800 3.300 

85 12508 4916 5857 35 

 

126.0 50.0 59.0 10.0 

 

5.000 3.600 3.700 2.500 

200 5037 1977 2795 34 

 

50.0 21.0 29.0 8.4 

 

2.010 1.730 1.740 1.430 

1000 985 396 771 49   9.8 6.1 8.0 4.7   0.389 0.377 0.378 0.361 

 
 
Table 2d. Estimated MSE when p = 7 and ρ = 0.99 
 

 
σ2=0.01 

 
σ2=0.1 

 
σ2=0.5 

n OLS HK KS KSM   OLS HK KS KSM   OLS HK KS KSM 

10 2501132 764126 764446 235 

 

25773 7976 7979 62 

 

1019.0 289.3 289.4 18.0 

25 314693 115277 116046 72 

 

3077 1107 1115 21 

 

126.0 48.4 48.7 8.7 

50 128529 48265 49173 48 

 

1259 475 484 17 

 

50.0 20.4 20.7 6.0 

85 67913 25511 26492 38 

 

691 262 272 15 

 

28.0 12.8 13.0 5.0 

200 27914 10645 11673 31 

 

271 102 112 11 

 

11.0 6.3 6.5 3.6 

1000 5479 2117 2922 32   53 22 29 8   2.1 1.7 1.8 1.4 

 

Conclusion 

Based on the result from the simulation study, some recommendations are 

warranted.  The KSM is usually among the estimators with the lowest estimated 

MSE, especially when ρ = 0.95 and p = 7. Also, regardless of the degree of 

correlations, KSM is the best among the considered ridge estimators, followed by 

HK, and then KS, specifically when the sample size is high, n = 1000, and 

σ2 = 0.5.  
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Several procedures for constructing ridge estimators have been proposed in 

the literature. These procedures aim at establishing a rule for selecting the 

constant k in equation (5). Nevertheless, to date there is no rule for choosing k that 

assures that the corresponding ridge estimator is better than OLS estimator. 

The proposed choice of k, the ridge regression parameter defined by (8), was 

shown through simulation to yield a lower MSE than ̂  for all β, as noted in 

Tables 1 and 2. The estimators HK and KS, which were evaluated in other 

simulation studies, also performed well. However, the superiority of the suggested 

estimator KSM over the estimators HK and KS was observed, especially at the 

large values of n and σ2. In general, the OLS estimator has larger estimated MSE 

values than all estimators considered, and the proposed estimator given by (8) 

performs very well and has the lowest MSE when compared with the other ridge 

estimators. This is to say that ridge estimators are more helpful when high 

multicollinearity exists, especially when σ2 is not too small.  
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