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Finite mixture distributions consist of a weighted sum of standard distributions and are a 
useful tool for reliability analysis of a heterogeneous population. They provide the 
necessary flexibility to model failure distributions of components with multiple failure 
models. The analysis of the mixture models under Bayesian framework has received 

sizable attention in the recent years. However, the Bayesian estimation of the mixture 
models under doubly censored samples has not yet been introduced in the literature. The 
main objective of this paper is to discuss the Bayes estimation of the inverse Weibull 
mixture distributions under doubly censoring. Different priors and loss functions were 
assumed for the posterior estimation. The performance of the different estimators has been 
compared in terms of posterior risks. 
 
Keywords: Inverse transformation method, mixture model, doubly censoring, loss 

functions, Bayes estimator 

 

Introduction 

In survival analysis, data are subject to censoring. The most common type of 

censoring is right censoring, in which the survival time is larger than the observed 

right censoring time. In some cases, however, data are subject to left as well as right 

censoring. When left censoring occurs, the only information available to an analyst 

is that the survival time is less than or equal to the observed left censoring time. A 

more complex censoring scheme is found when both initial and final times are 

interval-censored. This situation is referred as double censoring, and the data with 

both right and left censored observations are known as doubly censored data. 

http://dx.doi.org/10.22237/jmasm/1478002740
mailto:sindhuqau@gmail.com
mailto:navidferoz@gmail.com
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Analysis of doubly censored data for simple (single) distribution has been 

studied by many authors. Fernandez (2000) investigated maximum likelihood 

prediction based on type-II doubly censored exponential data. Fernandez (2006) 

has discussed Bayesian estimation based on trimmed samples from Pareto 

populations. Khan, Provost, and Singh (2010) studied predictive inference from a 

two-parameter Rayleigh life model given a doubly censored sample. Kim and Song 

(2010) have discussed Bayesian estimation of the parameters of the generalized 

exponential distribution from doubly censored samples. Khan, Albatineh, 

Alshahrani, Jenkins, and Ahmed (2011) studied sensitivity analysis of predictive 

modeling for responses from the three-parameter Weibull model with a follow-up 

doubly censored sample of cancer patients. Pak, Parham, and Saraj (2013) proposed 

the estimation of Rayleigh scale parameter under doubly type-II censoring from 

imprecise data. 

A mixture distribution is signified as a convex fusion of other probability 

distributions. It can be used to model a statistical population with subpopulations, 

where the constituents of mixture probability densities are the densities of the 

subpopulations. Mixture distribution may appropriately be used for certain data sets 

where the subsets of the whole data set possess different properties that can best be 

modeled separately. They can be more mathematically manageable, because the 

individual mixture components are dealt with more ease than the overall mixture 

density. The families of mixture distributions have a wider range of applications in 

different fields such as fisheries, agriculture, botany, economics, medicine, 

psychology, electrophoresis, finance, communication theory, geology, and zoology. 

Soliman (2006) derived estimators for the finite mixture of Rayleigh model 

based on progressively censored data. Sultan, Ismail, and Al-Moisheer (2007) have 

discussed some properties of the mixture of two inverse Weibull distributions. 

Saleem and Aslam (2008) presented a comparison of the Maximum Likelihood 

(ML) estimates with the Bayes estimates assuming the Uniform and the Jeffreys 

priors for the parameters of the Rayleigh mixture. Kundu and Howalder (2010) 

considered the Bayesian inference and prediction of the inverse Weibull 

distribution for type-II censored data. Saleem, Aslam, and Economou (2010) 

considered the Bayesian analysis of the mixture of Power function distribution 

using the complete and the censored sample. Shi and Yan (2010) studied the case 

of the two parameter exponential distribution under type-I censoring to get 

empirical Bayes estimates. Eluebaly and Bouguila (2011) have presented a 

Bayesian approach to analyze finite generalized Gaussian mixture models which 

incorporate several standard mixtures, widely used in signal and image processing 

applications, such as Laplace and Gaussian. Sultan and Al-Moisheer (2012) 
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developed approximate Bayes estimation of the parameters and reliability function 

of mixture of two inverse Weibull distributions under type-II censoring. 

Model and Likelihood Function 

If the probability density function (pdf) of the Weibull distribution is 

 

    1
f , , expi i

i ij i i ij i ijy y y
    

   

 

with yij > 0, i = 1, 2, and j = 1, 2,…, ni, then the random variable xij = 1/yij has the 

inverse Weibull distribution with pdf 

 

      1
f , , expi i

i ij i i ij i ijx x x
    

  
    (1) 

 

with xij > 0, i = 1, 2, and j = 1, 2,…, ni, and where θi > 0 and τi > 0 are shape and 

scale parameters, respectively. 

The cumulative distribution function (cdf) of the distribution is 

 

    F , , exp , , , 0, 1,2, 1,2, ,i

i ij i ij ij i i ix x x i j n
    

       (2) 

 

A density function for the mixture of two components densities with mixing 

weights (p1, 1 – p1) is given by 

 

        1 1 1 2 1f f 1 f , 0 1x p x p x p       (3) 

 

The cdf for the mixture model is: 

 

        1 1 1 2F F 1 Fx p x p x     (4) 

 

Consider a random sample of size n from the inverse Weibull distribution, 

and let xr, xr+1,…, xs be the ordered observations that can only be observed. The 

remaining r – 1 smallest observations and the n – s largest observations have been 

assumed to be censored. Now based on causes of failure, the failed items are 

assumed to come either from subpopulation 1 or from subpopulation 2; so the 

1 11 1,r sx x  and 
2 22 2,r sx x  failed items come from first and second subpopulations, 

respectively. 
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The rest of the observations which are less than xr and greater than xs have 

been assumed to be censored from each component, where  
1 21, 2,max ,s s sx x x  

and  
1 21, 2,min ,r r rx x x . Therefore, m1 = s1 – r1 +1 and m2 = s2 – r2 +1 number of 

failed items can be observed from first and second subpopulation, respectively. The 

remaining n – (s – r + 2) items are assumed to be censored observations, and 

s – r + 2 are the uncensored items, where r = r1 + r2, s = s1 + s2, and m = m1 + m2. 

Then the likelihood function for the type-II doubly censored sample 

    
1 1 2 21 1 2 2, , , , ,r s r sx x x xx , assuming the causes of the failure of the left 

censored items are identified, can be written as 

 

 

            

       

1 2

1 2

1 2

1 2

1 1 2

1 2 1 1 1 2 1 2

1 1 1 1 2 21 2

L , , | F , F , 1 F , ,

f , 1 f ,

r r n

sr r

s s

i i

i r i r

p x x x

p x p x

     

 

  

 

 

    
   
    
 

x

  (5) 

 

 

         

      

 
 

  

   
 

  

1 2
1 2

1 2

1 2

1 2

1

1 1

1

2

2 2

2

1 1

1 2 1 1 2

2

1 1 2 2

1

1 1 1 11 1

1

1 2 2 22 2

L , , | exp exp

1 exp exp

exp

1 exp

r r

r r

n

r r

s

i i

i r

s

i i

i r

p x x

p x p x

p x x

p x x

 

 

 

 

   

 

  

  

 
 


 

  



  



  

    

  
  
  

  
   
  





x

  (6) 

 

Assuming the shape parameter to be known, the likelihood function (6) reduces to 

 

 
     

       

1

1 2 21 1 2

1 2

1 2

1

1 2 1 1 1

0 0 1 2

1 2 1 1 1 2 2 2

L , , | 1 1

exp exp

kn s
k m km k k

k k

m m

j j

n s k
p p p

k k

x x

 

   


 

 

  
    

  

    

x
  (7) 

 

where 
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            

1

1 1 1

1

1

1 1 1 2 11
1

s

j i s r
i r

x x k k x r x    



        

            

2

2 2 2

2

2

2 2 2 22
1

s

j i s r
i r

x x k x r x    



       

Bayes Estimation 

The simple estimation of the scale parameter often pre-assumes the knowhow of 

the shape parameter (for more detail, see Panaitescu, George, Cozma, & Popa, 

2010; Zanakis, 1979; Kundu & Howaldar, 2010; Shi & Yan, 2010; etc.). For the 

Bayesian estimation, let us assume that the parameters τi, i = 1, 2, and p1 are 

independent random variables, and then consider the following priors for different 

parameters. 

Bayesian Estimation using Conjugate Prior 

The prior for the rate parameters τi for i = 1, 2, is assumed to be the gamma 

distribution, with the hyperparameters ai and bi given by 

 

  
 

 1
f exp , , 0

i

i

i

a
ai

i i i i i i

i

b
b a b

a
   

  


  (8) 

 

The prior for p1 is the beta distribution, whose density is given by 

 

  
 

   
  11

11 1 1

1 1 1 1 1

1 1

f 1 , , 0
dc

p

c d
p p p c d

c d

 
  
 

  (9) 

 

From equations (8)-(9), the following joint prior density of the vector 

Θ = (τ1, τ2, p1) is proposed: 

 

       11
11 1

1 1 1 1 1g exp 1 , 0 1, , , , 0i
da c

i i i i ib p p p a b c d 
      Θ   (10) 

 

By multiplying equation (10) and equation (7), the joint posterior density for the 

vector Θ, given the data, becomes 
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     

   

1

1 2 2 11 1 2 1

1 2

11 11

1 1 1

0 0 1 2

| 1 1

exp

kn s
k m k dm k k c

k k

i i ij

n s k
x p p

k k

x


     

 

  
      

  

  

Θ
  (11) 

 

where 

 

 

   

 

  
 

1

1

1 2

1

1 1 1 2 1 2 2 1

0 0 1 2

2

1

1 ,

i i

kn s
k

k k

i i

a m
i

i ij

n s k
Beta m k k c m k d

k k

a m

x



 




  
         

  

 







  

 

and ξi(xij) = γi(xij) + bi for i = 1, 2. Marginal distributions of τi, i = 1, 2, and p1 can 

be obtained by integrating the nuisance parameters. 

Bayesian Estimation using Inverse Levy Prior 

The prior for the rate parameters τi for i = 1, 2, is assumed to be the inverse Levy 

distribution, with hyperparameter vi, given by 

 

   1/2f exp , 0
2 2i

i i i
i i i

 
    

  
  

  (12) 

 

The prior for p1 is the beta distribution, whose density is given by 

 

  
 

   
  22

12 2 1

1 1 1 2 2

2 2

f 1 , , 0
dc

p

c d
p p p c d

c d

 
  
 

  (13) 

 

From equation (12)-(13), we propose the following joint prior density of the vector 

Θ = (τ1, τ2, p1): 

 

     22
111/2

1 1 1 2 2g exp 1 , 0 1, , , 0
2

dci i
i ip p p c d

 
 

  
     

 
Θ   (14) 

 

By multiplying equation (14) with equation (7), the joint posterior density for the 

vector Θ, given the data, becomes 



TWO-COMPONENT MIXTURE OF INVERSE WEIBULL DISTRIBUTIONS  

328 

 
     

   

1

1 2 2 21 1 2 2

1 2

11 11

2 1 1

0 0 1 2

| 1 1

exp

kn s
k m k dm k k c

k k

i i ij

n s k
x p p

k k

x


     

 

  
      

  

  

Θ
  (15) 

 

where 

 

 

   

 

  
 

1

1

1 2

1

2 1 1 2 2 2 2 2

0 0 1 2

2

1/2
1

1 ,

1/ 2

i

kn s
k

k k

i

m
i

i ij

n s k
Beta m k k c m k d

k k

m

x



 




  
         

  

 







  

 

and ψi(xij) = γi(xij) + νi/2. Marginal distributions of τi, i = 1, 2, and p1 can be 

obtained by integrating the nuisance parameters. 

Bayes Estimation of the Vector of Parameters Θ 

The Bayesian point estimation is connected to a loss function in general, signifying 

the loss is induced when the estimate ̂  differs from the true parameter θ. Because 

there is no specific rule that helps to identify the appropriate loss function to be 

used, we can use the K-loss function (KLF), which is particularized as 

 

  
 

2
ˆ

ˆl ,
ˆ

 
 




   

 

is proposed by Wasan (1970), and is well-fitted for a measure of inaccuracy for an 

estimator of a scale parameter of a distribution defined on  0,   . The Bayes 

estimator and posterior risk under KLF are     
1 2

1ˆ E | E |  


 x x  and 

      1ˆ 2 E | E | 1     x x , respectively. In Bayesian analysis, a widely used 

loss function is the quadratic loss function given by    
2

ˆ ˆl , w     ; if w = 1, 

it reduces to the squared error loss function (SELF) and, for w = θ–2, it becomes 

   
2

2ˆ ˆl ,      . This is known as the minimum expected loss function 
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(MELF),  and is introduced by Tummala and Sathe (1978) in their study. The Bayes 

estimator and posterior risk under MELF are    1 2ˆ E | E |    x x  and 

      
2

1 2ˆ 1 E | E |      x x , respectively. 

The respective marginal distribution of each parameter is used to derive the 

Bayes estimators and posterior risks of τ1, τ2, and p1 under KLF and MELF. The 

Bayes estimators and their posterior risks of the parameters τ1, τ2, and p1 for the 

conjugate (gamma and beta) priors using the KLF and MELF functions are given 

in the Appendix. Thus, expressions for Bayes estimators and their posterior risks 

under the inverse Levy can be obtained with little alteration. 

Elicitation 

The elicitation of opinion is a crucial step. It helps to make it easy for us to 

understand what the experts believe in, and what their opinions are. In statistical 

inference, the characteristics of a certain predictive distribution proposed by an 

expert determine the hyperparameters of a prior distribution. In this article, we 

focused on a method of elicitation based on prior predictive distribution. The 

elicitation of hyperparameters from the prior p(λ) is a difficult task. The prior 

predictive distribution is used for the elicitation of the hyperparameters, which are 

compared with the experts' judgment about this distribution and then the 

hyperparameters are chosen in such a way so as to make the judgment agree as 

closely as possible with the given distribution. Readers desiring more detail may 

refer to: Grimshaw, Collings, Larsen, and Hurt (2001), O’Hagan et al. (2006), 

Jenkinson (2005) and Leon, Vazquez-Polo, and Gonzalez (2003). According to 

Aslam (2003), the preferred method of elicitation is to compare the prior predictive 

distribution with experts’ assessment about this distribution, and then to choose the 

hyperparameters that make the assessment agree closely with the member of the 

family. The prior predictive distributions under all the priors are derived using the 

following formula: 

 

      p p | py y d 
Θ

Θ Θ Θ   

Elicitation under Gamma Distribution 

The prior predictive distribution using gamma prior is 
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  (16) 

 

Assume (θ1, θ2) = (1, 1) for convenience in calculations. For the elicitation of the 

six hyperparameters, six different intervals are considered. From equation (16), the 

experts’ probabilities/assessments are supposed to be 0.10 for each case. The six 

integrals for equation (16) are considered with the following limits of the values of 

random variable Y: (0, 10), (10, 20), (20, 30), (30, 40), (40, 50), and (50, 60) 

respectively. For the elicitation of hyperparameters, a1, a2, b1, b2, c1, and d1, these 

six integrals are solved simultaneously through computer program developed in 

SAS package using the command of PROC SYSLIN. Thus the values of 

hyperparameters obtained by applying this methodology are: a1 = 4.982587, 

a2 = 3.356211, b1 = 0.987542, b2 = 0.46523, c1 = 1.45987, and d1 = 0.05690. 

Elicitation under Inverse Levy Prior 

  
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    

   

  

 

Now, to elicit four hyperparameters, consider the four integrals. The expert 

probabilities are assumed to 0.15 for each integral with the following limits of the 

values of random variable Y: (0, 15), (15, 30), (30, 45), and (45, 60). Using a 

similar kind of program as discussed above, we have the following values of the 

hyperparameters: ν1 = 0.062138, ν2 = 0.19136, c2 = 0.895777, and d2 = 0.63889. 

Simulation Study and Comparisons 

A simulation study was conducted to compare the performance of the discussed 

estimators on the basis of generated samples from the inverse Weibull mixture 

distribution using doubly censored data. Assume (θ1, θ2) = (1, 1) for convenience 

in calculations. Take random samples of sizes n = 20, 40, and 80 from the two 

component mixture of inverse Weibull distributions with following choice of 

parametric values: (τ1, τ2) ∈ {(0.1, 0.15), (10, 15), (0.1, 15), (10, 0.15)}, p1 = 0.45 

and 0.6. To develop a mixture data, we adopt the probabilistic mixing model with 
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probability p1 and (1 – p1). A uniform number u is generated n times and, if u < p1, 

the observation is taken randomly from F1 (the inverse Weibull distribution with 

parameter τ1), and is otherwise taken from F2 (the inverse Weibull with parameter 

τ2). Hence, the parameters to be estimated are known to be (τ1, τ2) and p1. The choice 

of the censoring time is made in such a way that the censoring rate in the resultant 

sample is to be approximately 20%. The simulated data sets have been obtained 

using following steps: 

 

Step 1: Draw samples of size n from the mixture model 

Step 2: Generate a uniform random number u for each observation 

Step 3: If u ≤ π, take the observation from first subpopulation; otherwise, 

take the observation from the second subpopulation 

Step 4: Determine the test termination points on left and right, that is, 

determine the values of xr and xs 

Step 5: The observations which are less than xr and greater than xs have been 

considered to be censored from each component 

Step 6: Use the remaining observations from each component for the 

analysis 

 

To avoid an extreme sample, simulate 10,000 data sets, each of size n. The 

Bayes estimates and posterior risks (in parenthesis) are computed using 

Mathematica 8.0. The average of these estimates and corresponding risks are 

reported in Tables 1-8. The abbreviations used in the tables are: BEs: Bayes 

estimators; PRs: Posterior risks; GP: Gamma prior; ILP: Inverse Levy prior. 

The simulation study has revealed some interesting properties of the Bayes 

estimates. It is worth mentioning that in each case the posterior risks of estimates 

of lifetime parameters are decreasing as the sample size increases. The posterior 

risks of the estimates of τ1, τ2 have been assessed to be quite large when the values 

of the parameters are large, and entirely small for rather smaller values of τ1, τ2. 

Another interesting point regarding the posterior risks of the estimates of 

parameters τ1, τ2 is that by increasing (decreasing) the proportion of the component 

in mixture reduces (increases) the posterior risk of the concerned τ parameter’s 

estimate. 
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Table 1. BEs and their PRs under GP for (τ1, τ2, p1) = (0.10, 0.15, 0.45) and 

(0.10, 0.15, 0.60) 
 

 K-Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 0.153042 0.217287 0.488886 0.149162 0.243873 0.652455 
 (0.161568) (0.166297) (0.118884) (0.127883) (0.227595) (0.060474) 

40 0.130631 0.181089 0.461140 0.126142 0.188513 0.635182 
 (0.101929) (0.091817) (0.069768) (0.076355) (0.131665) (0.034437) 

80 0.113720 0.171546 0.449263 0.115099 0.182363 0.627186 

  (0.074710) (0.063162) (0.049079) (0.054635) (0.092332) (0.024224) 

       

 Minimum Expected Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 0.152631 0.194781 0.445046 0.136376 0.200732 0.621717 
 (0.080798) (0.083651) (0.066112) (0.064041) (0.114609) (0.033749) 

40 0.123116 0.167329 0.447311 0.118357 0.168123 0.618551 
 (0.051022) (0.046079) (0.036942) (0.038252) (0.066219) (0.018267) 

80 0.113790 0.161134 0.447937 0.113935 0.162226 0.610625 
 (0.037331) (0.031706) (0.025748) (0.027277) (0.046496) (0.012683) 

 
 
Table 2. BEs and their PRs under GP for (τ1, τ2, p1) = (10, 15, 0.45) and (10, 15, 0.60) 

 

 K-Loss Function  

n 
τ̂

1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 7.2322300 11.9032000 0.4851680 7.8576700 10.4070000 0.6564870 
 (0.1628030) (0.165620) (0.1206010) (0.1274380) (0.2306880) (0.0594520) 

40 8.0121000 13.7528000 0.4556190 8.7621200 12.0339000 0.6369690 
 (0.1029490) (0.0908861) (0.0709860) (0.0763040) (0.1328160) (0.0342290) 

80 8.4481100 14.0172700 0.4465120 8.7865800 12.9782000 0.6284630 

  (0.0750960) (0.0628280) (0.0493037) (0.0546180) (0.0929030) (0.0217830) 

       

 Minimum Expected Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 6.2983400 10.8209000 0.4383870 7.0637800 8.8599400 0.6246390 
 (0.0817250) (0.0830211) (0.0675390) (0.0639590) (0.1158660) (0.0334390) 

40 7.3851200 2.3639000 0.4397130 8.2515200 11.2008100 0.6191910 
 (0.0514960) (0.0456430) (0.0375050) (0.0382830) (0.0665690) (0.0182460) 

80 7.7764800 13.1101000 0.4473950 8.6210200 12.9293400 0.6068140 
 (0.0378730) (0.0316780) (0.0327710) (0.0272560) (0.0466960) (0.0129840) 
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Table 3. BEs and their PRs under GP for (τ1, τ2, p1) = (0.10, 15, 0.45) and (0.10, 15, 0.60) 

 

 K-Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 0.1533410 12.5483000 0.4483640 0.1397540 11.7884000 0.5905870 
 (0.1669040) (0.1504220) (0.1273990) (0.1334790) (0.1951910) (0.0685210) 

40 0.1193940 14.5209000 0.4489700 0.1107460 13.6061000 0.5978991 
 (0.1053590) (0.0823310) (0.0740830) (0.0800540) (0.1096810) (0.0388500) 

80 0.1114640 15.0405000 0.4511250 0.1057960 14.6865000 0.5986610 

  (0.0771020) (0.0565920) (0.0432290) (0.0580370) (0.0777460) (0.0048650) 

       

 Minimum Expected Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 0.140090 11.354900 0.404051 0.133802 10.261200 0.567283 
 (0.083452) (0.075235) (0.070580) (0.066740) (0.097732) (0.037961) 

40 0.112806 13.171700 0.419673 0.109543 12.681400 0.567551 
 (0.052679) (0.041176) (0.039065) (0.040027) (0.054874) (0.020488) 

80 0.108045 14.175500 0.429351 0.103915 13.796700 0.587920 
 (0.038552) (0.028369) (0.031335) (0.028531) (0.038394) (0.022886) 

 
 
Table 4. BEs and their PRs under GP for (τ1, τ2, p1) = (10, 0.15, 0.45) and (10, 0.15, 0.60) 

 

 K-Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 7.789440 0.206080 0.544287 8.052190 0.224464 0.695652 
 (0.144196) (0.176093) (0.086478) (0.118203) (0.239330) (0.044531) 

40 8.918560 0.166512 0.522777 8.909610 0.175136 0.681657 
 (0.087638) (0.098245) (0.049039) (0.069216) (0.139309) (0.024854) 

80 9.274560 0.155907 0.515036 9.687610 15.652800 0.652686 

  (0.062971) (0.068130) (0.033541) (0.049070) (0.098428) (0.001594) 

       

 Minimum Expected Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 7.007170 0.175346 0.507474 7.329860 0.187362 0.671009 
 (0.072105) (0.088049) (0.047976) (0.059115) (0.119666) (0.024700) 

40 8.392620 0.148824 0.503235 8.052989 0.155773 0.668620 
 (0.043817) (0.049123) (0.025863) (0.034608) (0.069655) (0.013108) 

80 8.850450 0.151859 0.495015 9.424450 0.151359 0.661397 
 (0.031496) (0.034063) (0.017918) (0.024634) (0.049023) (0.024360) 
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Table 5. BEs and their PRs under ILP for (τ1, τ2, p1) = (0.10, 0.15, 0.45) and 

(0.10, 0.15, 0.60) 
 

 K-Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 0.107446 0.174887 0.454348  0.108630 0.172018 0.620560 
 (0.256954) (0.215458) (0.136335) (0.180738) (0.336696) (0.069258) 

40 0.104352 0.164206 0.441143  0.104008 0.154266 0.618750 
 (0.133538) (0.104548) (0.075409) (0.133544) (0.104585) (0.036939) 

80 0.098973 0.158185 0.436433  0.102810 0.151531 0.617152 

  (0.090341) (0.068909) (0.045525) (0.062284) (0.106620) (0.025056) 

       

 Minimum Expected Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 0.092775 0.147587 0.407706 0.097211 0.134592 0.586746 
 (0.128863) (0.108963) (0.075846) (0.090791) (0.171009) (0.038768) 

40 0.096182 0.147725 0.416953 0.099533 0.142006 0.600375 
 (0.066809) (0.052609) (0.039818) (0.046432) (0.081512) (0.019661) 

80 0.096554 0.149812 0.429139 0.102130 0.146210 0.600153 
 (0.045175) (0.034586) (0.027256) (0.031126) (0.053686) (0.014347) 

 
 
Table 6. BEs and their PRs under ILP for (τ1, τ2, p1) = (10, 15, 0.45) and (10, 15, 0.60) 

 

 K-Loss Function  

n 
τ̂

1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 9.985290 14.431300 0.456402 10.696500 13.981300 0.625004 
 (0.255990) (0.216752) (0.135572) (0.179341) (0.341694) (0.068025) 

40 10.643800 14.798400 0.443693 10.480710 14.656400 0.620334 
 (0.132816) (0.105192) (0.074823) (0.092251) (0.163078) (0.036711) 

80 10.122700 14.845100 0.453762 10.174900 14.854300 0.617783 

  (0.090007) (0.069232) (0.051825) (0.062220) (0.106884) (0.025106) 

       

 Minimum Expected Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 9.277410 11.474100 0.412225 9.321530 9.642290 0.593112 
 (0.127923) (0.110266) (0.074962) (0.089785) (0.173529) (0.037767) 

40 9.637820 14.223600 0.417554 9.502120 12.713300 0.601931 
 (0.066774) (0.052724) (0.039748) (0.046313) (0.081862) (0.019531) 

80 9.729790 14.560200 0.428610 9.999100 13.616000 0.601586 
 (0.045118) (0.034705) (0.027784) (0.031143) (0.053736) (0.013452) 
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Table 7. BEs and their PRs under ILP for (τ1, τ2, p1) = (0.10, 15, 0.45) and 

(0.10, 15, 0.60) 
 

 K-Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 0.0995060 15.8176000 0.4191220 0.1019610 16.6349000 0.5696700 
 (0.2666630) (0.1911270) (0.1435660) (0.1904710) (0.2689990) (0.0772190) 

40 0.0957830 15.7349000 0.4315360 0.0972550 15.9842000 0.5698800 
 (0.1379300) (0.0932430) (0.0788790) (0.0975590) (0.1298730) (0.0413270) 

80 0.0925177 15.3503000 0.4450500 0.0931070 15.5486000 0.5765170 

  (0.0929980) (0.0616730) (0.0448390) (0.0655840) (0.0856100) (0.0268270) 

       

 Minimum Expected Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 0.078252 14.237100 0.372592 0.089637 12.991000 0.535129 
 (0.133332) (0.095557) (0.079529) (0.095236) (0.134672) (0.042776) 

40 0.084029 14.501970 0.380824 0.090933 14.232200 0.545625 
 (0.068965) (0.046618) (0.041602) (0.048779) (0.064944) (0.021795) 

80 0.086764 14.687900 0.403030 0.091828 15.480600 0.548745 
 (0.046508) (0.030839) (0.030867) (0.032782) (0.042834) (0.019410) 

 
 
Table 8. BEs and their PRs under ILP for (τ1, τ2, p1) = (10, 0.15, 0.45) and 

(10, 0.15, 0.60) 
 

 K-Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 11.639900 0.143830 0.516704 10.857400 0.143796 0.667442 
 (0.212306) (0.235279) (0.096294) (0.160525) (0.363626) (0.050583) 

40 11.407900 0.144247 0.508186 10.697180 0.148710 0.665794 
 (0.108873) (0.114281) (0.051895) (0.081860) (0.173910) (0.026553) 

80 10.967200 0.143250 0.501879 10.568890 0.149423 0.636676 

  (0.073551) (0.075455) (0.014772) (0.054934) (0.114285) (0.017568) 

       

 Minimum Expected Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 10.949000 0.122689 0.477731 9.730160 0.112718 0.640643 
 (0.106221) (0.117641) (0.053440) (0.080295) (0.181814) (0.028050) 

40 1.033170 0.123964 0.468809 10.421800 0.121727 0.653162 
 (0.054432) (0.057141) (0.027368) (0.040932) (0.086955) (0.014005) 

80 10.185800 0.132493 0.450288 10.186800 0.125570 0.650629 
 (0.036673) (0.037766) (0.027487) (2.748000) (0.057149) (0.011849) 
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It was observed that for the relatively smaller value of τ, i.e. (0.10, 0.15), the 

performance of the minimum expected loss function and the gamma prior is better 

than their counterparts, as the amounts of posterior risks are smaller than those in 

case of their counterparts. However, the inverse Levy prior produces some closer 

estimates to the true value of parameters. Estimates of mixing proportion are found 

to be underestimated using inverse Levy prior when p1 = 0.45, but they are pretty 

good under gamma prior. When we consider the estimation of comparatively larger 

value of τ, i.e. (10, 15), again under estimation is observed of the estimates of 

parameters under both priors and loss functions. But the extent of underestimation 

is higher under the minimum expected loss function using gamma prior. 

Nonetheless, this underestimation is due to the random procedure and is tolerable. 

Further, this problem can be faced off by using lager sample sizes. As far as 

the efficiency of the prior is concerned, gamma is found to be the efficient than 

inverse Levy prior. Moreover, on assessing the behavior of estimates, in the case of 

the extremely different value of the parameters (τ1 < τ2 and τ1 > τ2) = (0.10, 15 and 

10, 0.15), i.e. one is small and other is hundred fold large, it is noticed that the 

parameters are once again underestimated, and this underestimation is higher at 

every point using the minimum expected loss function under both priors. However, 

the use of the K-loss function has exhibited pretty good estimates with few 

exceptions (in terms of convergence). In general, the estimates under gamma prior 

using the minimum expected loss function are the best, as the amounts of posterior 

risks associated with these estimates are the least in almost all cases. 

Real Data Analysis 

Real data sets are considered to illustrate the methodology discussed in previous 

sections. In order to show the usefulness of the proposed mixture model, consider 

survival times (in days) of guinea pigs, injected with different doses of tubercle 

bacilli, in Table 9. This data set was discussed by Kundu and Howlader (2010). 

Singh, Singh, and Sharma (2013) also analyzed this data set. The regimen number 

is the common logarithm of the number of bacillary units in 0.5 mL of challenge 

solution; e.g., regimen 6.6 corresponds to 4.0 *106 bacillary units per 0.5 mL. 

Corresponding to regimen 6.6, there are 72 observations listed below. Further, the 

Kolmogorov-Smirnov and chi-square tests are used to see if the data follow the 

inverse Weibull distribution. These tests say that the data follow the inverse 

Weibull distribution at 5% level of significance with p-values 0.1361 and 0.1290, 

respectively. We have assumed (θ1, θ2) = (1, 1) for convenience in calculations. 
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Table 9. Survival times (in days) of guinea pigs injected with different doses of tubercle 

bacilli 
 

12 15 22 24 24 32 32 33 34 38 38 43 44 48 52 
53 54 54 55 56 57 58 58 59 60 60 60 60 61 62 
63 65 65 67 68 70 70 72 73 75 76 76 81 83 84 
85 87 91 95 96 98 99 109 110 121 127 129 131 143 146 

146 175 211 233 99 258 258 263 297 341 341 376    

 
 

Consider the case when the data are doubly Type II censored. Data are 

randomly grouped into two sets when p1 = 0.45. It is assumed that we observe 33 

data points belonging to population I and 39 data points belonging to population II. 

To implement censored samplings, the 
1 11 1, ,r sx x  and 

2 22 2, ,r sx x  failed items 

come from the first and second subpopulations, respectively. The rest of the 

observations, which are less than xr and greater than xs, have been assumed to be 

censored from each component. Here, m1 = s1 – r1 + 1 and m2 = s2 – r2 + 1 numbers 

of failed items can be observed from the first and second subpopulations, 

respectively. The remaining n – (s – r + 2) items are assumed to be censored 

observations, and s – r + 2 are the uncensored items, where r = r1 + r2, s = s1 + s2, 

and m = m1 + m2. The detail of the censored mixture data can be found in Table 10. 

The following characteristics are extracted from the censored data for the 

analysis of the mixture model: 
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Table 10. Doubly-censored mixture real life data 

 

Population I  Population II 

61 12 24 60 24 32 65  15 131 87 143 91 95 175 

34 68 38 43 67 72 48  110 121 127 297 341 60 62 

54 73 76 55 81 83 58  65 63 70 96 211 98 258 

84 233 341 263 146 175 129  258 70 75 76 59 60 57 

146 109 99 35 376    56 58 53 54 44 52 43 
        38 33 32 22    

 
 
Table11. BEs and their PRs under minimum expected loss function and K-loss function 

for the real data set 
 

Priors K-loss function  Minimum expected loss function 

p1 = 0.45 τ̂
1
 τ̂

2
 p̂

1
   τ̂

1
 τ̂

2
 p̂

1
 

Gamma 7.023900 7.914180 0.453725  6.699360 7.600860 0.439455 

 (0.062637) (0.053542) (0.041482)  (0.031384) (0.026819) (0.021459) 

Inverse 
Levy 

7.613170 7.918130 0.446087  7.206180 7.583200 0.431593 

(0.072641) (0.058103) (0.042864)  (0.036424) (0.029113) (0.022179) 

        

p1 = 0.60 τ̂
1
 τ̂

2
 p̂

1
  τ̂

1
 τ̂

2
 p̂

1
 

Gamma 7.400650 6.984160 0.610524  7.142880 6.603080 0.600336 

 (0.047031) (0.074187) (0.021878)  (0.023548) (0.037188) (0.011324) 

Inverse 
Levy 

7.923470 6.899140 0.602689  7.616030 6.478070 0.592309 

(0.052462) (0.083158) (0.022581)   (0.026276) (0.041710) (0.011689) 

 
 

The results in Table 11 indicate that the Bayes estimates under gamma prior 

are better than those under inverse levy prior under both loss functions. Similarly, 

in the comparison of the loss functions, it has been assessed that the performance 

of the minimum expected loss function is better than the K-loss function. The larger 

values of the mixing parameter (p1) impose a positive impact on the performance 

of the estimation of the first component of the mixture. Hence the analysis of real-

life data endorsed the findings of the simulation study, suggesting the preference of 

gamma prior along with minimum expected loss function. 
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Graphical Representation of Posterior Risks under Different Loss 

Functions, Various Priors 

Risks of the estimators are empirically evaluated based on a Monte-Carlo 

simulation study of samples. A number of values of unknown parameters are 

considered. Sample size is varied to observe the effect of small and large samples 

on the estimators. Different combinations of parameters are considered in studying 

the change in the estimators and their risks. The results are summarized in Figures 

1-4. The risk of the estimators will be a function of sample size, population 

parameters, and hyperparameters of the prior distribution. After an extensive study 

of the results, the conclusions are drawn regarding the behavior of the estimators, 

which are summarized below. (Due to space restrictions, all results are not shown 

in the graphs.) As sample size increases, the risk of all the estimators decrease, as 

indicated in Figures 1-4. The effect of variation of parameters on the risks of the 

estimator has also been studied. The risk of the estimators increases when the value 

of parameters increases. 
 
 

 
 
Figure 1. Posterior risks of τ1 for (τ1,τ2, p1) = (0.10, 0.15, 0.45) 
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Figure 2. Posterior risks of τ2 for (τ1,τ2, p1) = (0.10, 0.15, 0.45) 

 

 
 

 
 
Figure 3. Posterior risks of τ1 for (τ1,τ2, p1) = (10, 15, 0.45) 
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Figure 4. Posterior risks of τ2 for (τ1,τ2, p1) = (10, 15, 0.45) 

 

Conclusion 

The Bayesian inference of inverse Weibull mixture distribution based on doubly 

type-II censored data was considered. The prior belief of the model is represented 

by the independent gamma, beta priors and inverse Levy, beta priors on the scale, 

and mixing proportion parameters. Numerical results of the simulation study 

presented in Tables 1-8 exposed salient properties of the proposed Bayes estimators. 

The parameters of the mixture distributions have been over/under estimated in 

different cases. In general, the larger values of the parameters have been 

overestimated and smaller values of the parameters have been underestimated in 

the majority of cases. However, it is nice to observe that the estimated values 

converge to the true values and the amounts of the posterior risks tend to decrease 

by increasing the sample size. 

This indicates that the proposed estimators are consistent. The smaller (larger) 

values of the parameter representing one component of the mixture impose a 

positive (negative) impact on the estimation of the parameter representing the other 

component of the mixture distribution. The larger values of the mixing parameter 

(p1) impose a positive impact on the performance of the estimation of the first 

component of the mixture. This may be due to the fact that the lager values of the 

mixing parameter incorporate more values for the analysis of the first component. 
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Bayes estimators performed better under the minimum expected loss function than 

under the K-loss function under both priors. In addition, the performance of the 

estimates under gamma prior is better than those under inverse levy prior using both 

loss functions. However, in the case of gamma prior, the estimates under both loss 

functions are comparatively more underestimated, though this problem is less 

severe in the larger samples. Therefore, on the basis of the above discussion, we 

can recommend the use of the gamma prior under minimum expected loss function 

for the analysis of the inverse Weibull mixture distribution under the Bayesian 

framework. 

However, when such a mixture model was used in real-life, the prior may be 

chosen as well as the loss function according to the need. In case of loss functions, 

if lower posterior risk is desired than in the present scenario, the minimum expected 

loss function should be given importance. If compromise on risk is affordable then 

one can easily select to use the K-loss function. Also, the informative gamma prior 

can easily be preferred over the other informative prior as shown by results. It may 

be mentioned here that, because of space restriction, only selected results are 

included and presented graphically. The findings of real life example are in 

accordance with the simulation study. The findings of the paper are useful for the 

analysts (from different fields) in dealing with the Bayesian analysis of the time to 

failure data when causes of the failure are more than one, and the data is doubly 

censored. 
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Appendix 

The Bayes estimators of τ1, τ2, and p1 under KLF, assuming gamma prior are: 

 

 

   
   

  
 

  
 

   
   

  

1

1

1 1 2 2

1 2

1

1

1 2

1 1 1 2 2

1 1 2 1 2 2 1 1
0 0 1 2

1 1 1 2 2 2

1 KLF

1 1 1 2 2

1 1 2 1 2 2 1

0 0 1 2
1 1 1

1
1 ,

ˆ
1

1 ,

kn s
k

a m a m
k k

j j

kn s
k

a
k k

j

n s k a m a m
Beta m k k c m k d

k k b x b x

n s k a m a m
Beta m k k c m k d

k k b x





  
 



 

       
       

      


       
       

    



  

  
 1 1 2 2

1

2

1

2 2 2

m a m

jb x
  

 
 
 
 
 
 
  
 

 

 

 

   
   

  
 

  
 

   
   

  

1

1

1 1 2 2

1 2

1

1

1 2

1 1 1 2 2

1 1 2 1 2 2 1 1
0 0 1 2

1 1 1 2 2 2

2 KLF

1 1 1 2 2

1 1 2 1 2 2 1

0 0 1 2
1 1 1

1
1 ,

ˆ
1

1 ,

kn s
k

a m a m
k k

j j

kn s
k

a
k k

j

n s k a m a m
Beta m k k c m k d

k k b x b x

n s k a m a m
Beta m k k c m k d

k k b x





  
 



 

       
       

      


       
       

    



  

  
 1 1 2 2

1

2

1

2 2 2

m a m

jb x
  

 
 
 
 
 
 
  
 

 

 

 

   
 

  
 

   
 

  
 

1

1

1 2

1

1

1 2

2
1

1 1 2 1 2 2 1

0 0 11 2

1 KLF 2
1

1 1 2 1 2 2 1

0 0 11 2

1 1,

ˆ

1 1,

i i

i i

kn s
k i i

a m
k k i

i i ij

kn s
k i i

a m
k k i

i i ij

n s k a m
Beta m k k c m k d

k k b x
p

n s k a m
Beta m k k c m k d

k k b x




  




  

     
         

    
  

    
        

    
 

 

 

1

2





 



TWO-COMPONENT MIXTURE OF INVERSE WEIBULL DISTRIBUTIONS  

346 

The posterior risks of τ1, τ2, and p1 under KLF using gamma prior are: 
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The Bayes estimators of τ1, τ2, and p1 under MELF, assuming gamma prior are: 
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The posterior risks of τ1, τ2, and p1 under KLF using gamma prior are: 
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