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Optimal Estimation and Sampling Allocation 
in Survey Sampling Under a General 
Correlated Superpopulation Model 

Ioulia Papageorgiou 
Athens University of Economics and Business 

Athens, Greece 

 

 

 

 
Sampling from a finite population with correlated units is addressed. The proposed 
methodology applies to any type of correlation function and provides the sample 
allocation that ensures optimal efficiency of the population parameters estimates. The 

expressions of the estimate and its MSE are also provided. 
 
Keywords: Superpopulation, systematic sampling, model-based sampling, sampling 
strategy, optimality, autocorrelation 

 

Introduction 

In classical sampling theory, the finite population under study is assumed to be a 

fixed vector of dimension N, where N is the number of population members. If U 

denotes the population set and Y the variable of interest, the population vector can 

be denoted as U = {Y1, Y2, …, YN}, and is assumed to be fixed but is in general 

unknown. The superpopulation approach in sampling from a finite population is 

assumed in this work. According to this approach, the finite set of measurements 

U is a realization of a sample of size N drawn from an infinite population with 

common distribution ξ. 

The superpopulation model was introduced by Cochran (1946 and 1977, 

1953) and further developed by Godambe (1955), Cassel et al. (1977), Tam 

(1984), Blight (1973), Mukerjee & Sengupta (1989, 1990) and Bolfarine & Zacks 

(1992), among others. The problem of finding optimum sampling schemes under 

a superpopulation model is discussed by several authors including Blight (1973), 

Papageorgiou & Karakostas (1998), Arnab (1992), Mukerjee & Sengupta (1989, 

1990), Nayak (2003) and Chao (2004). The superpopulation model assumes the 

population measurements are comprised of a deterministic and a non-

http://dx.doi.org/10.22237/jmasm/1478002680
mailto:ioulia@aueb.gr


OPTIMAL SAMPLE ALLOCATION FOR CORRELATED POPULATIONS  

294 

deterministic element that can be attached to a variable. More analytically, the 

superpopulation model in its general form is 
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i
, i = 1,2,..., N  (1) 

 

where μi is constant, representing the deterministic part, while εi are random 

variables also called errors. The random vector ε = (ε1, ε2, …, εΝ)  is assumed to 

have zero mean and variance covariance matrix V. Various special models to 

describe more specific or realistic population assumptions can be derived from (1) 

by making assumptions on matrix V and relationships among μi. For example, 

model 
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where the errors are uncorrelated and with constant variance is the model that 

describes a finite population with uncorrelated measurements and different 

superpopulation mean. 

Another special case is the model where 
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according to which the population units are correlated with a constant correlation 

ρ and constant superpopulation parameter of mean μ. 

A more realistic autocorrelated superpopulation model results if one 

assumes that the degree of correlation among two population units depends on 

between-unit distance. This is also known as serial correlation. Populations that 

exhibit this characteristic can be encountered in applications where an order is 

assigned to each of the population members. The ordering can be according to 

time, space, magnitude or the serial number in a production line. The model with 

serial correlation was first introduced by Cochran (1946) and it can be written in 

mathematical terms as 

 

 
  
E

x
Y

i( ) = m and E
x

Y
i
- m

i( ) Y
j
- m

j( ) =s 2r i - j( ) (2) 



IOULIA PAPAGEORGIOU 

295 

where ρ(h) is the autocorrelation function of the population model for units at 

distance h. 

All above models can also be seen as special cases of the more general 

superpopulation regression model where the deterministic part μ has been 

modeled as linear functions of a set of auxiliary nonstochastic variables that may 

be available for the population vector (Bolfarine and Zacks, 1992). 

Madow & Madow (1944), Cochran (1977), Royall (1970), Blight (1973), 

Ramakrishnan (1975), Bellhouse & Rao (1975) and Graubard & Korn (2002), 

among others, assumed (2) or a special case of this. The results available from the 

literature aim to answer two questions: first, to estimate the superpopulation 

parameter μ; and second, to determine the optimal sampling design. The optimal 

sampling design is the selection process according to which the sample units are 

drawn from the population so that the derived estimate will achieve an assumed 

optimality criterion, such as minimum variance. Sampling strategy is the pair of 

the sampling design and estimator used towards the estimation problem (see for 

example Ramakrishnan, 1975). Often in practice, certain properties are attached 

to the autocorrelation function ρ(h) such as positive, decreasing or convex. An 

outline of related results from the literature is presented in the following section. 

In this current work the assumptions made on function ρ(h) are extended. 

More specifically, ρ(h) can be the autocorrelation function of any random process 

with second-order stationarity. The proposed methodology aims to determine the 

optimal allocation of the sampling units for a sample of size n, when the least 

squared estimator of the superpopulation mean is used as a criterion of optimality. 

The optimum is defined with respect to the mean squared error (mse) of the 

estimate. The proposed optimal sampling strategy is completed by providing the 

statistical inference of the assumed estimate when the sample is selected, 

according to the derived optimal sampling scheme. Both the derived optimal 

sample allocation and its mse depend on ρ(h) and therefore take into account the 

specific autocorrelation of the population under study. 

General notation and brief review 

Denote by  
1 2
, , ,

nj j js Y Y Y  the sample of size n that is selected from the 

complete vector U. Indexes ji (i = 1, 2, …, n) in the notation indicate the positions 

of the selected units in the population U. 
1

N

ii
Y


 , the population sum, is 

considered as the parameter of interest. θ is a linear function of the population 

measurements. Dealing with the estimation of θ is equivalent with the estimation 
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of population mean 
1

/
N

ii
Y Y N


 , as the two quantities differ only by a constant 

coefficient. 

The aim of the sampling procedure is to estimate θ based on a set of 

measurements, s, selected from U. The assumption of selection without 

replacement is made, but sampling with replacement is equally possible. The 

sampling design is determined by the probability p(s) that is assigned to each of 

all possible samples s selected from the population. Let Pn denote this set of all 

possible samples of size n. Important probabilities related to the design p(s) are 

the first and second order inclusion probabilities πi and πij respectively, defined as 
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By making use of this notation, simple random sample (that is, the simplest 

sampling design) is the design that assigns equal probability p(s) = 1/

 

N

n

æ

è
ç

ö

ø
÷  in 

every sample s that belongs in Pn, where Pn is the selection of all the possible 

combinations of n measurements chosen from U in this case. For the systematic 

scheme, the probabilities of selection are also equal, p(s) = 1/k, where k = N/n. 

The number of samples that belong in Pn is also k in the systematic case and if 

si, i = 1, 2, …, k is a representative sample, then si = (Yi, Yi+k, Yi+2k, …, Yi+(n−1)k), 

i = 1, 2, …, k (see for example Cochran, 1977). If N ≠ nk, a slight complication 

and need for modification arises, but the effect is negligible (Yates, 1960, 1948 

1st ed.). The samples generated by a systematic procedure are equally spaced, and 

moreover if the start Yi is chosen with i such that 2i = N + 1 − (n − 1)k, the sample 

is a centrally located systematic sample (Blight, 1973). In this last case Pn 

contains only one sample s with p(s) = 1. 

Blight in the previously mentioned work assumes that the deviations of 

population values from the superpopulation mean μ are generated by an 

autoregressive model of order one, AR(1), e.g. 

 

 
  
Y

i
- m = l Y

i-1
- m( )+ e

i
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where εi is uncorrelated normally distributed series with zero mean and constant 

variance σ2. This yields ρ(h) = λh at lag h (h = 1, 2, …, N−1). Employing the 

sample mean as the estimator of the corresponding population mean, the effect of 

the autocorrelation is studied and the optimal sampling design when λ is positive 
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or negative is obtained. The optimality criterion is the conditional variance 

 |
ij

Var Y Y s  . The sign of λ controls the monotonicity shape of ρ(h) = λh and, 

as expected, the resulting optimal design is remarkably different among the two 

cases. More specifically, for λ > 0 the optimal sample is the centrally located 

systematic and for λ < 0 the optimal sampling design is concentrated towards the 

two ends of the population. This also verifies the fact that the optimal solution for 

the sampling scheme is not unique, but depends on the specific type of the 

autocorrelation. However, when the autocorrelation function ρ(h) is not only 

λh, h > 0, but in general any positive, decreasing and convex function, the same 

result holds and the centrally located systematic design is the optimal 

(Papageorgiou & Karakostas, 1998). 

Function ρ(h) is defined in all positive integer numbers and therefore ρ(h) is 

decreasing if ρ(h + 1) − ρ(h) ≤ 0 (Δρ(h) ≤ 0), while convexity holds when 

 

 
  
D2r h( ) = r h + 2( )- 2r h +1( )+ r h( ) ³ 0 for h = 0,1,2,...  

 

Denote by К the class of all autocorrelation functions that satisfy the 

aforementioned properties (positive, decreasing and convex). AR(1) model 

assumed in (3) has an autocorrelation function that belongs in К when λ > 0 and 

since the optimality of the centrally located systematic scheme holds for the 

whole class К it also holds for this occasion as a special case. In fact, class К 

includes a wide range of correlation functions (Bellhouse, 1984). 

Although the question about the optimum sampling scheme seems to have a 

unique answer when ρ(h)К and it is closely related to the systematic scheme, 

under almost any combination of estimators and optimality criterions considered, 

the problem remains when ρ(h) does not belong in К. The optimum sampling 

scheme in this case can be quite far from the systematic and it varies depending 

on the specific type of ρ(h). In other words, there is no uniquely defined optimum 

sampling scheme that can cover any random process with respect to the sampling 

problem. In this direction, a practical and easy-to-implement methodology, that 

suggests the optimum sampling procedure once the specific type of ρ(h) or V is 

provided, is proposed in this paper.  

A related work is provided by Chao (2004), where a general known matrix 

V is assumed, and a similar to principal component analysis method is suggested 

in order to obtain the sampling procedure. More specifically, the idea is to choose 

as sampled units those population units pointed from the n most important 

components or the largest eigenvalues of matrix V. Two algorithms are proposed, 
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called Design I and Design II, with the second being a slight modification of the 

former. Design I makes use of the n eigenvectors e1, e2, …, en of V that 

correspond to the n first-in-magnitude eigenvalues of the matrix. If 

ei = (ei1, ei2, …, eiN) is such an eigenvector and j, (j = 1, …, N) is the index with 

the largest-in-absolute-magnitude component in ei, the population unit that 

corresponds in position j is the one selected in the sample according to this design. 

If the unit is already in the sample, the second-in-absolute-magnitude component 

is selected. Design II works in the same principle, with the difference that the sign 

of the components is also taken into account. From each eigenvector two 

components are selected, the largest-in-absolute-magnitude and the second-largest 

with opposite sign of the first. The approach for both designs is rather intuitive 

and the resulting designs do not hold any optimality criterion. Their performance 

is measured by the relative efficiency over the simple random sample as a general 

sampling scheme. They indicate improved efficiency with respect to the simple 

random most of the times, but their performance is not stable and the simple 

random sample itself is usually far from the optimal when a correlation exists. 

Before dealing with the problem and proposing the solution of the optimal 

sampling design, a list of possible applications is provided. The range of 

applications is wide, and they cover any scientific area where the framework 

includes correlated measurements and a sample is selected from the population. A 

typical application of sampling from autocorrelated populations where the 

autocorrelation is not necessarily decreasing and convex is seen in the context of 

statistical process control in monitoring manufacture and industrial production 

lines. A variety of control charts or other statistical instruments can be constructed 

based on a set of measurements selected from the process, and help practitioners 

to derive information or warning if the process is out of control. Traditionally the 

statistical theory behind the control charts is based on the assumption that the 

sample measurements are independent. It is however quite common in practice—

and especially in continuous manufacture or production lines—that this 

assumption is violated, and this produces misleading and unreliable control charts 

(Alwan, 1992; Montgomery and Mastrangelo, 1991) with tighter control limits 

than the true ones. A lot of attention has been drawn lately to this area of research; 

see for example Alwan and Roberts (1988), Harris and Ross (1991), Mastrangelo 

and Montgomery (1995), Apley and Lee (2003) and Lu and Reynolds (1999, 

2001), and all proposed approaches make use of the present autocorrelation to 

either modify the existing control limits, or to model the process, identify the 

autocorrelation, and use the independent errors instead of the measurements for 

constructing any statistical tool. The models that have been assumed are AR(1) 
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(Autogregressive), MA(1) (Moving Average) and ARMA(1,1) (Autoregressive 

Moving Average) (Wardell et al., 1992) and efficiency in sampling and therefore 

construction of the control limits provided can be improved further if the specific 

type of correlation is taken into account. 

Similarly, geostatistical data in spatial statistics very often exhibit a small-

scale variation, typically a strong correlation between data at neighboring 

locations (Watson, 1972). If the population mean is the parameter of interest, 

failure to realize the presence of positive correlation in the data leads to very 

narrow confidence interval (Cressie, 1993), a result similar with this in quality 

control charts. The superpopulation model is therefore extensively used in 

modeling geostatistical data in order to accommodate this correlation (Cressie, 

1993). In this context, let sℝd be the data location in d-dimensional Euclidean 

space and Y(s) the measured data, assumed random, at location s. Assuming that s 

takes values over an index set Dℝd, the superpopulation model results as a 

realization {y(s): sD} from the multivariate random field {Y(s): sD}. Land 

and agricultural surveys, ground-water monitoring, environmental statistics and 

socio-economic habitat surveys are some of the sampling applications in two 

dimensions with spatial dependence among population units. 

Other applications of sampling from correlated populations include genetics 

and ecological statistics. In particular, the superpopulation model is often used to 

explain genetic or ecological patterns where the covariance in the genetic makeup 

of individuals or in the growth of populations can be assumed to be a function of 

the spatial distance separating the units (Lande, 1991; Bjørnstad et al., 1999). 

Clustered data, often found in social, educational, psychometric and 

behavioral studies, also represent an application of sampling from correlated 

populations. Clustered data may result either because of repeated measurements 

in time such as in longitudinal studies or because of sub-sampling from a large 

primary unit: for instance, sampling graduates from the same educational institute 

or the same region/country for a large scale study. The existing intra-class 

correlation has to be taken into account during the analysis and the statistical 

inference in order to produce valid results (Neuhaus and Kalbfleisch, 1998). 

Moreover the knowledge of the intra-class correlation can contribute at the 

selection stage of the sub-sampling. 

Another application of sampling in time series, apart from the serial 

correlation and the typical applications described already, is the use of composite 

marginal likelihoods in order to estimate the parameters of the model (Cox and 

Reid, 2004; Varin, 2008). Pairwise likelihoods, based only on the bivariate joined 

distributions of the measurements, produce estimates very close to those under the 
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full likelihood with respect to the dimension. The benefit of pairwise likelihood is 

on the computational demand that is required for the optimization. Moreover, 

further improvement in this direction can be achieved if not all possible pairs but 

only a selection of them will be used instead. Current work in this context shows 

that the same accurate estimates can be obtained if the correlation between 

observations is taken into account towards the selection procedure: for example, 

pairwise likelihood of order m (Hjort and Varin, 2008). 

The general problem 

Model (2) describes the population and ρ(h) is assumed to be any autocorrelation 

function. Moreover,  q̂ , the least squared estimator for the parameter θ, is assumed 

as the optimality criterion. The aim is to determine the sampling design p or the 

sample s that minimizes the mean square error of  q̂  under this model. The least 

squared estimator of the population mean is the sample mean and it is unbiased 

under model (2) (see Karakostas, 1984), which yields that 
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Let V be the variance covariance matrix of the complete population vector under 

(2). The partition of matrix V according to the sampled part, s, is considered next 

and let Vs denote the part of V that corresponds to the sampled units and Vs,U the 

n × N matrix of V where its rows correspond to the sampled units while the 

columns to the whole population U. Under this notation the mse can be written as 
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where 1'
j stands for the j–dimension vector of units. For the sampling problem it is 

necessary to minimize mse( ) with respect to the sample s, or equivalently to find 

the minimum 

 

  , ,min 2N
n s U n n s U nn

s
  1 1 1 1V V  (6) 

 

For any sample  
1 2
, , ,

nj j js Y Y Y  let hi = ji+1 – ji, 1, 2, …, n – 1 denote the 

distances of two successive sampled units with moreover h0 = j1 – 1 and hN = N−jn 

the two end distances. Under this notation any sample s can also take the form 

 
0 1 0 1 1 01 1 1, , ,

nh h h h h hs Y Y Y
        and uniquely represented by the vector of 

distances h = (h0, h1, h2, …, hn) with hi,i = 0,1,…,n to be integers with 

h0 + h1 + … + hn = N – 1. Using this equivalent notation for the sample s the 

minimization expression can finally be written as 

 

   

 

or equivalently 
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   (7) 

 

Finding the optimum sample (s) is now a constrained minimization problem of 

minimizing (7) with respect to the unknowns hi,i = 0,1,…,n. The parameter 

constrains, that mainly result from their definition, are 

 

 0 ≤ h0 ≤ N – 1 

 0 < hi ≤ N – 1, i = 1,2,…,n − 1 

 0 ≤ hn ≤ N – 1 and 

 h0 + h1 + … + hn = N – 1 (8) 

 

Therefore, the sampling problem is mathematically formulated as a constrained 

minimization problem. However the mathematical solution is not straightforward, 

due to the unknown integer function ρ(h) involved in Q. Unless certain properties 

are assumed for ρ(h) the problem cannot be solved in its general case. The 

difficulty is mainly caused from the upper bounds of the summations in the 

second parenthesis of Q that depend on the unknowns hi and make the number of 

the terms in those summations a variable itself. 

Methodology 

A Solution Based On The Continuous Approximation 

The objective function Q given by (7) is in general a sum of values of the function 

ρ(h). Function ρ(h) on the other hand represents the autocorrelation function of 

the population series and takes values at lag h,h = 0,1,2,…,N − 1, being therefore 

an integer defined function. The integer feature of ρ(h) leads to the summations 

appearing in Q that in turn prevent from its minimization. 

The idea is to use an approximate, but approachable towards its 

minimization expression instead of Q. The approximation consists of two stages, 

first to approximate every sum that appears in the second parenthesis of Q by an 
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integral and secondly to approximate the integer function ρ(h) with a continuous 

function. Approximating a sum with an integral is a known practice in literature 

and departs from the Euler-Maclaurin formula. The aim is to use Euler-Maclaurin 

formula in order to obtain a continuous approximation of the objective function 

and provide bounds for the error in the approximation. Note however that the 

derivation of the point(s) (h0, h1, h2, …, hn) where the minimum is attained will 

suffice the sampling problem and will provide with the optimal sample. Once the 

optimal sample is determined the corresponding for the estimate exact mse under 

the optimal sample can be calculated by a single substitution in (5) and not 

through its continuous approximation. In other words, the approximate and the 

true versions of Q need only to share the same monotonicity and not coincide. 

The second condition is stronger and guarantees the first. 

Euler-Maclaurin formula is a mathematical tool, an equality, where a finite 

sum of values of a function f at the left side part is expressed as a finite integral of 

the same function f plus an error term at the right side part. The error term 

involves all consecutive derivatives of f, the Bernoulli numbers and Bernoulli 

polynomials. More analytically, it holds 
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Bk, k = 1, 2, … stands for the Bernoulli numbers and Bm({x}) is the 

Bernoulli polynomial with {x} = x − ⌊x⌋ the fractional part of x. Rm is the 

remainder and m is chosen accordingly. Euler-Maclaurin expression is a 

fundamental result in algebra providing a link between a sum and the 

corresponding integral. A number of other important results can be derived from 

this formula. For more details see Graham et al, 1994, p. 469. 

The integer number m that can be chosen accordingly in (9) will affect the 

remainder and consequently the error in this continuous approximation. The 

Bernoulli numbers are closely related with this choice. Recall the first few values: 
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For m = 3, for example, the Euler-Maclaurin equation (9) for a function f studied 

in the interval [a, b] is 
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The remainder in general must always be considered, as often it diverts, 

depending on function f (Graham et al, 1994). Function ρ(h) is playing the role of 

function f in this present application of Euler-Maclaurin. Consequently, the 

second stage of approximation in Q consisted of a continuous approximation of 

ρ(h), and is also related to the remainder calculation. Such an approximation is 

needed because of the integer nature of ρ(h) and the presence of integrals at the 

right hand side of formula (9). 

Because equation (9) involves all the successive-in-order derivatives of f, a 

continuous extension of ρ(h) through a spline interpolating technique is proposed. 

If the spline is selected within the broad group of cubic polynomial splines, the 

third derivative can always be constant and the fourth or higher equal to zero. 

There are a few alternative splines that preserve the cubic characteristics, with 

most popular (i) the piecewise cubic shape-preserving hermite interpolation and 

(ii) the cubic spline, both implemented in Matlab with routines pchip and csaps 

respectively. The characteristics that these two alternatives share in common are 

that they both produce a polynomial which passes though the provided data points, 

they are piecewise three degree polynomials and they have continuous first 

derivatives. The differences between them is that the pchip produces a function 

that in order to reserve the shape of the data has discontinuous second derivatives, 

while csaps leads to a smoother function with continuous second derivatives. 

Moreover, csaps allows a smoothing parameter p to be chosen, either manually or 

by default, which controls the smoothness of the resulting curve in contrast with 

how close this curve will be to the data points to which it will be fitted. 

Let r(h) denote a continuous piecewise cubic interpolation of ρ(h), obtained 

by either pchip or csaps. Applying next Euler formula for m = 4 to a typical 

summation of those contained in Q, it can take the form 
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This last expression is an equality and not an approximation because R4 = 0 since 

r(x) is a polynomial of third order and therefore r(4)(x). Moreover B3 = 0 and also 

r(3)(x) is constant, not depending on x, and therefore it adds to zero when 

evaluated at the two ends of the interval. The only limitation for the exact 

equivalent and not an approximate expression is r(x) = ρ(x) for all the discrete 

points between a and b. In other words, r has to be a continuous extension of ρ(x). 

Under these conditions the error term in Euler-Maclaurin formula is zero and the 

two functions Q and the corresponding continuous will coincide for all possible 

points of (h0, h1, h2, …, hn). 

Summarizing, the steps of the proposed methodology in order to determine 

the optimal sampling allocation and inference about the population parameter are 

 

Step 1.  Use (11) for every summation in the second parenthesis of Q in (7) 

and obtain the continuous equivalent expression given by 
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Step 2.  Minimize Qc with respect to (h0, h1, h2, …, hn) and constrains (8), 

where n is the sample size. Numerical constrained optimization can be used since 

function Qc is easily programmed. Function r(h) is calculated by a cubic 

interpolation on the original discrete function ρ(h). 

 

Step 3.  If  * * * *

0 1, , , nh h hh  is the vector where the minimum in step 2 is 

attained and  0 1, , , nh h h  is its closest integer vector, the optimal sample is the 

collection of units at positions 

 

 
1 0 2 0 1 3 0 1 2 0 1 1, 1, 1, , 1n nh h h h h h h h h                   

 

Step 4.  The mse of the population mean estimate calculated on the optimal 

sample  
1 2
, , ,

n
s Y Y Y     is derived from (5) by single substitution. 

 

For a small numerical example, a set of simulated N observations from a 

Moving Average (MA) process of order 2, with parameters −0.4 and 0.5 are 

assumed to represent the population. The autocorrelation function of the assumed 

MA model within the population range is listed in the first part of Table 1. The 

resulting set of values forming the population is U = (−0.52, −1.33, 0.19, 1.70, 

−1.37, −1.35, −0.22, −0.16) and let the aim of the experiment to be the selection 

of a sample of size n = 3 that minimizes the mse. The set of all possible samples 

Pn contains 56 samples, and in order to obtain the optimal s = (h0, h1, h2, h3), the 

quantity Q needs to be minimized with respect to (h0, h1, h2, h3). Function Q given 

by (7) for this example is 
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and the corresponding Qc is 
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Note the complexity of Qc does not depend on N. The number of the 

unknowns and consequently the efficiency of the numerical minimization depends 

only on n. Sizes N and n have been chosen small in order to proceed in an 

exhaustive enumeration of all samples in Pn and confirm both the approximation 

of Q and its minimum. Minimizing Qc (h0, h1, h2, h3) yields 

(h0, h1, h2) = (0, 1.80, 1.91) and h3 = N – 1 − (h0, h1, h2). The closest discrete 

solution is (h0, h1, h2) = (0, 2, 2) and this corresponds to the sample s = (Y1, Y3, Y5). 
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Table 1a. Numerical example for a population with N = 8 generated from MA(2) 

 

i Yi lag h ρ(h) r(h) 

1 -0.52 0 1.00 1.00 

2 -1.33 1 -0.06 -0.06 

3 0.19 2 -0.66 -0.66 

4 1.70 3 0.02 0.02 

5 -1.37 4 0.21 0.21 

6 -1.35 5 0.02 0.02 

7 -0.22 6 -0.03 -0.03 

8 -0.16 7 0.00 0.00 

 
 
Table 1b. Numerical example for a population with N = 8 generated from MA(2) 

 

sample Q Hermite Qc Spline Qc     sample Q Hermite Qc Spline Qc 

(0,1,1) 2.4533 2.4308 2.4531 
 

  (1,2,3) 3.3185 3.2853 3.3069 

(0,1,2) 2.8326 2.8135 2.8284 
 

  (1,2,4) 3.8756 3.8564 3.8714 

(0,1,3) 6.9570 6.9379 6.9528 
 

  (1,3,1) 8.1837 8.1634 8.1842 

(0,1,4) 6.9570 6.9345 6.9568 
 

  (1,3,2) 3.3185 3.2853 3.3069 

(0,1,5) 4.6993 4.6638 4.6870 
 

  (1,3,3) 6.1985 6.1794 6.1943 

(0,1,6) 4.4978 4.4764 4.4929 
 

  (1,4,1) 7.0637 7.0271 7.0561 

(0,2,1) 3.9526 3.9464 3.9605 
 

  (1,4,2) 3.8756 3.8530 3.8754 

(0,2,2) 2.0089 2.0027 2.0168 
 

  (1,5,1) 4.6993 4.6638 4.6870 

(0,2,3) 4.3319 4.3223 4.3437 
 

  (2,1,1) 4.8000 4.7960 4.8085 

(0,2,4) 3.8756 3.8530 3.8754 
 

  (2,1,2) 5.1793 5.1719 5.1918 

(0,2,5) 3.0104 3.0020 3.0176 
 

  (2,1,3) 8.1837 8.1634 8.1842 

(0,3,1) 8.0770 8.0742 8.0809 
 

  (2,1,4) 8.0770 8.0709 8.0849 

(0,3,2) 4.3319 4.3257 4.3397 
 

  (2,2,1) 5.1793 5.1719 5.1918 

(0,3,3) 6.1985 6.1794 6.1943 
 

  (2,2,2) 2.1156 2.0953 2.1160 

(0,3,4) 7.1348 7.1298 7.1380 
 

  (2,2,3) 4.3319 4.3257 4.3397 

(0,4,1) 8.0770 8.0709 8.0849 
 

  (2,3,1) 8.1837 8.1600 8.1182 

(0,4,2) 3.8756 3.8564 3.8714 
 

  (2,3,2) 4.3319 4.3223 4.3437 

(0,4,3) 7.1348 7.1298 7.1380 
 

  (2,4,1) 6.9570 6.9345 6.9568 

(0,5,1) 5.8193 5.7967 5.8191 
 

  (3,1,1) 4.8000 4.7960 4.8085 

(0,5,2) 3.0104 3.0020 3.0176 
 

  (3,1,2) 4.0593 4.0424 4.0557 

(0,6,1) 4.4978 4.4764 4.4929 
 

  (3,1,3) 8.0770 8.0742 8.0809 

(1,1,1) 3.6800 3.6597 3.6805 
 

  (3,2,1) 4.0593 4.0390 4.0597 

(1,1,2) 4.0593 4.0390 4.0597 
 

  (3,2,2) 2.0089 2.0027 2.0168 

(1,1,3) 8.1837 8.1600 8.1882 
 

  (3,3,1) 6.9570 6.9379 6.9528 

(1,1,4) 7.0637 7.0271 7.0561 
 

  (4,1,1) 3.6800 3.6597 3.6805 

(1,1,5) 5.8193 5.7967 5.8191 
 

  (4,1,2) 3.9526 3.9464 3.9605 

(1,2,1) 4.0593 4.0424 4.0557 
 

  (4,2,1) 2.8326 2.8135 2.8284 

(1,2,2) 2.1156 2.0953 2.1160     (5,1,1) 2.4533 2.4308 2.4531 

 
 

Table 1b provides a comparison of the arithmetic values of Q and Qc for 

every sample in Pn. The 56 samples of Pn consist of all possible vectors 
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(h0, h1, h2) that fulfill constrains (8); h3 = 7 − h0 − h1 − h2 and is not given. Two 

versions of Qc are presented for the example, the first one using piecewise cubic 

hermite interpolation to construct r, noted as Hermite Qc, and the second using 

smooth spline, noted as Spline Qc. The differences compared to the true function 

Q are in the second decimal place, while the range of values is between 2.0089 

and 8.1837. The differences among the function values are due to the use of 

numerical instead of analytical integration. It is also verified that the minimum 

mse value is achieved for the same sample s = (0, 2, 2) for all methods, and agrees 

with the one derived from the numerical minimization. Since the optimal sample 

is found, the exact mse can be calculated from (5) and is 6.0267. 

The smoothness characteristic of the spline r(∙) improves the performance of 

the numerical integration and produces numerical values closer to the true ones. 

The smoothing parameter for the csaps routine, which has been used for this 

example, was chosen as 1. This means that a priority to the exact matching of the 

spline values with the initial was given, rather than the smoothness. 

Experiments and Applications 

Experiments with Simulated Data 

Three numerical examples follow, with simulated data generated from three 

different ARMA models to represent the population values under study. The 

justification for the ARMA model is that its autocorrelation function is general 

enough to cover a wide range of types for the serial correlation, depending on the 

specific values of their order and parameters. The aim of the experiment is to 

obtain the optimal sampling allocation following the proposed methodology, and 

compare its efficiency with other competitive sampling designs, chosen for either 

their broad use, because they are standard sampling designs, or because the 

literature suggests their application is appropriate to the case of correlated 

populations. More specifically, the sampling designs chosen are simple random 

sampling (srs), systematic sampling (sy), an optimal design for correlated 

populations with positive correlation, and Designs I and II proposed by Chao 

(2004) for correlated populations. 

A range of values for the sample size is taken in every population case for a 

more complete view of the sampling design performance. The corresponding 

mean square errors of the estimates are calculated for all examined sampling 

designs by simulation and assuming normality. More specifically, if K realizations 

from each population model are generated, and ˆd

j  is the estimate for the 
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population total at the jth realization according to the sampling design d, the mse 

for the estimate will be calculated by 
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The number of iterations for each experiment is 15,000, while the common 

variance σ2 is assumed unity. The optimal allocation of samples is derived by 

implementing the proposed methodology as previously described in Steps 1 to 5. 

For the numerical optimization, twenty different starting values have been used 

for each application and the smooth spline with p = 1 has been used as the 

interpolation function of ρ. The performance of the examined sampling designs is 

evaluated by the relative efficiency to the srs, defined as the ratio of the mse 

obtained with a sampling design to that obtained with the srs. Values of relative 

efficiency greater than one indicate efficiency of the examined design. 

 

Model 1.  The population measurements are generated from an 

ARMA(1,1) model with autocorrelation function plotted in Figure 1a. The degree 

of correlation is moderate for the assumed population occasion with the sign to 

alternate because of the negative sign of the parameter φ, the autoregressive part 

of the process. For population size N = 80 and sample size that ranges from n = 3 

to n = 12 the calculated efficiencies of the examined designs compared to srs are 

plotted in Figure 1b. For better illustration the reciprocal of the design effect is 

plotted in Figure 1b. Systematic, Design I and Design II are comparable with srs 

with respect to their mse, while the optimal allocation derived by the proposed 

methodology is clearly more efficient. 

As a specific example, for n = 12 the optimal sample determined from the 

solution of the numerical minimization problem is 

s = [1  2  3  59  60  61  62  63  64  78  79  80]. Sample s has the sampling units 

separated into three groups, two groups located at the two ends of the population 

and one in the middle. Moreover neighbor units of the population are selected 

within the groups. Its mean square error by using simulation is 113.79, and its 

exact value from expression (5) is 113.87. Design II, the second best with respect 

to the mean square error in this example, has mse of 441.87. 
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Figure 1. Relative efficiencies using the empirical autocorrelation function on Model 1 

 

 
 

 
 
Figure 2. Relative efficiencies using the theoretical autocorrelation function on Model 1 

 

 
 

The empirical autocorrelation function calculated from the population of 

size N = 80 has been used for implementing the methodology in this first example. 

If not the empirical but the exact autocorrelation function according to the 

assumed ARMA(1,1) model is used, the two resulting plots (corresponding to 

those in Figure 1) are presented in Figure 2. The sampling allocation according to 

the proposed method remains efficient. The assumed theoretical ARMA model 

has a negative φ parameter as it can be seen from Figure 2a and the sign of the 
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ACF alternates. For such cases, the systematic sampling is far from the optimal, 

and plots in Figures 1b and 2b verify this result from the literature. 

 

Model 2.  N = 80 is assumed for this example. The population vector, 

U, is generated from an ARMA(2,1) model with autocorrelation function plotted 

in Figure 3a. The serial correlation is not strong in this model, but the sign 

alternates and therefore it cannot be characterized as a positive, convex function. 

Following the same steps as in Model 1, the corresponding plot that presents the 

relative efficiencies of the sampling schemes under study with srs are presented in 

Figure 3b. 

The optimal sample derived by the proposed methodology implemented 

here is the most efficient sample along all examined sample sizes, as shown in 

Figure 3b. The three other samples proposed from the remaining techniques 

exhibit similar performance, faintly better if not comparable with the srs. The 

comparable to srs performance of sy is explained from the fact that the correlation 

between observations is low. It is known in sampling literature that sy and srs are 

equivalent with respect to accuracy when the population measurements do not 

present a trend or correlation (Cochran, 1977). Figure 3b demonstrates that the 

efficiency of the optimal sample is increased as the sample size increases. 
 
 

 
 
Figure 3. Relative efficiencies using the autocorrelation function on Model 2 

 

 
 

Model 3.  Assume N = 50 and population values generated from an 

ARMA(2,4) model with autocorrelation function plotted in Figure 4a. The 
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autocorrelation in this model is not strong and alternates in sign. Again for sample 

size ranging between n = 3 and n = 12, the relative efficiencies are plotted in 

Figure 4b. The optimal sample as derived by the proposed methodology is clearly 

the sample with the minimum mse. Its relative efficiency is between 0.207 and 

0.48, indicating a significant improvement in accuracy with respect to srs 

sampling scheme. Among the remaining competitive designs, Design II compares 

better than the srs, although not consistently, followed by Design I and systematic 

sampling, which produce higher than the srs mse and are not appropriate for this 

population case. 
 
 

 
 
Figure 4. Relative efficiencies using the autocorrelation function on Model 3 

 

 

An application in Statistical Process Control 

Consider an application of the proposed methodology in Statistical Process 

Control (SPC) based on a real data set. The data include 204 consecutive 

measurements of electrical resistance of insulation in megaohms and was first 

presented in Shewhart (1931, p. 20). The data set often serves as a typical 

example in SPC, where the existing autocorrelation can lead to incorrect 

conclusions about a process if it has not been detected or handled properly. The 

implementation of sampling in SPC happens during the construction of the 

statistical charts, which aim to provide some warning limits for the production 

line and detect a deviation in mean or variance of the process. Many forms of 

statistical charts are available, but the common basis for any chart is a sample 



OPTIMAL SAMPLE ALLOCATION FOR CORRELATED POPULATIONS  

314 

taken at an initial stage from the production line. Shewhart's control chart is one 

of the best known statistical control charts, and its basic components are presented 

during this application. Any statistical control chart can be evaluated by 

calculating the expected probability of false positive or negative alarms. 

Shewhart's control chart of the X , the mean of a sample taken from the 

process, was originally constructed for the electrical measurements and presented 

by taking successive groups of four. The resulting 51 subsamples were used to 

estimate the mean and the variance of the population towards the construction of 

the upper and lower control limits. The control limits provide a reference interval 

for a mean of a sample of four selected from the process if this is in control. The 

two limits are in mathematical terms 
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where x  is the mean of the means of the 51 subsamples and is used as an 

estimate of the population mean, ̂  is the estimate of σ, the square root of the 

process units variance, and k is the size of the sub-samples. For k = 4 and the total 

of 51 subsamples in the data, the resulting control limits for the mean of the 

process are plotted in Figure 5, solid line. The means of the 51 samples are plotted 

together in the same Figure, and a large percentage of those means are outside the 

limits an indication that the process is not in control. The process is however in 

statistical control, as subsequent analyses of the same data set concluded (see for 

example, Alwan and Roberts, 1995). The variation that the data exhibit can be 

explained from the present autocorrelation not taken into account in the first 

application, and is not due to a special cause. 

Yang and Hancock (1990) introduced the autocorrelation into the 

calculation of the control limits for Shewhart's control chart. The new control 

limits suggested by their methodology are given by 
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where rij are the i, j elements of matrix R if assumed that the variance 

covariance matrix V of a sample can be written as V = σ2R. Implementing this 

approach for the electrical measurements and using all 51 samples of four, the 
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resulting control limits are wider, as expected, and include all 51 sub-sample 

means, as can be seen in Figure 5 (dotted line). 

Alternatively, the control limits can be calculated by implementing the 

methodology proposed in Steps 1–4. The implementation is possible in both 

stages of sampling. For the first stage of sub-samples of four, formula (5) can be 

used to estimate the variance of the sample mean. The resulting estimate is more 

accurate than the average correlation ρ because the exact matrix V according to 

the model, and not an average ρ, is used. For the second stage of the 51 sub-

samples, either complete enumeration or sampling is possible. Sampling is more 

realistic in practice and can also be applied to continuous processes. Both 

scenarios are presented here using the proposed methodology to choose the 

sample in the case of sampling at the level of sub-samples. Moreover, in a real 

situation application, a sample instead of successive measurements could also be 

the case for the first stage of SPC. 

A first-order autoregressive model has been fitted to the data with parameter 

φ equal to 0.549 (Alwan & Roberts, 1995), and this is the model used for the 

implementation. When all sub-samples are taken into account and the variance of 

the mean with sub-sample is calculated by (5), the resulting control limits are 

plotted in Figure 5 (dashed line). The use of the exact form of the model that 

describes the population units allows control limits that are wider than in the first 

analysis, but not as much as according to Yang and Hancock methodology. Note 

that too wide control limits lead to an increase of the probability of falsity in 

control conclusions. 

If a sample of seven sub-samples is selected according to the proposed 

methodology, and the estimates of the mean as well as their standard errors in 

both stages are calculated from expression (4) and (5) respectively, the resulting 

control limits are plotted in Figure 5 (dash-dot line), and compare closely to the 

ones derived from the complete population of Ν = 51 sub-samples. 

Therefore, identifying the model correctly and fully incorporating this 

information in the selection of samples procedure and the statistical inference 

allows us to accurately construct control limits using only 28 measurements 

instead of 204. 
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Figure 5. Control limits for electrical measurements. 

 

 
 

The optimal sample of size seven for this application was found not to be 

equally spaced. An equally spaced scheme in SPC, also called fixed distance 

sampling, corresponds to a systematic design and is often the choice for selecting 

the sub-samples during the second stage for SPC applications, especially in cases 

where a positive correlation is detected. However, it has been verified that 

variable distance outperforms fixed distance sampling. The comparison has been 

conducted with simulation studies that calculate the average time to signal (ATS), 

a measure of efficiency of control charts. The advantage of variable distance 

sampling depends on the degree and type of correlation (Prybutok, et al., 2007). 

Within the same framework, other models, more general than the AR, can 

also be treated with the proposed methodology. 

Conclusion 

A continuous approach was proposed for an intractable otherwise discrete 

optimization problem with primary application in sampling. During the process of 
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sampling from correlated populations, the specific type of the autocorrelation 

function ρ(h) among the populations’ units affects both the choice of the sample 

and the inference about the population parameters. If ρ(h) has certain properties, 

such as constant, positive, decreasing, convex, etc., it is possible to derive 

conclusions about the optimal sampling designs even if ρ(h) is not known in its 

exact form. In cases of a more general type of correlation (for example, a 

realization of a time series process), characterizing the optimal sampling designs 

or the class of the optimal samples is not possible and the results depend closely 

on the specific type of ρ(h). A feasible and accurate way of deriving a sample that 

belongs to the class of optimal samples in such cases is proposed here. The 

estimate with its mse is also provided. The proposed technique uses continuous 

approximation of a finite sum from an integral. A continuous interpolation 

function r(h) based on ρ(h) is an important component for its implementation, and 

when r(h) holds certain properties it is shown that the proposed approach is not an 

approximation but exact. 

The method can be used in any case of correlated population, or not.  It is 

fast, easily programmed and implemented, and computationally efficient. The 

dimensionality coincides with the sample size and therefore the computational 

efficiency remains unaffected from the population size. As a general approach, it 

can find applications in other than sampling context and facilitate the solution of a 

mathematical problem that depends on a function with a discrete nature. 

The benefit for estimation is significant. Ignoring or incorrectly specifying 

the existing correlation within a population set can lead to misleading results, 

especially regarding the accuracy of the derived parameter estimate. The proposed 

methodology suggests a more sophisticated and informative sampling procedure, 

specialized for the population under study. This specialization has been 

incorporated into the mse calculation of the assumed estimator and the minimum 

mse is the criterion for the sampling procedure derivation. Therefore, the 

suggested sample is optimal with respect to the accuracy of the resulting estimate, 

and the improvement in mse is significant when compared to other known and 

widely used sampling schemes. Moreover, the simulation experiments suggest 

that the inclusion of the population model towards the correct calculation of the 

mse is necessary, and has a considerable impact on efficiency even if a small 

degree correlation occurs. Finally, the actual arithmetic value of both the estimate 

and its exact mse implemented for the optimal sampling allocation are provided. 

The extension of the proposed methodology to continuous stationary 

processes is straightforward. The assumption of other than the least squared 

estimator is also possible. The least squared estimator for the population 
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parameter has been considered here because of its frequent use in practice, due to 

its simplicity and ease of implementation. Assumption of the best linear unbiased 

or the best unbiased estimators are some possible extensions, along with the 

assumptions of model (2). The constant mean parameter μ may be assumed 

dependent on population unit i. Under this model the least squared estimator (4) is 

not unbiased for the population total. The bias depends on the sample s, but not on 

the type of autocorrelation. The new expression of the estimator's mse needs to be 

minimized following a procedure similar to that proposed here. 
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