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Through Monte Carlo simulations, the performance of six multivariate nonparametric 
tests for testing the hypothesis of parallelism in profile analysis was studied. In 

conclusion, the tests based on ranks were as efficient as Hotelling's T
2
 under multivariate 

normal distribution. For the heavy tailed distribution, the tests based on signs performed 
best. 
 
Keywords: Monte Carlo simulation, multivariate, nonparametric, profile analysis, 
heavy tailed 

 

Introduction 

Research in many areas of application frequently involves repeated measurements 

in which response from each experimental unit is measured repeatedly over 

different occasions such as time points. The linear mixed model to repeated 

measurements (Laird & Ware, 1982; Ware, 1985) was developed to analyze 

incomplete and unbalanced data. However, the performance of this complex 

approach is highly sensitive to the choice of model for mean function and 

correlation structure for errors (Littell, Pendergast, & Natarajan, 2000; Park, Park, 

& Davis, 2001; Vossoughi, Ayatollahi, Towhidi, & Ketabchi, 2012). Although 

several nonparametric methods have been developed for non-normal responses 

(Azzalini & Bowman, 1991; Singer, Poleto, & Rosa, 2004; Wernecke & Kalb, 

1999; Wernecke & Kaufmann, 2000), model building and software 

implementation of these methods are extremely complicated.  

Due to these difficulties, investigators are often interested in using the 

traditional approaches especially when the circumstances are controlled for 

http://dx.doi.org/10.22237/jmasm/1478002620
mailto:vossoughim@sums.ac.ir
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obtaining complete data. In this context, the profile analysis method using 

MANOVA tests makes no assumption regarding the correlation structure and 

trend of mean model and hence is widely used. Nevertheless, the MANOVA tests 

perform poorly when the distribution of errors much deviates from multivariate 

normal (Davis, 1980, 1982; Everitt, 1979; Olson, 1974; Um & Randles, 1998).  

Bhapkar (1984) and Sen (1984) discussed asymptotically distribution-free 

analogous of profile analysis. Multivariate extensions of Kruskal-Wallis and 

Brown-Mood median tests based on marginal ranks and signs were discussed in 

Puri and Sen (1971) but suffer from a lack of invariance with respect to affine 

transformations. Several authors provided detailed descriptions of affine invariant 

and non-invariant competitors based on spatial signs and ranks (Hettmansperger, 

Möttönen & Oja, 1998; Hettmansperger & Oja, 1994; Möttönen & Oja, 1995; Oja, 

1999; Oja & Randles, 2004). The asymptotic efficiency of multivariate spatial 

sign and rank tests were studied by Möttönen, Oja, and Tienari (1997), Möttönen, 

Hettmansperger, Oja, and Tienari (1998), Nordhausen, Oja, and Tyler (2006) and 

Oja and Randles (2004). The theory and software implementation of affine 

invariant/non-invariant spatial sign and rank tests were well described by Oja 

(2010). 

The aim of this study is to compare the performance of six nonparametric 

multivariate multi-sample tests with Hotelling’s T
2
in profile analysis for repeated 

measurements. For this propose, Monte Carlo simulations based on broad 

spectrum of scenarios are used to study the empirical type I error rates and powers 

of the tests in testing the hypothesis of parallelism. Affine/non-affine invariant 

multivariate generalizations of multi-sample tests are compared based on spatial 

scores discussed in Oja (2010, Ch. 11) and multivariate generalization of multi-

sample tests based on marginal scores discussed in Chapter 5 of Puri and Sen 

(1971). 

Although the test of group main effect or hypothesis that the two groups are 

at the same level can also be assessed using multivariate multi-sample procedures, 

it was not included in the simulations for three priori reasons. First, rather than 
testing the general multivariate hypothesis µ1 = µ2 = … = µk to assess group main 

effect, summarizing the response vector of each subjects using its individual mean 

and then applying univariate tests is generally implemented in a parametric profile 

analysis (Davis, 2002; Rencher, 1995). Second, the performance of Hotelling's T
2 

and its nonparametric counterparts were studied to test above general hypothesis 

(Möttönen et al., 1998; Nordhausen et al., 2006; Um & Randles, 1998). Finally, 

group main effect has no direct interpretation in the presence of significant 

interaction and hence is not the primary hypothesis of interest in profile analysis. 
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Although the Monte Carlo comparison of methods for the analysis of 

repeated measurements has been an active area of research (Bhapkar & Patterson, 

1978; Marcucci, 1986; Mendoza, Toothaker, & Nicewander, 1974; Park et al., 

2001; Schwertman, Flynn, Stein, & Schenk, 1985; Schwertman, Fridshal, & 

Magrey, 1981), this study has been designed to examine some different aspects. 

First, the performances of recent nonparametric tests based on spatial signs and 

ranks considered here have not yet been studied in the area of profile analysis. 

Second, the effect of various correlation structures for errors has not included by 

most of the previous literature on this subject. Finally, the performance of the 

non-invariant tests under various transformation matrices widely used in the 

profile analysis are examined. 

Methodology 

Parametric profile analysis 

The structure of profile analysis for the analysis of repeated measurements is now 

considered. Suppose that repeated measurements have been taken from k groups 

of subjects at p occasions. Let yij = (yij1,…, yijp)
T
 represent the response vector 

from the jth subject in group i for j = 1,…, nk, i = 1,…, k. The profile analysis 

model is 

 

 ,ij i ij y    (1) 

 

where the vector εij = (εij1,…, εijp)T is the vector of errors for the jth subject in 

group I and μi = (μi1,…, μip)
T is the population mean vector for the ith group. Error 

vectors are assumed to be independent and normally distributed with mean vector 

0 and common covariance matrix Σ. 

Arguably, in the presence of group × occasion interaction, the tests of main 

effects are confounded. Therefore, the primary aim in the profile analysis is to test 

the hypothesis of parallelism of k group profiles. The test of the hypothesis can be 

constructed as  

 

 * *

0 1 1H or ,k k    Cμ μ μ μC   (2) 
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where *

hμ  is the mean of transformed observations, 
*

ij ijy Cy . Here, C is a 

p-1 × p transformation matrix with rank p-1 satisfying C1 = 0, where 1 is the unit 

matrix. For instance, when p = 3, three widely-used matrices are: 

 
C1: Mean difference 

 

2 1 11

1 2 13

  
 
  

 

C2: Adjacent difference 

 

1 1 0

0 1 1

 
 

 
 

 

C3: Last-value difference 

 

1 0 1

0 1 1

 
 

 
 

For example, the analogous hypothesis of parallelism for k = 2 and the 

transformation matrix C2 is 

 

 

12 11 22 21

13 12 23 22

0

1 1, 1 2 2, 1

: .

p p p p

H

   

   

    

    
   

    
   
          

  (3) 

 

Then, one-way multivariate analysis of variance (MANOVA) test statistics 

such as Wilk's Λ (if k > 2) or Hotelling's T
2
 (if k = 2) can be used to assess the 

equality of mean vectors of transformed variables 
*

ijy  or equivalently hypothesis 

of parallelism. Similarly, nonparametric multivariate tests can be applied on the 

transformed observations to assess the equality of population locations when the 

underlying distribution deviates from normality. 

Nonparametric counterparts of MANOVA tests 

A brief overview of six nonparametric multivariate multi-sample tests used for 

profile analysis in the Monte Carlo simulations are now considered. The focus is 

primarily on recent methods that are supplied in standard statistical software 

packages. Here, we assume the p-dimensional data vectors are generated 

independently using model 

 

 ,ij i ij y θ ε   (4) 

 
where θi denotes the p-dimensional location vector for group i which is not 

necessary the corresponding mean vector and εij is the vector of errors from an 
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elliptical multivariate distribution with location vector 0 and scatter matrix Σ. 

When measurements are not normally distributed, nonparametric multi-sample 

multivariate tests can be employed to test the hypothesis of no group × occasions 

interaction effect as 

 

 * *

0 1 ,kH   θ θ   (5) 

 

where *

iθ  indicates the location vector of transformed variables from group i. 

Tests based on spatial signs 

The test statistic based on spatial signs for testing H0 is 

 

  * *

1

c

i i i

i

Q n


 U U   (6) 

 

where *

iU  denotes the sample mean vector of spatial signs transformed using 

inner centering and outer standardization. Although the test is location invariant, 

it is not affine invariant; that is the condition Q (AY) = Q (Y) is not satisfied for 

every nonsingular matrix A with rank p. 

The affine invariant test statistic is 

 

  * *

1

c

i i i

i

Q p n


  U U   (7) 

 

where, here, *

iU  is the sample mean vector of spatial signs transformed using 

inner centering and inner standardization. 

The test statistics are multivariate generalizations of two- and several-

sample Mood's median test and are asymptotically distributed as  
2

1c p



 when H0 

is true. The spatial sign tests are denoted by SS and SSI for the non invariant and 

invariant versions in the simulations, respectively. See Oja (2010) regarding the 

theory and software implementation of spatial sign and rank tests. 

Tests based on spatial ranks 

The constructions of tests based on spatial ranks are essentially the same as the 

spatial sign cases, with the difference that *

iU 's are replaced by the corresponding 
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sample mean vector of transformed spatial ranks, *

iR . Due to the fact that the 

spatial ranks are naturally centered, one needs only to standardize them using 

outer or inner approaches to construct non affine or affine invariant versions of 

test statistic. The test statistics using outer and inner standardization are in the 

form of 

 

  
1

c

i i i

i

Q n  



 R R   (8) 

 

and 

 

  
1

,
c

i i i

i

Q p n  



  R R   (9) 

 

respectively. The asymptotic null distribution of both test statistics is  
2

1c p



. The 

non invariant and affine invariant spatial rank tests are denoted by SR and SRI in 

the simulations, respectively. 

Tests based on marginal ranks and signs 

The multivariate multi-sample rank sum test compares the difference between the 

sample average rank vector 
ir  and the combined-data average rank vector r  as 

 

    1

. .

1

.
c

R i i i

i

L n 



   r r V r r   (10) 

 

The test reduces to the Kruskal-Wallis test when p = 1 and to Wilcoxon-

Mann-Whitney test when p = 1 and c = 2. 

The multivariate multi-sample median test uses the corresponding average 

vectors based on sample signs (computed regarding combined-data median 

vector) to test the null hypothesis as 

 

    1

. .

1

.
c

S i i i

i

L n 



   s s V s s   (11) 

 

Write V to denote the sample covariance matrix of marginal ranks and signs 

in LR and LS, respectively. The asymptotic null distribution of both statistics is 
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 
2

1c p



. The multivariate multi-sample location tests based on the vector of 

marginal signs and ranks were discussed in detail by Puri and Sen (1971). 

The marginal sign and rank tests are denoted by MS and MR, respectively, in 

the simulation. 

Simulation study 

The structure of a Monte Carlo study used to investigate the performances of tests 

according to empirical type I error rates and powers is now discussed. The profile 

model (4) with two groups (k = 2), number of measurements p = 4, 8 and sample 

sizes n = 10, 20 and 30 for each of the two samples was considered. The 

performances of MANOVA test (here Hotelling's T
2
 since k = 2) and the six 

nonparametric counterparts in testing the hypothesis of parallelism were 

compared under various scenarios. In the simulations, Hotelling's T
2
 test was 

denoted by T
2
. 

Consider three types of correlation structures for errors; compound 

symmetry (CS) with ρ = 0.2, first-order autoregressive (AR1) with ρ = 0.5, and an 

unstructured model (UN). The UN structure considered here was an arbitrary 

p × p correlation matrix producing a positive definite covariance matrix. Errors 

were generated from multivariate t with 3 degrees of freedom (denoted by t (3)) as 

a heavy-tailed distribution and multivariate normal distribution with mean vector 

0 and variances 3 for above correlation structures. Therefore the two distributions 

had the same mean vector and covariance matrix and differ only by degrees of 

heaviness of their tails. The MANOVA tests have been shown to have low powers 

when the underlying distribution is heavy-tailed, in particular (see e.g. (Somorčík, 

2006). The reason is that the sample mean vector and covariance matrix would 

not provide proper estimates of location and variation under the presence of 

outliers (see, e.g. Um & Randles, 1998). 

Throughout the simulations, θ1 was considered to be a zero vector. To 

compute the empirical type I error rates, data were simulated under the hypothesis 
of parallelism, H0 : Cθ1 = Cθ2, when θ2 was also considered to be a zero vector. 

However, the hypothesis of interaction or H1 : Cθ1 ≠ Cθ2 was simulated when 

θ2 = (0, 1, 1, 0)T and (0, 0, 1, 1, 1, 1, 0, 0)T for p = 4 and 8, respectively; so that 

the empirical powers were computed. Also considered are the three 

transformation matrices C1 to C3 presented above to evaluate the robustness of 

non affine-invariant tests. 

For each combination of above scenarios, 1000 replications were carried out 

and significance level was considered to be 0.05. All simulations performed using 
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R 3.0.1 (R Development Core Team, 2013). In this respect, the multi-sample tests 

implemented using the R packages MNM, ICSNP, and Hotelling. Multivariate 

normal and t data were generated using the R packages MASS and mvtnorm, 

respectively. 

Results 

Displayed in Tables 1 and 2 are empirical type I error rates of the tests for errors 

generated from multivariate normal and multivariate t (3) distributions, 

respectively. Each value is the proportion of 1000 replications for which the 

hypothesis of parallelism or null hypothesis was incorrectly rejected. In general, 

all tests preserved the nominal 5 percent level under all scenarios. However, for 

p = 8 and smaller sample size n = 10, the type I error rates of nonparametric tests 

were smaller than those of parametric one. 

Displayed in Table 3 are empirical powers of the test for multivariate 

normal distribution. Each power value computed as the proportion of 1000 

replications for which the hypothesis of parallelism was correctly rejected. In 

summary, among the tests, the affine invariant and non-invariant tests based on 

spatial ranks as well as test based on marginal ranks reached a power level fully 

close to that of Hotelling T
2
 in which the differences were considerably negligible 

for all correlation structures. However, for the smaller sample size n = 10 and 

larger number of replication p = 8, the amount of difference somewhat increased. 

The test based on marginal signs performed unsatisfactorily; that is its powers 

were much lower than those of other test statistics for all correlation structures 

and transformation matrices. Interestingly, for all transformation matrices, the 

competitor based on spatial signs dominated the test based on marginal sign and 

was comparable to the best tests in the multivariate normal case. The empirical 

power trends of tests for multivariate normal distribution are visualized in Figure 

1. 

Shown in Table 4 are empirical powers of the test for data generated from 

multivariate t (3) as a heavy tailed distribution. The results showed that the tests 

based on spatial signs and ranks and tests based on marginal ranks fully 

dominated Hotelling's T
2
 for larger sample sizes n = 20 and 30 and any given 

correlation structure. For a fixed sample size, the amount of superiority somewhat 

decreased as p increased. In summary, the tests based on spatial signs yielded the 

greater values than the counterparts based on spatial and marginal ranks. Note that 

for a fixed p, the larger the size of sample, the greater the amount of difference in 

power levels. However, the performance of marginal sign test 
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Table 1. The empirical type I error rates of tests under multivariate normal distribution. 

 
    Correlation structure 

    CS  AR1  UN 
 Matrix C Test  10 20 30  10 20 30  10 20 30 

p
 =

 4
 

 
T

2
  047 044 048  061 047 040  044 049 045 

SRI  046 050 051  057 047 041  045 050 046 

SSI  044 040 044  053 045 043  045 052 044 

              

C1: 

SR  045 048 050  056 046 041  047 049 043 

SS  047 040 045  060 045 044  055 047 037 

MR  048 045 049  048 037 038  054 053 039 

MS  038 046 041  048 037 041  035 040 044 

              

C2: 

SR  046 046 052  059 048 040  045 047 041 

SS  049 047 045  053 045 041  052 049 036 

MR  051 047 045  050 046 043  046 047 049 

MS  040 041 044  055 040 038  042 050 049 
              

C3: 

SR  047 046 050  054 050 042  044 053 047 

SS  047 038 043  050 045 043  046 046 043 

MR  042 040 047  057 048 038  043 040 046 

MS  042 035 040  049 036 036  043 047 049 

               

p
 =

 8
 

 
T

2
  050 051 050  047 052 050  036 054 042 

SRI  018 043 042  016 042 043  015 042 037 

SSI  022 043 045  019 047 046  017 041 035 

              

C1: 

SR  023 045 045  016 040 043  015 043 040 

SS  020 046 046  017 044 044  015 044 034 

MR  015 038 048  017 033 045  015 046 043 

MS  021 045 044  018 036 047  017 044 038 

              

C2: 

SR  021 045 041  016 042 042  016 040 040 

SS  023 046 045  015 045 040  016 040 042 

MR  020 040 048  023 045 047  014 033 039 

MS  023 042 038  016 031 036  011 038 036 

              

C3: 

SR  023 046 048  017 045 045  019 037 038 

SS  020 040 043  016 043 045  012 040 038 

MR  020 040 042  018 032 042  015 041 041 

MS  020 044 040  017 039 037  014 036 033 

 

*Note: The entries within table correspond to empirical type I error rates multiplied by 1000. 

 
 

was unsatisfactory since it was just as efficient as Hotelling T
2
 for some specific 

choices of C. Surprisingly; even the permutation procedure provided no 

additional gain in efficiency for Hotelling's T
2
 under the heavy tailed distribution 

and hence not reported here.  
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Table 2. The empirical type I error rates of tests under multivariate t distribution. 

 
 

   Correlation structure 

   CS  AR1  UN 
Matrix C Test  10 20 30  10 20 30  10 20 30 

p
 =

 4
 

 T
2
  040 036 043  034 045 047  047 046 038 

SRI  051 049 050  048 056 047  057 054 046 

SSI  047 054 051  044 055 047  046 051 061 

              

C1: 

SR  052 046 056  046 056 050  054 052 050 

SS  051 049 060  048 052 050  047 053 054 

MR  046 043 049  047 046 050  048 054 041 

MS  050 049 049  046 057 057  046 051 039 

              

C2: 

SR  048 048 051  047 055 048  053 053 051 

SS  045 052 050  050 052 046  050 054 057 

MR  048 048 055  043 047 050  052 056 052 

MS  049 044 049  040 048 062  050 045 043 

              

C3: 

SR  046 050 046  048 057 050  054 055 050 

SS  048 058 044  053 051 042  044 054 062 

MR  042 055 051  042 047 047  050 055 055 

MS  043 047 046  049 049 041  047 055 059 

               

p
 =

 8
 

 T
2
  044 033 033  037 034 051  034 028 044 

SRI  022 036 029  013 031 051  021 031 041 

SSI  019 036 038  019 040 044  031 034 046 

              

C1: 

SR  019 034 027  010 030 049  020 030 045 

SS  015 031 039  019 043 041  018 035 049 

MR  018 028 038  014 026 029  021 030 045 

MS  020 038 038  015 035 038  013 029 036 

              

C2: 

SR  018 035 027  011 032 053  019 029 042 

SS  017 039 038  017 041 046  025 032 041 

MR  021 037 032  019 030 044  014 033 047 

MS  015 037 039  015 034 045  018 031 049 

              

C3: 

SR  020 027 026  012 033 046  019 028 042 

SS  014 030 040  012 039 044  020 033 047 

MR  012 022 022  013 042 048  018 032 038 

MS  020 037 038  012 038 043  018 026 044 
 

*Note: The entries within table correspond to empirical type I error rates multiplied by 1000. 

 
 

Although not reported in the tables, additional simulations demonstrated that the 

superiority of nonparametric tests was not attained until n reached 15. Figure 2 

shows the empirical power trends of tests for the heavy tailed distribution. 
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Table 3. The empirical powers of tests under multivariate normal distribution. 

 
 

   Correlation structure 

   CS  AR1  UN 
Matrix C Test  10 20 30  10 20 30  10 20 30 

p
 =

 4
 

 
T

2
  178 323 487  226 470 669  183 366 585 

SRI  172 325 478  220 450 659  181 361 562 

SSI  166 283 409  216 400 585  176 323 510 

              

C1: 

SR  172 326 483  218 450 649  186 359 561 

SS  157 283 416  198 402 582  168 313 490 

MR  154 311 460  210 422 631  170 323 528 

MS  113 174 288  131 282 402  121 187 294 

              

C2: 

SR  169 332 481  218 455 658  183 367 567 

SS  170 292 419  198 412 598  175 329 500 

MR  153 308 471  210 439 650  171 357 541 

MS  100 185 307  131 276 460  110 226 314 

              

C3: 

SR  170 326 473  216 450 656  180 367 554 

SS  172 272 409  185 409 578  167 315 502 

MR  162 306 458  188 435 617  175 365 551 

MS  117 194 291  138 267 372  128 222 349 

               

p
 =

 8
 

 
T

2
  175 421 655  154 388 613  154 398 626 

SRI  90 382 619  82 354 560  78 355 594 

SSI  86 359 577  76 338 535  85 344 567 

              

C1: 

SR  92 386 618  85 353 564  83 360 605 

SS  101 378 592  95 344 522  93 353 578 

MR  72 357 592  62 333 558  70 310 575 

MS  55 191 332  47 193 333  46 186 351 

              

C2: 

SR  80 376 612  84 355 566  81 349 590 

SS  78 341 579  87 344 535  75 316 553 

MR  65 316 556  72 326 537  72 286 532 

MS  47 117 216  45 198 307  54 123 236 

              

C3: 

SR  84 378 611  78 353 567  86 346 587 

SS  86 351 569  72 336 503  80 321 539 

MR  70 342 567  59 309 517  67 306 546 

MS  60 165 302  48 165 247  60 157 274 
 

*Note: The entries within table correspond to empirical powers multiplied by 1000.  
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Table 4. The empirical powers of tests under multivariate t distribution. 

 
 

   Correlation structure 

   CS  AR1  UN 
Matrix C Test  10 20 30  10 20 30  10 20 30 

p
 =

 4
 

 
T

2
  261 480 653  344 607 779  273 527 691 

SRI  294 623 822  397 736 919  321 668 872 

SSI  309 654 856  427 782 946  336 700 900 

              

C1: 

SR  293 620 823  395 728 920  314 667 871 

SS  317 648 840  414 771 940  328 689 889 

MR  264 587 788  370 713 915  263 601 816 

MS  180 410 582  287 511 721  176 391 602 

              

C2: 

SR  293 616 818  402 735 918  322 674 872 

SS  315 653 846  424 782 946  342 691 891 

MR  276 591 802  380 720 922  286 643 846 

MS  180 401 636  263 537 795  179 387 661 

              

C3: 

SR  287 635 826  397 733 918  326 670 863 

SS  303 658 841  401 756 939  343 695 893 

MR  278 591 793  359 711 903  294 630 847 

MS  219 432 642  263 544 759  212 495 723 

               

p
 =

 8
 

 
T

2
  317 632 822  267 590 773  296 607 799 

SRI  194 709 917  169 661 893  184 669 902 

SSI  196 761 953  170 716 934  180 731 940 

              

C1: 

SR  201 717 920  175 676 900  195 682 911 

SS  233 776 954  205 729 931  212 743 945 

MR  176 681 893  145 638 868  166 653 878 

MS  108 444 718  112 405 695  113 439 722 

              

C2: 

SR  200 709 916  172 678 899  183 669 906 

SS  190 760 947  195 730 931  172 719 939 

MR  151 607 870  149 635 866  149 578 840 

MS  101 268 504  099 378 632  102 257 496 

              

C3: 

SR  200 711 917  161 667 901  178 672 902 

SS  218 765 946  176 693 923  197 718 930 

MR  171 634 890  135 601 836  154 608 859 

MS  119 414 694  100 349 606  126 379 645 
 

*Note: The entries within table correspond to empirical powers multiplied by 1000.  
 

Except for the test based on marginal sign, the performances of other non 

invariant tests were relatively robust with respect to different choices of 

transformation matrix C to test parallelism. There was not a unique choice for C 

which corresponded to the best performance of the tests. Figure 3 illustrates the 

degree of stability in power values for the 4 non-invariant tests for the three 
transformation matrices C1 - C3 when n = 30. 
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Σ (a): p = 4 (b): p = 8 

CS 

  

AR1 

 
 

UN 

  

 
 

*Note: For purpose of better illustration, the powers of non-invariant tests are displayed only for the matrix C
2
. 

 
Figure 1. The empirical powers of tests under multivariate normal distribution. 
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Σ (a): p = 4 (b): p = 8 

CS 

  

AR1 

  

UN 

  

 
 

*Note: For purpose of better illustration, the powers of non-invariant tests are displayed only for the matrix C
2
. 

 
Figure 2. The empirical powers of tests under multivariate t (3) distribution. 
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Σ (a) (b) 

CS 
 

  

AR1 

 
 

UN 

  
symbol key: ●: C1, ○: C2, and ▼: C3 

 
Figure 3. The empirical powers of non-invariant tests for n = 30 for various 

transformation matrices under multivariate normal (a) and t (b) distributions 

 

 



MULTIVARIATE NONPARAMETRIC TESTS IN PROFILE ANALYSIS 

288 

Conclusion 

The results of the study revealed that the tests based on spatial and marginal ranks 

could serve as efficient tools for profile analysis since they performed notably 

better than Hotelling's T
2
 for the heavy tailed distribution and were as efficient as 

it under normality. Similar results reported in simulation studies by Nordhausen et 

al. (2006) and Möttönen et al. (1998) only in the context of two sample 

comparison of locations for normal and t distributions. Interestingly, even for 

moderate tailed t distributions, the tests based on ranks were superior to 

Hotelling's T
2
 in both studies. Um and Randles (1998) also reported that the multi 

sample extensions of multivariate rank tests proposed by Randles and Peters 

(1990) were more efficient than Lawly-Hotelling’s U for light-tailed and heavy-

tailed distributions. However, the results revealed that when there was sufficient 

evidence to conclude that the underlying distribution was heavy tailed, the tests 

based on spatial signs were the best choices to profile analysis. Similarly, this 

aspect was reported in the study by Nordhausen et al. (2006) and for a different 

sign test by Um and Randles (1998). It should also be noted that above studies 

conducted in areas not involving repeated measurements and various correlation 

structures for errors. The simulations also illustrated that when the number of 

replication was large (here p = 8) the mentioned nonparametric tests outperformed 

Hotelling's T
2
 only for larger sample sizes (n ≥ 10). The panel (b) of Figure 2 

illustrated this issue for which Hotelling's T
2
 performed slightly better than any 

nonparametric counter parts for p =  8 even if the underlying distribution was 

heavy-tailed. The effect of sample size relative to the number of measurements 

has been not reported yet and hence further research in this area is necessary. 

In the context of two sample comparison (as our study), Hotelling’s T
2
 and 

all the MANOVA tests (Wilks’ Λ, Pilla’s V, Lawley-Hotelling’s U and Roy’s θ) 

are functions of each other and give equivalent results; see Rencher (1998). The 

power of the MANOVA tests has been compared by several authors. However, 

they are asymptotically equivalent for sufficient sample sizes (Olson, 1974). 

Therefore it is implied the nonparametric alternatives can be confidently applied 

in place of MANOVA tests in profile analysis regardless of the nature of 

underlying distribution. Park et al. (2001) investigated the performance of profile 

analysis using Hotelling's T
2
 and mixed model approach to test group and 

interaction effects. Also, Vossoughi et al. (2012) compared the performance of 

profile analysis, linear mixed model and summary measure approach in repeated 

measurements generated from a linear mixed model setting. Similarly, both 

studies showed that the profile analysis preserved the nominal significance level 
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and performed relatively robust to the underlying correlation structure but 

provided less power values than the competitors, in general. 

Marcucci (1986) demonstrated that profile analysis using Hotelling's T
2
and 

exclusively univariate split-plot analysis with d.f. adjustments gave type I error 

rates closest to the nominal level, but not one of which was most powerful along 

various correlation structures and patterns of means. The interested reader is also 

referred to Schwertman et al. (1985), Boik (1991) and Davidson (1972) for further 

assessment on this issue. 

Thought not reported here, we conducted additional simulations for a variety 

type of the location trend over occasions such as linear trend as 

θ2 = (0.25, 0.5, 0.75, 1)'. The larger number of measurements p = 8 and sample 

size n = 50 in each group were also considered. However, the similar results were 

yielded and hence not further included in the study. 

In conclusion, the findings implied that the use of some nonparametric 

multivariate tests in place of the parametric counterparts can considerably 

improve the result of profile analysis for heavy-tailed distributions. Accordingly, 

the tests based on spatial and marginal ranks are severe competitors for parametric 

tests in profile analysis since they performed as well as Hotelling's T
2 under 

multivariate normal distribution and dominated it under heavy-tailed distribution. 

Moreover, the simulation results revealed that the tests based on spatial signs 

under heavy tailed distributions, were more efficient than the MANOVA tests for 

the analysis of repeated measurements. 
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