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The present work is an attempt to make use of several auxiliary variables on both occasions 
for improving the precision of estimates for the current population mean in two-occasion 
successive sampling. A generalized exponential-cum-regression type estimator of the 
current population mean is proposed and its optimum replacement strategy has been 
discussed. Empirical studies are carried out to show the dominance of the proposed 
estimation procedure over the sample mean estimator and natural successive sampling 
estimator. Empirical results have been interpreted and suitable recommendations are put 

forward to survey practitioners. 
 
Keywords: Successive sampling, auxiliary information, bias, mean square error, 
optimum replacement strategy 

 

Introduction 

There are many problems of practical interest in different fields of the applied and 

environmental sciences where the various characters of interest have tendencies to 

change over time. It is often required to monitor the behaviors of such characters at 

different points of time (occasions) and the patterns of variations occurring over the 

period of time. For example, an investigator or owner involved in the cold drinks 

industry may be interested (a) to know the average or total sale of cold drinks in the 

different seasons, (b) to know the pattern of change in average or total sale of cold 

drinks in two different seasons, or (c) they may be simultaneously interested to 

know both (a) and (b). These kinds of problems are well answered by the tools of 

successive (rotation) sampling. 

http://dx.doi.org/10.22237/jmasm/1478002320
mailto:aksharma.ism@gmail.com
mailto:aksingh.ism@gmail.com
mailto:gnsingh_ism@yahoo.com.
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The theory of successive (rotation) sampling was initiated by Jessen (1942), 

where the idea of using the available information gathered on previous occasions 

during the past surveys was suggested. Jessen (1942) used past information in order 

to make current estimates more precise in agronomical surveys. This idea was 

further explored by Patterson (1950), Rao and Graham (1964), Gupta (1979), Das 

(1982), and Chaturvedi and Tripathi (1983), among others. Sen (1971) extended 

this theory by utilizing the information on two auxiliary variables, which was 

available on previous occasions, and suggested estimators of current the population 

mean in two-occasion successive sampling. Sen (1972; 1973) generalized his idea 

for several auxiliary variables. V. K. Singh, Singh, and Shukla (1991) and G. N. 

Singh and Singh (2001) used the auxiliary information from the current occasion 

for estimating the current population mean in two-occasion successive sampling. 

G. N. Singh (2003) extended this work for h-occasion successive sampling. 

In many situations, information on an auxiliary variable may be readily 

available on the first as well as on the second occasion. For instance, to study the 

problems related to the public health and welfare of a state or a country, several 

factors that can be treated as auxiliary variables, such as the number of beds, doctors, 

and supporting staff in different hospitals, the amount of funds available for 

medicine, etc. may be known well in advance. Likewise, in other cases, there may 

be information available on several auxiliary variables and, if efficiently utilized, 

the estimates could be made more precise. 

Utilizing the auxiliary information on both occasions, Feng and Zou (1997), 

Biradar and Singh (2001), G. N. Singh (2005), G. N. Singh and Priyanka (2006; 

2007; 2008; 2010), G. N. Singh and Karna (2009), H. P. Singh and Vishwakarma 

(2009), G. N. Singh and Prasad (2010), G. N. Singh, Karna, and Prasad (2011), H. 

P. Singh, Tailor, Singh, and Kim (2011), G. N. Singh and Prasad (2013), and G. N. 

Singh and Homa (2013) proposed varieties of estimators of the population mean on 

the current (second) occasions in two-occasion successive sampling. 

Motivated with these arguments, the objective of the present work is to 

propose a more precise estimator of the population mean on the current occasion 

using the information on p (p ≥ 2) stable auxiliary variables which are readily 

available on both occasions. Utilizing the information on p auxiliary variables, a 

generalized exponential-cum-regression type estimator of the current population 

mean in two-occasion successive sampling has been proposed. The dominance of 

the proposed estimator has been shown over the sample mean and natural 

successive sampling estimators. Empirical studies have been carried out to justify 

the proposition of estimator. Results are interpreted, and suitable recommendations 

have been made. 
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Formulation of Estimator 

Let U = (U1, U2,…, UN) be a finite population of N units which has been sampled 

over two occasions, and let the character under study be denoted by x (y) on the 

first (second) occasion. It is assumed that the information on p stable (non-negative 

integer constant) auxiliary variables zj (j = 1, 2,…, p), whose population means are 

known and closely related to x and y, are available on the first (second) occasion. 

Let a simple random sample (without replacement) of size n be drawn on the first 

occasion. A random subsample of size m = nλ is retained (matched) for its use on 

the second occasion, while a fresh simple random sample (without replacement) of 

size u = (n – m) = nμ is drawn on the second occasion from the entire population so 

that the sample size on the second occasion is also n. Here λ and μ (λ + μ = 1) are 

the fractions of the matched and fresh samples, respectively, on the current (second) 

occasion. The values of λ or μ would be chosen optimally. 

The following notations have been considered for use below: 

 

X̅ (Y̅): The population mean of the study variable x (y) on the first (second) 

occasion. 

Z̅j: Population mean of the jth (j = 1, 2,…, p) auxiliary variable. 

x̅n, x̅m, y̅u, y̅m, z̅jn, z̅ju, z̅jm, (j = 1, 2,…, p): The sample means of the respective 

variables based on the sample sizes shown in the subscript. 

, , ,
j j j kyx yz xz z z    : Population correlation coefficients between the variables 

shown in the subscript. 

   
212

1
1

N

x ii
S N x X




   : Population variance of the variable x. 

2 2,
jy zS S : Population variances of the variables y and zj (j = 1, 2,…, p), 

respectively. 

 

To estimate the population mean Y̅ on the current (second) occasion, two 

independent estimators are suggested. One is a generalized exponential type 

estimator based on a sample of size u (= nµ) drawn afresh on the second occasion 

and given by 

 

 
1

exp
p

j ju

u u

j j ju

Z z
T y

Z z

  
  

  
   (1) 
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The second estimator is a generalized exponential-cum-regression type estimator 

based on the sample of size m (= nλ) common to both the occasions and is defined 

as 

 

 
   *

1
j

p
m

m m yz j jm

j

T y b Z z


     (2) 

 

where 
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1
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p
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m m
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Z z
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Z z

Z z
x x
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



  
     

  

  
  

  





  

 

Combining the estimators Tu and Tm, we have the final estimator T of Y̅ given as 

 

  1u mT T T      (3) 

 

where φ (0 ≤ φ ≤ 1) is an unknown constant (scalar) to be determined under certain 

criterion. 

 

Remark 1: The estimator Tu is suitable for estimating the population mean on 

the current occasion, while the estimator Tm is more appropriate for estimating 

change over two occasions. These two estimators may be derived from the 

estimator T by choosing φ as 1 or 0, respectively. To handle both problems 

simultaneously, an optimum choice of φ is required. 

Properties of the Proposed Estimator 

Bias and Mean Square Error 

Because the estimators Tu and Tm are generalized exponential and generalized 

exponential-cum-regression type estimators, they are biased estimators of the 

population mean Y̅. Therefore, the resulting estimator T is also a biased estimator 

of Y̅. The bias B(.) and mean square error M(.) of the estimator T is derived under 
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large sample assumption and up to the first order of approximations using the 

following transformations: 

 

 

       

       

           

   

1 2 3 4

5 6 7 8

2 2

9 10 11

2 2

12

1 , 1 , 1 , 1 ,

1 , 1 , 1 , 1 ,

1 , 1 , 1 ,

1

j j

j j j j

u m m n

ju j j jm j j jn j j yz j yz

z j z xz j xz yx yx

x x

y e Y y e Y x e X x e X

z e Z z e Z z e Z s e S

s m e S s m e S s m e S

s m e S

       

       

     

 

  

 

such that E(ei) = 0 and E(ehj) = 0 ,|ei| ≤ 1 for i = 1, 2, 3, 4, 11, 12 and |ehj| ≤ 1 for 

h = 5, 6,…, 10, j = 1, 2, 3,…, p. 

Under the above transformations, the estimators Tu and Tm take the following 

forms: 

 

  
1

5 5

1

1

1 exp 1
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p
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e e
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
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   (4) 
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    
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
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  (5) 

 

Thus, there are the following theorems: 

 

Theorem 1: The bias of the estimator T to the first order of approximations is 

obtained as 

 

        B B 1 Bu mT T T      (6) 

 

where 

 

   002 002 010 001

2
1 1 1

1 1 3 1 1
B

8 8 2

p p p

u

j j jj j k j

a
T Y

u N z z z Yz

  

  

   
     
    

     (7) 
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and 

 

  

100 001 002 002 111

2
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    
   
        
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



  (8) 

 

where αpqr = E[(xi – X̅ )p(yi – Y̅ )q(zj – Z̅j)r] for integers p, q, r ≥ 0 and j = 1, 2,…, p. 

 

Proof: The bias of the estimator T is given by 

 

 
       

     

B E E 1 E

B 1 B

u m

u m

T T Y T Y T Y

T T

 

 

        

  
  (9) 

 

where B(Tu) = E(Tu – Y̅ ) and B(Tm) = E(Tm – Y̅ ). 

To derive the B(Tu), proceed as follows: 

 

    
1
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1

1

E E 1 exp 1
2 2

p
j j

u

j

e e
T Y Y e Y





   
        
     

   (10) 

 

Now, expanding the right hand side of (10) binomially and exponentially and 

taking expectations and retaining the terms up to the first order of approximations, 

we have the expression of the bias of the estimator Tu as given in (7). 

Similarly, the bias of the estimator Tm is written as 
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Expanding (11) binomially and exponentially, taking expectations both sides, 

and retaining the terms up to the first order of approximations yields the expression 

of the bias of the estimator Tm as shown in (8). 

 

Theorem 2: The mean square error of the estimator T to the first degree of 

approximation is obtained as 
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Proof: The mean square error of the estimator T is given by 
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where C(Tu, Tm) = E[(Tu – Y̅ )(Tm – Y̅ )], M(Tu) = E(Tu – Y̅ )2, M(Tm) = E(Tm – Y̅ )2. 

To derive the M(Tu), proceed as follows: 
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Now, expanding the right hand side of (17) binomially and exponentially and taking 

expectations and retaining the terms up to the first order of approximations, we 

have the expression of the mean square error of the estimator Tu as given in (13). 

The mean square error of the estimator Tm is written as 
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  (18) 

 

Expanding (18) binomially and exponential, taking expectations both sides, and 

retaining the terms up to the first order of approximations, the expression is derived 

for the mean square error of the estimator Tm as shown in (14). Similarly, the 

expectation of C(Tu, Tm) may be derived in the form shown in (15). 

 

Remark 2: The above results are derived under the assumption that the 

coefficients of variation of variables x, y, zj, and zk are approximately equal. We 

have also considered the intuitive assumptions 
j jxz yz   (j = 1, 2, 3,…, p), as 

suggested by Cochran (1984) and Feng and Zou (1997). In the light of these 

assumptions, the expression of M(Tm) takes the form as shown in (14). 

Minimum Mean Square Errors of the Estimator T 

Because the mean square error of the estimator T in (12) is a function of the 

unknown constant (scalar) φ, it can be minimized with respect to φ and, 

subsequently, the optimum value of φ is obtained as 

 

 
   

     
opt

M C ,

M M 2C ,

m u m

u m u m

T T T

T T T T





 
  (19) 

 

From (19), substituting the value of φopt in (12), we get the optimum mean square 

error of the estimator T as 

 

  
      
     

2

opt

M M C ,
M

M M 2C ,

u m u m

u m u m

T T T T
T

T T T T




 
  (20) 
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Further substituting the values from (13)-(15) into (19) and (20), the simplified 

values of φopt and M(T)opt are obtained as 

 

 
 9 8

opt 2

9 12 13

A A

A A A

 


 




 
  (21) 

 

  
22

18 20 21

2opt
9 13 12

M
ySA A A

T
A A A n

 

 

  
  

  
  (22) 

 

where 

 

 

2 2

1 2

1 1 1

2

3 4 5 1 2 3 6 2 3

1 1

7 1 4 8 6 7 9 5 8 10

1 1

1
1 , 1 ,

4 4

2 , 1 , , ,

1
, , , 1

4 4

j j k j k j j k

j j j

j j k

p p p

yz yz yz z z yx yz z z

j j j k

p p

yx yx yz yz yz

j j

p

yz z z

j j k

p
A A

A A A A A A A A A

p
A A A A A fA A A A A

      

    

 

   

 

  

 
       

 

 
         

 

         

  

 



11 10 4 12 10 9 11 13 8 11 14 10 1 6 9

2

15 10 1 16 6 10 17 4 15 18 14 16 15

2

19 14 15 16 17 20 16 17 21 19 16

,

, , , ,

, , , ,

, ,

p

A A A A A A fA A A fA A A A A A

A A A A A A A A A A A A fA

A A A A fA A fA f A A fA A

        

      

       


  

 

where f = n/N. 

Optimum Replacement Strategy of the Estimator T 

The optimum mean square error M(T)opt in (22) is a function on µ, the fraction of 

the sample to be drawn afresh at the second occasion. It is an important factor in 

reducing the cost of the survey, therefore, to determine the optimum value of µ so 

that Y̅ may be estimated with maximum precision and minimum cost. We thus 

minimize M(T)opt with respect to µ which results in a quadratic equation in µ, which 

is shown as 

 

 
2

1 2 32 0D D D      (23) 
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where D1 = A12A20 + A13A21, D2 = A10A20 + A13A18, D3 = A10A21 – A12A18. 

Solving (23) for μ, the solutions of μ (say ̂ ) are given as 

 

 

2

2 2 1 3

1

ˆ
D D D D

D


 
   (24) 

 

From (24), it is clear that the real values of ̂  exist IFF the quantity under the 

square root is greater than or equal to zero. For any combinations of correlations 

which satisfy this condition for real solutions, two real values of ̂  are possible. 

Hence, while choosing the values of ̂ , it should be remembered that ˆ0 1  , 

and that all other values of ̂  are said to be inadmissible. If both the values of ̂  

are admissible, the lowest one is the best choice as it reduces the cost of the survey. 

From (24), substituting the admissible value of ̂  (say μ0) in (22), we have the 

optimum value of mean square error of the estimator T, which is shown below: 

 

  
22

* 18 0 20 0 21

2opt
10 0 13 0 12

M
ySA A A

T
A A A n

 

 

  
  

  
  (25) 

Special Case 

When the p auxiliary variates are mutually uncorrelated, i.e., 0
j kz z   for 

j ≠ k = 1, 2, 3,…, p, then the expression of the optimum values of μ and M(T)opt 

reduce to 

 

 

* *2 * *

2 2 1 3

*

1

ˆ
D D D D

D


 
   (26) 

 

and 

 

  
2* 2 * *

* 18 0 20 0 21

* 2 * *

10 0 13 0 12

M
y

opt

SA A A
T

A A A n

 

 

  
  

  
  (27) 

 

where 
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* * * * * * * * * * * * * * *

1 12 20 13 21 2 10 20 13 18 3 10 21 12 18

* 2 * 2 * * * * *

1 2 5 1 2 3 6 2 3

1 1

* * * * * * * * *

7 1 4 8 6 7 9 5 8 10

1

*

11

, , ,

1 , 1 , , ,
4

, , , 1 ,
4

j j

j

p p

yz yx yz

j j

p

yz

j

D A A A A D A A A A D A A A A

p
A A A A A A A A A

p
A A A A A fA A A A A

A A

  



 



     

 
          

 

        



 



* * * * * * * * * * * * *

10 4 12 10 9 11 13 8 11 14 10 1 6 9

* * * * * * * 2 * * * * *

15 10 1 16 6 10 17 4 15 18 14 16 15

* * * * * * * 2 * * * *

19 14 15 16 17 20 16 17 21 19 16

, , , ,

, , , ,

, ,

A A A A fA A A fA A A A A A

A A A A A A A A A A A A fA

A A A A fA A fA f A A fA A

       

      

       

  

Efficiency Comparison 

The percent relative efficiencies of the estimator T with respect to (i) the sample 

mean estimator y̅n when there is no matching and (ii)  * *ˆ 1u u mY y y      when 

no additional auxiliary information is used at any occasion, where 

 m m yx n my y x x    , have been obtained for different choices of the correlations 

involved. Since y̅n and Ŷ  are unbiased estimators of Y̅ following Sukhatme, 

Sukhatme, Sukhatme, and Asok (1984), the variance of y̅n and optimum variance 

of Ŷ  are given by 

 

   21 1
V n yy S

n N

 
  
 

  (28) 

 

  
2 2

2
opt

ˆV 1 1
2

y y

yx

S S
Y

n N
    

 
  (29) 

 

The percent relative efficiencies E1 and E2 of T (under optimal condition) with 

respect to y̅n and Ŷ , respectively, are given by 

 

 
 

 

 

 

opt

1 2* *

opt opt

ˆV V
100, 100

M M

ny Y
E E

T T
      
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Empirical Study 

The expression of the optimum μ (i.e., μ0) and the percent relative efficiencies E1 

and E2 are in terms of population correlation coefficients. Therefore, the values of 

μ0, E1, and E2 have been computed for different choices of positive correlations, 

while the value of f (= n/N) (sampling fraction) is chosen to be 0.1. For empirical 

studies, cases of p = 2 and 3 have been considered. 

Case 1 

For p = 2 and assuming that the two auxiliary variables are correlated, i.e., 
1 2

0z z  , 

the values of A1, A2, A3, A4, A9, and A10 take the form 

 

 

   

    

 

1 2 1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2

2 2 2

1 2

2 2 2 2

3 4

10

3
1 2 , 2 ,

2

2 , 1 ,

3 1

2 2

yz yz yz yz z z yx z z yz yz

yx yx yz yz yz yz

z z yz yz

A A

A A

A

        

     

  

 
        

 

     

   

  

 

Substituting these values in (24) and (25) yields the values of optimum  
*

opt
M T , 

E1, and E2. For different choices of correlations, Tables 1-2 show the optimum 

values of μ (i.e., μ0) and percent relative efficiencies E1 and E2 of the estimator T 

(under optimal condition) with respect to y̅n and Ŷ , respectively. 

Case 2 

For p = 2 and assuming that the two auxiliary variables are uncorrelated, i.e., 

1 2
0z z  , the values of *

1A , *

2A , and *

10A  take the form 

 

      
1 2 1 2 1 2

* 2 2 * 2 *

1 2 10

3 3
1 , ,

2 2
yz yz yx yz yz yz yzA A A      

 
         

 
  

 

Using these values in (26) and (27), the optimum values of μ, E1, and E2 are shown 

in Table 3. 
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Table 1. Optimum values of μ and percent relative efficiencies of T with respect to y̅n and 

ˆ
Y  for ρyx = 0.3 
 

 1
yz
ρ  

0.5  0.6  0.7 

2
yz
ρ  

1 2
z z
ρ  

μ0 E1 E2  μ0 E1 E2   μ0 E1 E2 

0.4 0.3 0.7265 132.18 128.80  0.4034 168.19 163.88  0.3533 247.90 241.56 

 0.4 0.7101 123.49 120.33  0.3839 152.06 148.16  0.3872 210.05 204.67 

 0.5 0.7001 115.87 112.91  0.3700 138.74 135.19  0.3360 181.76 177.10 

  0.6 0.6932 109.13 106.34  0.3595 127.57 124.31  0.2952 159.92 155.82 

             

0.6 0.3 0.6022 149.75 145.92  0.3207 193.77 188.81  0.3411 306.04 298.21 

 0.4 0.5842 138.08 134.54  0.2827 170.36 166.00  0.2607 243.37 237.15 

 0.5 0.5719 128.09 124.81  0.2548 151.91 148.03  0.1979 200.80 195.67 

  0.6 0.5630 119.44 116.39  0.2335 137.04 133.53  0.1475 170.24 165.88 

             

0.8 0.3 0.5882 174.09 169.63  0.3120 234.31 228.31  0.2669 418.57 407.85 

 0.4 0.5517 157.66 153.63  0.2512 197.91 192.84  0.1760 298.60 290.96 

 0.5 0.5252 144.02 140.34  0.2051 170.92 166.55  0.1034 228.96 223.10 

  0.6 0.5050 132.53 129.14  0.1690 150.21 146.36  0.0441 184.02 179.31 

 
 
Table 2. Optimum values of Optimum values of μ and percent relative efficiencies of T 

with respect to y̅n and 
ˆ

Y  for ρyx = 0.5 
 

 1
yz
ρ  

0.5  0.6  0.7 

2
yz
ρ  

1 2
z z
ρ  

μ0 E1 E2  μ0 E1 E2   μ0 E1 E2 

0.4 0.3 * -- --  0.3809 170.91 158.19  0.3568 249.91 231.31 

 0.4 0.7440 123.96 114.73  0.3815 152.39 141.05  0.3875 208.31 192.80 

 0.5 0.6739 115.31 106.73  0.3779 137.57 127.33  0.3431 178.37 165.10 

  0.6 0.6411 107.74 100.72  0.3738 125.42 116.08  0.3120 155.88 144.27 

  
   

 
   

 
   

0.6 0.3 0.6748 152.04 140.72 
 

0.2932 196.4 181.78 
 

0.3407 307.53 284.64 
 0.4 0.5913 138.47 128.16  0.2827 170.36 157.68  0.2673 240.90 222.97 

 0.5 0.5579 127.09 117.63  0.2740 150.50 139.29  0.2192 197.38 182.69 

  0.6 0.5386 117.45 108.71  0.2669 134.83 124.80  0.1851 166.90 154.48 

  
   

 
   

 
   

0.8 0.3 0.6209 176.39 163.26  0.3015 236.81 219.19  0.2670 418.02 386.91 

 0.4 0.5506 157.54 145.81 
 

0.2567 197.19 182.51 
 

0.1865 294.69 272.76 
 0.5 0.5134 142.28 131.69  0.2285 168.91 156.34  0.1319 225.58 208.79 

  0.6 0.4896 129.72 120.07  0.2089 147.72 136.73  0.0924 181.87 168.33 

 

Note: “*” indicates μ0 does not exists and “--“ indicates no gain. 
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Table 3. Optimum values of Optimum values of μ and percent relative efficiencies of T 

with respect to y̅n and 
ˆ

Y  for 
1 2

0.0z z   

 

 1
yz
ρ  

0.5  0.6  0.7 

yx
ρ  

yz
ρ

2

 
μ0 E1 E2  μ0 E1 E2   μ0 E1 E2 

0.5 0.3 0.4203 138.95 128.61  0.4317 158.35 146.57  0.3727 187.50 173.54 

 0.4 0.4874 156.18 144.55  0.5084 181.27 167.78  0.4661 219.80 203.44 

 0.5 0.5084 181.27 167.78  0.5359 216.08 200.00  0.4938 272.88 252.57 

  0.6 0.4661 219.80 203.44  0.4938 272.88 252.57  0.4112 371.39 343.75 

  
   

 
   

 
   

0.7 0.3 0.5632 157.93 132.85  0.5865 185.15 155.75  0.6036 228.38 192.11 

 0.4 0.6015 182.74 153.71  0.6312 220.87 185.79  0.6662 287.47 241.82 

 0.5 0.6312 220.87 185.79  0.6759 281.34 236.66  0.7712 417.32 351.04 

  0.6 0.6662 287.47 241.82  0.7712 417.32 351.04  * -- -- 

  
   

 
   

 
   

0.9 0.3 0.9388 268.34 184.24  * -- --  * -- -- 

 0.4 * -- --  * -- --  * -- -- 

 0.5 * -- --  * -- --  * -- -- 

  0.6 * -- --  * -- --  * -- -- 

 

Note: “*” indicates μ0 does not exists and “--“ indicates no gain. 

Case 3 

For p = 3 and assuming that the two auxiliary variables are correlated, i.e., 0
j kz z   

for j ≠ k = 1, 2, 3, the values of A1, A2, A3, A4, and A10 take the form 

 

 

   

   

    

 

1 2 3 1 2 1 2 1 3 1 3 2 3 2 3

1 2 1 3 2 3 1 2 3

1 2 3 1 2 3

1 2 1 3 2 3 1

2 2 2

1

2

2

2 2 2 2 2 2

3 4

10

1 2 ,

7
2 ,

4

2 , 1 ,

7 1

4 2

yz yz yz yz yz z z yz yz z z yz yz z z

yx z z z z z z yz yz yz

yx yx yz yz yz yz yz yz

z z z z z z yz

A

A

A A

A

           

      

       

   

      

 
       

 

       

      
2 3yz yz 

  

 

In this case there are seven different correlations. For a few sets of these seven 

correlations, the optimum value of μ (i.e., μ0) and percent relative efficiencies E1 

and E2 of the estimator T (under optimal condition) with respect to y̅n and Ŷ  have 

been computed and shown below: 
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Set 1: 

 
1 2 3 1 2 1 3

2 3 0 1 2

0.3, 0.5, 0.6, 0.5, 0.3, 0.4,

0.6, 0.3664, 104.37, 101.37

yx yz yz yz z z z z

z z E E

     

 

     

   
  

 

Set 2: 

 
1 2 3 1 2 1 3

2 3 0 1 2

0.3, 0.6, 0.6, 0.5, 0.3, 0.4,

0.6, 0.2900, 110.60, 107.77

yx yz yz yz z z z z

z z E E

     

 

     

   
  

 

Set 3: 

 
1 2 3 1 2 1 3

2 3 0 1 2

0.3, 0.7, 0.6, 0.5, 0.3, 0.4,

0.6, 0.2393, 119.33, 116.27

yx yz yz yz z z z z

z z E E

     

 

     

   
  

 

Set 4: 

 
1 2 3 1 2 1 3

2 3 0 1 2

0.3, 0.8, 0.6, 0.5, 0.3, 0.4,

0.6, 0.2105, 131.59, 128.22

yx yz yz yz z z z z

z z E E

     

 

     

   
  

Case 4 

For p = 3 and assuming that the two auxiliary variables are uncorrelated, i.e., 

1 2
0z z   for j ≠ k = 1, 2, 3, the values of A1, A2, and A10 take the form 

 

 

   

 

1 2 3 1 2 3

1 2 3

2 2 2 2

1 2

10

7
1 , ,

4

7

4

yz yz yz yx yz yz yz

yz yz yz

A A

A

      

  

 
        

 

   

  

 

For a few sets of the above four correlations, the values of the optimum value 

of μ (i.e., μ0) and percent relative efficiencies E1 and E2 are shown below: 

 

Set 1: 

 
1 2 3 0 1

2

0.3, 0.5, 0.6, 0.4, 0.6004, 382.42,

372.64

yx yz yz yz E

E

         


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Set 2: 

 1 2 3 0 1

2

0.4, 0.5, 0.6, 0.4, 0.7981, 397.89,

379.44

yx yz yz yz E

E

         


  

 

Set 3: 

 1 2 3 0 1

2

0.5, 0.5, 0.6, 0.4, 0.3807, 449.12,

415.67

yx yz yz yz E

E

         


  

 

Set 4: 

 1 2 3 0 1

2

0.6, 0.5, 0.6, 0.4, 0.6317, 568.19,

505.06

yx yz yz yz E

E

         


  

Conclusion 

1. From Tables 1-2 it is vindicated that: 

a. For the fixed values of yx , 
1 2z z , and 

1yz , the values of μ0 decrease 

and E1 and E2 increase with the increasing values of 
2yz . Similarly, 

for fixed values of yx , 
1 2z z , and 

2yz , the optimum value of μ0 

decrease and E1 and E2 increase with the increasing values of 
1yz . 

These patterns indicate that a smaller fresh sample on the current 

occasion is required if highly correlated auxiliary variables are 

available. 

b. For the fixed values of yx , 
1yz , and 

2yz , the values of μ0, E1, and 

E2 decrease with the increasing values of 
1 2z z ; this means that the 

auxiliary variables are quite sensitive with respect to the relation 

between them. 

2. From Table 3, i.e., when the auxiliary variables are uncorrelated, it has been 

observed that  

a. For fixed values of 
1yz  and 

2yz , the values of E1 and E2 increase 

with increasing value of yx , while no definite patterns are observed 

in μ0. 
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b. For fixed values of yx  and 
1yz , the values of E1 and E2 increase 

with increasing value of 
2yz , while no definite patterns are 

observed in μ0. Similar patterns are visible for the case when the 

values of yx  and 
2yz  are fixed and increasing values of 

1yz  are 

observed. 

3. For p = 3 and when the three auxiliary variables are uncorrelated, for fixed 

values of yx , 
1 2z z , 

2 3z z , 
1 3z z , 

2yz , and 
3yz , the values of μ0 decrease 

while E1 and E2 increase with the increasing values of 
1yz . Similar patterns 

are observed if the case for the increasing values of 
2yz  or 

3yz  is taken 

into account. 

4. For p = 3 and when the three auxiliary variables are mutually correlated, we 

observed that no specific pattern is seen as for so many combinations of 

correlations the optimum values of μ0 do not exist. This behavior suggests 

that the correlation between the auxiliary variable do not play a significant 

role in terms of the proposed estimator. 

5. It could be seen that the results are more appreciable for one and two 

auxiliary variables, while when the number of auxiliary variables increases, 

the expressions become complex due to the increase in the number of 

correlations. Hence, practically, it is more realistic to use two auxiliary 

variables out of several available auxiliary variables. 

 

Thus, it is clear that the use of the auxiliary variables is highly rewarding in 

terms of the proposed estimator. It is also clear that, if the information on highly 

correlated auxiliary variables is used, only a relatively small fraction of the sample 

on the current (second) occasion is desired to be replaced by a fresh sample, which 

reduces the cost of the survey. Hence, it can be recommended for future use. 
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