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When the sample size n is small, the random variable  T n X S   is said to 

follow a central t distribution with degrees of freedom (n – 1), where X  is the sample 
mean and S is the sample standard deviation, provided that the data X ~ N (μ, σ2). The 

random variable T can be used as a test statistic to hypothesize the population mean μ. 
Some argue that the t-test statistic is robust against the normality of the distribution and 
claim that the normality assumption is not necessary. In this article we will use 
simulation to study whether the t-test is really robust if the population distribution is not 
normally distributed. In particular, we will study how the skewness of a probability 
distribution will affect the confidence interval as well as the t-test statistic.  
 

Keywords: Skewness, t-test, confidence interval, Edgeworth expansion 

 

Introduction 

The effect of skewness, denoted by γ from here on, of a random variable X on 

t-test have been investigated by Johnson (1978), Hall (1992), Abramovitch and 

Singh (1985) and many others; but, those are more on the theoretic investigation 

and concentrated on the t-test. Very little has been studied on the confidence 

interval. Two independent samples t-test are studied by Sawilowsky and Blair 

(1992). Their studies are based on several skewed distributions and various 

sample sizes. Their simulation results show that the proportions of rejection in the 

upper tail or lower tail are affected by the skewness of the distribution when 

samples sizes are small. Blair and Sawilowsky (1993) comparing the performance 

http://dx.doi.org/10.22237/jmasm/1478001960
mailto:limw@wpunj.edu
mailto:canalice@gmail.com
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usual independent samples t-test and modified t-tests under different distribution 

functions and various samples sizes. For further details on the performance and 

recommendation of which t-test under various distributions, see Blair and 

Sawilowsky (1993). 

Consider the one sample t-test. Based on simulation studies, skewness of the 

distribution does not affect the t-test as much as the confidence interval. It can be 

shown that the coverage error is larger than the pre-determined coverage error, α, 

if the data follow a skewed distribution function. 

Intuitively, if X is a random variable with mean μ but is positively skewed, 

γ > 0, then the population median is less than the population mean μ. A sample of 

size n from X is likely to have more than 50% of values to be less than μ; hence 

most likely   0X   . If γ > 0, then a (1 – α) × 100% confidence interval for μ 

 

 
2 2,

S S
X t X t

n n
 

 
  

 
  (1) 

 

will miss the mean μ more on the upper side than the lower side. This effect is 

reported by Boos and Hughes-Oliver (2000). Define the missed right and missed 

left as given in Boos and Hughes-Oliver (2000, p. 122), where miss right occurs 

when the population mean μ is above the upper confidence limit, i.e., 

 

 2 ,
S

X t
n

     

 

and miss left occurs when the population mean μ is below the lower confidence 

limit, i.e., 

 

 2 ,
S

X t
n

     

 

and miss =  (miss right   miss left). Tables 1, 2, 3 and 4 are the simulated results 

of missed right, missed left and missed of usual confidence interval given in 

equation (1). Four types of population distributions, namely normal distribution 

(γ = 0), Laplace distribution (γ = 0), Gamma distribution (γ > 0) and Gumbel 

distribution (γ < 0) were selected for the simulation study. 
 
 



LIM & LIM 

69 

Table 1. Table of miss right, miss left and miss of (1 – α) × 100% confidence interval for μ 

with X1, X2,…,Xn ~ Normal (1, 2), n = 10 and skewness = 0.0. 
 

 
 
Table 2. Table of miss right, miss left and miss of (1 – α) × 100% confidence interval for μ 

with X1, X2,…,Xn ~ Laplace (1, 2), n = 10 and skewness = 0.0. 
 

 
 
Table 3. Table of miss right, miss left and miss of (1 – α) × 100% confidence interval for μ 

with X1, X2,…,Xn ~ Gamma (1, 2), n = 10 and skewness = 2. 
 

 
 
  

α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

miss right 0.005 0.011 0.015 0.021 0.025 0.029 0.033 0.041 0.043 0.052 

miss left 0.004 0.009 0.017 0.022 0.023 0.033 0.034 0.038 0.049 0.06 

miss 0.009 0.02 0.032 0.044 0.048 0.061 0.067 0.079 0.092 0.111 

           
α 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 

miss right 0.053 0.057 0.067 0.073 0.07 0.082 0.088 0.1 0.098 0.101 

miss left 0.056 0.061 0.063 0.071 0.082 0.082 0.087 0.093 0.107 0.101 

miss 0.109 0.118 0.129 0.144 0.152 0.164 0.175 0.192 0.205 0.201 

α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

miss right 0.003 0.007 0.012 0.015 0.02 0.025 0.03 0.037 0.041 0.047 

miss left 0.004 0.005 0.01 0.014 0.02 0.026 0.031 0.035 0.039 0.047 

miss 0.007 0.012 0.022 0.029 0.04 0.051 0.061 0.072 0.08 0.094 

           
α 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 

miss right 0.052 0.059 0.058 0.07 0.075 0.081 0.086 0.095 0.095 0.101 

miss left 0.054 0.058 0.07 0.07 0.079 0.079 0.083 0.089 0.1 0.1 

miss 0.106 0.117 0.128 0.14 0.154 0.16 0.169 0.184 0.195 0.201 

α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

miss right 0.051 0.061 0.08 0.093 0.101 0.108 0.121 0.122 0.125 0.13 

miss left 0.0 0.001 0.001 0.002 0.005 0.004 0.007 0.009 0.009 0.015 

miss 0.051 0.062 0.081 0.095 0.106 0.112 0.128 0.132 0.134 0.145 

           
α 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 

miss right 0.144 0.149 0.155 0.157 0.167 0.174 0.177 0.175 0.185 0.192 

miss left 0.015 0.017 0.02 0.025 0.03 0.029 0.037 0.044 0.047 0.047 

miss 0.159 0.166 0.175 0.182 0.197 0.203 0.215 0.219 0.232 0.239 
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Table 4. Table of miss right, miss left and miss of (1 – α) × 100% confidence interval for μ 

with X1, X2,…,Xn ~ Gumbel (1, 2), n = 10 and skewness= -1.14. 
 

 
 

It is shown in Table 1 if X is normally distributed, the nominal coverage 

error α is close to the simulated missed coverage error. Results in Tables 1 and 2 

show that if the probability distributions are symmetrically distributed, then the 

missed left   missed right. Tables 3 and 4 show that if X is skewed, such as in the 

Gamma distribution (Table 3) or Gumbel distribution (Table 4), the missed 

coverage error is more than the nominal coverage error α. Interestingly, the results 

show that for a right skewed distribution, the missed right coverage errors are 

substantially greater than the missed left coverage errors (see Table 3). The 

opposite is true for the left skewed, Gumbel, distribution (see Table 4). 

It is well known that the random variable  T n X S   is a ratio of the 

normal random variable and  1n



 random variable with  X   and S 

statistically independent. Will the random variable  T n X S   be affected 

by the skewness of the probability distribution? Simulated empirical distribution 

of T for the same four chosen population distributions are under studied. Our 

results are summarized in Figures 1, 2, 3 and 4. In this simulation, a sample of 

n = 10 is drawn from the population distribution with replications of M = 5000. 

Each figure contains figures (a), (b) and (c), with the exception of Figure 1. 

Figures (a) are histograms of the t-test statistics,  *

0 ,t n X S   under the 

assumption that 0 0:H    is true. Figures (b) are the plots of 
0X   versus S. 

In Figure 1,  1 2 10, , , ~ 1,2
iid

X X X N  were sampled. The histogram in 

Figure 1(a) is an empirical distribution of t* under the assumption of 0 : 1H   . 

The histogram is quite symmetric and the plot of 0X   versus S does not seem 

α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

miss right 0.001 0.003 0.005 0.008 0.01 0.014 0.016 0.02 0.021 0.029 

miss left 0.019 0.03 0.036 0.044 0.054 0.066 0.068 0.082 0.084 0.089 

miss 0.02 0.033 0.041 0.052 0.064 0.08 0.084 0.102 0.105 0.118 

           
α 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 

miss right 0.031 0.031 0.039 0.042 0.047 0.049 0.055 0.062 0.063 0.063 

Miss left 0.099 0.094 0.103 0.117 0.118 0.118 0.129 0.137 0.142 0.149 

miss 0.13 0.125 0.142 0.159 0.165 0.167 0.184 0.199 0.206 0.212 
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to have any correlation. This is what we expected from a t-test statistic. What 

happens if X is not normal? 

Figure 2(a) is the distribution of t* with  1 2 10, , , ~ 1,2
iid

X X X Laplace . The 

histogram shows that t* is symmetric. The plot of  0X  , where 
0 1  , versus 

S, see Figure 2(b), does not show any correlation. Figure 2(c) is the empirical 

distribution of t* based on X ~ N (1, 2) versus X ~ Laplace (1, 2). It can be seen 

that the distribution of t* based on X ~ Laplace (1, 2) has shorter tails than the t* 

computed from X ~ N (1, 2). Clearly the variability of  0X   plays a role in the 

distribution of t*. This may suggest that t* generated from X following a Laplace 

distribution may not be as sensitive as the t* obtained from a normal distribution.  
 
 

  
 

 (a) (b) 
 

Figure 1. (a) histogram of  *

0 ,t n X S   where 
0 1  , 

 1 2 10, , , ~ 1,2X X X Normal . (b) plot of  0X   versus S. 
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 (a) (b) 
 

 

(c) 
 

Figure 2. (a) histogram of  *

0 ,t n X S   where 
0 1  , 

 1 2 10, , , ~ 1,2X X X Laplace . (b) plot of  0X   versus S. (c) Fig. 2a over Fig. 1a 
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 (a) (b) 
 

 
 

(c) 
 

Figure 3. (a) histogram of  *

0 ,t n X S   where 
0 2  , 

 1 2 10, , , ~ 1,2X X X Gamma . (b) plot of  0X   versus S. (c) Fig 3a over Fig 1a 
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 (a) (b) 
 

 
 

(c) 
 

Figure 4. (a) histogram of  *

0 ,t n X S   where 0 0.1544   , 

 1 2 10, , , ~ 1,2X X X Gumbel . (b) plot of  0X   versus S. (c) Fig 4a over Fig 1a 

 

 
 

Figures in 3 and 4 are simulation results from a skewed probability 

distributions. Figure 3(a) is the distribution of t* with 

 1 2 10, , , ~ 1,2
iid

X X X Gamma . Interestingly, Gamma distribution is a right 

skewed distribution but the distribution of t* is left skewed. One can see in Figure 

3(b) that there is a positive correlation between  0X  , where 0 2  , and S. 



LIM & LIM 

75 

Further, Figure 3(c) shows that t*s constructed from X ~ Gamma (1, 2) lie below 0 

more often than fall above 0. One can see in Figure 3(b) that  0X   versus S is 

more disperse when  0 0X    while it is less varied when  0 0X   . Thus, 

when  0 0X    and large, it tends to counter by large S making t* more 

concentrated on the right hand side. On the other hand, when  0 0X    and S 

is small, t* tends to stretch further towards the negative side making t* skewed 

negatively. Similar arguments can explain why left skewed distributions will have 

X  overestimate μ more often and making the distribution of t* positively skewed, 

see Figure 4 where 
0 0.1544   . In the next section we will compare the two 

transformation methods, proposed by Hall (1992), with the usual test statistics T. 

Correction and Transformation 

Johnson (1978) and others noticed some undesired effects on skewed distributions 

on the t-test. Hall (1992) proposed to modify the t-test statistic T, say g(T), so that 

g(T) is less skew and less bias. The transformed test statistic g(T) must be 

invertible to obtain a unique modified confidence interval for μ. He suggested g 

been a monotonic function to achieve the invertibility. The two monotonic 

transformations of T proposed by Hall (1992) are: 

 

 2 2 2 3

1

1 1
ˆ ˆ ˆ

3

a
T T T a T b

n nn
        (2) 

 

and 

 

 2

ˆ2 1
ˆ1 ,

ˆ2

n a T
T Exp b

a nn






  
    

  
  (3) 

 

where  
3 3

1

ˆ
n

i

i

X X n S


 
  
 
  is an estimate of γ. Note that as the estimated 

skewness ˆ 0   both 1 0T   and 2 0T  . The test statistic 1T  is a direct 

consequence of the Edgeworth expansion of T given below, see for example, A. 

DasGupta (2008) page 191.  
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Theorem 1.  Let 1 2, , , nX X X  be iid with CDF F having mean μ, variance 

σ2, and E(X1 - μ)4 < ∞. Assume that F satisfies Cramër’s condition. Let 

γ = E(X1 - μ)3 /σ3, P1(x) = (2x2 + 1) / 6, then the CDF of t-statistic 

 T n X S   admits the expansion  

 

    
 

   1 1
P x

P T x x x O n
n


        (4) 

 

uniformly in x, where Φ(x) and ϕ(x) are standard normal distribution and density 

function, respectively. 

 

From the above theorem, the skewness of the distribution F has significant 

effect on T especially when the sample size n is small. One term Edgeworth 

expansion for T is (see Hall 1987)  

 

          2 12 1 .
6

P T x x x x O n
n


         (5) 

 

From (5) a modified test statistic is  

 

 
2

0

ˆ ˆ
,

3 6
T T T

n n

 
     (6) 

 

which may be used to correct the skewness of T. One may use a = 1/3 and b = 1/6 

in equations (2) and (3). As indicated by Hall (1992), T0 is not a monotonic 

function and hence is not invertible to construct a confidence interval for μ. Hall 

(1992) modified T0 to T1 as given in (2) so that it can be inverted to construct the 

confidence interval as well as to correct the bias and skewness. We are not sure 

why the last term of (2) and (3) is  ˆb n  rather than  ˆb n . Zhou and Gao 

(2000) uses  

 

  2 2 2 3

1

ˆ 1
ˆ

3
T T aT b a T

nn


      (7) 

 

which is slightly different from Hall’s T1 and we will called (7) the T1 from now 

on.  
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The simulation will justify the P1(x) in the one term of Edgeworth expansion 

of T is indeed a polynomial function of order 2. Consider the Edgeworth 

expansion of T,  

 

    
 

   1 1 ,
P t

P T t t t O n
n



  


        

 

and one can show that  

 

        1

2 1 2 2= < = .
2

S
P miss left P X t P t t O n

n n
  

 
   

   
 

  (8) 

 

Similarly,  

 

        1

2 1 2 2 .
2

S
P miss right P X t P t t O n

n n
  

 
   

       
 

  (9) 

 

If P1(t) > 0 for all t, one can see then, a positively skewed distribution (γ > 0) 

P(miss right) > P(miss left). It can be seen in (9) that, with γ > 0 and P1(t) > 0, 

 miss right
2

P


  and in equation (8) one obtains  miss left
2

P


 . The 

opposite is true for a negatively skewed distribution. Let  

 

      miss miss left miss rightP P P    

 

         1

1 2 1 2 2 .P t P t t O n
n

  


         (10) 

 

Let     missk P    and      2 1 2 1 2g t P t P t     . Rewrite Equation 

(10) as  

 

        1

2 2k g t t O n
n

 


      

 

and 
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 2

2

.
nk

g t
t








   

 

A plot of    2
ˆnk t   versus 2t  will review the structure of  1P x  if the 

random variable X is skewed. 
 
 

  
 

 (a) (b) 
 

Figure 5. Plot of    2
ˆnk t   versus 2t  (a)  1 2, , , ~ 1,2nX X X Normal  

and (b)  1 2, , , ~ 1,2nX X X Laplace . 

 

 

Finding the structure of g is a matter of regression. However, we are 

interested in whether the structure of g agrees with the quadratic function given in 

Theorem 1. Note that   2

1 2 1P x x   is an even function. Hence, 

   2 1 2 0P t P t    . However, if X is a right skewed distributed function, we 

have seen in Table 3 that P(miss right) > P(miss left); we expect  2 0g t   (see 

Figure 6(a)). Similarly, one can see that  2 0g t   when X has left skewed 

distribution (see Figure 6(b)). If X  is a symmetrically distributed function with 

skewness γ = 0, then the plot of    2
ˆnk t   versus 2t  does not show any 

pattern as seen in Figures 5 (a) and (b). Figures 6 (a) and (b) show that  2g t  

resembles a quadratic function, confirming that the use of the second term in (5) 

is necessary if skewness appeared in the data. From the simulation and the 
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equation (10) one can see that if X is skewed, then P (miss) > α; because 

   2 2

ˆ
> 0.g t t

n
 




 
 
 

 Thus, it explains that when X is a skewed distribution 

the coverage error will be larger than the nominal coverage error α. 
 
 

  
 

 (a) (b) 
 

Figure 6: Plot of    2
ˆnk t   versus 2t  (a)  1 2, , , ~ 1,2nX X X Gamma  

and (b)  1 2, , , ~ 1,2nX X X Gumbel . 

 

 

Comparison of T, T1 and T2 

The objective is to compare the test statistics T, T1, and T2. The modified test 

statistic T2 given in Hall (1992) has not been paid attention to as far as we know. 

As mentioned earlier, ˆ 20lim T T   and if X is positively skewed, most likely 

  0X   . We modify the T in T2 by adding the term b n  to X  so that it 

shifts to the correct direction, i.e.,  

 

 .b

b
T n X S

n




 
   

 
  (11) 

 

Unlike T2 in (3), our modified T2 is  
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  2

ˆ2
ˆ1 .

ˆ2

ba Tn
T Exp b n

a n






   
    

  
  (12) 

 

The simulation study is repeated on the four chosen distributions but this time we 

compare the empirical distributions of three test statistics, i.e., T , 1T  and 
2T 

. 

Both 1T  and 
2T 

 are less skewed than T if X is simulated from a skewed 

distribution, which are shown in Figures 9 and 10. Figures 7 and 8 show that if X 

is a symmetric distribution, the distributions of 1T  and 2T 
 remain symmetric. 

Confidence Interval 

A simulation study of confidence intervals derived from T, 1T  and 2T 
 was 

conducted. The (1 – α) × 100% confidence interval for μ derived from 1T  is  

 

    1 1

1 2 1 2, ,
S S

X h t X h t
n n

 

  
   

 
  (13) 

 

where      
1 3

1 11

1

ˆ ˆ3
ˆ ˆ1

a b
h t n a t n a

n n

 
 

    
     

  

. One can see that 

 1

1h t
 may produce complex values for some ̂  and t. If the first 4 terms of 

 1

1h t
 are expanded and the expansion is simplified,  

 

  
 

 
22 3

1 1

1 1*

ˆˆ ˆ ˆ ˆ5
.

3

ab a b b
h t t t t h t

nn n n n

         
           
     

  (14) 

 

Then, replace  1

1h t
 by  1

1*h t
 in (13), the approximation confidence interval of 

1T , called 1T 
, will guarantee to produce a real valued confidence interval. The 

confidence interval of 1T 
 is  

 

    1 1

1* 2 1* 2, ,
S S

X h t X h t
n n

 

  
   

 
  (15) 
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Figure 7. Left figure is the histogram of  T n X S  ,  1 2, , , ~ 1,2nX X X Normal . The graph in the middle is the 

histogram of 1T  and the histogram on the right is the empirical distribution of 2T 
. 

 

 

   
 

Figure 8. Left figure is the histogram of  T n X S  ,  1 2, , , ~ 1,2nX X X Laplace . The graph in the middle is the 

histogram of 1T  and the histogram on the right is the empirical distribution of 2T 
. 
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Figure 9. Left figure is the histogram of  T n X S  ,  1 2, , , ~ 1,2nX X X Gamma . The graph in the middle is the 

histogram of 1T  and the histogram on the right is the empirical distribution of 2T 
. 

 

 
 

   

Figure 10. Left figure is the histogram of  T n X S  ,  1 2, , , ~ 1,2nX X X Gumbel . The graph in the middle is the 

histogram of 1T  and the histogram on the right is the empirical distribution of 2T 
. 
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where  1

1*h t
 is given in (14). The (1 – α) × 100% confidence interval for μ 

derived from 
2T 

 is  

 

 

2

2

ˆ ˆ2
ln 1 ,

ˆ2
.

ˆ ˆ2
ln 1

ˆ2

b S n a b
X t

an n n n

b S n a b
X t

an n n n





  



  



       
         

       
 

                       

  

 

It is not surprising that the logarithm function may produce a complex number. 

Expand the logarithm function and keep the first 3 terms of the Taylor series 

expansions, the approximation confidence interval for μ is 

 

 

 

 

22 3

2 2 2

22 3

2 2 2

ˆˆ ˆ ˆ ˆ ˆ4
,

3
.

ˆˆ ˆ ˆ ˆ ˆ4

3

ab S b a b b
X t t t

n n n n n n n
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The above confidence interval (16) may be called a confidence interval from 
**

2T . The confidence interval in (16) is different from that of in (15). The 

confidence interval in (15) subtract  ˆb n  from 2t  on upper and lower 

confidence limit. Unlike the confidence interval in (15), the confidence interval in 

(16) tends to subtract  ˆb n  from 2t  on the lower confidence limit but add 

 ˆb n  on the upper confidence limit. 

It can be seen in Table 7 that if X is severely skewed, the modified 

confidence intervals 1T 
 and 

**

2T  perform substantially better than the usual 

confidence interval derived from T. If the skewness is not severe, T performs 

better than the modified T. 
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Table 5. Table of nominal coverage error α and the simulated missed for (1 – α) × 100% 

confidence interval for μ with  1 2, , , ~ 1,2nX X X Normal .  

 

 n = 10 M = 10000 Normal (1,2) skewness = 0, a = 1/3, b = 1/6 

α  0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

miss T  0.01 0.02 0.03 0.04 0.049 0.06 0.069 0.079 0.089 0.101 

miss *

1T   0.011 0.022 0.031 0.04 0.05 0.06 0.069 0.08 0.09 0.101 

miss **

2T   0.013 0.025 0.035 0.045 0.055 0.064 0.074 0.084 0.094 0.104 

           
α  0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 

miss T  0.109 0.122 0.13 0.14 0.15 0.16 0.168 0.177 0.189 0.202 

miss *

1T   0.109 0.12 0.128 0.138 0.149 0.158 0.167 0.176 0.187 0.2 

miss **

2T   0.114 0.125 0.132 0.142 0.152 0.162 0.171 0.181 0.191 0.203 

 
 
Table 6. Table of nominal coverage error α and the simulated missed for (1 – α) × 100% 

confidence interval for μ with  1 2, , , ~ 1,2nX X X Laplace .  

 

 n = 10 M = 10000 Laplace (1,2) skewness = 0, a = 1/3, b = 1/6 

α  0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

miss T  0.005 0.014 0.023 0.032 0.041 0.051 0.061 0.073 0.084 0.095 

miss *

1T   0.01 0.023 0.037 0.049 0.061 0.074 0.086 0.1 0.113 0.125 

miss **

2T   0.015 0.032 0.049 0.064 0.076 0.092 0.104 0.119 0.132 0.144 

           
α  0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 

miss T  0.105 0.116 0.127 0.14 0.151 0.161 0.171 0.182 0.194 0.202 

miss *

1T   0.135 0.148 0.159 0.172 0.186 0.194 0.205 0.216 0.23 0.237 

miss **

2T   0.154 0.167 0.178 0.191 0.204 0.213 0.224 0.236 0.249 0.256 

 
 
Table 7. Table of nominal coverage error α and the simulated missed for (1 – α) × 100% 

confidence interval for μ with  1 2, , , ~ 1,2nX X X Gamma . 

 

 n = 10 M = 10000 Gamma (1,2) skewness = 2, a = 1/3, b = 1/6 

α  0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 
miss T  0.047 0.062 0.077 0.089 0.1 0.109 0.119 0.13 0.139 0.148 

miss *

1T   0.024 0.035 0.048 0.058 0.068 0.077 0.088 0.098 0.108 0.118 

miss **

2T   0.022 0.033 0.046 0.056 0.065 0.074 0.086 0.097 0.107 0.117 

           
α  0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 

miss T  0.156 0.166 0.176 0.186 0.19 0.198 0.206 0.22 0.229 0.238 

miss *

1T   0.128 0.138 0.149 0.16 0.167 0.178 0.186 0.2 0.21 0.221 

miss **

2T   0.127 0.137 0.149 0.159 0.168 0.178 0.186 0.201 0.211 0.223 
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Table 8. Table of nominal coverage error α and the simulated missed for (1 – α) × 100% 

confidence interval for μ with  1 2, , , ~ 1,2nX X X Gumbel . 

 

 n = 10 M = 10000 Gumbel (1,2) skewness ≈ -1.14, a = 1/3, b = 1/6  

α  0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

miss T  0.019 0.033 0.043 0.055 0.064 0.075 0.085 0.094 0.105 0.115 

miss *

1T   0.015 0.027 0.037 0.048 0.058 0.068 0.079 0.088 0.099 0.109 

miss **

2T   0.017 0.028 0.039 0.050 0.061 0.071 0.081 0.091 0.101 0.111 

           α  0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 

miss T  0.125 0.134 0.142 0.153 0.162 0.173 0.182 0.193 0.201 0.212 

miss *

1T   0.12 0.129 0.138 0.149 0.158 0.169 0.18 0.19 0.199 0.208 

miss **

2T   0.121 0.133 0.141 0.152 0.163 0.174 0.182 0.191 0.200 0.210 

 

Hypothesis Testing 

The three test statistics 1,T T  and *

2T  are compared in terms of the power of their 

tests. A Computer Approach Technique (CAT), given in Pal, Lim and Ling 

(2007), will be used. For a normal distribution all three test statistics perform 

relatively well. However, *

1 2 and T T  lost some power on the Laplace distribution, 

more on the 1T  than *

2T . If X is a positively skewed distribution, such as Gamma, 

1T  and *

2T  perform slightly better than T on the right side of 0  while T performs 

better than other two on the left side of 0 . The opposite is true for negatively 

skewed distribution. In terms of modified test statistics, *

2T  performs slightly 

better than 1T  from the point of view of power of the test. The simulation results 

for the power of the tests are summarized in Figures 11, 12, 13 and 14. 
 
 



T-TEST ON SKEWED DISTRIBUTION FUNCTION 

86 

  
 

Figure 11. Plot of η versus power of the test for where  1 2, , , ~ ,2nX X X Normal  , 

with n = 10. The hypothesis testing is  0 : 4 4H     versus  1 : 4 4H     

 

 
 

  
 

Figure 12. Plot of η versus power of the test for where  1 2, , , ~ ,2nX X X Laplace  , 

with n = 10. The hypothesis testing is  0 : 4 4H     versus  1 : 4 4H     
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Figure 13. Plot of η versus power of the test for where  1 2, , , ~ ,2nX X X Gamma  , 

with n = 10. The hypothesis testing is  0 : 4 8H     versus  1 : 4 8H     

 

 
 

  
 

Figure 14. Plot of η versus power of the test for where  1 2, , , ~ ,2nX X X Gumbel  , 

with n = 10. The hypothesis testing is  0 : 4 2.84557H     versus 

 1 : 4 2.84557H     

 

 

Conclusion 

Based on these results, it appears that the usual t-test statistic, T, is quite robust 

regardless of the skewness of the distribution. The modified t-test statistics T1 and 
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*

2T  can improve the power on one side of the 0   only, but not on both sides. 

From the results, it appears the modified confidence intervals perform much better 

than the usual confidence interval derived from T when X is simulated from a 

skewed distribution. 
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