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Rare germline heterozygous missense variants
in BRCA1-associated protein 1, BAP1,
cause a syndromic neurodevelopmental disorder
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Summary
Nuclear deubiquitinase BAP1 (BRCA1-associated protein 1) is a core component of multiprotein complexes that promote transcription

by reversing the ubiquitination of histone 2A (H2A). BAP1 is a tumor suppressor whose germline loss-of-function variants predispose

to cancer. To our knowledge, there are very rare examples of different germline variants in the same gene causing either a neurode-

velopmental disorder (NDD) or a tumor predisposition syndrome. Here, we report a series of 11 de novo germline heterozygous

missense BAP1 variants associated with a rare syndromic NDD. Functional analysis showed that most of the variants cannot rescue

the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. In T cells isolated from two affected children,

H2A deubiquitination was impaired. In matching peripheral blood mononuclear cells, histone H3 K27 acetylation ChIP-seq indicated

that these BAP1 variants induced genome-wide chromatin state alterations, with enrichment for regulatory regions surrounding genes

of the ubiquitin-proteasome system (UPS). Altogether, these results define a clinical syndrome caused by rare germline missense BAP1

variants that alter chromatin remodeling through abnormal histone ubiquitination and lead to transcriptional dysregulation of

developmental genes.
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Protein degradation by the ubiquitin-proteasome system

(UPS) is essential for the maintenance of proteostasis in eu-

karyotic cells.1 It prevents the accumulation of potentially

cytotoxic misfolded or short-lived proteins whose func-

tional conformation can no longer be restored by chaper-

ones.2,3 Before being transported to the proteasome for

hydrolysis, proteins destined to be degraded are specifically

tagged by the addition of ubiquitin molecules through a

cascade of reactions involving activating-, conjugating-,

and ligating-enzymes.4,5 However, the ubiquitination pro-

cess can be reversed by deubiquitinases (DUBs), which are

able to cleave and disassemble the polyubiquitin chains of

tagged substrates, thus avoiding their degradation by the

proteasome.6 This action of DUBs is important for recy-

cling the ubiquitin, avoiding proteasome overload and

regulating protein turnover. Approximately a hundred

DUBs are divided into four main families, including the

ubiquitin C-terminal hydrolases (UCH) to which BRCA1-

associated protein 1 (BAP1) belongs.7,8

BAP1 is a nuclear DUB recognized for its tumor-suppres-

sor properties that was proposed to depend on its ability to

bind to the RING finger domain of BRCA1.9 Nonetheless,

later studies have shown that BAP1 acts as a tumor-sup-

pressor gene independently of BRCA1 (MIM: 113705).

BAP1 (MIM: 603089) is frequently inactivated in tumors

by somatic loss-of-function (LoF) variants and its germline

variants predispose to a tumor syndrome (BAP1-TPDS

[MIM: 614327]) that encompasses various cancers, notably

uveal melanoma, malignant pleural mesothelioma, and

cutaneous melanoma.10,11 In the nucleus, BAP1 acts as a

chromatin-associated protein exerting its deubiquitinating

function through themultiprotein complexes formedwith

transcription factors and co-factors. A prominent role of

BAP1 is the modulation of chromatin through the com-

plexes formed with the additional sex comb-like proteins

ASXL1, ASXL2, and ASXL3 (ASXL1/2/3).12 BAP1 com-

plexes remove mono-ubiquitin from lysine 119 of histone

H2A (Ub-H2A) previously added by Polycomb-repressive

complex 1 (PRC1), thus antagonizing gene silencing medi-

ated by PRC1 and activating expression of genes that

contribute in particular to embryonic development or dif-

ferentiation.10,13,14 In addition, still in association with

ASLX proteins that stabilize it,13 BAP1 has been shown to

regulate a wide range of other cellular processes via its in-

teractions with partner proteins involved in DNA damage

response (BRCA1, BARD1), cell cycle control and prolifera-

tion (HCF1, YY1, FoxK1/K2), ferroptosis (SLC7A11),

apoptosis (IP3R3), or even the immune response.10,15–18

We showherein that the consequences of BAP1 germline

variants are not limited to cancer predisposition but also

extend to developmental disabilities. In the frame of an in-

ternational collaborative effort initiated by the Western

France consortium HUGODIMS, we compiled the clinical

findings for a series of 11 unrelated individuals exhibiting

a syndromic form of intellectual disability (ID) and/or

developmental delay (DD) due to de novo heterozygous

missense single-nucleotide variants (SNVs) in BAP1. The
362 The American Journal of Human Genetics 109, 361–372, Februar
identification of the cases was partly facilitated by the

web-based tool GeneMatcher.19 The variants were identi-

fied by subject-parents trio-based exome or genome

sequencing (ES/GS) in diagnostic or research settings. In

this study, which was approved by the local ethics commit-

tee of the University Hospital Center (CHU) of Nantes

(number CCTIRS: 14.556), all participants were clinically

assessed by at least one expert clinical geneticist from

each of the centers involved. Written informed consent

was obtained from the parents or legal guardians of all

study participants and written authorization for the publi-

cation of photographs shown in Figure 1B.

All affected individuals harboring a de novo BAP1 variant

had DD or ID (11/11) characterized notably by speech (11/

11) and motor delay (6/11) (Table 1; Figure 1A). Most of

them had hypotonia (7/11), seizures (6/11), and abnormal

behavior (8/10), including autism spectrum disorder,

attention deficit hyperactivity disorder, and hypersensitiv-

ity. Almost all individuals showed dysmorphic facial fea-

tures (10/11), and more than half (6/11) had skeletal mal-

formations (involving the hands [4/11], feet [3/11], or

spine [2/11],). Most of the individuals had growth failure

(9/11), including four individuals with a very short stature

(ranging from �3.18 to �6 SD). Organ abnormalities

were inconsistent and heterogeneous and involved the

eye (5/10), heart (3/10), and kidney or urogenital system

(2/10). Other findings included sleep disorders, reported

in 3/5 individuals, frequent episodes of otitis media in

4/11 (followed by hearing loss in two individuals), hyper-

trichosis in 3/11 and alopecia in 1/11, and feeding diffi-

culties in 4/8. It is noteworthy that we could clinically

distinguish two subgroups of affected individuals: one is

represented by individuals 5 to 9 with a very syndromic

phenotype who exhibit the most severe symptoms (severe

ID, very short stature, facial dysmorphism, and congenital

malformations), whereas the second subgroup with the six

remaining individuals has a less syndromic phenotype

with generally milder symptoms. Of note, the initial diag-

nostic impression was Cornelia de Lange syndrome 1

(MIM: 122470) for individuals 5 and 6 and Smith-Magenis

syndrome (MIM: 182290) for individual 3.20

In total, we found 11 missense SNVs, two of them recur-

rent (c.271T>C [p.Cys91Arg] and c.506A>G [p.His169Arg])

andeight restricted to three codons: 12 (2/11), 91 (4/11), and

169 (2/11) (Table 1; Figure 1H). Almost all variants were ab-

sent in public variant databases, and bioinformatics predic-

tions were in favor of their pathogenicity; only c.2153G>A

(p.Arg718Gln) was present in one heterozygote in gnomAD.

According to gnomAD,22 BAP1 is intolerant of LoF variants

(probability of being loss-of-function intolerant [pLI] ¼
0.99; observed/expected variants (o/e) ¼ 0.12 [0.06–0.28])

and moderately intolerant to missense variants across the

entire gene (Z score ¼ 2.64; o/e ¼ 0.64 [0.58–0.71]). Yet,

the analysis by missense tolerant ratio (MTR) Gene

Viewer23 shows that the region encoding the UCH domain,

where 10/11 variants in the study reside (Figure 1H), ismuch

less tolerant tomissense variants than the rest of the protein
y 3, 2022



Figure 1. BAP1 variants: Associated facial features and localization in the protein structure
(A–F) Facial photographs showing dysmorphic features in individuals 1 (A), 4 (B), 5 (C), 6 (D), 8 (E), 9 (F), and 10 (G).
(H) The majority of variants (10/11) affect only five different codons located in the UCH domain. By contrast, variant p.Arg718Gln is
located in the nuclear-localization signal (NLS). Protein structure refers to the one previously described elsewhere.10 UCH, ubiquitin
C-terminal hydrolase (UCH) domain; ULD, UCH37-like domain; BARD1, HCF1, BRCA1, and YY1, domains of interaction with
BARD1 (BRCA1-associated RING domain 1), HCF1, BRCA1, and YY1; NLS, bipartite nuclear localization signal.
(Figure S1). All amino acid residues affected by the variants

are highly conserved across the species (to Caenorhabditis el-

egans for the variants harbored by individuals 1–10 and to

Drosophila melanogaster for c.2153G>A [p.Arg718Gln]).

Most variants are localized to a small region of the protein

within thecatalyticdomain. Several altercritically important

functional residues, including Cys91, which is the critical

active site residue of the enzyme and whose substitutions

disrupt BAP1 activity, and His169, which is also part of the

enzyme active site and interacts directly with Cys9124 (sup-

plemental information). The only variant not located in

the catalytic domain,c.2153G>A (p.Arg718Gln) (GenBank:

NM_004656.3), affects an amino acid within the nuclear-

localization signal (NLS) domain. However, no clear geno-

type-phenotype correlation could be established that

supports the observation of two distinct phenotypes made

during clinical assessment. Secondary molecular findings

weremade inexomedata for someof the affected individuals

(Table S1), but without any evidence of their pathogenicity.

In order to evaluate directly whether the mutations

described above could affect the activity of BAP1, we
The America
used a previously characterized model cell line (HAP1) in

which we knocked out BAP1 by genome editing and

then rescued its expression through expression of a retro-

virus carrying BAP1 cDNA.13 We generated rescued cell

lines for six variants and first checked by immunoblot

that the mutant proteins are expressed and stable

(Figure 2A). H2AK119ub is a major substrate for BAP1

enzymatic activity,14 so we therefore used its quantifica-

tion as a proxy for BAP1 activity. As expected,

H2AK119ub level increases by about 2-fold in the BAP1

knockout cells and reaches the original level in the BAP1-

WT rescue line (Figure 2B). In contrast, four out of the six

variants, namely p.Pro12Thr, p.Cys91Arg, p.Cys91Ser,

and p.His169Arg are unable to rescue H2AK119ub levels.

The level of H2AK119ub with the variant p.Pro12Ala

rescue is near that of wild type (WT), suggesting that this

variant is either partially or fully enzymatically active, at

least on this substrate. The p.Arg718Gln variant displays

a normal deubiquitinase activity toward H2AK119ub. We

also analyzed the subcellular localization of BAP1 in the

cell lines rescued with the six different variants. All showed
n Journal of Human Genetics 109, 361–372, February 3, 2022 363



Table 1. Phenotype of affected individuals with BAP1 de novo variants

Individual (family) 1 (F1) 2 (F2) 3 (F3)a 4 (F4) 5 (F5) 6 (F6) 7 (F7) 8 (F8) 9 (F9) 10 (F10) 11 (F11) Total

Variant
nomenclature
Chr3: (GRCh37;
GenBank:
NM_004656.3)

g.524438
61G>T

g.524438
61G>C

g.52443
601C>T

g.52442
599A>G

g.52442
077C>G

g.524420
78A>C

g.52442078A>G g.52442
078A>G

g.52441
264T>C

g.52441
264T>C

g.52436341C>T 11 variants
de novo

c.34C>A c.34C>G c.91G>A c.146T>C c.272G>C c.271T>G c.271T>C c.271T>C c.506A>G c.506A>G c.2153G>A

p.Pro12Thr p.Pro12Ala p.Glu31Lys p.Leu49Pro p.Cys91Ser p.Cys91Gly p.Cys91Arg p.Cys91Arg p.His169Arg p.His169Arg p.Arg718Gln

ClinVar accession
number

SCV0015
72228

SCV001
738368

SCV001
738369

SCV001
738370

SCV001
738372

SCV001
738373

SCV001738374 SCV00
1738374

SCV001
738375

SCV001
738375

SCV001738376

Variant
annotation

MobiDetailsb 22880 22881 22882 22883 22865 22884 22885 22885 22886 22886 22888

CADD
(GRCh37-
v1.6)

26.5 25.7 29.4 29.7 26.1 28.5 29.1 29.1 25.7 25.7 24.4

gnomAD
v2.1.1

absent absent absent absent absent absent absent absent absent absent present
(x1):4.7E�6

Metadome
(tolerance
score)

HI (0.13) HI (0.13) I (0.26) HI (0.11) I (0.35) I (0.35) I (0.35) I (0.35) I (0.34) I (0.34) SI (0.94)

Method of variant
detection

ES ES ES ES ES ES ES ES ES ES ES and GS

Sex female male female male female female male female male female female 7 F/4 M

Age at last
investigation

10 years 3 years 14 years 6 years 11 years
5 months

15 years 1 years
11 months

4 years 16 years 8 years
4 months

12 years
1 month

1 year
11 month
to 15 years

Growth failure � � þ þ þ þ þ þ þ þ þ 9/11

Weight at age last
investigation (kg/SD)

36.2/þ1.5 12.3/�1.5 48.6/þ0.5 20/�0.99 26.5/�2 30/�4.35 12.17/þ0.03 13.7/�1.28 50/�1.17 30/þ1 26/�2.5 �4.35 to þ1

Height at age last
investigation (cm/SD)

128.5/�1.5 88.9/�1.5 149.4/�2.5 109.7/�2.44 116/�4.5 125.7/�6 78/�3.18 90/�2.71 142/�3.69 117.4/�2 135.3/�2 �6 to �1.5

Head circumference at
age last investigation
(cm/SD)

51/�1 47.9/�2 56/þ1 54.7/þ1.67 52/�1 50/�2.86 49/þ0.56 50/�0.01 53/�1.41 48/þ0 at
27 months

54.5/þ1 �2.86 to þ1.67

Developmental
delay or ID

þ þ þ; mild þ þ; severe þ; severe þ þ þ þ þ 11/11

Age of walking 18 months 19 months 18 months 2 years not walking not achieved 17 months 2.5 years 2 years 23 months 15 months not applicable

Speech delay þ þ þ þ þ þ þ þ þ þ þ 11/11

Hypotonia � þ þ þ þ þ � þ � þ � 7/11

Seizures þ � � � þ � � þ þ þ þ 6/11

Behavioral anomalies þ; ADHD þ; ASD þ; ADHD þ; ASD N/A þ; ASD � þ þ þ þ; ADHD 9/10

(Continued on next page)
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prominent nuclear staining (Figure 2C), even the variant

located in the NLS domain, p.Arg718Gln. This finding sug-

gests that this domain is not strictly required for the nu-

clear localization and rules out the possibility that

p.Arg718Gln could compromise the function of BAP1 by

causing its cytosolic accumulation.7 Finally, we investi-

gated whether the regulation of H2AK119ub correlates

with BAP1-mediated transcriptional regulation. We had

shown that TMSB4X (MIM: 300159) and S100A11 (MIM:

603114) expression are regulated by BAP1 in HAP1

cells.13 Indeed, RT-qPCR experiments confirmed that their

expression decreases in the absence of BAP1 and is restored

in the WT rescue line. However, five out of six variants did

not rescue the expression of those genes, including the

p.Pro12Ala variant, although it is enzymatically active on

H2AK119ub (Figure 2D). Only the p.Arg718Gln variant be-

haves similarly to the WT, suggesting that this might not

be an LoF variant; further investigation will be necessary

to determine whether it is pathogenic. In the meantime,

we consider it as a variant of uncertain significance (VUS).

We assessed T cells isolated from affected children (indi-

viduals 1 and 5) carrying BAP1 variants c.34C>A

(p.Pro12Thr) and c.272G>C (p.Cys91Ser) for their con-

tents of ubiquitinated H2A (Ub-H2A) by immunoblotting.

As shown in Figure 3A, although the amounts of H2A were

similar between control and affected individuals, the

steady-state level of Ub-H2A was substantially increased

in cells of the affected children when compared to those

of their respective related controls (i.e., father and/or

mother of the probands). Specifically, densitometry anal-

ysis of the band intensities revealed that Ub-H2A was

1.5-fold and 2.0-fold enriched in the subjects bearing the

p.Cys91Ser and p.Pro12Thr BAP1 variants, respectively

(Figure 3A, bottom). These data are fully in line with our

previous observation that both of these variants were un-

able to rescue H2A deubiquitination in BAP1-knockout

cells (Figure 2) and confirm that the missense variants

p.Pro12Thr and p.Cys91Ser cause LoF.

Because several recent studies have suggested the role of

deubiquitination in the regulation of the UPS,25,26 we next

sought to determine whether these BAP1 variants were

associated with impaired proteasome expression and/or

function. To this end, T cells from affected children car-

rying the p.Pro12Thr and p.Cys91Ser BAP1 variants were

subjected to a non-denaturing cell lysis prior to analysis

of their proteasome complexes by native-PAGE and immu-

noblotting. As illustrated in Figure 3B, the chymotrypsin-

like activity and amounts of the 20S and 26S proteasomes

did not substantially vary between control and affected

children’s cells, as determined by in-gel overlay assay and

a6 staining. To further ascertain the impact of BAP1 vari-

ants on proteasomes, we next compared the proteasome

subunit composition between control and affected chil-

dren’s T cells by SDS-PAGE and immunoblotting. Our

data show that the proteasome expression profile in

T cells of affected individuals was similar to that detected

in control cells with no major changes in the abundance
n Journal of Human Genetics 109, 361–372, February 3, 2022 365



Figure 2. Assessment of BAP1 variants effect in model cell lines
(A) Nuclear extract of HAP1 cellsWT, BAP1 knockout or BAP1-knockout-rescued with the different variants indicated on top were probed
by immunoblot with anti-BAP1 antibody (top) or anti-HDAC1 (bottom, loading control). Representative result.
(B) Same as in (A), but this time probed with anti-H2AK119ub antibody (top) or anti-Histone H3 (bottom, loading control). Immuno-
blots were quantified, the ratio between H2AK119ub and H3 is indicated below after normalization to 1 for HAP1 WT cells. Represen-
tative result.
(C) Detection of BAP1 by immunofluorescence microscopy (top), nuclear staining with DAPI (bottom), representative experiment.
(D) Gene expression was analyzed by RT-qPCR in the different cell lines described in (A). TMSB4X (MIM: 300159) and S100A11 (MIM:
603114) levels normalized to TBP (MIM: 600075) expression are shown (n ¼ 3, biological replicates).
of the AAAþ-ATPase subunits and most of the catalytic

b-subunits (Figure 3C). Strikingly, the b5 subunit precursor,

however, consistently accumulated in probands’ T cells, as

determined by immunoblotting (Figure 3C). Importantly,

it is highly unlikely that such pro-b5 upregulation reflects

greater amounts of proteasomes in affected individuals’

T cells, as our analysis of the 20S/26S native complexes

failed to show any quantitative differences between con-

trol and affected children (Figure 3B). The enrichment of

the b5 precursor protein (pro-b5), which was confirmed

by densitometry analysis in both probands (Figure 3C,

bottom), strongly suggests that BAP1 LoF is associated

with b5 processing defect. Altogether, the elevated levels

of ubiquitinated H2A and pro-b5 proteasome subunit

demonstrate that the identified substitutions p.Pro12Thr

and p.Cys91Ser behave as LoF variants in affected individ-

uals’ T cells impairing H2A deubiquitination and altering

some features of the UPS.

To gain additional insights into the molecular conse-

quences of BAP1 variants, we profiled the histone acetyla-

tion (histone H3 K27 acetylation) chromatin state in the

same two families of affected individuals 1 and 5. Histone

acetylation marks active enhancers and promoters

throughout the genome and is thus a good proxy for iden-

tifying alterations in gene regulatory mechanisms. This
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approach is highly sensitive, as one can quantify chro-

matin alterations caused by single-nucleotide variations27

and detect epigenetic mechanisms associated with com-

plex diseases.28,29 We have previously used this approach

in affected individuals harboring gene deletions of the

chromatin factors SIN3B (MIM: 607777) and SIN3A

(MIM: 607776) and showed that they lead to chromatin

state alterations.30 Because BAP1 alters H2A-Ub in the

affected individuals (Figure 3A), we decided to use this epi-

genomics approach to identify putative gene regulatory al-

terations by comparing the parents to affected individuals

(Figure 4A).

Using peripheral blood mononuclear cells from affected

individuals, we performed H3K27ac ChIP-seq in technical

replicates and sequenced the ChIP libraries to a median of

45M reads. After quality controls and peak calling, we

defined a common peak set in all individuals and quanti-

fied peak heights (as a function of normalized read counts

in peaks) for each individual sample separately (supple-

mental methods). Principal-component analysis of his-

tone acetylation peak heights in the two families reveals

that variance associated to principal component (PC) 1

separates the two families (39% variance explained;

Figure 4B). Interestingly, PC2 separated the affected indi-

viduals from their parents (26% variance explained),
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Figure 3. Subjects with BAP1 variants
exhibit increased amounts of Ub-H2A and
pro-b5 proteasome subunit
(A) Top: whole-cell lysates from T cells of
affected individuals carrying the
p.Pro12Thr or p.Cys91Ser BAP1 variants
(labeled probands 1 and 5) and control
T cells (subjects’ father and/or mother)
were subjected to protein extraction and
SDS-PAGE/immunoblotting with anti-
bodies directed against Ub-H2A, H2A as
well as a-tubulin and GAPDH (loading con-
trol), as indicated. Bottom: densitometry
analysis of the shown immunoblots (top)
depicting the Ub-H2A contents detected in
control (black) and BAP1 subjects (red).
The y axis represents the fold changes of
normalized Ub-H2A (Ub-H2A/a-tubulin) in
densitometry measurements, which were
set as 1 for subjects’ father or mother, as
indicated.
(B) Native-PAGE analysis from control and
affected individuals’ T cells with proteasome
bands being visualized by exposing the gel
to 0.1 mM of the LLVY fluorescent peptide
(left) and staining the gels with a mono-
clonal antibody specific for the a6 subunit
(right), as indicated.
(C) Top: whole-cell lysates from control and
affected individuals’ T cells were separated
by SDS-PAGE and analyzed by immunoblot-
ting with antibodies directed against, RPT1,
RPT2, RPT3, RPT4, RPT5, RPT5, b1, b2, b5,
and b5i, as indicated. Equal loading was
ensured by probing the membranes with
an anti-GAPDH antibody, as indicated. Bot-
tom: densitometry analysis of the shown
immunoblots (top) depicting the pro-b5
contents detected in control (black) and

affected individuals (red). The y axis represents the fold changes of normalized pro-b5 (pro-b5/GAPDH) in densitometry measurements,
which were set as 1 for subjects’ father or mother, as indicated.
suggesting that they may bear distinct histone acetylation

states. To investigate this further, we performed a differen-

tial peak height analysis and found 1,492 downregulated

and 1,190 upregulated peaks when comparing the affected

individuals 1 and 5 to their parents (Figure 4C).

We also evaluated whether these differential acetylated

peaks (DAPs) were shared between the two affected indi-

viduals. For this, we compared the heights of up- and

downregulated peaks in the individuals and their parents

(Figure 4D). Peaks were similarly up- and downregulated

in the replicates of the individuals, indicating that

the chromatin state alterations are shared between the

individuals carrying BAP1 variants p.Pro12Thr and

p.Cys91Ser.

We next investigated whether these BAP1 variants affect

the gene regulatory mechanisms of the ubiquitin protea-

some pathway by testing whether DAPs are enriched for

ubiqutin/proteasome genes. For this, we first assigned en-

hancers to nearest genes by using the GREAT analysis

tool31 and then employed a literature-curated list of ubiq-

uitin-related and deubiquitinase genes covering 665 genes

within our dataset.32 Interestingly, we found a 4-fold
The America
enrichment of ubiquitin-related genes (Fisher’s exact test

p value 1.5E�25, odds ratio [OR] ¼ 4.16) in DAP among

all genes (Table S2). The DAPs associated to the ubiqui-

tin-related genes are shown in Figure 5A. We found a spe-

cific enrichment for DUBs as well as ubiquitin E3 genes

and adapters (Figure 5B). Nevertheless, the changes are

consistent between the affected individuals, suggesting

that BAP1 variants might induce compensatory gene regu-

latory alterations of the ubiquitin-proteasome pathway, as

revealed here by changes in chromatin state of enhancers.

To gain additional insights on the gene regulatory alter-

ations, we performed Gene Ontology (GO) enrichment

analysis by comparing DAP to all acetylation peaks by us-

ing GREAT (Figure 5C). Interestingly, the enriched GO

terms matched with the observed phenotypes of affected

individuals (malformations, developmental and behav-

ioral anomalies, and short stature) (Figure 5C). However,

we remain very cautious about such inferences because

they are merely hypotheses derived from associations of

epigenetic traits in blood cells of affected individuals, their

GO, and the derived postulations on their association with

clinical traits in these individuals.
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Figure 4. ChIP-seq analyses in individuals with BAP1 variants c.34C>A (p.Pro12Thr) and c.272G>C (p.Cys91Ser)
(A) Diagram of the epigenetic analysis performed, ChIP-seq H3K27ac in technical replicates on peripheral blood mononuclear cells
(PBMCs) of affected individuals compared to healthy members of their family.
(B) PCA (principal-component analysis) graph of the 500 acetylated peaks most variable between all control individuals compared to
affected individuals. Peak heights were estimated and transformed with regularized log transform (rlog) of the normalized counts.
(C) Volcano plot of differential peaks between affected individuals and their family. Significantly differentially acetylated peaks (FDR <
0.1) are shown in red.
(D) Boxplots of hyperacetylated and hypoacetylated peaks in normalized counts of affected individuals (red) and their family members
(green).
In this work, we provide evidence that BAP1 p.Pro12Thr

and p.Cys91Ser are LoF variants that prevent BAP1 from

removing ubiquitin from H2A (Figure 3A). The failure to

deubiquitinate H2A was accompanied by a rise of

the pro-b5 proteasome catalytic subunit in affected indi-

viduals’ T cells, as determined by immunoblotting

(Figure 3C). This observation is intriguing considering

the fact that the abundance of the other catalytic b-sub-

units (i.e., b1, b2, b5i) remains unchanged between

affected individuals’ and controls’ T cells (Figure 3C) and

suggests the existence of a specific link between BAP1

and b5. A similar relationship has been recently reported

in a study showing that BAP1 depletion in tumor cells

leads to decreased sensitivity to bortezomib,33 a protea-

some inhibitor that specifically binds to the b5 and b5i

subunits.34 Here, the upregulation of pro-b5 detected in

subjects with BAP1 LoF variants was not associated with

a modulation of the b5-mediated chymotrypsin-like activ-

ity (Figure 3B). This apparent discrepancy could be ex-

plained by Tcells’ expression of large amounts of immuno-

proteasomes containing b5i (Figure 3C), which are likely to

mask the contribution of standard proteasomes carrying

b5 to the chymotrypsin-like activity measured in these

cells. Together with OTUD6B and OTUD7A,25,26 BAP1 is
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one of the very few ubiquitin hydrolases able to regulate

proteasome function. The cellular mechanisms by which

BAP1 influences proteasome subunit expression however

remain unclear and warrant further investigations.

The impairment of BAP1 catalytic properties by LoF var-

iants primarily found in the catalytic domain is likely to

negatively impact the function of all BAP1 complexes.

The increased levels of Ub-H2A in T cells of affected indi-

viduals particularly reflect the dysfunction of PR-DUB

complexes in which BAP1 is bound to ASXL proteins.

Interestingly, pathogenic variants in all three ASXL genes

result in syndromic ID disorders: Bohring-Opitz (MIM:

605039), Shashi-Pena (MIM: 617190), and Bainbridge-

Ropers (MIM: 615485) syndromes are caused by ASXL1

(MIM: 612990), ASXL2 (MIM: 612991), and ASXL3

(MIM: 615115) variants, respectively.35 Incidentally, it

was the elevated Ub-H2A levels observed in fibroblasts

from individuals harboring ASXL3 variants that allowed

the identification of the BAP1/ASXL3 PR-DUB complex.12

Further investigations would be required to determine

how germline variants of the same gene can cause either

a neurodevelopmental or tumor syndrome. Although all

of the variants have an LoF effect, we noted that, in

this short series, all variants are missense, whereas the
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Figure 5. GeneOntology enrichment analysis of ChIP-seq data related to variants c.34C>A (p.Pro12Thr) and c.272G>C (p.Cys91Ser)
(A) Heatmap of a selected set of peaks related to the ubiquitin-proteasome system with rlog transformed counts.
(B) Enrichment analysis of each subgroup performed with Fisher’s exact test (see also Table S2).
(C) Gene Ontologies (GOs) of down- and upregulated peaks in affected individuals performed with the GREAT tool. Relevant GOs that
are conceivably associated to the clinical traits observed in affected individuals are shown in red.
anomalies that predispose to the tumor syndrome are

splice or truncating variants or gene deletions. It is worth

noting that several of these missense variants occur at

known active site residues, suggesting that these LoF

missense variants may disrupt or eliminate deubiquitinase

activity, while maintaining protein-protein interactions

with and binding to complexes (e.g., interactions with

BARD1 or BRCA1), resulting in different cellular effects

compared to nonsense and other severely disruptive vari-

ants. Despite the absence of tumors in our series, we

cannot exclude the possibility that individuals with NDD

are also predisposed to cancer, given that the older subject

is 16 years old.

Many genes are known to be involved in cancer through

recurrent somatic mutations and developmental disorders

through germline variants.36 Fewer cases are known where

different germline variants of the same gene can cause

either a neurodevelopmental disorder or a tumor predispo-

sition syndrome. The best examples certainly come from
The America
the SWI/SNF-related matrix-associated actin-dependent

regulator of chromatin (SMARC) family, whose members

SMARCA4 (MIM: 603254) and SMARCB1 (MIM: 601607)

are involved in Coffin-Siris syndromes (MIM: 614609

and 614608, respectively) and rhabdoid tumor predisposi-

tion syndromes (MIM: 613325 and 609322, respectively),

while SMARCE1 (MIM: 603111) can cause either suscepti-

bility to familial meningioma or neurodevelopmental

delay (MIM: 616938 and 607174). Interestingly, these

three genes contribute to chromatin remodeling, like

BAP1, and their protein products can bind BRCA1. More-

over, it was shown that nonsense SMARCA4 variants might

induce concomitantly developmental and cancerous

symptoms.37

In conclusion, we describe a neurodevelopmental disor-

der caused by rare de novo germline heterozygous missense

variants of BAP1, most located in the region encoding the

catalytic UCH domain. These variants affect the deubiqui-

tinase activity of the BAP1 complexes and disrupt
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chromatin remodeling by inducing abnormally high levels

of ubiquitinated H2A. They are also associated with pertur-

bations of proteasome assembly by increasing the produc-

tion of the pro-b5 proteasome catalytic subunit. To our

knowledge, BAP1 is one of the rare genes in which different

germline variants cause either an NDD or a tumor predis-

position syndrome.
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