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For robust measures of location associated with J dependent groups, various methods 
have been proposed that are aimed at testing the global hypothesis of a common measure 
of location applied to the marginal distributions. A criticism of these methods is that they 
do not deal with outliers in a manner that takes into account the overall structure of the 
data. Location estimators have been derived that deal with outliers in this manner, but 

evidently there are no simulation results regarding how well they perform when the goal 
is to test the some global hypothesis. The paper compares four bootstrap methods in 
terms of their ability to control the Type I error probability when the sample size is small, 
two of which were found to perform poorly. The choice of location estimator was found 
to be important as well. Indeed, for several of the estimators considered here, control over 
the Type I error probability was very poor. Only one estimator performed well when 
using the first of two general approaches that might be used. It is based on a variation of 
the (affine equivariant) Donoho-Gasko trimmed mean. For the second general approach, 

only a skipped estimator performed reasonably well. (It removes outliers via a projection 
method and averages the remaining data.) Only one bootstrap method was found to 
perform well when using the first approach. A different bootstrap method is 
recommended when using the second approach. 
 
Keywords: Bootstrap methods, outliers, skipped estimator, Donoho-Gasko trimmed 
mean 

 

Introduction 

Methods for comparing dependent groups, based on the usual sample mean, are 

not robust under general conditions. A fundamental concern with any inferential 

technique based on the mean is that it can result in relatively low power when 

dealing with heavy-tailed distributions (e.g., Marrona, Martin, & Yohai, 2006; 

Staudte & Sheather, 1990; Wilcox, 2012). Roughly, heavy-tailed distributions are 

http://dx.doi.org/10.22237/jmasm/1478001840
mailto:rwilcox@usc.edu
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characterized by outliers that inflate the standard error of the sample mean. Even 

an arbitrarily small departure from normality can result in poor power. Another 

concern is that the breakdown point of the sample mean is only 1 / n, where n is 

the sample size. That is, the minimum proportion of points that must be altered to 

completely destroy the sample mean (make it arbitrarily large or small) is 1 / n.  

Various methods for comparing J ≥ 2 dependent groups have been derived 

and studied that are based on replacing the marginal means with some robust 

estimator (e.g., Wilcox, 2012, Ch. 8). That is, if Xij (i = 1, …, n; j = 1, …, J) is a 

random sample of n vectors from some J-variate distribution, for each j, a robust 

measure of location is computed. These methods deal with outliers among the 

marginal distributions, but they do not deal with outliers in a manner that takes 

into account the overall structure of the data. As a simple example of what this 

means, it is not unusual to be young, it is not unusual to have heart disease, but it 

is very unusual to be both young and have heart disease.  

Situations are encountered where there are no outliers among the marginal 

distributions based on, for example, a boxplot or the MAD-median rule, yet there 

are outliers when using a multivariate outlier detection technique that takes into 

account the overall structure (e.g., Wilcox, 2012).  

Another possible criticism of applying a robust estimator to each of the 

marginal distributions is that the resulting measure of location is not affine 

equivariant (e.g., Rousseeuw & Leroy, 1987). To elaborate, note that a basic 

requirement for ˆ
j  to qualify as a location estimator is that it be both scale and 

location equivariant. That is, if ˆ
j  = T(Xij , …, Xnj) is some estimate of θj, then for 

ˆ
j  to qualify as a location estimator, it should be the case that for constants a and 

b, 

 

    1 1, , , , .n nT aX b X A b aT X X b      

 

In the multivariate case, a generalization of this requirement, affine equivariance, 

is that for a J-by-J nonsingular matrix A and vector b having length J, 

 

    1 1, , , , .n nT T   X A b X A b X X A b   (1) 

 

In particular, the estimate is transformed properly under rotations of the data as 

well as changes in location and scale. 
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The goal in this paper is to report simulation results on several methods for 

comparing dependent groups with an emphasis on situations where the sample 

size is small. Several multivariate estimators were considered that take into 

account the overall structure of the data when dealing with outliers. All of them 

are location and scale equivariant, but one is not affine equivariant.  

Here, two types of global hypotheses are considered. To describe them, let 

 ̂ X  represent one of the multivariate location estimators to be considered. 

Letting Θ = (θ1, …, θj) represent the estimand associated with  ̂ X  (the 

population analog of  ̂ X , the first global hypothesis is 

 

 0 1: jH      (2) 

 

To describe the second hypothesis, let Dijk = Xij - Xik, j < k, and let  ˆ D  be some 

multivariate location estimator based on the Dijk values. There are L = (J2 - J)/ 2 

parameters being estimated, which are labeled Δ = (δ1, …, δL). Now the goal is to 

test 

 

 
0 1: 0.LH       (3) 

 

From basic principles, when dealing with means, there is no distinction 

between (2) and (3). But under general conditions, this is not the case when using 

a robust estimator. (It is readily verified, for example, that the difference between 

the marginal medians is not necessarily equal to the median of the difference 

scores.) 

Two bootstrap methods for testing (2) were considered here, and another 

two methods were considered when testing (3). As will be seen, the choice of 

estimator, as well as the bootstrap method that is used, is crucial in terms of 

controlling the Type I error probability, at least when the sample size is small. 

Description of the Methods 

The Location Estimators 

The first estimator is based on a particular variation of an affine equivariant 

estimator derived by Donoho and Gasko (1992), which will be labeled the DG 

estimator henceforth. Roughly, it begins by quantifying how deeply each point is 
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nested within the cloud of points. Here, this is done using a projection-type 

method, which provides an approximation of half-space depth (Wilcox, 2012, 

section 6.2.5). To elaborate, let ̂  be some initial affine equivariant location 

estimator. Here, the (fast) minimum covariance determinant estimator (MCD) is 

used (e.g., Wilcox, 2012, section 6.3.2). Briefly, the MCD estimator searches for 

a subset of half the data that minimizes the generalized variance. The mean of this 

subset is the MCD measure of location. Let 

 

 ˆ
i i  U X   

 

 
i i iB  U U   

 

(i = 1, …, n) and for any j (j = 1, …, n), let 

 

 
1

j

ij ij jkk
W U U


   

 

and 

 

  1, ,
ij

ij i ij

i

W
T U U

B
   (4) 

 

The distance between ̂  and the projection of Xj (when projecting onto the line 

connecting Xi and ̂ ) is 

 

  signij ij ijH W T   

 

where ijT  is the Euclidean norm associated with the vector Tij. 

Let dij be the depth of Xj when projecting points onto the line connecting Xi and ̂ . 

That is, for fixed i and j, the depth of the projected value of Xj is 

 

     min # ,# ,ij ij ik ij ikd H H H H     

 

Where #{Hij ≤ Hik} indicates how many Hik (k = 1, …, n) values satisfy Hij ≤ Hik. 

The depth of Xj is taken to be Lj = min dij, the minimum being taken over all 

i = 1, …, n. 
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The Donoho-Gasko (DG) γ trimmed mean associated with the Xij values is 

the average of all points that are at least γ deep in the sample. That is, points 

having depth less than γ are trimmed and the mean of the remaining points is 

computed. If the maximum depth among all n points is at least γ, the breakdown 

point of the DG estimator is γ / (1 + γ), where the breakdown point refers to the 

minimum proportion of points that must be altered to completely destroy an 

estimator. Here, γ = .2 is used. 

The other estimator considered here, which performed well in simulations 

when testing (3), is a skipped estimator based on a projection method for 

detecting outliers, which will be labeled the SP estimator. Fix i, and for the point 

Xi let 

 

 ˆ,i i   A X   

 

 ˆ
j i   B X   

 

 ,
i j

j j

j j

A B

B B



C B   

 

j = 1, …, n. Then when projecting the points onto the line between Xi and ̂ , the 

distance of the jth point from ̂  is 

 

 .ij jV C   

 

The jth point is declared an outlier if 

 

  2 1ij VV M c q q     (5) 

 

Where MV, q1 and q2 are the usual sample median and estimates of the lower and 

upper quartiles, respectively, based on the Vi1, …, Vin values, and c is the .95 

quantile of a chi-squared distribution with J degrees of freedom. (Here, the 

quartiles are estimated via the ideal fourths; see Frigge, Hoaglin, & Iglewicz, 

1989.) 

The process just described is for a single projection. Repeating this process 

for each i (i = 1, …, n), Xj is declared an outlier if for any of these projections, Vij 

satisfies (5). Removing any points declared an outlier, the mean of the remaining 
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data is taken to be the SP estimator of location. Its small-sample efficiency 

compares well to the DG estimator (Wilcox, 2012). Note that the estimate of 

interquartile range, q2 – q1, based on the ideal fourths, has a breakdown point 

of .25 indicating that the breakdown point of the SP estimator is .25 as well. The 

small-sample efficiency of the SP estimator compares well to several other robust 

estimators that have been derived (Ng & Wilcox, 2010).  

Several other affine equivariant estimators were considered but which 

performed poorly in simulations in terms of controlling the Type I error 

probability. So computational details related to these other estimators are not 

provided. They included the minimum volume ellipsoid (MVE) estimator 

(Rousseeuw & van Zomeren, 1990), the minimum covariance determinant (MCD) 

estimator (Rousseeuw & Van Driessen, 1999), the translated-biweight S-estimator 

(Rocke, 1996), the median ball algorithm (Olive, 2004) and the orthogonal 

Gnanadesikan-Kettenring (OGK) estimator (Maronna & Zamar, 2002). 

Testing (2) and (3)  

Two bootstrap methods for testing (2), as well as (3), were considered. The first, 

which is designed to test (2) and corresponds to the RMPB3 in Wilcox (2012, 

section 8.2.5), is applied as follows. Compute the test statistic 

 

  
2

ˆ ,jQ      

 

Where ˆ J  . An appropriate critical value is estimated by first setting 

ˆ
ij ij jZ X   . That is, shift the empirical distributions so that the null hypothesis 

is true. Next, a bootstrap sample is obtained by resampling, with replacement, n 

rows from the matrix Z yielding  * 1, , ; 1, ,ijZ i n j J  . Compute the 

measure of location that is of interest based on this bootstrap sample yielding 
*ˆ
j  

and test statistic Q*. Repeat this process B times yielding * *

1 , , BQ Q . Put these B 

values in ascending order yielding    
* *

1 B
Q Q  . Then reject the hypothesis of 

equal measures of location at the α level if  
*

u
Q Q , where u = (1 – α) B rounded 

to the nearest integer. 

The second method for testing (2) is based in part on bootstrap samples 

obtained from the Xij values rather than the Zij values. The strategy is based on 

determining how deeply the grand mean is nested within the resulting bootstrap 
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cloud. Details about this strategy can be found in Wilcox (2012, pp. 392-393). 

Because this approach performed poorly for the situation at hand, no details are 

provided.  

The two bootstrap methods for testing (3) can be roughly described as 

follows. Take B bootstrap samples by resampling with replacement from the 

matrix X, compute a measure of location based on the resulting difference scores 

and determine how deeply the null vector 0 is nested within the bootstrap cloud. 

Here, two methods were used to measure the depth of a point in data cloud: 

Mahalanobis distance and projection distance. In general this approach did not 

perform well. But when coupled with the DG estimator, it did perform reasonably 

well when testing (3). 

To provide more details, let  *ˆ 1, ,b b B   indicate the location estimate 

of Δ based on the bth bootstrap sample and for convenience let *

0̂  denote the null 

vector. Let  * *ˆ
d bP   be the projection distance of *ˆ

b  based on the B + 1 points 

* *

0
ˆ ˆ, , B  . So  * *ˆ

d bP   reflects how far the null vector is from the center of the 

bootstrap cloud. Then, from general theoretical results in Liu and Singh (1997), a 

p-value is  

 

     * * * *

01

1 ˆ ˆ1
B

d d bb
I P P

B 
      

 

where the indicator function     * * * *

0
ˆ ˆ 1d d bI P P     if    * * * *

0
ˆ ˆ

d d bP P   ; 

otherwise     * * * *

0
ˆ ˆ 0d d bI P P    . This will be called method D-P. When the 

projection distance is replaced by Mahalanobis distance, this will be called 

method D-M. 

Simulation 

Simulations were used to study the small-sample properties of the methods 

described in the previous section. The simulations were run using the software R, 

with much of the code written in C++. In addition, the R functions took advantage 

of a multi-core processor via the R package parallel. Despite this, execution time 

was relatively high, particularly when using the DG estimator in conjunction with 

method D-P. Consequently, estimated Type I error probabilities were based on 

2000 replications. Four types of distributions were used: normal, symmetric and 
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heavy-tailed, asymmetric and light-tailed, and asymmetric and heavy-tailed. More 

precisely, the marginal distributions were taken to be one of four g-and-h 

distributions (Hoaglin, 1985) that contain the standard normal distribution as a 

special case. (The R function rmul, in Wilcox, 2012, was used to generate 

observations.) If Z has a standard normal distribution and g > 0, then 

 

 
 

 2
exp 1

exp 2
gZ

W hZ
g


   

 

has a g-and-h distribution where g and h are parameters that determine the first 

four moments. If g = 0, this last equation is taken to be 

 

  2exp 2 .W Z hZ   

 

The four distributions used here were the standard normal (g = h = 0.0), 

asymmetric heavy-tailed distribution (h = 0.2, g = 0.0), an asymmetric distribution 

with relatively light tails (h = 0.0, g = 0.2), and an asymmetric distribution with 

heavy tails (g = h = 0.2). Table 1 shows the skewness (κ1) and kurtosis (κ2) for 

each distribution. Additional properties of the g-and-h distribution are 

summarized by Hoaglin (1985). The number of bootstrap samples was taken to be 

B = 500. This choice generally seems to perform well in other settings, in terms of 

controlling the Type I error probability (Wilcox, 2012). But a possibility is that a 

larger choice for B might yield more power (e.g., Racine & MacKinnon, 2000). 

The correlation among the variables was taken to be ρ = 0 or ρ = .5. 
 
 
Table 1. Some properties of the g-and-h distribution. 

 

g h κ1 κ2 

0.0 0.0 0.00 3.0 

0.0 0.2 0.00 21.46 

0.2 0.0 0.61 3.68 

0.2  0.2  2.81 155.98 

 
 

As a partial check on the impact of heteroscedasticity on the Type I error 

probability, the Xij values were taken to be λXij (i = 1, …, n). The two choices for 

λ were 1 and 4. For symmetric g-and-h distributions (g = 0), all of the measures of 

location considered here are equal to zero, so for λ = 4 the null hypothesis remains 
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true. But when dealing with skewed distributions (g > 0), this is not the case. To 

deal with this, the expected value of an estimator was determined by generating 

4000 samples of size n from a specified g-and-h distribution (with λ = 1) and then 

averaging the resulting estimates. So with p = 4, in essence 16,000 estimates are 

being used. Then the marginal distributions were shifted so that, based on the 

expected value of an estimator, the null hypothesis is true. 

Shown in Table 2 are the results when using the SP estimator with methods 

D-M and D-P to test (3). Although the seriousness of a Type I error depends on 

the situation, Bradley (1978) has suggested that as a general guide, when testing 

at the .05 level, at a minimum the actual level should be between .025 and .075.  

As can be seen, this criterion is generally met when using D-M. But under 

normality, with ρ = .5, is this not the case, the largest estimate being .098. In 

contrast, when using D-P, the largest estimate is .075.  
 
 
Table 2. Estimated Type I error probabilities when testing (3), n = 20, α = .05 using the 
SP estimator. 
 

  D-M D-P 

  λ = 1 λ = 4 λ = 1 λ = 4 

g h ρ = .0  ρ = .5 ρ = .0  ρ = .5 ρ = .0  ρ = .5 ρ = .0  ρ = .5 

0.0 0.0 .069 .065 .096 .083 .055 .063 .075 .065 

0.0 0.2 .052 .047 .055 .049 .033 .042 .041 .043 

0.2 0.0 .070 .071 .039 .046 .054 .070 .054 .056 

0.2 0.2 .044 .044 .030 .040 .035 .039 .028 .040 

 
 

Reported in Table 3 are simulation results when using method Q to test (2) with 

the DG estimator and n = 30. For n = 20, estimated Type I error probabilities 

exceed .075. But as indicated in Table 3, with n = 30, the estimates ranged 

between .025 and .061 when testing at the .05 level. When testing (2) instead via 

methods D-M or D-P, control over the Type I error probability was poor.  
 
 
Table 3. Estimated Type I error probabilities, n = 30, α = .05 using method Q to test (2) 

with the DG estimator 
 

 λ = 1 λ = 4 

g h ρ = .0 ρ = .5 ρ = .0 ρ = .5 

0.0 0.0 .056 .057 .053 .060 

0.0 0.2 .031 .034 .040 .041 

0.2 0.0 .054 .060 .057 .061 

0.2 0.2 .026 .025 .038 .040 
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Conclusion 

When using a location estimator that takes into account the overall structure of 

data when dealing outliers, finding a method for testing (2) and (3) appears to be 

nontrivial when the sample size is small. The bulk of the methods considered here 

performed poorly in terms of controlling the Type I error probability, particularly 

when using an affine equivariant estimator.  

Only one method performed well in simulations when testing (2) and an affine 

equivariant estimator is used: method Q in conjunction with the DG estimator. No 

method based on an affine equivariant estimator was found to perform reasonably 

well when testing (3). Moreover, several bootstrap methods that perform 

reasonably well using a robust estimator applied to each of marginal distributions 

did not perform well for the situations considered here. However, the skipped 

estimator studied here, which is location and scale equivariant, was found to 

perform reasonably well when testing (3) via a percentile bootstrap method that 

measures the depth of null vector using projection distances. Another possible 

appeal of the SP estimator over the DG estimator is that for light-tailed 

distributions, including normal distributions, the DG estimator has relatively poor 

efficiency (e.g., Massé & Plante, 2003; Wilcox, 2012, p. 251). In contrast, the SP 

estimator performs nearly as well as the usual sample mean. 

R functions are available for applying the methods that performed well in 

the simulations. The R function bd1GLOB tests (2). The DG estimator can be 

used by setting the argument est=dmean. Setting the argument MC=TRUE takes 

advantage of multi-core processor, if multiple cores are available, via the R 

package parallel, which can be installed via R command install.packages. The R 

function rmdzD applies method D-P in conjunction with the SP estimator. Again, 

setting the argument MC=TRUE will take advantage of a multi-core processor if 

one is available and the R package parallel has been installed. These functions can 

be installed with the R command install.packages(``WRS'',repos=``http:R-

Forge.R-project.org''). They are also stored in the file Rallfun-v24, which can be 

downloaded from the first author's web page. 
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