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The debate if the point null hypothesis is ever literally true cannot be resolved, because 
there are three competing statistical systems claiming ownership of the construct. The 
local resolution depends on personal acclimatization to a Fisherian, Frequentist, or 
Bayesian orientation (or an unexpected fourth champion if decision theory is allowed to 
compete). Implications of Rao and Lovric’s proposed Hodges-Lehman paradigm are 
discussed in the Appendix.  

 
Keywords: true null hypothesis, Rao-Lovric, Hodges-Lehman. 

 

In their historical reviews of experimental design, Cochran (1977) and Frank 

Yates posited the first planned controlled experiment was conducted by Daniel 

(7th–6th century BCE), who employed a ten day treatment vs comparison group 

post-test only trial. The purpose was to demonstrate the efficacy of a Kosher diet 

of high protein, low fat, dried legume seeds and water on soldiering skills vs 

Nebuchadnezzar’s army’s royal comestible of non-Kosher wine and meat (Daniel 

1:3-16). In Contra Celsus (1:15), Origen of Alexandria (153–253 CE) cited 

Hermippus (5th century BCE) and Hecatæus (4th century, BCE, presumably of 

Abdera) who opined subsequent development of analytical analyses of 

experimental principles by the Jews influenced, if not culminated in, Pythagoras’ 

philosophy of mathematical sciences. Subsequently, Tana Kama (Mishna Gittin 

7:1; Talmud Gittin 67b) underscored the importance of co-variables and the 

minimum number of repetitions for a reliable single subject study design. Shimon 

ben Chalafta also invoked experimental replications to test claims (e.g., Talmud 

Chulin 57b). 

In the middle of the 2nd century CE, Galen (Aelius/Claudius Galenus)  

mused how much credence should be given, if any, to a 50th medical study if the 

previous 49 replications were of no significance. In the early 11 th century CE, 

http://dx.doi.org/10.22237/jmasm/1478001720
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Avicenna (Abu ibn Sina) reacted to haphazard methods in the conduct and 

analysis of experiments and presented seven governing rules. In 1266 CE, Roger 

Bacon systematized observation of empirical data in controlled experiments. 

Arthur Young (1771, Figure 1) published a course on experimental agriculture, 

wherein comparative designs employing standardized methods and analyses were 

proposed. The analysis of the hypothesis “every year there shall be born more 

males than females” (1710-1712, p. 188) by John Arbuthnott (un-admittedly 

inspired by Sir William Petty & John Graunt) is considered the origin of the 

nonparametric Sign Test, although it predates more formal origins of empirical 

probability captured in the treatises on the doctrines of conjecture and chance by 

Jacob Bernoulli (1713), Abraham de Moivre (1718) and Thomas Bayes (Price, 

1763, p. 370). 

In the early part of the 20th century CE, Sir Ronald Fisher (influenced by 

Pierre-Simon Laplace, Carl Gauss, Joseph Jastrow, Sir Francis Galton, Karl 

Pearson, G. Udny Yule, William Gosset, and certainly others; perhaps later also 

with Andrey Kolmogorov & E. J. G. Pittman) defined the null hypothesis, the 

fundamental building block of modern hypothesis testing, as being true unless 

there is evidence from the sample (randomly obtained or data at hand) to the 

contrary. His innovations regarding blocking variables and factorial layouts were 

pioneering developments in the design of experiments. 

Following the logic of experimentation by C. S. Peirce in late 19 th century, 

the Frequentist lemma by Jerzy Neyman and Egon Pearson developed in the 

1930s-1940s violated the Fisherian cannon with the introduction of the alternative 

hypothesis. It was indeed irrefragable blasphemy, because Frequentists must 

admit the choice and magnitude of the alternative are subjective and independent 

of both the null hypothesis and the sample. Other 20 th century developments in 

experimental design included orthogonal arrays by my esteemed colleague 

Professor C. R. Rao, sequential experiments by Abraham Wald and later Herman 

Chernoff, and the quality control designs of Genichi Taguchi. 

Nevertheless, the Frequentists had the advantage, because in the Fisherian 

system the lack of an alternative obviated the desired notion of fixed comparative 

statistical power, and by extension, stable effect size. These two modern 

approaches to statistics are antipodal. Many misunderstandings in hypothesis 

testing are due to their intrinsic incompatibility, starting with Sir Fisher’s “lapsus 

linguae” (Neyman, 1941, p. 129) fiducial argument (see Sawilowsky, 2003). 
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Figure 1. Arthur Young (1801), Annals of Agriculture and other Useful Arts, Vol 37. 

London: Rackham & Hill. (From the JMASM Archives.) 
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This struggle provided the segue for a Bayesian resurrection from Fisher’s 

epithet, “From a purely historical standpoint it is worth noting that the ideas and 

nomenclature for which I am responsible were developed only after I had inured 

myself to the absolute rejection of the postulate of Inverse Probability” (1937a, p. 

151; see also 1937b, 1939). Although also receiving a boost from C. S. Peirce’s 

logic, Bayesian analysis during Sir Fisher’s reign was conducted without benefit 

of his development of degrees of freedom. The initial inability to replicate 

Fisherian/Frequentist numerical results was a serious setback to the modern 

Bayesian paradigm (Sawilowsky, 2002, 2003). Although they have since 

recovered and inverse probability is currently quite popular, unless there are 

documented informative prior probabilities available, such as baseball batting 

averages, Fisher’s inurement prevails. 

Now comes the debate on certifying the literal truth of the null hypothesis. 

Original Fisherians needs no proof, because postulation of the putative null was 

the pivotal theoretic spanning well over two millennia in the science of 

discovering truth. Frequentists, however, can never accept any proof. The most 

that can be said is based on the current sample there is no evidence to support the 

alternative. (This should not be considered an open invitation to collecting 

potentially endless (a) random samples, known as the quest for a Type I error and 

its attendant rewards of publishing and tenure or (b) data sets at hand, known as 

non-representative findings never interpreted with caution to support situational 

truths with its attendant rewards of political fodder, ill-begotten relief from the 

court, financial returns based on false advertising, etc.) Moreover, it wouldn’t 

matter even if the null hypothesis is always literally false, because it must be false 

to an a priori specified magnitude to be rejected. 

The Frequentist nomenclature, failure to reject the null hypothesis, was just 

the ticket in the social and behavioral sciences, where politically correct thinking 

of the 1960s had begun to take control of those in charge of the keys to situational 

truths. At best, near-null, near-nil, and the like, were approved substitutes. 

Philosophically, the yellow submarine is a closed system, so at some decimal of 

the mantissa there must be a non-Zero value. 

The various Frequentist counterproofs were flawed attempts to make 

something out of nothing by incorrectly preserving the post hoc effect size even 

when the statistical test was not significant. For example, in the two sample layout, 

the t statistic is a test of difference between two means. If the p value is above the 

a priori selected nominal α level, it means the observed difference is not real and 

should be read as zero. Based on the sample, assumed to be random for 

generalization purposes, there is no evidence that the populations from which they 



THE TRIWIZARD POINT NULL HYPOTHESIS TOURNAMENT  

26 

were drawn differed in terms of location. Just as the observed difference in means 

can be safely ignored, the effect size was not statistically significantly different 

from zero, and can be safely ignored.  

This means regardless of the magnitude of the obtained value (e.g., Cohen’s 

d, 1962, 1969, 1977, 1988) in the two sample layout [from very small (0.01; 

Sawilowksy, 2009) to small (0.2; Cohen, 1988) to moderate (0.5; Cohen, 1988) to 

large (0.8; Cohen, 1988) to very large (1.2; Sawilowsky, 2009) to huge (2.0; 

Sawilowsky, 2009)], it should be read and interpreted as zero. Hence, the point 

null hypothesis, to the Fisherian, is indeed considered to be literally true 

regardless of the magnitude of Cohen’s d when the p value is greater than nominal 

α. 

In the antecedent article, colleagues C. R. Rao and M. Lovric 

(http://digitalcommons.wayne.edu/jmasm/vol15/iss2/2), cited Cohen (1990) who 

wrote the null hypothesis can only be true “in the bowels of a computer processor 

running a Monte Carlo study (and even then a stray electron may make it false)” 

(p. 1, 308). Based on my letters with him, documented elsewhere, Cohen’s 

statement was not surprising. 

Subsequently, this was discussed conceptually in Knapp and Sawilowsky 

(2001, p. 71-74; for expanded commentary relative to the debate see Harlow, et 

al., 1997; Imbens & Rubin, 2015). I included Meehl’s (1990) recapitulation that 

he initially referred only to quasi-experiments and surveys (Meehl, 1978), but 

later admitted the null hypothesis can be literally true in an “experimental study” 

(Meehl, 1990, p. 204). (Carol H. Ammons, the co-Editor of Psychological 

Reports where it was published, sent me a reprint of Meehl (1990) soon after its 

publication. In our subsequent conversation, I was supportive of Meehl’s 

recapitulation, and I remain so today.) Similarly, in Knapp and Sawilowksy 

(2001) I also included Hagen’s (1997, p. 20) imputed recapitulation of Cohen 

(1994). 

A simple demonstration of the algorithm I presented in Knapp and 

Sawilowsky (2001) is coded in R in Figure 2. When executed, it creates two 

groups, x and y, and populates them with scores randomly selected from the 

standard normal curve. Although a Monte Carlo is unnecessary when underlying 

assumptions are met, it is employed to facilitate the demonstration. The two 

independent samples pooled variance t test is conducted on the data, and if the p 

value is less than nominal α = 0.05, a counter is incremented. The process is 

repeated 100,000 times. The final value of the counter is divided by the number of 

repetitions to produce the Type I error rate. 

http://digitalcommons.wayne.edu/jmasm/vol15/iss2/2
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The code will produce the same result on any computer platform and 

operating system, because the seed number is set for the pseudo-random number 

generator. That result is 0.04919. Rejections occurred across the 100,000 

repetitions, but they were known false positives. The point null hypothesis was 

indeed literally true, because it was programmed to be so. The collection of false 

positives that give rise to the notion the point null is never literally true were 

simply the constituent figments of imagination that sum to the Type I error rate. 
 
 

set.seed (123457) 
to5 <- NULL 

rep <- 100000 

rejt05 <- numeric(length=rep) 
ss <- 30 

for (i in 1:rep) { 

   x1 <- rnorm(ss) 
   x <- x1+0.0 

   y <- rnorm(ss) 

   tp <- t.test(x,y,var=TRUE)[["p.value"]] 
   rejt05[i] <- ifelse (tp < 0.05,1,0) 

 } 

t05 <- sum(rejt05)/rep 
 
Figure 2. Monte Carlo t Test in R Code 

 

 
 

The rejection rate obtained from the code will approach 0.05 as (a) the 

sample size, set to 30 per group in this example, increases, (b) the number of 

repetitions of the experiment increases, or (c) possibly even with the current study 

parameters if a different initial seed number is selected (Hill & Sawilowsky, 

2011). For example, if the number of repetitions is increased to 1,000,000, the 

Type I error improves to 0.049858. 

A non-null condition can be created by replacing the 0.0 with a non-zero 

number (positive or negative) in the line x <− x1 + 0.0. For example, to 

model a very small effect size of 0.01 (Sawilowsky, 2009), replace the 0.0 in this 

code segment with a constant c = 0.01 (representing 0.01*σ; where σ refers to the 

standard deviation of the normal curve = 1). The constant c is added to each 

member of the x group and shifts its location by that magnitude, while leaving the 
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scale unaffected. The resulting rejection rate is known as statistical power (not 

Type I error rate). With 100,000 repetitions it amounts to 0.04923, a nuanced but 

detectable difference of 0.00004 above nominal α for this sample size and data 

pseudo-randomly sampled from the standard normal curve. 

If the effect size is increased to 0.05 the power yield increases to .05342, 

and for an effect size of 0.1 the power increases to 0.06542. For Cohen’s (1988) 

small effect size of 0.2, the power increases further to 0.11611. As the effect size 

approaches infinity (and depending on the distribution and sample size, the effect 

size may not need to increase past a small fraction or multiple of its σ) the power 

approaches 1. 

Random numbers represent a literally true null condition. This R code 

proves that when the point null is literally true, the t test (if all conditions are met, 

i.e., normality, homoscedasticity, independence) will retain the null hypothesis to 

the nominal α level. Hence, in real world applications of a true randomized 

experimental design, if there is no difference between x  and y  (the two sample 

means) the t test will testify to that fact.  

Execution of the R code demonstrates increasing the sample size and/or 

number of repetitions of the experiment to ∞ will not lead to a rejection rate of the 

null hypothesis different from nominal α, which is the answer to Cohen’s 

speculation of what might happen in the bowels of a Monte Carlo study. 

Moreover, despite the current fascination with big data (and hopefully its ardent 

fans are able to recognize and deprecate its often hidden or embedded stepwise 

methods), Gosset noted many in applied disciplines we are forced to work with 

small samples. This was aptly captured in Sir Fisher’s revelation to Samuel 

Stouffer regarding the inspiration for deriving a certain postulate: something had 

to be done when rabbits got into the garden and ate a lot of the degrees of freedom.  

To the Fisherian, QED. To the Frequentist, the discussion is much ado about 

(something that can never be literally) nothing. To the Bayesian, add non-

informative priors to the perils of non-normality, heteroscedasticity, and non-

independence; and then choose sides. 
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Appendix 

In Knapp and Sawilowsky (2001), I presented rebuttals to “the following 

propositions: 

 

 The null hypothesis is always false. 

 A sufficiently large enough sample guarantees rejection of the null 

hypothesis. 

 Statistical tests are of no use because the results do not address 

practical importance. 

 Testing a near-nil null hypothesis is better than testing a null 

hypothesis. 

 Hypothesis testing does not lead to scientific discoveries. 

 Confidence intervals are superior to hypothesis testing. 

 Effect sizes should be reported regardless of the outcome of 

hypothesis testing.” (p. 71). 

 

The subjectivity of defining a near-nil null hypothesis will also have a deleterious 

effect on equivalence testing, and could be added to the above list. 

With regard to testing a near-nil null instead of a null hypothesis, Rao and 

Lovric, in the antecedent article, proposed a paradigm shift to testing the 

negligible null hypothesis: 

 

H0 :|θ – θ0| ≤ δ (Effect size is negligible) against 

H1 :|θ – θ0| > δ (Effect size is practically meaningful). 

 

They aptly named it the “Hodges-Lehmann paradigm,” a nomenclature well 

known in other contexts. In R-measures of location, for example, the inversion of 

signed ranks can lead to the Hodges-Lehmann estimator, a robust (median 

unbiased) pseudo-θ point estimator of symmetry (Hodges & Lehmann, 1963). In 

bracketed (see Sawilowsky, 2003, p. 128) intervals, the Hodge-Lehmann 

treatment alternative is modeled by a systematic progression from pseudo-θ, 

although no expertise is called on to determine negligible or practical 

meaningfulness. 

Regarding near-nill null hypotheses within the context of hypothesis testing, 

I’ve opined (Knapp & Sawilowsky, 2001),  

 



THE TRIWIZARD POINT NULL HYPOTHESIS TOURNAMENT  

32 

This remedy's attendant difficulties are obvious considering the 

chaos that would arise from the infinite number of near-nils that might 

be chosen. (Eventually, we speculate, some common near-nils would 

emerge and evolve into a universally accepted traditional near-nil, 

completing the circle.) Moreover, the near-nil weakens the Fisherian 

logic regarding the null hypothesis, which is indirect proof by 

contradiction. If the probability associated with sample data obtained 

from a designed study is so remote, the null hypothesis or the model 

that generated it is contradicted. Rejecting a null hypothesis should be 

more compelling than rejecting an arbitrarily chosen near-nil 

hypothesis. Also, in the social and behavioral sciences for cases in 

which treatment effects or naturally occurring differences are often 

tiny, using the near-nil hypothesis when investigating interventions 

with potentially subtle differences may hide a treatment effect. 

Similarly, as the magnitude of the near-nil increases, the sample size 

necessary to detect a false near-nil null hypothesis increases in the 

treatment versus control group and related designs, which would be 

highly undesirable. (p. 73). 
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