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1. Introduction

The class of singular stochastic control problems, which has been extensively
studied lately, deals with systems described by a linear stochastic differential
equation with control functional being of an additive nature. The main fea-
ture of such problems is that the control functional need not to be absolutely
continuous with respect to time. In fact, the optimal control functionals in
these problems are singular.

More precisely, we assume that the fluctuation of the stochastic system
under control is described by a n-dimensional Gaussian process (y(t), t ≥ 0)
with a variable vector-drift and a constant diffusion matrix. The control is
realized by a non-anticipating process of bounded variation (ν(t), t ≥ 0), i.e.
the state equation is the following stochastic differential equation in Itô’s
sense:

dy(t) = [g + fy(t)]dt+ σdw(t) + dν(t), t > 0,(1.1)

y(0) = x,

where (Ω,F , P,F(t), w(t), t ≥ 0) is a standard Brownian motion in ℜn, g is
a constant n-dimensional vector, f and σ are constant n × n matrices, and
x is the initial position.

The cost associated with the position of the process is measured by a
convex nonnegative function h, and the cost of controlling is proportional to
the displacement induced by this control. We are interested in minimizing
the limiting time-average expected (i.e., ergodic) cost, that is in finding

inf
ν(·)

lim sup
T→∞

1

T
E{

∫ T

0
h(y(t))dt+ c|ν|(T )}.(1.2)

Here c is a positive real number, and |ν|(T ) denotes the total variation of ν
on [0, T ]. More precisely, if (ν(t), t ≥ 0) is an adapted process with bounded
variation then |ν|(T ) is defined as

|ν|(T ) = sup{
k∑

i=1

|ν(ti)− ν(ti−1)| : 0 = t0 < t1 < . . . < tk = T},(1.3)

where | · | is the Euclidian norm in ℜn.
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Another class of infinite-horizon problems deals with the minimization of
the total expected discounted cost

uα(x) = inf
ν(·)

E{
∫ ∞

0
e−αth(yx(t))dt+ c

∫ ∞

0
e−αtd|ν|(t)}.(1.4)

The Hamilton-Jacobi-Bellman (HJB) equation for the optimal cost func-
tion uα(x) is given by

min{Luα(x)− αuα(x) + h(x), c− |∇uα(x)|} = 0 in ℜn,(1.5)

where

∇ = (
∂

∂x1

,
∂

∂x2

, . . . ,
∂

∂xn

),

L =
1

2

n∑
i,j=1

(
n∑

k=1

σikσjk)
∂2

∂xi∂xj

+
n∑

i=1

(gi +
n∑

j=1

fijxj)
∂

∂xi

.

Similar to the classical situation, we can write the HJB equation for the
ergodic problem (1.2), namely

min{Lv(x)− λ+ h(x), c− |∇v(x)|} = 0 in ℜn.(1.6)

This last equation (1.6) contains two unknowns, the function v and the num-
ber λ. The constant λ represents the optimal ergodic cost (1.2), which is
independent of the initial position x. The function v, however, does not have
an explicit probabilistic interpretation, in contrast to the function uα given
by (1.4). Moreover, the function v is defined by (1.5) only up to an additive
constant. The singular control problem with discounted criterion (1.4) and
the corresponding equation (1.5) was recently investigated mainly in one di-
mension by various authors, e.g. Chow et al. [4], Karatzas and Shreve [13,
14], Menaldi and Robin [19, 20, 23], Sun and Menaldi [36], Taksar [37,39,40]
and the references therein.

The analysis of ergodic control problems with objective cost (1.2) in one-
dimension can be found in Karatzas [12], Menaldi and Robin [21], and Tak-
sar [38], under several kind of assumptions. Specific features of the one-
dimensional case allow to differentiate the HJB equation and reduce it to the
solution of (Stefan) free boundary problem for a second order ordinary dif-
ferential equation. This technique does not work for dimension higher than
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one. Then, to find the solution of (1.6) in the multidimensional case we need
to start with the solution of (1.5) and to investigate the behavior of uα when
α converges to zero.

Let us mention that a variety of techniques used in ergodic control can
be found in Bensoussan [1], Borkar and Ghosh [3], Garroni and Menaldi [8],
Kushner [15], Lions and Perthame [16], Menaldi and Robin [22], Robin [29],
Stettner [33], Sun [35], Tarres [41] and others.

We follow the notation in Menaldi and Taksar [25,26], which is the start-
ing point of the current paper.

In Section 2 we formulate the assumptions and state the main results. A
priori estimates are given in Section 3. Next, in Section 4 we prove the main
results.

2. Statement of the problem and main results

The state of the system is (y(t), t ≥ 0), given by the Itô equation (1.1) where

g = (gi, i = 1, . . . , n) is a vector,(2.1)

f = (fij, i, j = 1, . . . , n) and

σ = (σik, i, k = 1, . . . , n) are matrices.

The following conditions are supposed to be satisfied by the parameters of
the model

α, c are positive numbers,(2.2)

σ is an invertible matrix,

f is a stable matrix, i.e. etf is bounded

as t goes to +∞.

The set of control functional V consists of all right continuous processes
(ν(t), t ≥ 0) valued in ℜn, progressively measurable w.r.t. the complete and
right continuous filtration (F(t), t ≥ 0) and such that the variation process
|ν|(t) of (1.3) satisfies

E{|ν|(t)} < ∞, ∀t ≥ 0.(2.3)
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For technical reasons we adopt the convention ν(0−) = 0, thus allowing ν(·)
to have discontinuity at 0. With this convention

dy(t) = [g + fy(t)]dt+ σdw(t) + dν(t), t ≥ 0,(2.4)

y(0−) = x, y(0) = x+ ν(0).

The holding cost function satisfies the polynomial growth conditions be-
low. There exist constants p > 1, C0, C1, C2 > 0 such that for any 0 < λ < 1,
and any x, χ ∈ ℜn, |χ| = 1 we have

0 ≤ h(x) ≤ C0(1 + |x|)p,(2.5)

|h(x)− h(x+ λχ)| ≤ C1λ(1 + h(x)),(2.6)

0 < h(x+ λχ) + h(x− λχ)− 2h(x) ≤ C2λ
2(1 + h(x)).(2.7)

Also we suppose that h is strictly convex and

|x|−1h(x) → ∞ as |x| → ∞.(2.8)

We set

J (x, ν, α) =
∫ ∞

0
e−αth(yx(t))dt+ c

∫ ∞

0
e−αtd|ν|(t),(2.9)

J(x, ν, α) = E{J (x, ν, α)}(2.10)

and

K(x, ν) = lim sup
T→∞

1

T
E{

∫ T

0
h(yx(t))dt+ c|ν|(T )}.(2.11)

Thus

uα(x) = inf{J(x, ν, α) : ν ∈ V},(2.12)

λ = inf{K(x, ν) : ν ∈ V}.(2.13)
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Our main results are the following:
Theorem 2.1

The optimal ergodic cost λ is independent of the initial state x, and

αuα(x) → λ as α → 0,(2.14)

where the convergence is locally uniform in x belonging to ℜn. 2

Theorem 2.2
There exist a convex and Lipschitz continuous function v and a bounded,

open and nonempty region D in ℜn such that

Lv + h ≥ λ in D′
(ℜn)(2.15)

|∇v| ≤ c a.e. in ℜn, v(0) = 0,

v belongs to W 2,∞(D) and(2.16)

Lv + h = λ a.e. in D

|∇v| = c on ∂D.

Moreover, if ∂D is of class C3, v is three times continuously differentiable on
D̄ = D ∪ ∂D, and ∇v is never tangent to ∂D, then there exists ν⋆

x in V such
that

K(x, ν⋆
x) = λ, ∀x ∈ ℜn,(2.17)

i.e., ν⋆ is an optimal ergodic (or stationary) policy. 2
Remark that D′

(ℜn) denotes the space of Schwartz distributions in ℜn

and W 2,∞(D) is the Sobolev space of functions with Lipschitz continuous
first derivatives in D. More precise conditions on the boundary ∂D and the
gradient direction ∇v are given in the last section.

3. A priori estimates

Denote by

β(t) = gt+ σw(t), t ≥ 0.(3.1)
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Then the state (yx(t), t ≥ 0) given by (2.5) satisfies

yx(t) = etfx+
∫ t

0
e(t−s)fdβ(s) +

∫ t

0
e(t−s)fdν(s), t ≥ 0.(3.2)

Each control (ν(t), t ≥ 0) can be decomposed into a continuous component
(νc(t), t ≥ 0) and a purely jump component (νj(t), t ≥ 0), i.e.

ν(t) = νc(t) + νj(t),∀t ≥ 0,(3.3)

νc(·) is continuous and νc(0) = 0,

νj(·) is singular and νj(0−) = 0.

Then, the cost of controlling is

c
∫ ∞

0
e−αtd|ν|(t) = c

∫ ∞

0
e−αtd|νc|(t) +

∑
t≥0

ce−αt|νj(t)− νj(t−)|.

Notice that νc(·) and νj(·) have locally bounded variation, νj(·) is right
continuous with countably many discontinuities.

Based on Menaldi and Robin [23], Menaldi and Taksar [25], we obtain
Proposition 3.1

Let the assumptions (2.1) ,..., (2.8) hold. Then there exists a constant
K0 > 1 such that for any 0 < λ < 1, any x, χ in ℜn, |χ| = 1, α > 0 we have

0 ≤ uα(x) ≤ c|x|+ (K0 − 1)α−1,(3.4)

|uα(x)− uα(x+ λχ)| ≤ C1λ(c|x|+K0α
−1),(3.5)

0 ≤ uα(x+ λχ) + uα(x− λχ)− 2uα(x)(3.6)

≤ C2λ
2(c|x|+K0α

−1),

where c is the constant of (2.2) that appears in the cost (2.9), and C1, C2 are
the constants of assumptions (2.6), (2.7).
Proof

The convexity of uα follows from the convexity of the holding cost h, the
linearity in ν of the dynamics (2.4) and the fact that the set of control V is
convex.

6



To prove (3.4) we consider the reflected diffusion process (y0(t), t ≥ 0)
satisfying

dy0(t) = [g + fy0(t)]dt+ σdw(t)− y0(t)dξ0(t), t > 0,(3.7)

y0(0) = 0, ξ0(0) = 0,

|y0(t)| ≤ 1, ∀t ≥ 0, and dξ0(t) ̸= 0 only if |y0(t)| = 1,

where the process (ξ0(t), t ≥ 0) is continuous and increasing. Now, Itô’s
formula applied to the function

(y, t) 7−→ |y|2e−αt

gives

|y0(T )|2e−αT + α
∫ T

0
|y0(t)|2e−αtdt+ 2

∫ T

0
e−αtdξ0(t) =

= 2
∫ T

0
y0(t) · [g + fy0(t)]e

−αtdt+
∫ T

0
tr(σσ⋆)e−αtdt+

+2
∫ T

0
y0(t) · σe−αtdw(t).

Hence

E{
∫ ∞

0
e−αtdξ0(t)} ≤ [|g|+ |f |+ 1

2
tr (σσ⋆)]α−1.(3.8)

Thus, for any x in ℜn we define

νx(t) = −x−
∫ t

0
y0(t)ξ0(t)dt, ∀t ≥ 0,(3.9)

yx(t) = y0(t), ∀t ≥ 0,

which satisfy the stochastic equation (2.4). We have

uα(x) ≤ J(x, νx, α) = c|x|+ J(0, ν0, α).

In view of (3.8) we obtain (3.4) for

K0 = 1 + c[|g|+ |f |+ 1

2
tr (σσ⋆)] + sup{c|h(x)| : |x| ≤ 1}.(3.10)
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To show (3.5) we start with

|uα(x)− uα(x+ λχ)| ≤ sup{|J(x, ν, α)− J(x+ λχ, ν, α)|}.

By means of (3.4) we can consider only controls ν(·) which satisfy

J(x, ν, α) ≤ c|x|+ (K0 − 1)α−1.

Since
|h(yx(t))− h(yx+λχ(t))| ≤ C1λ|etfχ|(1 + h(yx(t))),

where C1 is the constant in the hypothesis (2.6), we deduce (3.5) after notic-
ing that

|etfχ| ≤ 1.

In order to prove (3.6) we start with

uα(x+ λχ) + uα(x− λχ)− 2uα(x) ≤
≤ sup

ν
{J(x+ λχ, ν, α) + J(x− λχ, ν, α)− 2J(x, ν, α)}.

As before, because of

h(yx+λχ(t)) + h(yx−λχ(t))− 2h(yx(t)) ≤
≤ C2λ

2|etfχ|2(1 + h(yx(t))),

where C2 is the constant of assumption (2.7), we obtain (3.6). 2
Corollary 3.2

Assume the hypotheses of Theorem 3.1 and

∂2h

∂xi∂xj

is bounded in ℜn,∀ i, j = 1, . . . , n,(3.11)

all eigenvalues of f are strictly negative.(3.12)

Then

∂2uα

∂xi∂xj

is equi-bounded (in α > 0) in ℜn.(3.13)

Proof.
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In view of (3.11) we have

h(x+ λχ) + h(x− λχ)− 2h(x) ≤ C3λ
2

for some constant C3. The hypothesis (3.12) implies that there is a constant
δ > 0 such that

|etfχ|2 ≤ e−δt, ∀t ≥ 0.

Therefore

uα(x+ λχ) + uα(x− λχ)− 2uα(x) ≤ C3(α+ δ)−1λ2,(3.14)

which gives (3.13). 2
Following Chow et al. [4], Menaldi and Robin [19], Menaldi and Taksar

[25] we can show that the optimal cost (2.12) satisfies

uα ∈ W 2,∞
loc (ℜn) (locally Lipschitz first derivatives)(3.15)

Luα − αuα + h ≥ 0, a.e. in ℜn,

|∇uα| ≤ c in ℜn,

Luα − αuα + h = 0 a.e. in [|∇uα| < c],

where [|∇uα| < c] denotes the set of points x in ℜn satisfying |∇uα(x)| <
c. Actually, uα is the maximum subsolution, i.e. if u satisfies the first
three conditions of (3.15) then u ≤ uα in ℜn. Since h is at least Lipschitz
continuous and σ invertible the last equality in (3.15) holds pointwise and
uα is smooth in that region.

Define the open set

Dα = {x ∈ ℜn : |∇uα(x)| < c},(3.16)

and the sets

D = {x ∈ ℜn : there are r = r(x) and sequences(3.17)

xk → x, αk → 0 as k → ∞ such that

B(xk, r) ⊂ Dαk
, ∀k = 1, 2, . . .},

S = {x ∈ ℜn : there are sequences xk → x,(3.18)

αk → 0 as k → ∞ such that xk ̸∈ Dαk
,

∀k = 1, 2, . . .},

9



where B(x, r) is the open ball of radius r and center x.

Proposition 3.3
Let the assumptions (2.1), ..., (2.8) hold. Then D is bounded, open and

S is closed, and

D ∪ S = ℜn.(3.19)

Proof
First, we are going to prove that there exists a ball of radius K1 > 0,

independent of α > 0, such that

Dα ⊂ B(0, K1), ∀ 0 < α < 1.(3.20)

Indeed, on Dα we have
Luα − αuα + h = 0.

Since uα is convex,
Luα(x) ≥ (g + fx).∇uα(x)

and because
|∇uα(x)| ≤ c, ∀x ∈ ℜn

we obtain
−Luα(x) ≤ c(|g|+ |f ||x|), a.e. in ℜn.

Thus, in view of the estimate (3.4) we have

h(x) ≤ c|g|+ (K0 − 1) + c(α + |f |)|x|, ∀x ∈ Dα.(3.21)

By means of the hypothesis (2.8) on h we can define

K1 = sup{x ∈ ℜd : h(x) ≤ a+ b|x|},(3.22)

a = (c+ 1)|g|+ |f |+ 1

2
tr (σσ⋆) + sup{h(x) : |x| ≤ 1},

b = c(|f |+ 1),

to get (3.20). Hence D is bounded.
To show (3.19) we are going to establish that

if x ̸∈ D then x ∈ S.(3.23)
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Indeed, let x ̸∈ D. Then for every r > 0, every sequences xk → x, αk → 0
we can not have

B(xk, r) ⊂ Dαk
, ∀k = 1, 2, . . .

Thus, we can construct sequences rk → 0, xk → x, αk → 0 as k → ∞ such
that

B(xk, rk) ∩ (ℜn \Dαk
) ̸= ϕ, ∀k = 1, 2, . . .

So, there exists a sequence yk such that

yk ∈ B(xk, rk) \Dαk
, ∀k = 1, 2, . . .

Therefore yk → x as k → ∞ and

yk ̸∈ Dαk
, ∀k = 1, 2, . . . ,

i.e. x belongs to S, by definition.
In order to prove that D is open, we use (3.19) and we establish that S

is closed. Indeed, let xk → x as k → ∞ with

xk ∈ S, ∀k = 1, 2, . . .

By definition, there exist sequences xk,n → xk, αk,n → 0 as n → ∞ such that

xk,n ̸∈ Dαk,n
, ∀n, k = 1, 2, . . .

So, we can choose n = n(k) such that xk,n(k) → x, αk,n(k) → 0 as k → ∞ and

xk,n(k) ̸∈ Dαk,n(k)
, ∀k = 1, 2, . . . ,

i.e. x belongs to S. Hence S is closed and D is open. 2
Theorem 3.4

Under the assumptions (2.1), ..., (2.8) the set D defined by (3.17) is
nonempty. Moreover, for every 0 < α < 1 we have

|∇uα(x)−∇uα(x
′)| ≤ K2|x− x′|, ∀x, x′ ∈ Dα,(3.24)

for some constant K2 independent of α, and

uα(x+ θ∇uα(x)) = uα(x) + c2θ, ∀x ̸∈ Dα, ∀θ > 0,(3.25)
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where uα is the discounted optimal cost function (2.12), and c is the constant
that appears in the cost (2.9).
Proof

Since uα is convex and continuously differentiable we have for every x in
ℜn,

uα(x+ θ∇uα(x))− uα(x)] ≥ θ|∇uα(x)|2, ∀θ > 0.

On the other hand, the inequality

|∇uα(x)| ≤ c, ∀x ∈ ℜn

implies, for any x in ℜn,

|uα(x+ θ∇uα(x))− uα(x)| ≤ c|∇uα(x)|θ, ∀θ > 0.

Because |∇uα(x)| = c whenever x is not in Dα, we conclude (3.25).
Let us recall that the Schauder local estimates on elliptic partial differ-

ential equations imply that uα has smooth second derivative on Dα and

Luα(x)− αuα(x) + h(x) = 0, ∀x ∈ Dα.

Thus, because uα is convex we need only to show that for some set of n
independent direction {χ1, χ2, . . . , χn} in ℜn,

n∑
k=1

∂2uα

∂χ2
k

(x) ≤ K2, ∀x ∈ Dα,(3.26)

for some constant K2 independent of 0 < α < 1.
Now, to establish (3.26) we take χk = σk|σk|−1, where σk is the k column

of the matrix σ. Then

∂2uα

∂χ2
k

= |σk|−2
n∑

i,j=1

σikσjk
∂2uα

∂xi∂xj

and for x in Dα we get

n∑
k=1

∂2uα

∂χ2
k

(x) ≤ (min
k

|σk|)−2[αuα(x)− (g + fx) · ∇uα(x)− h(x)],

in view of the inequalities (3.15) satisfied by uα. Thus, we deduce (3.26) with

K2 = 2(min
k

|σk|)−2[K0 − 1 + c|g|+ c(1 + |f |)K1],(3.27)

12



whereK0 andK1 are given (3.10) and (3.22). Here, we have used the estimate
(3.4) and the inclusion (3.20).

The remaining part is to show that D is nonempty. To that effect, let xα

be a point in ℜn where uα(·) attains its absolute minimum. Then ∇uα(xα) =
0 and xα belongs to Dα. By means of the estimate (3.24) we deduce that

B(xα, ε) ⊂ Dα, ∀0 < α < 1, ∀0 < ε ≤ cK−1
2 ,

where K2 is the constant given by (3.27) that appears in (3.24). Therefore,
any limit point of the family {xα, 0 < α < 1} belongs to D. Notice that at
least one limit point exists in view of the bound (3.20). 2

Let ρ(·) be a smooth and positive convolution kernel, i.e. ρ(·) is an infinite
differentiable function such that

ρ(x) ≥ 0, ∀x, ρ(x) = 0 if |x| ≥ 1,
∫
ℜn

ρ(x)dx = 1.

Define

uε
α(x) =

∫
ℜn

uα(x− εy)ρ(y)dy, ε > 0,(3.28)

and

hε(x) =
∫
ℜn
[h(x− εy)− ε

n∑
i,j=1

fijyj
∂uα

∂xi

(x− εy)]ρ(y)dy.(3.29)

The inequalities (3.15) satisfied by uα imply

Luε
α − αuε

α + hε ≥ 0 in ℜn,(3.30)

|∇uε
α| ≤ c in ℜn

for any ε, α > 0.
Consider the set

Dδ,ε
α = {x ∈ ℜn : Luε

α(x)− αuε
α(x) + hε(x) < δ},(3.31)

for any α, ε, δ > 0. As in the proof of (3.20) in Proposition 3.3, the fact that
uε
α(·) is convex gives the estimate

Dδ,ε
α ⊂ B(0, K1) ∀0 < α, ε, δ < 1,(3.32)
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where the radius of the ball is now

K1 = sup{x ∈ ℜn : h⋆(x) ≤ a+ b|x|}, with(3.33)

h⋆(x) = inf{h(y) : y ∈ ℜn, |x− y| ≤ 1} ,

a = (c+ 1)|g|+ 2|f |+ 1

2
tr (σσ⋆) + sup{h(x) : |x| ≤ 1},

b = c(|f |+ 1),

which is a finite number in view of the hypothesis (2.8).
Define the set

D̃δ
α = {x ∈ ℜn : There exist sequences(3.34)

xk → x, εk → 0 as k → ∞ such that

xk ∈ Dδ,εk
α , ∀k = 1, 2, . . .}.

As in Proposition 3.3 we can prove that D̃δ
α is bounded, closed and

Dα ⊂ D̃δ
α ⊂ B̄(0, K1), ∀0 < α, δ < 1.(3.35)

Since Dδ
α is increasing in δ we have

Dα ⊂ D̃α =
∩
δ>0

D̃δ
α ⊂ B̄(0, K1), ∀0 < α < 1,(3.36)

with D̃α being a closed subset of ℜn and B̄(0, K1) the closed ball of center 0
and radius K1.
Theorem 3.5

Let the assumptions (2.1),...,(2.8) hold and (ν(t), t ≥ 0) be an optimal
control for the discounted cost (2.10) with a fix α > 0 and some x in ℜd.
Then

P{y(t) ∈ D̃α} = 1, ∀t ≥ 0,(3.37)

|νc|(t) =
∫ t

0
χ(y(s)) ̸∈ Dα)d|νc|(s), ∀t ≥ 0,(3.38)

νj(t) = νj(t−) if y(t−) ∈ Dα, ∀t ≥ 0,

where (y(t), t ≥ 0) is the state of the system corresponding to the control
(ν(t), t ≥ 0) through (3.2), and (νc(t), t ≥ 0) (resp. (νj(t), t ≥ 0) is the
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continuous (resp. jump) component given by (3.3).
Proof

First, we apply Itô’s formula for the semimartingale (cfr. Meyer [27]) to
the function uε

α(·), as defined by (3.28), and the process (y(t), t ≥ 0) given
by (3.2) to obtain

uε
α(x) = E{

∫ ∞

0
e−αt[αuε

α(y(t))− Luε
α(y(t))]dt−(3.39)

−
∑
t≥0

e−αt[uε
α(y(t))− uε

α(y(t−))]−

−
∫ ∞

0
e−αt∇uε

α(y(t)) · dνc(t)}, ∀ε > 0,

Notice that uε
α is a smooth function with polynomial growth, and the jumps

of the state of the system satisfy

y(t)− y(t−) = νj(t)− νj(t−), ∀t ≥ 0.(3.40)

Since, (ν(t), t ≥ 0) is optimal we have

uα(x) = J(x, ν, α),

which together with (3.39) prove

E{
∫ ∞

0
e−αt[hε − αuε

α + Luε
α](y(t))dt}+(3.41)

+E{
∑
t≥0

e−αt[c|νj(t)− νj(t−)|+ uε
α(y(t))− uε

α(y(t−))] +

+
∫ ∞

0
e−αt[c d|νc|(t) +∇uε

α(y(t)) · dνc(t)]} =

= [uα(x)− uε
α(x)] + E{

∫ ∞

0
e−αt[hε − h](y(t))dt.

By virtue of the inequalities (3.30), each of the two terms on the left-hand
side is nonnegative. As ε goes to zero we deduce

E{
∑
t≥0

eαt[c|νj(t)− νj(t−)|+ uα(y(t))− uα(y(t−))] +

+
∫ ∞

0
e−αt[cd|νc|(t) +∇uα(y(t)) · dνc(t)]} = 0,
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which implies (3.38), after using (3.40) and the fact that

|∇uα| ≤ c in ℜn, and|∇uα| < c in Dα.

On the other hand, we have

δ
∫ ∞

0
e−αtP{y(t) ̸∈ Dδ,ε

α }dt ≤

≤ E{
∫ ∞

0
e−αt[hε − αuε

α + Luε
δ](y(t))dt} ≤ r(x, α, ε),

with
r(x, α, ε) → 0 as ε → 0.

Now, notice that according to the definition (3.34) D̃δ
α is the superior limit

of the family of sets {Dδ,ε
α , 0 < ε ≤ 1}. Therefore

P{y(t) ̸∈ D̃δ
α} ≤ lim inf

ε→0
P{y(t) ̸∈ Dδ,ε

α }.

Summing up, we conclude that∫ ∞

0
e−αtP{y(t) ̸∈ D̃δ

α}dt = 0.

Hence, we deduce (3.37) after using the right continuity of the process (y(t), t ≥
0) and (3.36). 2
Remark 3.1

The property (3.35) in Theorem 3.5 expresses the fact that “it is not
optimal to let the system exits the region D̃α”. Also, the property (3.38)
says that “it is not optimal to control the system inside the region Dα”. By
the way, because D̃α is bounded, we have shown that any optimal control for
the discounted cost, keeps the system on a bounded set, uniformly w.r.t. α
in (0,1]. 2
Corollary 3.6

Under the assumptions (2.1),...,(2.8) and

all eigenvalues of f are strictly negative(3.42)

we have the estimate

|∇uα(x)−∇uα(x
′)| ≤ K2|x− x′|, ∀x, x′ ∈ ℜn,(3.43)
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for some constant K2 independent of α.
Proof

By means of the technique of Menaldi and Robin [19], Menaldi and Taksar
[26], Taksar [40], we can prove that for each fix discount factor α > 0 and
any initial state x, there exists an optimal control (να

x (t), t ≥ 0), i.e.

uα(x) = J(x, να
x , α), ∀x ∈ ℜn, α > 0.

Then, Theorem 3.5 implies that for some K1 and any 0 < α < 1

P{|yαx (t)| ≤ K1} = 1, ∀t ≥ 0.(3.44)

As in Proposition 3.1 and Corollary 3.2 we start with

uα(x+ λχ) + uα(x− λχ)− 2uα(x) ≤(3.45)

≤ J(x+ λχ, να
x , α) + J(x− λχ, να

x , α)− 2J(x, να
x , α),

where χ is any direction. In view of (3.44) and the hypothesis (2.7) we have

h(yαx+λχ(t)) + h(yαx−λχ(t))− 2h(yαx (t)) ≤ C2λ
2|etfχ|2 sup{(1 + h(y))) : |y| ≤ K1}.

Since the assumption (3.42) implies that there is a constant δ > 0 such that

|etfχ|2 ≤ e−δt, ∀t ≥ 0,

we deduce the estimate (3.43) with

K2 = C2δ
−1 sup{(1 + h(y)) : |y| ≤ K1},

where K1 is the constant used in (3.44) and given by (3.33). 2
Corollary 3.7

Under the hypotheses of Theorem 3.5 we have

uα(x) = E{
∫ T

0
[h(yx(t))− αuα(yx(t))]dt+ c|ν|(T )}+(3.46)

+E{uα(yx(T ))}, ∀T ≥ 0,

17



where uα(x) is the optimal cost (2.13) and (yx(t), t ≥ 0) is the state process
(3.2) associated with the optimal control (ν(t), t ≥ 0).
Proof

As in Theorem 3.5, we apply Itô’s formula for the semimartingale to get
for every ε > 0, T ≥ 0

uε
α(x) = E{uε

α(y(T ))} − E{
∫ T

0
Luε

α(y(t))dt+

+
∑

0≤t≤T

[uε
α(y(t))− uε

α(y(t−))] +
∫ T

0
∇uε

α(y(t)) · dνc(t)}.

The delicate point is to pass to the limit in the above equality. We proceed
as follows

E{
∫ T

0
[h(y(t))− αuα(y(t)) + Luε

α(y(t))]dt} =

= E{
∫ T

0
[h(y(t))− hε(y(t))]dt+

∫ T

0
[αuε

α(y(t))− αuα(y(t))]dt}+

+E{
∫ T

0
[hε(y(t))− αuε

α(y(t)) + Luε
α(y(t))]dt} = I + II.

Because hε → h, uε
α → uα locally uniformly on ℜn as ε → 0 we obtain I → 0

as ε → 0. On the other hand

0 ≤ II ≤ eαTE{
∫ ∞

0
e−αt[hε − αuε

α + Luε
α](y(t))dt},

and in view of equality (3.41), the right-hand limit goes to zero as ε → 0.
Hence II → 0 as ε → 0, i.e.

−E{
∫ T

0
Luε

α(y(t))dt} → E{
∫ T

0
[h(y(t))− αuα(y(t))]dt

as ε → 0.
Similarly, from (3.41) we deduce

−E{
∑

0≤t≤T

[uε
α(y(t))− uε

α(y(t−))] +
∫ T

0
∇uε

α(y(t)) · dνc(t)}

converges to
cE{|ν|(T )},

i.e. (3.46) is valid. 2
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4. The ergodic value and potential function

We will study the convergence of the optimal discounted cost (2.12) to the
optimal ergodic cost (2.13).
Proof of Theorem 2.1

First, in view of the estimate (3.4) in Proposition 3.1, the family {αuα(·), 0 <
α ≤ 1} is locally equibounded in ℜn, i.e.

0 ≤ αuα(x) ≤ αc|x|+K0, ∀x ∈ ℜn, ∀0 < α ≤ 1.(4.1)

From the inequalities (3.15) we have

|∇uα(x)| ≤ c, ∀x ∈ ℜn, ∀0 < α ≤ 1.(4.2)

Hence, there exist a number λ0 ≥ 0 and a sequence αk → 0 as k → ∞ such
that

αkuαk
(x) → λ0 locally uniformly as k → ∞.(4.3)

Next, we are going to prove that for any control (ν(t), t ≥ 0) such that
the ergodic cost (2.11) is finite, i.e. K(x, ν) < ∞, we have

J(x, ν, α) < ∞, ∀α > 0,(4.4)

where J(x, ν, α) is the discounted cost (2.10), and also for every ε > 0 there
exists T0 = T0(ε, x, ν) such that

E{
∫ T

0
h(y(t))dt+ c|ν|(T )} ≤ [K(x, ν) + ε]T, ∀T ≥ T0.(4.5)

Indeed, the condition (4.5) follows from the definition of the superior limit
(2.11). In order to establish (4.4) we denote by

q(t) = E{
∫ t

0
h(y(s))ds+ c|ν|(t)}, ∀t ≥ 0.

A simple integration by parts shows that

J(x, ν, α) = lim
T→∞

[e−αT q(T ) + α
∫ T

0
e−αtq(t)dt].

19



By virtue of (4.5) we deduce that the right-hand side does not exceed

α
∫ T0

0
e−αt[K(x, ν) + ε]T0dt+ α

∫ ∞

T0

e−αt[K(x, ν) + ε]tdt,

i.e.

J(x, ν, α) ≤ [K(x, ν) + ε](T0 + α−1)e−αT0 ,(4.6)

which gives (4.4).
Now, we will show that the limit of αuα does not exceed the optimal

ergodic cost (2.13), i.e.

lim sup
α→0

αuα(x) ≤ λ, ∀x ∈ ℜn.(4.7)

Indeed, for every ε > 0 there is control ν such that

K(x, ν) ≤ λ+ ε,

where K(x, ν) is the ergodic cost (2.11). In view of the estimate (4.6) we get

αuα(x) ≤ αJ(x, ν, α) ≤ (λ+ 2ε)(αT0 + 1)e−αT0 .

Since ε > 0 is arbitrary, this implies (4.7).
In order to conclude, we need only to show that the limit value λ0 in (4.3)

coincides with the optimal ergodic cost λ in (2.13). To that purpose, we are
going to prove that for every ε > 0 and any x in ℜn there exists a control
νε,x such that

K(x, νε,x) ≤ λ0 + ε.(4.8)

Indeed, let να
x be an optimal control for the discounted cost with α > 0 to

be selected later. By means of (3.46) in Corollary 3.7 we have

E{
∫ T

0
αuα(y(t))dt} = E{

∫ T

0
h(y(t))dt+ c|να

x |(T )}+

+E{uα(y(T ))} − uα(x), ∀T ≥ 0.

Since the state process (y(t), t ≥ 0) remains in a bounded set a.s., uniformly
in x and 0 < α < 1, we obtain

K(x, να
x ) = lim sup

T→∞

1

T
E{

∫ T

0
αuα(y(t))dt}.
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Hence, if we choose νε,x = να
x with α = αk,

|αkuαk
(y)− λ0| ≤ ε, ∀ |y| ≤ K1,

where K1 the constant given by (3.33), then we deduce (4.8). 2
Now we will study the potential function v(x). Let us define

vα(x) = uα(x)− uα(0), ∀x ∈ ℜn, ∀0 < α < 1.(4.9)

In view of the condition (3.15) we have

vα ∈ W 2,∞
loc (ℜn),(4.10)

Lvα + h ≥ αuα a.e. in ℜn,

|∇vα| ≤ c in ℜn,

Lvα + h = αuα a.e. in Dα,

where the open set Dα is given by (3.16).
Proof of Theorem 2.2

First, because the gradients (∇uα, 0 < α ≤ 1) are bounded, there exist
a Lipschitz continuous function v in ℜn and a subset Λ of (0,1] having 0 as
limiting point such that as α → 0, α in Λ we have

vα → v locally uniformly in ℜn,(4.11)

at each point x with rational coordinates

the gradient ∇vα(x) is convergent.

Since vα is convex for any α, the limiting function v is also convex.
Thus, in the Schwartz’ distribution sense we have

Lv + h ≥ λ in D′(ℜn),(4.12)

|∇v| ≤ c a.e. in ℜn.

Actually, the fact that v is convex implies that Lv is a Radon measure, so
the first inequality in (4.12) holds as measures.

Let us slightly modify the definition (3.17) of the set D. We say that a
point x0 belongs to the set D = DΛ if and only if there exist a number r0 > 0
and sequences xk → x0, αk → 0 as k → ∞ such that for every k

B(xk, r0) ⊂ Dαk
, αk ∈ Λ.(4.13)
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It is clear that as in Proposition 3.3 and Theorem 3.4 we can show that D is
open, bounded and nonempty. Thus, we are going to prove that

Lv + h = λ in D′(D).(4.14)

Indeed, let x0 be any point D and let φ be any test function with support in
B(x0, r0) where r0 > 0 is given in (4.13). Then, to establish (4.14) it suffices
to show that ∫

ℜn
[v(x)L⋆φ(x) + h(x)φ(x)]dx = λ,(4.15)

where L⋆ is the adjoint operator associated with L. To that purpose, we
notice that the test function

φk(x) = φ(x− x0 + xk)

has support in B(xk, ro). Therefore in view of (4.13) and the fact that

Lvα + h = αuα in D′(Dα)

we deduce∫
ℜn
[vαk

(x)L⋆φk(x) + h(x)φk(x)]dx =
∫
ℜn

αkuαk
(x)φk(x)dx

for every k. By means of (4.11) and the facts that

αuα → λ as α → 0, α ∈ Λ, locally uniformly,

we obtain (4.15), after taking limit in k.
Since σ is invertible, the local Schauder estimate on (4.14) implies that

v is smooth on D. Because v is convex, the technique of the Theorem 3.4
applies to the function v, i.e. there exists a constant K2 > 0 such that

|∇v(x)−∇v(x′)| ≤ K2|x− x′|, ∀x, x′ ∈ D,(4.16)

and

at each point x in ℜn where the gradient of v(4.17)

exists and |∇v(x)| = c we have

v(x+ θ∇v(x)) = v(x) + c2θ, ∀θ > 0,
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Hence, we have established that v belongs to W 2,∞(D). Also because the
minimum of v is attained in D, the function v is bounded from below in the
whole ℜn.

Next, we will prove that each point x in ℜn \D where the gradient of v
exists we have |∇v(x)| = c, i.e.

|∇v| = c a.e. in ℜn \D.(4.18)

Indeed, if x0 belongs to ℜn\D then it suffices to show that the subdifferential
of v at x0 contains a vector of length equal to c, i.e.

there is p in ℜn such that |p| = c and(4.19)

v(x0 +∆x)− v(x0) ≥ p ·∆x, ∀∆x ∈ ℜn.

To that purpose, because x0 is in ℜn \ D there exist sequences xk → x0,
αk → 0 as k → ∞ such that (xk, αk) belongs to (ℜn \ Dαk

,Λ) for every k.
Thus

vα(xk +∆x)− vα(xk) ≥ ∇vα(xk) ·∆x, ∀∆x ∈ ℜn,(4.20)

|∇vα(xk)| = c, ∀k = 1, 2, . . . , ∀0 < α ≤ 1.

Hence, we can find a subsequence of {αk, k = 1, 2, . . .}, denoted by {αk(n), n =
1, 2, . . .}, and a vector p such that

∇vαk(n)
(xk(n)) → p as n → ∞, |p| = c.

In view the convergence (4.11), we can take α = αk(n) and k = k(n) in (4.20).
As n goes to ∞ we get (4.19).

Now, in order to prove (2.16) we need only to prove that for every x in
∂D and any sequence xn → x as n → ∞ with xn in D for every n = 1, 2, . . . ,
we have

|∇v(xn)| → c as n → ∞.(4.21)

Hence, because xn belongs to D there exist rn > 0 and sequences xn,k →
xn, αn,k → 0 as k → ∞ such that for every n, k = 1, 2, . . . ,

B(xn,k, rn) ⊂ Dαn,k
and αn,k ∈ Λ.
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Let us define
εn,k = dist(xn,k, ∂Dα,k).

Notice that
inf{εn,k : k = 1, 2, . . .} ≥ rn > 0, ∀n.

However, the fact that x does not belong to D implies

inf{εn,k : n, k = 1, 2, . . .} = 0,

i.e.
rn → 0 as n → ∞.

Hence, we can construct sequences x′
n → x, αn → 0, εn → 0 as n → ∞ such

that for every n,
xn ∈ B(x′

n, εn) ⊂ Dαn , αn ∈ Λ,

∂B(x′
n, εn) ∩ ∂Dαn ̸= ϕ.

So, by taking points (yn, n = 1, 2, . . .) in the above interception we get

|x′
n − yn| = εn, yn ∈ ∂Dαn .

Summing up, we have sequences xn → x, yn → x, αn → 0 as n → ∞
such that for every n = 1, 2, . . . the number αn is in Λ, and the points xn

belongs to Dαn ∩ D and yn belongs to ∂Dαn . Moreover, we can choose a
sequence zn → x as n → ∞ such that zn belongs to Dαn ∩D and has rational
coordinates.

Therefore

|∇v(xn)| ≤ |∇vαn(yn)|+ |∇vαn(yn)−∇vαn(zm)|+
+|∇vαn(zm)−∇v(zm)|+ |∇v(zm)−∇v(xn))|.

Since yn ∈ ∂Dαn we have
|∇vαn(yn)| = c,

and in view of the estimate (3.24) of Theorem 3.4 (which is actually valid for
x, x′ in Dα ∪ ∂Dα) and the inequality (4.16) we deduce

0 ≤ c− |∇v(xn)| ≤ K2(|yn − zm|+ |zm − xn|)+
+|∇vαn(zm)−∇v(zm)|, ∀n,m.

Hence, by virtue of the convergence (4.11) we obtain

lim sup
n→∞

[c− |∇v(xn)| ≤ 2K2|zm − x|, ∀m,

which proves (4.21).

24



5. The Optimal Control

Finally, it remains to construct an optimal ergodic (or stationary) control.
To that end, we assume that the domain D and the potential value function
v satisfy:

there exists a twice differentiable function ρ such that(5.1)

D = {x ∈ ℜn : ρ(x) < 0},
∂D = {x ∈ ℜn : ρ(x) = 0},
|∇ρ(x)| ≥ 1, ∀x ∈ ∂D

and

there exists a function M(x) from a neighborhood(5.2)

of ∂D into the set of symmetric matrices

n× n ,which is twice-continuously differentiable and

z ·M(x)z > 0, ∀z ∈ ℜn, z ̸= 0, ∀x,
−∇v(x) = M(x)∇ρ(x), ∀x ∈ ∂D,

i.e., the free boundary ∂D and the potential v are smooth, and ∇v is never
tangent to ∂D. Under these assumptions we can build the reflected diffusion
process on D̄ (e.g. Freidlin [7], Lions and Sznitman [17], McKean, Jr. [18],
Menaldi and Robin [24], Meyer [27], Nakao [28], Saisho[ ], Sato and Ueno
[30], Skorokhod [31], Stroock and Varadham [33], Venttsel [42], Watanabe
[43], and the recent books Bensoussan and Lions [2], Chung and Williams
[5], Ethier and Kurtz [6], Harrison [9], Ikeda and Watanabe [10] and others).
Precisely, for each x in D̄ there exist a continuous process (yx(t), t ≥ 0) and
a continuous and nondecreasing process (ξx(t), t ≥ 0) which are adapted to
the Wiener process (Ω,F , P,F(t), w(t), t ≥ 0) such that

dyx(t) = [g + fyx(t)]dt+ σdw(t)−∇v(yx(t))dξx(t),(5.3)

yx(0) = x, ξx(0) = 0,

yx(t) ∈ D̄, ∀t ≥ 0,

ξx(t) =
∫ t

0
χ(yx(t) ∈ ∂D)dξx(t), ∀t ≥ 0.

Then, we define for each x in D̄

νx(t) = −
∫ t

0
∇v(yx(s))dξx(s), ∀t ≥ 0.(5.4)
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Hence, Itô’s formula gives

E{v(yx(T ))} = v(x) + E{
∫ T

0
Lv(yx(t))dt−

−
∫ T

0
|∇v(yx(t))|2dξx(t)}, ∀T ≥ 0.

Since

|∇v(yx(t))|2 = c2 if yx(t) ∈ ∂D,

Lv(yx(t)) = λ− h(yx(t)), ∀t ≥ 0,

dξx(t) = 0 if yx(t) ∈ D,

|νx|(t) = cξx(t), ∀t ≥ 0,

we deduce

λ =
1

T
E{

∫ T

0
h(yx(t))dt+ c|νx|(T )}+

+
1

T
E{v(yx(T ))− v(x)}, ∀T > 0.

So, as T goes to ∞ we obtain

λ = K(x, νx), ∀x ∈ D̄.(5.5)

Because v is at least continuously differentiable in the whole ℜn, for each
x in ℜn we may consider the ordinary differential equation

η̇x(t) = −∇v(ηx(t)), ∀t ≥ 0,(5.6)

ηx(0) = x,

and the first entry time in D̄, i.e.

τx = inf{t ≥ 0 : ηx(t) ∈ D̄}.(5.7)

By virtue of the equality

v(ηx(τx)) = v(x)−
∫ τx

0
|∇v(ηx(t))|2dt

and the fact that v is bounded from below, we deduce that

0 ≤ τx < ∞, p(x) = ηx(τx) ∈ D̄, ∀x ∈ ℜn.(5.8)
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Thus, we define for any x in ℜn the control

νx(t) = p(x)− x−
∫ t

0
∇v(yp(x)(s))dξp(x)(s), ∀t ≥ 0,(5.9)

where the processes (yp(x)(t), ξp(x), t ≥ 0) are given by (4.24) with x replaced
by p(x). It is clear then that (νx(t), t ≥ 0) as in (4.30) is an optimal ergodic
control for initial state x in ℜn. 2
Final Comments

Once the convergence (2.14) of Theorem 2.1 has been established, it is
clear that ε-optimal controls of the α-discounted problem produce ε-optimal
controls for the ergodic problem, as α vanishes.

Usually, if we look for a pair (λ, v) as the solution of the Hamilton-Jacobi-
Bellman then, the constant λ is unique and the potential value function v is
unique up to an additive constant. However, we could not prove that fact
completely, i.e. that the conditions (2.15) and (2.16) are enough to determine
a unique solution.

Another hard question is the regularity of the free boundary ∂D. This is
very related to the W 3,∞-regularity of the value function v. Results in this
direction can be found in Soner and Shreve [32], where a two-dimensional case
with unidirectional control is studied, and in Williams, Chow and Menaldi
[43], where local regularity (outside of some lower dimensional region) is
obtained.

Notice that the potential value function v is in W 2,∞(ℜn) if the matrix f
has all eigenvalues strictly negative. This follows from the estimate (3.43) of
Corollary 3.6. 2

27



REFERENCES

[1] A. Bensoussan, Perturbations Methods in Optimal Control, Wiley, New
York, 1988.

[2] A. Benssousan and J. L. Lions, Contrôle Impulsionnel et Inéquations
Quasi-Variationnelles, Dunod, Paris, 1982.

[3] V.S. Borkar and M.K. Ghosh, Ergodic control of multidimensional diffu-
sions I: the existence results, SIAM J. Control and Optim., 26 (1988),
112-126.

[4] P.L. Chow, J.L. Menaldi and M. Robin, Additive control of stochastic
linear systems with finite horizon, SIAM J. Control and Optim., 23
(1985), 858-899.

[5] K.L. Chung and R.J. Williams, Introduction to Stochastic Integration,
Birkhauser, Boston, 1983.

[6] S.N. Ethier and T.G. Kurtz, Markov Processes : Characterization and
Convergence, Wiley, New York, 1986.

[7] M.I. Freidlin, Diffusion processes with reflection and problem with a di-
rectional derivative on a manifold with a boundary, Theory Probability
Appl., 8 (1963), 75-83.

[8] M.G. Garroni and J. L. Menaldi, On the asymptotic behavior of solutions
of integro-differential inequalities, Ricerche di Matematica, Suppl. Vol.
36 (1987), 149-171.

[9] J. M. Harrison, Brownian Motion and Stochastic Flow Systems, Wiley,
New York, 1985.

[10] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Dif-
fusion Processes, North Holland, Amsterdam, 1981.

[11] I. Karatzas, The monotone follower problem in stochastic decision the-
ory. Appl. Math. Optim, 7 (1981), 175-189.

[12] I.Karatzas, A class of singular stochastic control problems. Adv. Appl.
Prob., 15 (1983), 225-254.

28



[13] I. Karatzas and S.E. Shreve, Connection between optimal stopping and
singular stochastic control I. Monotone follower problems. SIAM J.
Control and Optim., 22 (1984), 856-877.

[14] I. Karatzas and S.E. Shreve, Connection between optimal stopping and
singular stochastic control II. Reflected follower problems. SIAM J.
Control and Optim., 23 (1985), 433-541.

[15] H.J. Kushner, Optimality conditions for the average cost per unit time
problem with a diffusion model, SIAM J. Control and Optim., 16
(1978), 330-346.

[16] P.L. Lions and B. Perthame, Quasi-variational inequality and ergodic
impulse control, SIAM J. Control and Optim., 24 (1986), 604-615.

[17] P.L. Lions and A.S. Sznitman, Stochastic differential equations with
reflecting boundary conditions, Comm. Pure Appl. Math., 37 (1984),
571-537.

[18] H.P. McKean, Jr. Skorokhod’s integral equation for a reflecting barrier
diffusion, J. Math. Kyoto Univ. 3 (1963), 86-88.

[19] J.L. Menaldi, and M. Robin, On some cheap control problems for dif-
fusion processes, Trans. Am. Math. Soc., 278 (1983), 771-802.

[20] J.L. Menaldi and M. Robin, On singular control problems for diffusions
with jumps, IEEE Trans. Automatic Control, AC-29 (1984), 991-1004.

[21] J.L. Menaldi and M. Robin, Some singular control problems with long
term average criterion, Proceedings of the Eleventh IFIP Conference
on System Modelling, and Optimization, Copenhagen, Denmark, 1983,
in Lecture Notes in Control and Inf. Sci., Ed. P. Thopt-Christensen,
59 (1984), 424-432.

[22] J.L. Menaldi and M. Robin, An ergodic control problem for reflected
diffusions with jumps, IMA J. Math. Control Inf., 1 (1984), 309-322.

[23] J.L. Menaldi and M. Robin, On optimal correction problems with par-
tial information, Stoch. Anal. Appl., 3 (1985), 63-92.

29



[24] J.L. Menaldi and M. Robin, Reflected diffusion processes with jumps,
Ann. of Probab., 13 (1985), 319 - 341.

[25] J.L. Menaldi and M.I. Taksar, Singular control of multidimensional
Brownian motion, Proceedings of the Tenth IFAC Congress, Munich,
Germany, 7 (1987), 222-225.

[26] J.L. Menaldi and M.I. Taksar, Optimal correction problem of a multi-
dimensional stochastic system, Automatica, 25 (1989), 223-232.

[27] P.A. Meyer, Cours sur les integrales stochastiques, in Lecture Notes in
Mathematics, 511 (1976), Springer-Verlag, New York, 245-400.

[28] S. Nakao, On the existence of solutions of stochastic differential equa-
tions with boundary conditions, J. Math. Kyoto Univ., 12 (1972), 151-
178.

[29] M. Robin, Long term average cost control problems for continuous time
Markov processes: A survey, Acta Appl. Math., 1 (1983), 281-299.

[30] K. Sato and T. Ueno, Multidimensional diffusion and the Markov pro-
cess on the boundary, J. Math. Kyoto Univ., 4 (1965), 529-605.

[31] A.V. Skorokhod, Stochastic equations for diffusion processes in bounded
region, Theory Probab. Appl., 6 (1961), 264-274 and 7 (1962), 3-23.

[32] H.M. Soner and S.E. Shreve, Regularity of the value function for a
two-dimensional singular stochastic control problem, preprint 1988.

[33] L. Stettner, On impulse control with long run average cost criterion,
Studia Math., 76 (1983), 279-298.

[34] D.W. Stroock and S.R.S. Varadhan, Diffusion processes with boundary
conditions, Comm. Pure Appl. Math., 24 (1971), 147-225.

[35] M. Sun, Singular control problems in bounded intervals, Stochastics, 21
(1987), 303-344.

[36] M. Sun and J.L. Menaldi, Monotone control of a damped oscillator
under random perturbations, IMA J. Math. Control Inf., 5 (1988),
169-186.

30



[37] M.I. Taksar, Storage model with discontinuous holding cost, Stoch.
Proc. Appl., 18 (1984), 201-300.

[38] M.I. Taksar, Average optimal control and a related optimal stopping
problems, Math. Oper. Res., 10, (1985) 63-81.

[39] M.I. Taksar, Free boundary control and a related optimal stopping prob-
lems, Proceedings of the 25th IEEE Conference on Decision and Con-
trol, Athens, Greece 1986, 132-133.

[40] M.I. Taksar, Singular control in a multidimensional space with costs
proportional to displacement, Proceedings of the International Con-
ference on Optimization Techniques and Application, Singapore 1987,
314-323.

[41] R. Tarres, Asymptotic evolution of a stochastic control problem, SIAM
J. Control and Optim., 23 (1985), 614-631.

[42] A.D. Venttsel, On boundary conditions for multidimensional diffusion,
Theory Probab. Appl., 4 (1959), 164-177.

[43] S. Watanabe, On stochastic differential equations for multidimensional
diffusion processes with boundary conditions, J. Math. Kyoto Univ.,
11 (1971), 169-180 and 454-551.

[44] S. Williams, P.L. Chow and J.L. Menaldi, Regularity of the free bound-
ary for a singular stochastic control problem, preprint 1989.

31


	Wayne State University
	3-1-1992
	Singular Ergodic Control for Multidimensional Gaussian Processes
	J. L. Menaldi
	M. Robin
	M. I. Taksar
	Recommended Citation


	tmp.1480368728.pdf.2cyDg

