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Abstract

We consider the strong solution of a semi linear HJB equation associated with a

stochastic optimal control in a Hilbert space H. By strong solution we mean a solution

in a L2(µ,H)-Sobolev space setting. Within this framework, the present problem can

be treated in a similar fashion to that of a finite-dimensional case. Of independent

interest, a related linear problem with unbounded coefficient is studied and an appli-

cation to the stochastic control of a reaction-diffusion equation will be given.
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1 Introduction

Consider the optimal control problem with the state equation in a Hilbert space H: dut = {Aut +B(ut, αt)}dt+ dWt,

u0 = v ∈ H,
(1.1)

where A is an unbounded linear operator, B(·, ·) is a, generally, nonlinear operator depending

on the control αt ∈ K and Wt is a H-valued Wiener process with covariance operator R.

We are interested in finding, from the set K of admissible controls α· the optimal control α∗
·

that minimizes the cost function:

Jv(α·) = E
∫ ∞

0
e−ΛtF (ut, αt)dt, (1.2)

where F : H ×K → IR+ is the running cost function with

Λt =
∫ t

0
λ(us)ds, (1.3)

and λ is the discount rate function. Denote the optimal cost or the value function by Φ

defined by

Φ(v) = inf
α·∈K

Jv(α·) = Jv(α
∗
· ). (1.4)

Then, by formally applying the dynamic programming principle, we deduce that Φ satisfies

the (stationary) Hamilton-Jacobi-Bellman (HJB) equation:

1

2
Tr.[RD2Φ(v)] + (Av,DΦ(v))− λ(v)Φ(v) + B(Φ)(v) = 0, (1.5)

where DΦ and D2Φ denote the first two Fréchet derivatives, Tr. means the trace, (·, ·) is the

inner produce in H and

B(Φ) = inf
α∈K

{(B(·, α), DΦ) + F (·, α)}. (1.6)

Even at the formal level, the equation (1.5) makes sense only when v belongs to the domain

D(A) of an unbounded operator A. But, with respect to the Wiener measure, the set D(A)

may be negligible. However, as shown in the linear case [1], it is possible to define the
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equation in H almost everywhere with respect to the invariant measure µ for Eq. (1.1) with

B ≡ 0.

The paper is mainly concerned with the strong solution of the HJB equation (1.5), inter-

preted properly, in an L2(µ,H)-Sobolev space setting. Within this framework, the present

problem can be treated in a similar fashion to that of a finite-dimensional case. Of in-

dependent interest, a related linear problem with unbounded coefficient is studied and an

application to the stochastic control of a reaction-diffusion equation will be given.

This work was inspired by an interesting paper [2] of DaPrato, who studied a special

form of Eq. (1.4). In contrast with the L2-theory, he considered a mild solution in a certain

Banach space of continuously differentiable functions with sup-norm. Since then several

papers have been written by him and his associates on this subject (see, e.g. [3], [4] and

[5]). When A is bounded and B(Φ) = 1
2
(DΦ, DΦ) in (1.5), this special case was treated

by Havarneanu [6] in an Abstract Wiener space setting. However his approach cannot be

applied to the general case (1.5). Along an entirely different direction, full nonlinear HJB

equations were studied by P.L. Lions [7] in the sense of viscosity solutions.

2 Preliminaries

Let H be a real separable Hilbert space with inner product (·, ·) and norm | · |. Let V ⊂ H be

a reflexive Banach space with norm ∥ · ∥. Denote the dual space of V by V ′ and the duality

pairing by ⟨·, ·⟩. Assume that the inclusions: V ⊂ H ⊂ V ′ are dense and continuous.

Let A : V → V ′ be a continuous linear operator and let Wt be a H-valued Wiener process

with covariance operator R. Consider the linear stochastic equation in V ′: dut = Autdt+ dWt,

u0 = h ∈ H.
(2.1)

We suppose that the following conditions hold:

(C.1) Let A : V → V ′ be a self-adjoint operator whose normalized eigenfunctions e′ks ∈ V

and corresponding eigenvalues µ′
ks are strictly negative with 0 > µ1 > µ2 > · · · > µk

and µk → −∞ as k → ∞.
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(C.2) The resolvent operator Rγ(A) of A commutes with covariance operator R.

(C.3) R : H → H is bounded such that Tr.A−1R < ∞.

Then, by a direct computation or by applying a general theorem of invariant measures [8,9],

we can claim that

Lemma 2.1 Under conditions (C.1), (C.2) and (C.3), the stochastic equation (2.1) has a

unique invariant measure µ on H, which is a centered Gaussian measure supported in V

with covariance operator Γ = −1
2
A−1R. 2

Let H = L2(µ,H) with norm ||| · ||| defined by

|||Φ||| = {
∫

|Φ(v)|2µ(dv)}1/2, (2.2)

and inner product [·, ·] given by

[Φ,Ψ] =
∫

Φ(v)Ψ(v)µ(dv) for Φ,Ψ ∈ H, (2.3)

where the integration is over H (or V ).

Let n = (n1, n2, . . . , nk, . . .), where nk is a nonnegative integer and nk = 0 except for a

finite number of k’s. For v ∈ H, define the Hermite (polynomial) functional of degree n by

Hn(v) = Π∞
k=1hnk

[ℓk(v)], (2.4)

where hj(x) is the standard one-dimensional Hermite polynomial of degree j and ℓk(v) =

(v,Γ− 1
2 ek). For a smooth functional Φ, let DΦ and D2Φ denote the Fréchet derivatives of

first and second orders, respectively. Introduce the differential operator

AΦ(v) =
1

2
Tr.[RD2Φ(v)] + ⟨Av,DΦ(v)⟩, (2.5)

which is defined for a polynomial functional Φ with DΦ(v) lies in the domain D(A). It can

be shown that [1]

Lemma 2.2 The set of all Hermite functionals {Hn} formed a complete orthonormal system

(CONS) in H. Furthermore we have

AHn(v) = −ΛnHn(v), (2.6)

where Λn =
∑

k nkµk and the summation is over the finite number of nonzero nk’s. 2
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Definition 2.3 Let Hk be the Gauss-Sobolev space of order k defined by

Hk = {Φ ∈ H : |||Φ|||k < ∞} for k > 0,

and H0 = H, where

|||Φ|||k = |||(I −A)k/2Φ||| = {
∑
n

(1 + Λn)
k|Φn|2}1/2, (2.7)

with I being the identity operator and Φn = [Φ, Hn]. Let H−k denote the dual space of Hk,

and the duality between Hk and H−k will be denoted by ⟨⟨·, ·⟩⟩. 2

Clearly, by identifying H with its dual H′, we have

Hk ⊂ H ⊂ H−k, k > 0

and the inclusions are dense and continuous.

Similar to the Laplacian operator in IRd, the following properties of A are crucial in the

subsequent analysis.

Lemma 2.4 The operator A can be defined as a self-adjoint linear operator in H with do-

main D(A) ⊃ H2. Moreover the following integral identity holds:∫
(AΦ)Ψdµ = −1

2

∫
(RDΦ, DΨ)dµ, (2.8)

for Φ,Ψ ∈ H2. The above identity can be extended to yield a linear operator A : H1 → H−1

defined by

⟨⟨AΦ,Ψ⟩⟩ = −1

2
[RDΦ, DΨ], ∀Φ,Ψ ∈ H1.2 (2.9)

We see that, with respect to the invariant measure µ, A can be defined µ - a.e. in H and

it behaves like the Laplace operator in IRd.

3 Linear Equation with Unbounded Coefficient

Suppose that B(v, α) = B(v) in Eq. (1.5). Consider an associated linear elliptic problem of

the form:

{A − λ(v)I}Φ + B0Φ = F (v), µ− a.e. v ∈ H, (3.1)
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where A : H2 → H is defined as in Lemma 2.4,

B0Φ(v) = (B(v), DΦ(v))

and λ, F are given functions to be specified. If the coefficient B(v) is bounded and λ is a

constant, given F ∈ H−1, it was proved in [1] that there exists a positive constant λ0 such

that the problem (3.1) has a unique strong solution Φ ∈ H1 for any λ > λ0. Now we deal

with the case of unbounded B satisfying the following growth condition:

(A.1) B(·) : V → H0 = R1/2(H) is continuous such that

|B(v)|0 = |R−1/2B(v)| ≤ b0(1 + ∥v∥2)m/2, ∀v ∈ V,

for some b0 > 0 and m ≥ 2.

For reason which will become clear later, we assume that

(A.2) λ(·) : V → IR+ satisfies the growth condition:

λ0(1 + ∥v∥2)m ≤ λ(v) ≤ λ1(1 + ∥v∥2)m, ∀v ∈ V,

for some positive constants λ0 ≤ λ1.

To control the unbounded coefficient, we need to introduce the space H0,m defined as

follows.

Definition 3.1 Let H0,m be a Hilbert subspace of H defined by

H0,m = {Φ ∈ H : ∥Φ∥0,m < ∞},m > 0,

where the norm is given by

∥Φ∥0,m = {
∫
Φ2(v)ρm(v)µ(dv)}1/2 = |||ρ1/2m Φ|||,

and

ρm(v) = (1 + ∥v∥2)m.2

Under conditions (A.1) and (A.2), new function spaces Hk,m, k = 1, 2, . . . and m > 0,

need to be introduced.
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Definition 3.2 For k = 1, 2, . . . and m > 0, define

Hk,m = Hk ∩H0,m,

with norm ∥ · ∥k,m = {||| · |||2k + ∥ · ∥20,m}1/2, where ||| · |||k is the k-th order Gauss-Sobolev norm

in Def. 2.3. By convention, we set Hk,0 = Hk and H0,0 = H. 2

Clearly, by identifying H with its dual H′, we have the following inclusions:

Hk,m ⊂ H0,m ⊂ H ∼= H′ ⊂ H′
0,m ⊂ H′

k,m,

and Hk′,m′ ⊂ Hk,m if k′ ≥ k and m′ ≥ m, where the inclusions are dense and continuous and

the duality pairing between Hk,m and H′
k,m will be denoted by ⟨·, ·⟩k,m. Note that, in view

of the formula (2.8),

∥Φ∥21,m =
1

2

∫
(RDΦ, DΦ)dµ+

∫
Φ2ρmdµ (3.2)

=
∫
{1
2
|R1/2DΦ|2 + |ρ1/2m Φ|2}dµ

Lemma 3.3 Let Lλ = (A− λI) + B0. Then, under conditions (A.1) and (A.2), the linear

operator Lλ : H1,m → H′
1,m is well defined and bounded such that

|⟨LλΦ,Ψ)⟩1,m| ≤ C∥Φ∥1,m∥Ψ∥1,m, ∀Φ,Ψ ∈ H1,m, for some C > 0. (3.3)

(Proof.) For Φ,Ψ ∈ H1,m, let βλ be a bilinear form on H1,m ×H1,m defined by

βλ(Φ,Ψ) =
∫
{1
2
(RDΦ, DΨ) + (λΦ,Ψ)− (B0Φ,Ψ)}dµ (3.4)

which defines uniquely a linear operator Lλ : H1,m → H′
1,m by setting

⟨LλΦ,Ψ⟩1,m = −βλ(Φ,Ψ). (3.5)

To show the boundedness of Lλ, it suffices to prove that the inequality (3.3) holds. By

conditions (A.1) and (A.2), this follows easily from the estimate

|βλ(Φ,Ψ)| ≤
∫
{1
2
|R1/2DΦ||(R1/2DΨ|+ λ1|ρ1/2m Φ||ρ1/2m Ψ|+

+b0|R1/2DΦ||ρ1/2m Ψ|}dµ ≤

≤ C||Φ∥1,m∥Ψ∥1,m, for some C > 0,

by applying the Cauchy-Schwarz inequality and noting (3.2). 2

Next we introduce the notion of a strong solution.
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Definition 3.4 Given F ∈ H′
1,m, a function Φ on H is said to be a strong solution of Eq.

(3.1) if Φ ∈ H1,m satisfies the following equation

⟨LλΦ,Ψ⟩1,m = ⟨F,Ψ⟩1,m, ∀Ψ ∈ H1,m.2 (3.6)

Now we are ready to state and prove the following existence theorem.

Theorem 3.5 Let the conditions (A.1) and (A.2) hold. Then for given F ∈ H′
1,m, the

elliptic problem has a unique strong solution, provided that λ0 > b20/2.

(Proof). The key to the existence proof is to establish the coercivity property of (−Lλ) :

∃δ > 0 ∋ ⟨−LλΦ,Φ⟩1,m = βλ(Φ,Φ) ≥ δ∥Φ∥21,m, ∀Φ ∈ H1,m. (3.7)

To this end, we note, by (3.4) and conditions (A.1) and (A.2), that

βλ(Φ,Φ) =
∫
{1
2
(RDΦ, DΦ) + (λΦ,Φ)− (B0Φ,Φ)}dµ

≥
∫
{1
2
|R1/2DΦ|2 + λ0|ρ1/2m Φ|2 − b0|R1/2DΦ||ρ1/2m Φ|}dµ

≥
∫
{1
2
(1− ε)|R1/2DΦ|2 + (λ0 −

b20
2ε

)|ρ1/2m Φ|2}dµ,

for any ε > 0. Therefore, by choosing ε < 1 so that λ0 > b20/2ε, the inequality (3.7) holds

with δ = min{1
2
(1− ε), (λ0 − b20/2ε)}.

By Lemma 3.3, βλ is a bounded bilinear form on H1,m × H1,m, where H1,m ⊂ H is a

Hilbert space. If follows immediately from the Lax-Milgram theorem [10] that the equation

(3.36) has a unique solution Φ, which, by Definition 3.3, is the desired strong solution. 2

4 Hamilton-Jacobi-Bellman Equations

Now we consider the nonlinear elliptic problem arising from the controlled stochastic PDE

(1.5). Recall that K denotes an admissible set and the nonlinear operator B is defined as

B(Φ)(v) = inf
α∈K

{(B(v, α), DΦ(v)) + F (v, α)}, (4.1)

on which we impose the following conditions:
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(B.1) B(·, ·) : V ×K → H0 satisfies the condition:

|B(v, α)|0 = |R−1/2B(v, α)| ≤ b0(1 + ∥v∥2)m/2, for m ≥ 2, b0 > 0, ∀α ∈ K.

(B.2) Same as (A.2), let λ(·) = V → IR+ be bounded so that

λ0(1 + ∥v∥2)m ≤ λ(v) ≤ λ1(1 + ∥v∥2)m, ∀α ∈ K,

for some positive constants λ0 ≤ λ1.

(B.3) There exists a constant f0 > 0 such that F (·, ·) : V × K → IR+ has the following

bound:

|F (v, α)| ≤ f0(1 + ∥v∥2)m/2, ∀v ∈ V, α ∈ K.

Let Mλ be defined by

Mλ(Φ) = −(A− λI)Φ− B(Φ). (4.2)

Then the Hamilton-Jacobi-Bellman equation (1.5) can be written as

Mλ(Φ) = 0. (4.3)

Before presenting an existence theorem, we will prove two technical lemmas.

Lemma 4.1 Under conditions (B.1) – (B.3), the nonlinear operator Mλ : H1,m → H′
1,m is

locally bounded and Lipschitz continuous.

(Proof). For Φ,Ψ ∈ H1,n, we have

−⟨Mλ(Φ),Ψ⟩1,m = ⟨⟨(A− λI)Φ,Ψ⟩⟩+ [B(Φ),Ψ], (4.4)

Clearly, by (2.8) and (B.2),

|⟨⟨(A− λI)Φ,Ψ⟩⟩| ≤ 1

2
|[RDΦ, DΨ]] + [λΦ,Ψ]|

≤ |||Φ|||1|||Ψ|||1 + λ1∥Φ∥0,m∥Ψ∥0,m (4.5)

≤ (1 + λ1)∥Φ∥1,m∥Ψ∥1,m.
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By (4.1) and the assumptions,

|[B(Φ),Ψ]| ≤
∫
{|(B(v, α), DΦ(v))||Ψ(v)|+

+|F (v, α)||Ψ(v)|}µ(dv) (4.6)

≤
√
2b0∥Φ∥1,0∥Ψ∥0,m + f0∥Ψ∥0,m.

In view of (4.4), (4.5) and (4.6), there exists b1 > 0 such that

|⟨Mλ(Φ),Ψ⟩1,m| ≤ b1(1 + ∥Φ∥1,m)∥Ψ∥1,m,

for some b1 > 0, or Mλ is locally bounded.

To show the Lipschitz condition, it suffices to deal with the nonlinear operator B. Let

Φ,Φ′ and Ψ ∈ H1,m. Then, by noting conditions (B.1) and (B.2),

|⟨B(Φ)− B(Φ′),Ψ⟩1,m| =

= |[B(Φ)− B(Φ′),Ψ]|

≤
∫

| inf
α∈K

{(B(v, α), DΦ(v)) + F (v, α)}

− inf
α∈K

{(B(v, α), DΦ′(v)) + F (v, α)}||Ψ(v)|µ(dv)

≤
∫

sup
α∈K

{|(B(v, α), DΦ(v)−DΦ′(v))|}|Ψ(v)|µ(dv) (4.7)

≤ b0

∫
|R1/2D(Φ− Φ′)||ρ1/2m Ψ|dµ

≤
√
2b0∥Φ− Φ′∥1,0∥Ψ∥0,m,

which shows the desired continuity. 2

Lemma 4.2 Let conditions (B.1) – (B.3) hold. Then, if λ0 > b20/2, the operator Mλ(·) :

H1,m → H′
1,m is monotone, or there exists δ > 0 such that

⟨Mλ(Φ)−Mλ(Ψ),Φ−Ψ⟩1,m ≥ δ∥Φ−Ψ∥21,m, ∀Φ,Ψ ∈ H1,. (4.8)

(Proof). By (4.2), we have

⟨Mλ(Φ)−Mλ(Ψ),Φ−Ψ⟩1,m

= −⟨(A− λI)(Φ−Ψ),Φ−Ψ⟩1,m − ⟨B(Φ)− B(Ψ),Φ−Ψ⟩1,m
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≥ 1

2

∫
|R1/2D(Φ−Ψ)|2dµ+

∫
λ(Φ−Ψ)2dν (4.9)

−|[B(Φ)− B(Ψ),Φ−Ψ]|

≥ 1

2

∫
|R1/2D(Φ−Ψ)|2dµ+ λ0||Φ−Ψ||20,m − |[B(Φ)− B(Ψ),Φ−Ψ]|

Similar to (4.7), we get

|[B(Φ)− B(Ψ),Φ−Ψ]| ≤

≤ b0

∫
|R1/2D(Φ−Ψ)||ρ1/2m (Φ−Ψ)|dµ (4.10)

≤ 1

2
{ε
∫

|R1/2D(Φ−Ψ)|2dµ+
b20
ε
|Φ−Ψ|2ρmdµ}.

By invoking (4.10), the inequality (4.9) yields, for any ε > 0,

⟨Mλ(Φ)−Mλ(Ψ),Φ−Ψ⟩1,m

≥ 1

2
(1− ε)

∫
|R1/2D(Φ−Ψ)|2dµ+ (λ0 −

b20
2ε

)
∫

|Φ−Ψ|2ρmdµ

which gives rise to the desired inequality (4.8) for λ0 > b20/2, if we choose ε < 1, but

sufficiently close to 1.2

Similar to the linear problem, Φ ∈ H1,m is said to be a strong solution of Eq. (4.3) if the

following holds:

⟨Mλ(Φ),Ψ⟩1,m = 0, ∀Ψ ∈ H1,m. (4.11)

With the aid of the above lemmas, the existence theorem can be proved easily.

Theorem 4.3 Let the conditions (B.1), (B.2) and (B.3) hold. Then, if λ0 > b20/2, the

Hamilton-Jacobi-Bellman equation (4.3) has a unique strong solution Φ and, in fact, Φ ∈

H2,m.

(Proof.) By Lemma 4.1 and Lemma 4.2, we know that Mλ : H1,m → H′
1,m is a locally

bounded, Lipschitz continuous and monotone operator on a Hilbert space. Note that, by

(4.1) and condition (B.3),

|Mλ(0)Φ|1,m ≤ f0∥Φ∥0,m. (4.12)
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It follows from (4.8) and (4.12) that

⟨Mλ(Φ),Φ⟩1,m/||Φ||1,m ≥ {δ∥Φ∥21,m − f0∥Φ∥0,m}/|Φ∥1,m

→ ∞ as ∥Φ∥1,m → ∞.

Therefore, by applying a theorem for monotone operator in Lions (p. 171, [11]), the equation

(4.3) has a unique strong solution Φ ∈ H1,m satisfying Eq. (4.11). Now, from Eq. (4.11)

and estimate (4.6) we have

|⟨⟨(A− λI)Φ,Ψ⟩⟩| = |[B(Φ),Φ)]| ≤

≤ b1(1 + ∥Φ∥1,m)∥Ψ∥0,m,

so that (A− λI)Φ ∈ H0,m hence Φ ∈ H2,m as claimed. 2

Remark 4.4 Instead of (B.2), the rate function λ may be allowed to depend on the control

α so that

λ0(1 + ∥v∥2)m ≤ λ(v, α) ≤ λ1(1 + ∥v∥2)m, ∀v ∈ V.

The same results in Thm. 4.3 hold true. 2

Remark 4.5 A similar approach can be adopted to prove the existence of strong solutions

to the corresponding time-dependent HJB equations. 2

5 Example

Consider the stochastic control of the reaction-diffusion equation in one space-dimension:

∂u(t, x)

∂t
=

∂2u(t, x)

∂x2
+ b(u, ux, α)(t, x) + Ẇ (t, x), t > 0, 0 < x < 1,

u(0, x) = v(x),

u(t, 0) = u(t, 1) = 0,

(5.1)

where ux = ∂u
∂x
, b(u, ux, α)(t, x) = b[u(t, x), ux(t, x), α(t, x)], α(t, x) is the control, Ẇ (t, x) =

∂
∂t
W (t, x) withW (t, ·) being a Wiener process in L2(0, 1), and v ∈ L2(0, 1). Let r(x, y) denote

the covariance function, the kernel of the covariance operator R. Let H = L2(0, 1), V =

H1
0 (0, 1): the first-order Sobolev space H1(0, 1) of functions on (0, 1) vanishing at x = 0, 1,
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and A = ∂2

∂x2 : V → V ′ = H−1(0, 1). The normalized eigenfunctions ek of A and the

corresponding eigenvalues µk are given by

ek(x) =
√
2 sin kπx and µk = −(kπ)2, k = 1, 2, . . . , (5.2)

With respect to the basis {ek}, the following representation holds:

W (t, ·) =
∞∑
k=1

√
γkb

k
t ek, a.s.,

where bkt ’s are i.i.d. Brownian motions in IR1, and γk’s are the eigenvalues of R so that

(Rek)(x) =
∫ 1

0
r(x, y)ek(y)dy = γkek(x), k = 1, 2, . . . .

or

r(x, y) =
∞∑
k=1

γkek(x)ek(y) (5.3)

in an L2-sense. Suppose that

∞∑
k=1

γk/k
2 < ∞ (5.4)

which implies that

Tr.{(−A)−1R} = −
∞∑
k=1

(A−1Rek, ek) =
1

π2

∞∑
k=1

γk/k
2 < ∞.

In view of (5.2), (5.3) and (5.4), the conditions (C.1), (C.2) and (C.3) are met. In the value

function Jv, for simplicity, we assume that both F and λ are of quadratic form:

λ(v) = λ0{1 + ∥v∥2} (5.5)

and

F (v, α) = f0{|α|2 + ∥v∥2}1/2, (5.6)

where λ0 and f0 are positive constants and α ∈ K with K being a compact subset of H.

Then the conditions (B.2) and (B.3) are trivially satisfied withm = 1. To apply the existence

Thm. 4.3 to the associated HJB equation, we need to check the condition (B.1). This will

be done for two special cases according to a finite or infinite Tr.R.
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(Case 1). Suppose that Tr.R =
∑∞

k=1 γk = ∞ and the inverse R−1 exists and bounded.

In this case we get

B(v, α) = b(v, vx, α)(·),

and impose the condition:

|b(x, y, z)|2 ≤ b21{1 + |x|2 + |y|2},

∀x, y, z ∈ IR1, for some b1 > 0. (5.7)

Then, for the operator norm ∥R−1∥ ≤ c2, we have

|R−1/2B(v, α)|2 ≤ c2|b(v, vx, α)(·)|2

= c2
∫ 1

0
|b[v(x), vx(x), α(x)]|2dx

≤ c2b21

∫ 1

0
{1 + |v(x)|2 + |vx(x)|2}dx

= c2b21(1 + ∥v∥2),

so that condition (B.1) holds with b0 = b1c and m = 1. Therefore, by Thm. 4.3, if the

conditions (5.6), (5.7) and (5.8) hold with λ0 >
1
2
(b1c), the HJB equation for this case has a

unique strong solution Φ ∈ H2,1.

(Case 2). Suppose that Tr.R =
∑∞

k=1 γk < ∞ and

inf
k
{−µkγk} ≥ δ, for some δ > 0,

which implies that D(R−1/2) ⊂ D{(−A)1/2} = V and

|R−1/2v|2 ≤ 1

δ
⟨−Av, v⟩. (5.8)

In this case we have to impose some more stringent conditions:

Let B(v, α) = b(v, α)(·) be independent of vx such that b(0, 0) = 0 and∣∣∣∣∣∂b(x, y)∂x

∣∣∣∣∣
2

+

∣∣∣∣∣∂b(x, y)∂y

∣∣∣∣∣
2

≤ b22, ∀x, y ∈ IR1, (5.9)

for some b2 > 0, and K is a bounded set in H1
0 (0, 1). Then we have

|R−1/2B(v, α)|2 ≤ 1

δ
< −Ab(v, α), b(v, α) >



P.L. Chow and J.L. Menaldi 15

= −1

δ

∫ 1

0
[
∂2

∂x2
b(v, α)]b(v, α)dx

=
1

δ

∫ 1

0

(
∂b(v, α)

∂v
· vx +

∂b(v, α)

∂α
αx

)2

dx

≤ 2
b22
δ

∫ 1

0
{v2x + α2

x}dx

≤ 2
a2b22
δ

(1 + ∥v∥2).

where a2 = max{1, a20} and a20 = maxα∈K
∫ 1
0 α2

xdx. The above verifies condition (B.1) with

b0 =
√
2(ab2)/

√
δ,m = 1. Therefore, under the conditions (5.6), (5.7) and (5.10), the HJB

equation for this case has a unique solution Φ ∈ H2,1, by Thm. 4.3, if λ0 >
1√
2
(ab2)/

√
δ.

Remark 5.1 If R has a finite range, i.e. γk = 0 for k ≥ (k0 + 1), the Wiener process

becomes a k0-dimensional Brownian motion and the operator B(v, α) needs to have a finite

range. 2
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