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HAMILTON-JACOBI-BELLMAN EQUATIONS IN
GAUSS-SOBOLEV SPACES*

Pao-Liu Chow'and Jose-Luis Menaldit
Department of Mathematics, Wayne State University
Detroit, Michigan 48202, USA

Abstract

We consider the strong solution of a semi linear HJB equation associated with a
stochastic optimal control in a Hilbert space H. By strong solution we mean a solution
in a L?(p, H)-Sobolev space setting. Within this framework, the present problem can
be treated in a similar fashion to that of a finite-dimensional case. Of independent
interest, a related linear problem with unbounded coefficient is studied and an appli-

cation to the stochastic control of a reaction-diffusion equation will be given.
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1 Introduction

Consider the optimal control problem with the state equation in a Hilbert space H:

dut = {Aut + B(Ut, O{t)}dt + th, (1 1)

u = v€EH,

where A is an unbounded linear operator, B(-, -) is a, generally, nonlinear operator depending
on the control oy € K and W; is a H-valued Wiener process with covariance operator R.
We are interested in finding, from the set IC of admissible controls «. the optimal control o

that minimizes the cost function:
@@):E/ M F(uy, o) dl, (1.2)
0
where ' : H x K — IR" is the running cost function with

&ZKMW@, (1.3)

and A is the discount rate function. Denote the optimal cost or the value function by &

defined by

O(v) = inf J, (o) = Jy(a). (1.4)

a.eX

Then, by formally applying the dynamic programming principle, we deduce that ® satisfies
the (stationary) Hamilton-Jacobi-Bellman (HJB) equation:

?mmp%@n+uw¢@@»—mmym+5@xm:m (1.5)

where D® and D?*® denote the first two Fréchet derivatives, Tr. means the trace, (-,-) is the

inner produce in H and

B(®) = inf {(B(-,a), D®) + F(-,a)}. (1.6)

aceK

Even at the formal level, the equation (1.5) makes sense only when v belongs to the domain
D(A) of an unbounded operator A. But, with respect to the Wiener measure, the set D(A)

may be negligible. However, as shown in the linear case [1], it is possible to define the
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equation in H almost everywhere with respect to the invariant measure p for Eq. (1.1) with
B =0.

The paper is mainly concerned with the strong solution of the HJB equation (1.5), inter-
preted properly, in an L?(u, H)-Sobolev space setting. Within this framework, the present
problem can be treated in a similar fashion to that of a finite-dimensional case. Of in-
dependent interest, a related linear problem with unbounded coefficient is studied and an
application to the stochastic control of a reaction-diffusion equation will be given.

This work was inspired by an interesting paper [2] of DaPrato, who studied a special
form of Eq. (1.4). In contrast with the L?-theory, he considered a mild solution in a certain
Banach space of continuously differentiable functions with sup-norm. Since then several
papers have been written by him and his associates on this subject (see, e.g. [3], [4] and
[5]). When A is bounded and B(®) = 1(D®, D®) in (1.5), this special case was treated
by Havarneanu [6] in an Abstract Wiener space setting. However his approach cannot be
applied to the general case (1.5). Along an entirely different direction, full nonlinear HJB

equations were studied by P.L. Lions [7] in the sense of viscosity solutions.

2 Preliminaries

Let H be a real separable Hilbert space with inner product (-, -) and norm |-|. Let V' C H be
a reflexive Banach space with norm || - ||. Denote the dual space of V' by V’ and the duality
pairing by (-, ). Assume that the inclusions: V' C H C V’ are dense and continuous.

Let A : V — V' be a continuous linear operator and let W; be a H-valued Wiener process

with covariance operator R. Consider the linear stochastic equation in V'

dut = Autdt—{—th,
Uo = heH.

(2.1)

We suppose that the following conditions hold:

(C.1) Let A:V — V' be a self-adjoint operator whose normalized eigenfunctions ejs € V
and corresponding eigenvalues s are strictly negative with 0 > py > o > -+ - > i

and pp — —o0 as k — oo.



P.L. Chow and J.L. Menaldi 4

(C.2) The resolvent operator R,(A) of A commutes with covariance operator R.

(C.3) R: H — H is bounded such that Tr.A™'R < oo.

Then, by a direct computation or by applying a general theorem of invariant measures [8,9],

we can claim that

Lemma 2.1 Under conditions (C.1), (C.2) and (C.3), the stochastic equation (2.1) has a
unique invariant measure i on H, which is a centered Gaussian measure supported in V

with covariance operator I' = —%A‘lR. O
Let H = L*(u, H) with norm || - || defined by
el = {/ [@(0)Pu(dv)}, (2.2)
and inner product [-, -] given by
@, 0] = /@(v)\P(v)p(dv) for &, € H, (2.3)

where the integration is over H (or V).
Let n = (ny,ng,...,nk,...), where ng is a nonnegative integer and ny = 0 except for a

finite number of k’s. For v € H, define the Hermite (polynomial) functional of degree n by
H,,(v) = TG o, [k (V)] (2.4)

where hj(x) is the standard one-dimensional Hermite polynomial of degree j and ¢ (v) =
(v, 2¢;). For a smooth functional ®, let D® and D?*® denote the Fréchet derivatives of

first and second orders, respectively. Introduce the differential operator
1
Ad(v) = §T’I“.[RD2<I)<’U)] + (Av, D®(v)), (2.5)

which is defined for a polynomial functional ® with D®(v) lies in the domain D(A). It can
be shown that [1]

Lemma 2.2 The set of all Hermite functionals { H,} formed a complete orthonormal system

(CONS) in H. Furthermore we have
AH,(v) ==\, H,(v), (2.6)

where A, = >, ngpr and the summation is over the finite number of nonzero ny’s. O
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Definition 2.3 Let Hj be the Gauss-Sobolev space of order k defined by
Hy ={PeH:|P|r <oo} for k>0,
and Ho = H, where
I@lle = (7 = A2l = {32(1+ An)*[@al*}?, (2.7)

n

with I being the identity operator and ®,, = [®, H,]. Let H_y denote the dual space of Hy,
and the duality between Hy and H_j will be denoted by ((-,-). O

Clearly, by identifying H with its dual H', we have
Hi CHCH i, k>0

and the inclusions are dense and continuous.
Similar to the Laplacian operator in IR, the following properties of A are crucial in the

subsequent analysis.

Lemma 2.4 The operator A can be defined as a self-adjoint linear operator in H with do-

main D(A) D Hs. Moreover the following integral identity holds:
1
/(A(I))\I/dﬂ -3 /(RD(ID,D\I/)du, (2.8)

for ®, U € Hy. The above identity can be extended to yield a linear operator A : Hi — H_1
defined by

(AD, T) = —;[RDQJ,D‘I/], VO, U € H,.0 (2.9)

We see that, with respect to the invariant measure u, A can be defined u - a.e. in H and

it behaves like the Laplace operator in IR%.

3 Linear Equation with Unbounded Coefficient

Suppose that B(v,a) = B(v) in Eq. (1.5). Consider an associated linear elliptic problem of

the form:

{A=A\w)I}® + By® = F(v), p—ae v€EH, (3.1)
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where A : H? — H is defined as in Lemma 2.4,
By®(v) = (B(v), D®(v))

and \, F' are given functions to be specified. If the coefficient B(v) is bounded and A is a
constant, given F' € H_4, it was proved in [1] that there exists a positive constant A\ such
that the problem (3.1) has a unique strong solution ® € #H; for any A > A\g. Now we deal

with the case of unbounded B satisfying the following growth condition:
(A.1) B(-):V — Hy = RY2(H) is continuous such that
Bl = [RY2B(0)] < bo(1 + [0]2)™2, Vo eV,
for some by > 0 and m > 2.
For reason which will become clear later, we assume that
(A.2) A(-) : V = IR" satisfies the growth condition:
Ao(L+ o)™ < Aw) < ML+ |Jo|H)™, Vv eV,
for some positive constants A\g < Ap.

To control the unbounded coefficient, we need to introduce the space H,, defined as

follows.
Definition 3.1 Let H,,, be a Hilbert subspace of H defined by
Hom ={P € H :|P|lom < o0},m >0,
where the norm is given by
1@l = { ] 2 @)pm(0)(dn)}2 = o}l

and

pm(v) = (L+ [[o]2)".0

Under conditions (A.1) and (A.2), new function spaces Hgm,k = 1,2,... and m > 0,

need to be introduced.
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Definition 3.2 For k=1,2,... and m > 0, define
Him = Hi N Hom,

with norm || - le.m = {Il - 12 + || - 2. Y2, where || - || is the k-th order Gauss-Sobolev norm
, k 0,m

in Def. 2.53. By convention, we set Hyo = Hi and Hop =H. O
Clearly, by identifying H with its dual H', we have the following inclusions:
Him C Hon CH=ZH CHop € Hieons

and Hys s C Hpm if K > k and m' > m, where the inclusions are dense and continuous and
the duality pairing between Hy,, and Hj,,, will be denoted by (-, -)xm. Note that, in view
of the formula (2.8),

|2, = ;/(RD@,D@)du+/<I>2pmdu (3.2)
= [GIRDIP + |olf®PYd
Lemma 3.3 Let L) = (A — A\l) + By. Then, under conditions (A.1) and (A.2), the linear
operator Ly : Him — H’lm 1s well defined and bounded such that
H{LAP, V) 1| < CIP1ml|Y[1m, VP,V € Him, for some C > 0. (3.3)
(Proof.) For &,V € H,,,, let B) be a bilinear form on H; ,,, X Hi,, defined by
Br(®, ) = / {;(RD@, DU) + (A, ¥) — (Bo®, ¥)}du (3.4)
which defines uniquely a linear operator £y : Him — Hj,, by setting
(Lr®, )1, = —Br(®,T). (3.5)

To show the boundedness of L), it suffices to prove that the inequality (3.3) holds. By

conditions (A.1) and (A.2), this follows easily from the estimate

m m

1
B@ W) < [{5IRV2DE||(RY2DW| + Mi|ok2®]|p}{2¥] +
+bo| RY2D||p}/ 2w }dp <

m

< C||®||1ml|Y||1m, for some C >0,

by applying the Cauchy-Schwarz inequality and noting (3.2). O

Next we introduce the notion of a strong solution.
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Definition 3.4 Given F € H', a function ® on H is said to be a strong solution of FEq.

1,m>

(3.1) if © € Hy.m satisfies the following equation

(LA, V)1, = (F, V)10, YV € HyppnO (3.6)
Now we are ready to state and prove the following existence theorem.

Theorem 3.5 Let the conditions (A.1) and (A.2) hold. Then for given F € H,,,, the

1,m>

elliptic problem has a unique strong solution, provided that Ao > b3 /2.

(Proof). The key to the existence proof is to establish the coercivity property of (—L,) :
F30>03 (—L3D,P)1m = Br(P, D) > 0||®||T,,, VP E Hipm. (3.7)
To this end, we note, by (3.4) and conditions (A.1) and (A.2), that
By(®, D) = /{;(RDcp, D®) + (AD, @) — (By®, ) by
> [{5IRDIP + Xolo} B[ — bol B> D |0}/

1 b2
> [{5(1= )RV + (o — 20)l o} 2@,

for any € > 0. Therefore, by choosing ¢ < 1 so that A\g > b3/2¢, the inequality (3.7) holds
with § = min{1(1 —¢), (Ao — b3/2¢)}.

By Lemma 3.3, ) is a bounded bilinear form on H;,, X Him, where Hy,,, C H is a
Hilbert space. If follows immediately from the Lax-Milgram theorem [10] that the equation
(3.36) has a unique solution ®, which, by Definition 3.3, is the desired strong solution. O

4 Hamilton-Jacobi-Bellman Equations

Now we consider the nonlinear elliptic problem arising from the controlled stochastic PDE

(1.5). Recall that K denotes an admissible set and the nonlinear operator B is defined as

B(®)(v) = inf {(B(v,a), D®(v)) + F(v,a)}, (4.1)

acK

on which we impose the following conditions:
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(B.1) B(-,-):V x K — H, satisfies the condition:

|B(v,a)|o = |R7Y?B(v,a)| < bo(1+ ||v||*)™?, for m >2,by >0,Va € K.

(B.2) Same as (A.2), let A(:) =V — IR" be bounded so that
o1+ [[of*)™ < A(w) < A(1 4+ [o]>)™, Va e K,
for some positive constants Ag < Ajp.

(B.3) There exists a constant fy > 0 such that F(-,-) : V x K — IR* has the following
bound:
|F(v,a)] < fo(1+||v)|>)™?, YweV,acK.

Let M, be defined by
My (P)=—(A—-A)D — B(D). (4.2)
Then the Hamilton-Jacobi-Bellman equation (1.5) can be written as
My (®) =0. (4.3)
Before presenting an existence theorem, we will prove two technical lemmas.

Lemma 4.1 Under conditions (B.1) ~ (B.3), the nonlinear operator My : Hi — H ,, is

locally bounded and Lipschitz continuous.
(Proof). For &,V € #H,,, we have

—(Ma(®), W)1m = ((A = ADD, ) + [B(D), V], (4.4)
Clearly, by (2.8) and (B.2),

[({((A = AL)®, )

IN

;\[RDfl), DU + A0, U]

IN

I+ Al Sllo.m 1V lo.m (4.5)

IN

(1 + ARl [ W]l 1m-
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By (4.1) and the assumptions,

[B(®), V|

IA

/{I(B(v,a)yD‘I)(v))H‘I’(v)l +
(v, a)[[W(v)|}p(dv) (4.6)

< V200|210l ¥llom + foll ¥llom-
In view of (4.4), (4.5) and (4.6), there exists b; > 0 such that
[(MA(®), V)1 n| < b1 (L A+ (121 ) [ W]l 1m,

for some b; > 0, or M, is locally bounded.
To show the Lipschitz condition, it suffices to deal with the nonlinear operator B. Let

®, " and U € H;,,. Then, by noting conditions (B.1) and (B.2),

(B(®) — B(®), )| =
= |[B(@) — B@®), V]|
< [ {(B(v,0), D)) + F(v,0)}
— inf {(B(v,a), DY (1)) + F(v, )} ¥ (0)|u(dv)

acK
< [ sup{|(B(v. ). DR(v) — DY ()} () (d) (4.7)
< by [IR2D(@ — @)[p}/>W|dp
< V2| P — Q|11 1]0,m

which shows the desired continuity. O

Lemma 4.2 Let conditions (B.1) — (B.3) hold. Then, if Ao > b3/2, the operator M(-) :

Him — MY, is monotone, or there exists 0 > 0 such that
(MA(®) = MA(D), @ — T)y > 6] — 0|7, VO, U €M,y (4.8)
(Proof). By (4.2), we have

(MA(D) = MA(V), @ — W)y,
= (A= A)(@ - V), — D), — (B(®) — B(¥),d — ),
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v

;/ |RY2D(® — U)Pdp + /A(cb — U)%dy (4.9)
~|IB(®) - B(w), &~ ]
S [ IRZD@ W)+ doll® — W~ [B(®) ~ B), @~ ¥]

Similar to (4.7), we get

1B(®) = B(¥), & — V]| <

< by [IR2D(@ — 0)lp2(@ ~ W)|dp (4.10)

1 b2
< e [IR2D(@ — w)Pdu + 2|0 = 9P pdp}.
By invoking (4.10), the inequality (4.9) yields, for any & > 0,

(MA(®) = MA(T), D — W)y

1 b
> 5(1 —¢) / IRY2D(® — U)Pdp + (Ao — i) / | — U prdp

which gives rise to the desired inequality (4.8) for \g > b2/2, if we choose ¢ < 1, but
sufficiently close to 1.0

Similar to the linear problem, ® € #, ,, is said to be a strong solution of Eq. (4.3) if the
following holds:

(MA(®), T) 1, =0, VT € Hip (4.11)
With the aid of the above lemmas, the existence theorem can be proved easily.

Theorem 4.3 Let the conditions (B.1), (B.2) and (B.3) hold. Then, if \g > b2/2, the
Hamilton-Jacobi-Bellman equation (4.3) has a unique strong solution ® and, in fact, & €

H?,m~

(Proof.) By Lemma 4.1 and Lemma 4.2, we know that M, : H;,,, — H},, is a locally

Lm
bounded, Lipschitz continuous and monotone operator on a Hilbert space. Note that, by

(4.1) and condition (B.3),

IMA0)@]1m < follP]l0,m- (4.12)
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It follows from (4.8) and (4.12) that

(MA(@), Q)1 /(1@ = {3, = Foll @llom}/|P]1.m

— 00 as |||y, — oo.

Therefore, by applying a theorem for monotone operator in Lions (p. 171, [11]), the equation
(4.3) has a unique strong solution ® € H; ,, satisfying Eq. (4.11). Now, from Eq. (4.11)

and estimate (4.6) we have

[(((A=AD®, W) = [[B(®),D)]] <
< 01+ [ @] m) 1 ¥ lo.m,

so that (A — AI)® € Hy,, hence & € Hy,y, as claimed. O

Remark 4.4 Instead of (B.2), the rate function A\ may be allowed to depend on the control
a so that

Mo(1T+ D™ < AMw, @) < (1 + |[v)|*)™, YveV.

The same results in Thm. 4.3 hold true. O

Remark 4.5 A similar approach can be adopted to prove the existence of strong solutions

to the corresponding time-dependent HJB equations. O

5 Example

Consider the stochastic control of the reaction-diffusion equation in one space-dimension:

ou(t,z)  J%u(t,x)

+ b(u, uy, @) (t,z) + W(t,x), t>0,0<xz <1,

ot B Oz?
u(0,2) = w(z), (5.1)
u(t,0) = w(t,1) =0,

where u, = %%, b(u, uy, a)(t,z) = blu(t, z), u(t, x), a(t, )], a(t,x) is the control, Wit z) =
SW(t,z) with W (¢, -) being a Wiener process in L*(0,1), and v € L?(0,1). Let r(z,y) denote
the covariance function, the kernel of the covariance operator R. Let H = L*(0,1),V =

HJ(0,1): the first-order Sobolev space H'(0,1) of functions on (0, 1) vanishing at = = 0, 1,
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and A = 25V — V' = H0,1). The normalized eigenfunctions e, of A and the

corresponding eigenvalues pi; are given by
er(z) = V2sinkrz and pu, = —(kn)%k=1,2,..., (5.2)
With respect to the basis {e}, the following representation holds:
Wi(t, ) = kf: Vebler, as.,
=1
where b}’s are i.i.d. Brownian motions in IR', and ~,’s are the eigenvalues of R so that

(Re)() = [ r(e,v)entv)dy = penta), k=1.2,....

or
r(z,y) = Z’Vkek(x)ek(y) (5.3)
k=1
in an L2-sense. Suppose that
Y /K < oo (5.4)
k=1
which implies that
o0 1 o0
TT'{<_A)_1R} = - Z(A_1R€k>€k> == Z ’}/k/kg < 00.
k=1 ™ k=1

In view of (5.2), (5.3) and (5.4), the conditions (C.1), (C.2) and (C.3) are met. In the value

function J,,, for simplicity, we assume that both F' and A are of quadratic form:
Av) = Xofl + [lv]*} (5.5)
and
F(v,a) = foflal® + [|v]}'/?, (5.6)

where )y and fy are positive constants and o € K with K being a compact subset of H.
Then the conditions (B.2) and (B.3) are trivially satisfied with m = 1. To apply the existence
Thm. 4.3 to the associated HJB equation, we need to check the condition (B.1). This will

be done for two special cases according to a finite or infinite Tr. R.
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(Case 1). Suppose that Tr.R = 3%, 7, = oo and the inverse R~! exists and bounded.

In this case we get

B(v, ) = b(v, vy, a)(+),
and impose the condition:

[b(z,y, 2)[* < bi{1 + |=* + [yI*},

Vz,y,z € R, for some b; > 0. (5.7)
Then, for the operator norm |[|[R7!|| < 2, we have

REBw.)P < v a0
= 02/0 b[v(x), va (), a(z)]|*dw
< [+ @P + o) P

= b1+ [lv]?),

so that condition (B.1) holds with by = bjc and m = 1. Therefore, by Thm. 4.3, if the
conditions (5.6), (5.7) and (5.8) hold with Ag > $(bic), the HIB equation for this case has a
unique strong solution ® € Hsy ;.

(Case 2). Suppose that Tr.R = >72, v < oo and
i%f{_“w’“} > ¢, for some 0 >0,

which implies that D(R™Y/2) C D{(—A)Y/?} =V and

1

|IR™Y202 < —(—Av,v). (5.8)

|

In this case we have to impose some more stringent conditions:

Let B(v, ) = b(v,)(-) be independent of v, such that b(0,0) = 0 and

‘ab@:, v) ‘ . ’ab@:, v)

2
< b ! :
8x ay ‘ — Y2 V%yEIR; (59)

for some by > 0, and K is a bounded set in H}(0,1). Then we have

—_

|R_1/QB("U,OK)|2 < = < —Ab(v,a),b(v,a) >

(=%
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< / {02 + a2}
2b2
< 22201+ |lol).

where a? = max{1,a2} and a} = max,cr [, a2dz. The above verifies condition (B.1) with
by = v/2(aby)/V/6, m = 1. Therefore, under the conditions (5.6), (5.7) and (5.10), the HJB
equation for this case has a unique solution ® € Hy;, by Thm. 4.3, if Ay > %(abg)/\/g.

Remark 5.1 If R has a finite range, i.e. vy, = 0 for k > (ko + 1), the Wiener process
becomes a ko-dimensional Brownian motion and the operator B(v,a) needs to have a finite

range. O
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