DIGITALCOMMONS — @WAYNESTATE —

Wayne State University

Mathematics Faculty Research Publications

Mathematics

8-1-1997

Infinite-Dimensional Hamilton-Jacobi-Bellman Equations in Gauss-Sobolev Spaces

Pao-Liu Chow University of Maryland, College Park, plchow@math.wayne.edu

Jose-Luis Menaldi *Wayne State University,* menaldi@wayne.edu

Recommended Citation

CHOW P.-L. & MENALDI J.-L., Infinite-dimensional Hamilton-Jacobi-Bellman equations in Gauss-Sobolev spaces, *Nonlinear Analysis* **29**, 415-426 (1997). doi: 10.1016/S0362-546X(96)00043-0 Available at: http://digitalcommons.wayne.edu/mathfrp/39

This Article is brought to you for free and open access by the Mathematics at DigitalCommons@WayneState. It has been accepted for inclusion in Mathematics Faculty Research Publications by an authorized administrator of DigitalCommons@WayneState.

INFINITE-DIMENSIONAL HAMILTON-JACOBI-BELLMAN EQUATIONS IN GAUSS-SOBOLEV SPACES*

Pao-Liu Chow[†]and Jose-Luis Menaldi[‡] Department of Mathematics, Wayne State University Detroit, Michigan 48202, USA

Abstract

We consider the strong solution of a semi linear HJB equation associated with a stochastic optimal control in a Hilbert space H. By strong solution we mean a solution in a $L^2(\mu, H)$ -Sobolev space setting. Within this framework, the present problem can be treated in a similar fashion to that of a finite-dimensional case. Of independent interest, a related linear problem with unbounded coefficient is studied and an application to the stochastic control of a reaction-diffusion equation will be given.

Key words and phrases: Dynamic programming, Gaussian and invariant measures, coercivity, monotone operator.

^{*}This work was supported in part by the NSF grant DMS-91-03160.

[†]e-mail: plchow@cms.cc.wayne.edu

[‡]e-mail: jlm@math.wayne.edu

1 Introduction

Consider the optimal control problem with the state equation in a Hilbert space H:

$$\begin{cases} du_t = \{Au_t + B(u_t, \alpha_t)\}dt + dW_t, \\ u_0 = v \in H, \end{cases}$$

$$(1.1)$$

where A is an unbounded linear operator, $B(\cdot, \cdot)$ is a, generally, nonlinear operator depending on the control $\alpha_t \in K$ and W_t is a *H*-valued Wiener process with covariance operator *R*. We are interested in finding, from the set \mathcal{K} of admissible controls α , the optimal control α^* , that minimizes the cost function:

$$J_v(\alpha_{\cdot}) = E \int_0^\infty e^{-\Lambda_t} F(u_t, \alpha_t) dt, \qquad (1.2)$$

where $F: H \times K \to \mathbb{R}^+$ is the running cost function with

$$\Lambda_t = \int_0^t \lambda(u_s) ds, \tag{1.3}$$

and λ is the discount rate function. Denote the optimal cost or the value function by Φ defined by

$$\Phi(v) = \inf_{\alpha.\in\mathcal{K}} J_v(\alpha.) = J_v(\alpha^*).$$
(1.4)

Then, by formally applying the dynamic programming principle, we deduce that Φ satisfies the (stationary) Hamilton-Jacobi-Bellman (HJB) equation:

$$\frac{1}{2}Tr.[RD^{2}\Phi(v)] + (Av, D\Phi(v)) - \lambda(v)\Phi(v) + \mathcal{B}(\Phi)(v) = 0,$$
(1.5)

where $D\Phi$ and $D^2\Phi$ denote the first two Fréchet derivatives, Tr. means the trace, (\cdot, \cdot) is the inner produce in H and

$$\mathcal{B}(\Phi) = \inf_{\alpha \in K} \{ (B(\cdot, \alpha), D\Phi) + F(\cdot, \alpha) \}.$$
(1.6)

Even at the formal level, the equation (1.5) makes sense only when v belongs to the domain $\mathcal{D}(A)$ of an unbounded operator A. But, with respect to the Wiener measure, the set $\mathcal{D}(A)$ may be negligible. However, as shown in the linear case [1], it is possible to define the

equation in H almost everywhere with respect to the invariant measure μ for Eq. (1.1) with $B \equiv 0$.

The paper is mainly concerned with the strong solution of the HJB equation (1.5), interpreted properly, in an $L^2(\mu, H)$ -Sobolev space setting. Within this framework, the present problem can be treated in a similar fashion to that of a finite-dimensional case. Of independent interest, a related linear problem with unbounded coefficient is studied and an application to the stochastic control of a reaction-diffusion equation will be given.

This work was inspired by an interesting paper [2] of DaPrato, who studied a special form of Eq. (1.4). In contrast with the L^2 -theory, he considered a mild solution in a certain Banach space of continuously differentiable functions with sup-norm. Since then several papers have been written by him and his associates on this subject (see, e.g. [3], [4] and [5]). When A is bounded and $\mathcal{B}(\Phi) = \frac{1}{2}(D\Phi, D\Phi)$ in (1.5), this special case was treated by Havarneanu [6] in an Abstract Wiener space setting. However his approach cannot be applied to the general case (1.5). Along an entirely different direction, full nonlinear HJB equations were studied by P.L. Lions [7] in the sense of viscosity solutions.

2 Preliminaries

Let H be a real separable Hilbert space with inner product (\cdot, \cdot) and norm $|\cdot|$. Let $V \subset H$ be a reflexive Banach space with norm $||\cdot||$. Denote the dual space of V by V' and the duality pairing by $\langle \cdot, \cdot \rangle$. Assume that the inclusions: $V \subset H \subset V'$ are dense and continuous.

Let $A: V \to V'$ be a continuous linear operator and let W_t be a *H*-valued Wiener process with covariance operator *R*. Consider the linear stochastic equation in V':

$$\begin{cases} du_t = Au_t dt + dW_t, \\ u_0 = h \in H. \end{cases}$$
(2.1)

We suppose that the following conditions hold:

(C.1) Let $A: V \to V'$ be a self-adjoint operator whose normalized eigenfunctions $e'_k s \in V$ and corresponding eigenvalues $\mu'_k s$ are strictly negative with $0 > \mu_1 > \mu_2 > \cdots > \mu_k$ and $\mu_k \to -\infty$ as $k \to \infty$. (C.2) The resolvent operator $R_{\gamma}(A)$ of A commutes with covariance operator R.

(C.3) $R: H \to H$ is bounded such that $Tr.A^{-1}R < \infty$.

Then, by a direct computation or by applying a general theorem of invariant measures [8,9], we can claim that

Lemma 2.1 Under conditions (C.1), (C.2) and (C.3), the stochastic equation (2.1) has a unique invariant measure μ on H, which is a centered Gaussian measure supported in Vwith covariance operator $\Gamma = -\frac{1}{2}A^{-1}R$. \Box

Let $\mathcal{H} = L^2(\mu, H)$ with norm $\|\cdot\|$ defined by

$$||\!|\Phi|\!|\!| = \{\int |\Phi(v)|^2 \mu(dv)\}^{1/2},$$
(2.2)

and inner product $[\cdot, \cdot]$ given by

$$[\Phi, \Psi] = \int \Phi(v)\Psi(v)\mu(dv) \text{ for } \Phi, \Psi \in \mathcal{H}, \qquad (2.3)$$

where the integration is over H (or V).

Let $n = (n_1, n_2, \dots, n_k, \dots)$, where n_k is a nonnegative integer and $n_k = 0$ except for a finite number of k's. For $v \in H$, define the Hermite (polynomial) functional of degree n by

$$H_n(v) = \prod_{k=1}^{\infty} h_{n_k}[\ell_k(v)], \qquad (2.4)$$

where $h_j(x)$ is the standard one-dimensional Hermite polynomial of degree j and $\ell_k(v) = (v, \Gamma^{-\frac{1}{2}}e_k)$. For a smooth functional Φ , let $D\Phi$ and $D^2\Phi$ denote the Fréchet derivatives of first and second orders, respectively. Introduce the differential operator

$$\mathcal{A}\Phi(v) = \frac{1}{2}Tr.[RD^2\Phi(v)] + \langle Av, D\Phi(v) \rangle, \qquad (2.5)$$

which is defined for a polynomial functional Φ with $D\Phi(v)$ lies in the domain $\mathcal{D}(A)$. It can be shown that [1]

Lemma 2.2 The set of all Hermite functionals $\{H_n\}$ formed a complete orthonormal system (CONS) in \mathcal{H} . Furthermore we have

$$\mathcal{A}H_n(v) = -\Lambda_n H_n(v), \qquad (2.6)$$

where $\Lambda_n = \sum_k n_k \mu_k$ and the summation is over the finite number of nonzero n_k 's. \Box

Definition 2.3 Let \mathcal{H}_k be the Gauss-Sobolev space of order k defined by

$$\mathcal{H}_k = \{ \Phi \in \mathcal{H} : \|\!|\!| \Phi \|\!|\!|_k < \infty \} \text{ for } k > 0,$$

and $\mathcal{H}_0 = \mathcal{H}$, where

$$|||\Phi|||_{k} = |||(I - \mathcal{A})^{k/2}\Phi||| = \{\sum_{n} (1 + \Lambda_{n})^{k} |\Phi_{n}|^{2}\}^{1/2},$$
(2.7)

with I being the identity operator and $\Phi_n = [\Phi, H_n]$. Let \mathcal{H}_{-k} denote the dual space of \mathcal{H}_k , and the duality between \mathcal{H}_k and \mathcal{H}_{-k} will be denoted by $\langle\!\langle \cdot, \cdot \rangle\!\rangle$. \Box

Clearly, by identifying \mathcal{H} with its dual \mathcal{H}' , we have

$$\mathcal{H}_k \subset \mathcal{H} \subset \mathcal{H}_{-k}, k > 0$$

and the inclusions are dense and continuous.

Similar to the Laplacian operator in \mathbb{R}^d , the following properties of \mathcal{A} are crucial in the subsequent analysis.

Lemma 2.4 The operator \mathcal{A} can be defined as a self-adjoint linear operator in \mathcal{H} with domain $\mathcal{D}(\mathcal{A}) \supset \mathcal{H}_2$. Moreover the following integral identity holds:

$$\int (\mathcal{A}\Phi)\Psi d\mu = -\frac{1}{2}\int (RD\Phi, D\Psi)d\mu, \qquad (2.8)$$

for $\Phi, \Psi \in \mathcal{H}_2$. The above identity can be extended to yield a linear operator $A : \mathcal{H}_1 \to \mathcal{H}_{-1}$ defined by

$$\langle\!\langle \mathcal{A}\Phi,\Psi\rangle\!\rangle = -\frac{1}{2}[RD\Phi,D\Psi], \ \forall\Phi,\Psi\in\mathcal{H}_1.\Box$$
 (2.9)

We see that, with respect to the invariant measure μ , \mathcal{A} can be defined μ - a.e. in H and it behaves like the Laplace operator in \mathbb{R}^d .

3 Linear Equation with Unbounded Coefficient

Suppose that $B(v, \alpha) = B(v)$ in Eq. (1.5). Consider an associated linear elliptic problem of the form:

$$\{\mathcal{A} - \lambda(v)I\}\Phi + \mathcal{B}_0\Phi = F(v), \quad \mu - \text{a.e. } v \in H,$$
(3.1)

where $\mathcal{A}: \mathcal{H}^2 \to \mathcal{H}$ is defined as in Lemma 2.4,

$$\mathcal{B}_0\Phi(v) = (B(v), D\Phi(v))$$

and λ , F are given functions to be specified. If the coefficient B(v) is bounded and λ is a constant, given $F \in \mathcal{H}_{-1}$, it was proved in [1] that there exists a positive constant λ_0 such that the problem (3.1) has a unique strong solution $\Phi \in \mathcal{H}_1$ for any $\lambda > \lambda_0$. Now we deal with the case of unbounded B satisfying the following growth condition:

(A.1) $B(\cdot): V \to H_0 = \overline{R^{1/2}(H)}$ is continuous such that

 $|B(v)|_0 = |R^{-1/2}B(v)| \le b_0(1 + ||v||^2)^{m/2}, \ \forall v \in V,$

for some $b_0 > 0$ and $m \ge 2$.

For reason which will become clear later, we assume that

(A.2) $\lambda(\cdot): V \to \mathbb{R}^+$ satisfies the growth condition:

$$\lambda_0 (1 + \|v\|^2)^m \le \lambda(v) \le \lambda_1 (1 + \|v\|^2)^m, \ \forall v \in V,$$

for some positive constants $\lambda_0 \leq \lambda_1$.

To control the unbounded coefficient, we need to introduce the space $\mathcal{H}_{0,m}$ defined as follows.

Definition 3.1 Let $\mathcal{H}_{0,m}$ be a Hilbert subspace of \mathcal{H} defined by

$$\mathcal{H}_{0,m} = \{ \Phi \in \mathcal{H} : \|\Phi\|_{0,m} < \infty \}, m > 0,$$

where the norm is given by

$$\|\Phi\|_{0,m} = \{\int \Phi^2(v)\rho_m(v)\mu(dv)\}^{1/2} = \|\rho_m^{1/2}\Phi\|,$$

and

$$\rho_m(v) = (1 + \|v\|^2)^m . \Box$$

Under conditions (A.1) and (A.2), new function spaces $\mathcal{H}_{k,m}$, k = 1, 2, ... and m > 0, need to be introduced.

Definition 3.2 For $k = 1, 2, \ldots$ and m > 0, define

$$\mathcal{H}_{k,m}=\mathcal{H}_k\cap\mathcal{H}_{0,m},$$

with norm $\|\cdot\|_{k,m} = \{\|\cdot\|_k^2 + \|\cdot\|_{0,m}^2\}^{1/2}$, where $\|\cdot\|_k$ is the k-th order Gauss-Sobolev norm in Def. 2.3. By convention, we set $\mathcal{H}_{k,0} = \mathcal{H}_k$ and $\mathcal{H}_{0,0} = \mathcal{H}$. \Box

Clearly, by identifying \mathcal{H} with its dual \mathcal{H}' , we have the following inclusions:

$$\mathcal{H}_{k,m}\subset\mathcal{H}_{0,m}\subset\mathcal{H}\cong\mathcal{H}'\subset\mathcal{H}_{0,m}'\subset\mathcal{H}_{k,m}',$$

and $\mathcal{H}_{k',m'} \subset \mathcal{H}_{k,m}$ if $k' \geq k$ and $m' \geq m$, where the inclusions are dense and continuous and the duality pairing between $\mathcal{H}_{k,m}$ and $\mathcal{H}'_{k,m}$ will be denoted by $\langle \cdot, \cdot \rangle_{k,m}$. Note that, in view of the formula (2.8),

$$\|\Phi\|_{1,m}^{2} = \frac{1}{2} \int (RD\Phi, D\Phi) d\mu + \int \Phi^{2} \rho_{m} d\mu$$

$$= \int \{\frac{1}{2} |R^{1/2} D\Phi|^{2} + |\rho_{m}^{1/2} \Phi|^{2} \} d\mu$$
(3.2)

Lemma 3.3 Let $\mathcal{L}_{\lambda} = (\mathcal{A} - \lambda I) + \mathcal{B}_{0}$. Then, under conditions (A.1) and (A.2), the linear operator $\mathcal{L}_{\lambda} : \mathcal{H}_{1,m} \to \mathcal{H}'_{1,m}$ is well defined and bounded such that

$$|\langle \mathcal{L}_{\lambda}\Phi,\Psi\rangle\rangle_{1,m}| \le C \|\Phi\|_{1,m} \|\Psi\|_{1,m}, \ \forall \Phi,\Psi\in\mathcal{H}_{1,m}, \ \text{for some } C>0.$$
(3.3)

(**Proof.**) For $\Phi, \Psi \in \mathcal{H}_{1,m}$, let β_{λ} be a bilinear form on $\mathcal{H}_{1,m} \times \mathcal{H}_{1,m}$ defined by

$$\beta_{\lambda}(\Phi,\Psi) = \int \{\frac{1}{2}(RD\Phi, D\Psi) + (\lambda\Phi,\Psi) - (\mathcal{B}_{0}\Phi,\Psi)\}d\mu$$
(3.4)

which defines uniquely a linear operator $\mathcal{L}_{\lambda} : \mathcal{H}_{1,m} \to \mathcal{H}'_{1,m}$ by setting

$$\langle \mathcal{L}_{\lambda} \Phi, \Psi \rangle_{1,m} = -\beta_{\lambda}(\Phi, \Psi).$$
 (3.5)

To show the boundedness of \mathcal{L}_{λ} , it suffices to prove that the inequality (3.3) holds. By conditions (A.1) and (A.2), this follows easily from the estimate

$$\begin{aligned} |\beta_{\lambda}(\Phi,\Psi)| &\leq \int \{\frac{1}{2} |R^{1/2} D\Phi| |(R^{1/2} D\Psi| + \lambda_1 |\rho_m^{1/2} \Phi| |\rho_m^{1/2} \Psi| + b_0 |R^{1/2} D\Phi| |\rho_m^{1/2} \Psi| \} d\mu \leq \\ &\leq C ||\Phi||_{1,m} ||\Psi||_{1,m}, \text{ for some } C > 0, \end{aligned}$$

by applying the Cauchy-Schwarz inequality and noting (3.2). \Box

Next we introduce the notion of a strong solution.

Definition 3.4 Given $F \in \mathcal{H}'_{1,m}$, a function Φ on H is said to be a <u>strong solution</u> of Eq. (3.1) if $\Phi \in \mathcal{H}_{1,m}$ satisfies the following equation

$$\langle \mathcal{L}_{\lambda} \Phi, \Psi \rangle_{1,m} = \langle F, \Psi \rangle_{1,m}, \quad \forall \Psi \in \mathcal{H}_{1,m}. \Box$$
 (3.6)

Now we are ready to state and prove the following existence theorem.

Theorem 3.5 Let the conditions (A.1) and (A.2) hold. Then for given $F \in \mathcal{H}'_{1,m}$, the elliptic problem has a unique strong solution, provided that $\lambda_0 > b_0^2/2$.

(**Proof**). The key to the existence proof is to establish the coercivity property of $(-\mathcal{L}_{\lambda})$:

$$\exists \delta > 0 \ni \quad \langle -\mathcal{L}_{\lambda} \Phi, \Phi \rangle_{1,m} = \beta_{\lambda}(\Phi, \Phi) \ge \delta \|\Phi\|_{1,m}^2, \quad \forall \Phi \in \mathcal{H}_{1,m}.$$
(3.7)

To this end, we note, by (3.4) and conditions (A.1) and (A.2), that

$$\begin{split} \beta_{\lambda}(\Phi,\Phi) &= \int \{\frac{1}{2}(RD\Phi,D\Phi) + (\lambda\Phi,\Phi) - (\mathcal{B}_{0}\Phi,\Phi)\}d\mu \\ &\geq \int \{\frac{1}{2}|R^{1/2}D\Phi|^{2} + \lambda_{0}|\rho_{m}^{1/2}\Phi|^{2} - b_{0}|R^{1/2}D\Phi||\rho_{m}^{1/2}\Phi|\}d\mu \\ &\geq \int \{\frac{1}{2}(1-\varepsilon)|R^{1/2}D\Phi|^{2} + (\lambda_{0}-\frac{b_{0}^{2}}{2\varepsilon})|\rho_{m}^{1/2}\Phi|^{2}\}d\mu, \end{split}$$

for any $\varepsilon > 0$. Therefore, by choosing $\varepsilon < 1$ so that $\lambda_0 > b_0^2/2\varepsilon$, the inequality (3.7) holds with $\delta = \min\{\frac{1}{2}(1-\varepsilon), (\lambda_0 - b_0^2/2\varepsilon)\}.$

By Lemma 3.3, β_{λ} is a bounded bilinear form on $\mathcal{H}_{1,m} \times \mathcal{H}_{1,m}$, where $\mathcal{H}_{1,m} \subset \mathcal{H}$ is a Hilbert space. If follows immediately from the Lax-Milgram theorem [10] that the equation (3.36) has a unique solution Φ , which, by Definition 3.3, is the desired strong solution. \Box

4 Hamilton-Jacobi-Bellman Equations

Now we consider the nonlinear elliptic problem arising from the controlled stochastic PDE (1.5). Recall that K denotes an admissible set and the nonlinear operator \mathcal{B} is defined as

$$\mathcal{B}(\Phi)(v) = \inf_{\alpha \in K} \{ (B(v,\alpha), D\Phi(v)) + F(v,\alpha) \},$$
(4.1)

on which we impose the following conditions:

(B.1) $B(\cdot, \cdot): V \times K \to H_0$ satisfies the condition:

$$|B(v,\alpha)|_0 = |R^{-1/2}B(v,\alpha)| \le b_0(1+||v||^2)^{m/2}, \text{ for } m \ge 2, b_0 > 0, \forall \alpha \in K.$$

(B.2) Same as (A.2), let $\lambda(\cdot) = V \to \mathbb{R}^+$ be bounded so that

$$\lambda_0 (1 + ||v||^2)^m \le \lambda(v) \le \lambda_1 (1 + ||v||^2)^m, \ \forall \alpha \in K,$$

for some positive constants $\lambda_0 \leq \lambda_1$.

(B.3) There exists a constant $f_0 > 0$ such that $F(\cdot, \cdot) : V \times K \to \mathbb{R}^+$ has the following bound:

$$|F(v,\alpha)| \le f_0(1+||v||^2)^{m/2}, \ \forall v \in V, \alpha \in K.$$

Let \mathcal{M}_{λ} be defined by

$$\mathcal{M}_{\lambda}(\Phi) = -(\mathcal{A} - \lambda I)\Phi - \mathcal{B}(\Phi).$$
(4.2)

Then the Hamilton-Jacobi-Bellman equation (1.5) can be written as

$$\mathcal{M}_{\lambda}(\Phi) = 0. \tag{4.3}$$

Before presenting an existence theorem, we will prove two technical lemmas.

Lemma 4.1 Under conditions (B.1) - (B.3), the nonlinear operator $\mathcal{M}_{\lambda} : \mathcal{H}_{1,m} \to \mathcal{H}'_{1,m}$ is locally bounded and Lipschitz continuous.

(**Proof**). For $\Phi, \Psi \in \mathcal{H}_{1,n}$, we have

$$-\langle \mathcal{M}_{\lambda}(\Phi), \Psi \rangle_{1,m} = \langle \! \langle (\mathcal{A} - \lambda I) \Phi, \Psi \rangle \! \rangle + [\mathcal{B}(\Phi), \Psi], \tag{4.4}$$

Clearly, by (2.8) and (B.2),

$$\langle\!\langle (\mathcal{A} - \lambda I)\Phi, \Psi \rangle\!\rangle | \leq \frac{1}{2} |[RD\Phi, D\Psi]] + [\lambda\Phi, \Psi]|$$

$$\leq ||\!|\Phi|\!|_1 ||\!|\Psi|\!|_1 + \lambda_1 ||\Phi|\!|_{0,m} ||\Psi|\!|_{0,m}$$

$$\leq (1 + \lambda_1) ||\Phi|\!|_{1,m} ||\Psi|\!|_{1,m}.$$

$$(4.5)$$

By (4.1) and the assumptions,

$$|[\mathcal{B}(\Phi), \Psi]| \leq \int \{ |(B(v, \alpha), D\Phi(v))||\Psi(v)| + |F(v, \alpha)||\Psi(v)|\} \mu(dv)$$

$$\leq \sqrt{2}b_0 \|\Phi\|_{1,0} \|\Psi\|_{0,m} + f_0 \|\Psi\|_{0,m}.$$
(4.6)

In view of (4.4), (4.5) and (4.6), there exists $b_1 > 0$ such that

$$|\langle \mathcal{M}_{\lambda}(\Phi), \Psi \rangle_{1,m}| \leq b_1(1 + \|\Phi\|_{1,m}) \|\Psi\|_{1,m},$$

for some $b_1 > 0$, or \mathcal{M}_{λ} is locally bounded.

To show the Lipschitz condition, it suffices to deal with the nonlinear operator \mathcal{B} . Let Φ, Φ' and $\Psi \in \mathcal{H}_{1,m}$. Then, by noting conditions (B.1) and (B.2),

$$\begin{aligned} |\langle \mathcal{B}(\Phi) - \mathcal{B}(\Phi'), \Psi \rangle_{1,m}| &= \\ &= |[\mathcal{B}(\Phi) - \mathcal{B}(\Phi'), \Psi]| \\ &\leq \int |\inf_{\alpha \in K} \{ (B(v, \alpha), D\Phi(v)) + F(v, \alpha) \} \\ &- \inf_{\alpha \in K} \{ (B(v, \alpha), D\Phi'(v)) + F(v, \alpha) \} ||\Psi(v)| \mu(dv) \\ &\leq \int \sup_{\alpha \in K} \{ |(B(v, \alpha), D\Phi(v) - D\Phi'(v))| \} |\Psi(v)| \mu(dv) \\ &\leq b_0 \int |R^{1/2} D(\Phi - \Phi')| |\rho_m^{1/2} \Psi| d\mu \\ &\leq \sqrt{2} b_0 ||\Phi - \Phi'||_{1,0} ||\Psi||_{0,m}, \end{aligned}$$
(4.7)

which shows the desired continuity. \Box

Lemma 4.2 Let conditions (B.1) - (B.3) hold. Then, if $\lambda_0 > b_0^2/2$, the operator $\mathcal{M}_{\lambda}(\cdot)$: $\mathcal{H}_{1,m} \to \mathcal{H}'_{1,m}$ is monotone, or there exists $\delta > 0$ such that

$$\langle \mathcal{M}_{\lambda}(\Phi) - \mathcal{M}_{\lambda}(\Psi), \Phi - \Psi \rangle_{1,m} \ge \delta \| \Phi - \Psi \|_{1,m}^2, \quad \forall \Phi, \Psi \in \mathcal{H}_{1,.}$$

$$(4.8)$$

(Proof). By (4.2), we have

$$\langle \mathcal{M}_{\lambda}(\Phi) - \mathcal{M}_{\lambda}(\Psi), \Phi - \Psi \rangle_{1,m}$$

= $-\langle (\mathcal{A} - \lambda I)(\Phi - \Psi), \Phi - \Psi \rangle_{1,m} - \langle \mathcal{B}(\Phi) - \mathcal{B}(\Psi), \Phi - \Psi \rangle_{1,m}$

$$\geq \frac{1}{2} \int |R^{1/2} D(\Phi - \Psi)|^2 d\mu + \int \lambda (\Phi - \Psi)^2 d\nu \qquad (4.9)$$
$$-|[\mathcal{B}(\Phi) - \mathcal{B}(\Psi), \Phi - \Psi]|$$
$$\geq \frac{1}{2} \int |R^{1/2} D(\Phi - \Psi)|^2 d\mu + \lambda_0 ||\Phi - \Psi||_{0,m}^2 - |[\mathcal{B}(\Phi) - \mathcal{B}(\Psi), \Phi - \Psi]|$$

Similar to (4.7), we get

$$|[\mathcal{B}(\Phi) - \mathcal{B}(\Psi), \Phi - \Psi]| \leq \leq b_0 \int |R^{1/2} D(\Phi - \Psi)| |\rho_m^{1/2} (\Phi - \Psi)| d\mu$$

$$\leq \frac{1}{2} \{ \varepsilon \int |R^{1/2} D(\Phi - \Psi)|^2 d\mu + \frac{b_0^2}{\varepsilon} |\Phi - \Psi|^2 \rho_m d\mu \}.$$
(4.10)

By invoking (4.10), the inequality (4.9) yields, for any $\varepsilon > 0$,

$$\langle \mathcal{M}_{\lambda}(\Phi) - \mathcal{M}_{\lambda}(\Psi), \Phi - \Psi \rangle_{1,m} \\ \geq \frac{1}{2} (1-\varepsilon) \int |R^{1/2} D(\Phi - \Psi)|^2 d\mu + (\lambda_0 - \frac{b_0^2}{2\varepsilon}) \int |\Phi - \Psi|^2 \rho_m d\mu$$

which gives rise to the desired inequality (4.8) for $\lambda_0 > b_0^2/2$, if we choose $\varepsilon < 1$, but sufficiently close to $1.\Box$

Similar to the linear problem, $\Phi \in \mathcal{H}_{1,m}$ is said to be a strong solution of Eq. (4.3) if the following holds:

$$\langle \mathcal{M}_{\lambda}(\Phi), \Psi \rangle_{1,m} = 0, \quad \forall \Psi \in \mathcal{H}_{1,m}.$$
 (4.11)

With the aid of the above lemmas, the existence theorem can be proved easily.

Theorem 4.3 Let the conditions (B.1), (B.2) and (B.3) hold. Then, if $\lambda_0 > b_0^2/2$, the Hamilton-Jacobi-Bellman equation (4.3) has a unique strong solution Φ and, in fact, $\Phi \in \mathcal{H}_{2,m}$.

(**Proof.**) By Lemma 4.1 and Lemma 4.2, we know that $\mathcal{M}_{\lambda} : \mathcal{H}_{1,m} \to \mathcal{H}'_{1,m}$ is a locally bounded, Lipschitz continuous and monotone operator on a Hilbert space. Note that, by (4.1) and condition (B.3),

$$|\mathcal{M}_{\lambda}(0)\Phi|_{1,m} \le f_0 \|\Phi\|_{0,m}.$$
(4.12)

It follows from (4.8) and (4.12) that

$$\langle \mathcal{M}_{\lambda}(\Phi), \Phi \rangle_{1,m} / ||\Phi||_{1,m} \geq \{ \delta \|\Phi\|_{1,m}^2 - f_0 \|\Phi\|_{0,m} \} / |\Phi\|_{1,m}$$

$$\rightarrow \infty \text{ as } \|\Phi\|_{1,m} \rightarrow \infty.$$

Therefore, by applying a theorem for monotone operator in Lions (p. 171, [11]), the equation (4.3) has a unique strong solution $\Phi \in \mathcal{H}_{1,m}$ satisfying Eq. (4.11). Now, from Eq. (4.11) and estimate (4.6) we have

$$\begin{aligned} |\langle\!\langle (\mathcal{A} - \lambda I) \Phi, \Psi \rangle\!\rangle| &= |[\mathcal{B}(\Phi), \Phi)]| \leq \\ &\leq b_1 (1 + \|\Phi\|_{1,m}) \|\Psi\|_{0,m}, \end{aligned}$$

so that $(\mathcal{A} - \lambda I) \Phi \in \mathcal{H}_{0,m}$ hence $\Phi \in \mathcal{H}_{2,m}$ as claimed. \Box

Remark 4.4 Instead of (B.2), the rate function λ may be allowed to depend on the control α so that

$$\lambda_0 (1 + ||v||^2)^m \le \lambda(v, \alpha) \le \lambda_1 (1 + ||v||^2)^m, \ \forall v \in V.$$

The same results in Thm. 4.3 hold true. \Box

Remark 4.5 A similar approach can be adopted to prove the existence of strong solutions to the corresponding time-dependent HJB equations. \Box

5 Example

Consider the stochastic control of the reaction-diffusion equation in one space-dimension:

$$\begin{cases} \frac{\partial u(t,x)}{\partial t} &= \frac{\partial^2 u(t,x)}{\partial x^2} + b(u,u_x,\alpha)(t,x) + \dot{W}(t,x), \ t > 0, \ 0 < x < 1, \\ u(0,x) &= v(x), \\ u(t,0) &= u(t,1) = 0, \end{cases}$$
(5.1)

where $u_x = \frac{\partial u}{\partial x}$, $b(u, u_x, \alpha)(t, x) = b[u(t, x), u_x(t, x), \alpha(t, x)]$, $\alpha(t, x)$ is the control, $\dot{W}(t, x) = \frac{\partial}{\partial t}W(t, x)$ with $W(t, \cdot)$ being a Wiener process in $L^2(0, 1)$, and $v \in L^2(0, 1)$. Let r(x, y) denote the covariance function, the kernel of the covariance operator R. Let $H = L^2(0, 1), V = H_0^1(0, 1)$: the first-order Sobolev space $H^1(0, 1)$ of functions on (0, 1) vanishing at x = 0, 1,

and $A = \frac{\partial^2}{\partial x^2}$: $V \to V' = H^{-1}(0,1)$. The normalized eigenfunctions e_k of A and the corresponding eigenvalues μ_k are given by

$$e_k(x) = \sqrt{2} \sin k\pi x$$
 and $\mu_k = -(k\pi)^2, k = 1, 2, \dots,$ (5.2)

With respect to the basis $\{e_k\}$, the following representation holds:

$$W(t, \cdot) = \sum_{k=1}^{\infty} \sqrt{\gamma_k} b_t^k e_k$$
, a.s.

where b_t^k 's are i.i.d. Brownian motions in \mathbb{R}^1 , and γ_k 's are the eigenvalues of R so that

$$(Re_k)(x) = \int_0^1 r(x, y)e_k(y)dy = \gamma_k e_k(x), \quad k = 1, 2, \dots$$

or

$$r(x,y) = \sum_{k=1}^{\infty} \gamma_k e_k(x) e_k(y)$$
(5.3)

in an L^2 -sense. Suppose that

$$\sum_{k=1}^{\infty} \gamma_k / k^2 < \infty \tag{5.4}$$

which implies that

$$Tr.\{(-A)^{-1}R\} = -\sum_{k=1}^{\infty} (A^{-1}Re_k, e_k) = \frac{1}{\pi^2} \sum_{k=1}^{\infty} \gamma_k / k^2 < \infty$$

In view of (5.2), (5.3) and (5.4), the conditions (C.1), (C.2) and (C.3) are met. In the value function J_v , for simplicity, we assume that both F and λ are of quadratic form:

$$\lambda(v) = \lambda_0 \{ 1 + \|v\|^2 \}$$
(5.5)

and

$$F(v,\alpha) = f_0 \{ |\alpha|^2 + ||v||^2 \}^{1/2},$$
(5.6)

where λ_0 and f_0 are positive constants and $\alpha \in K$ with K being a compact subset of H. Then the conditions (B.2) and (B.3) are trivially satisfied with m = 1. To apply the existence Thm. 4.3 to the associated HJB equation, we need to check the condition (B.1). This will be done for two special cases according to a finite or infinite Tr.R. (Case 1). Suppose that $Tr.R = \sum_{k=1}^{\infty} \gamma_k = \infty$ and the inverse R^{-1} exists and bounded. In this case we get

$$B(v,\alpha) = b(v, v_x, \alpha)(\cdot),$$

and impose the condition:

$$|b(x, y, z)|^2 \le b_1^2 \{1 + |x|^2 + |y|^2\},\$$

$$\forall x, y, z \in \mathbb{R}^1, \text{ for some } b_1 > 0.$$
 (5.7)

Then, for the operator norm $||R^{-1}|| \leq c^2$, we have

$$\begin{aligned} |R^{-1/2}B(v,\alpha)|^2 &\leq c^2 |b(v,v_x,\alpha)(\cdot)|^2 \\ &= c^2 \int_0^1 |b[v(x),v_x(x),\alpha(x)]|^2 dx \\ &\leq c^2 b_1^2 \int_0^1 \{1+|v(x)|^2+|v_x(x)|^2\} dx \\ &= c^2 b_1^2 (1+\|v\|^2), \end{aligned}$$

so that condition (B.1) holds with $b_0 = b_1 c$ and m = 1. Therefore, by Thm. 4.3, if the conditions (5.6), (5.7) and (5.8) hold with $\lambda_0 > \frac{1}{2}(b_1 c)$, the HJB equation for this case has a unique strong solution $\Phi \in \mathcal{H}_{2,1}$.

(Case 2). Suppose that $Tr.R = \sum_{k=1}^{\infty} \gamma_k < \infty$ and

$$\inf_k \{-\mu_k \gamma_k\} \ge \delta, \text{ for some } \delta > 0,$$

which implies that $\mathcal{D}(R^{-1/2}) \subset \mathcal{D}\{(-A)^{1/2}\} = V$ and

$$|R^{-1/2}v|^2 \le \frac{1}{\delta} \langle -Av, v \rangle.$$
(5.8)

In this case we have to impose some more stringent conditions:

Let $B(v, \alpha) = b(v, \alpha)(\cdot)$ be independent of v_x such that b(0, 0) = 0 and

$$\left|\frac{\partial b(x,y)}{\partial x}\right|^2 + \left|\frac{\partial b(x,y)}{\partial y}\right|^2 \le b_2^2, \quad \forall x,y \in \mathbb{R}^1,$$
(5.9)

for some $b_2 > 0$, and K is a bounded set in $H_0^1(0, 1)$. Then we have

$$|R^{-1/2}B(v,\alpha)|^2 \leq \frac{1}{\delta} < -Ab(v,\alpha), b(v,\alpha) >$$

$$= -\frac{1}{\delta} \int_0^1 \left[\frac{\partial^2}{\partial x^2} b(v,\alpha)\right] b(v,\alpha) dx$$

$$= \frac{1}{\delta} \int_0^1 \left(\frac{\partial b(v,\alpha)}{\partial v} \cdot v_x + \frac{\partial b(v,\alpha)}{\partial \alpha} \alpha_x\right)^2 dx$$

$$\leq 2\frac{b_2^2}{\delta} \int_0^1 \{v_x^2 + \alpha_x^2\} dx$$

$$\leq 2\frac{a^2 b_2^2}{\delta} (1 + \|v\|^2).$$

where $a^2 = \max\{1, a_0^2\}$ and $a_0^2 = \max_{\alpha \in K} \int_0^1 \alpha_x^2 dx$. The above verifies condition (B.1) with $b_0 = \sqrt{2}(ab_2)/\sqrt{\delta}, m = 1$. Therefore, under the conditions (5.6), (5.7) and (5.10), the HJB equation for this case has a unique solution $\Phi \in \mathcal{H}_{2,1}$, by Thm. 4.3, if $\lambda_0 > \frac{1}{\sqrt{2}}(ab_2)/\sqrt{\delta}$.

Remark 5.1 If R has a finite range, i.e. $\gamma_k = 0$ for $k \ge (k_0 + 1)$, the Wiener process becomes a k_0 -dimensional Brownian motion and the operator $B(v, \alpha)$ needs to have a finite range. \Box

References

- CHOW, P.L., Infinite-dimensional Kolmogorov equations in Gauss-Sobolev Spaces, J. Stoch. Analy. and Appl. (to appear).
- 2 DA PRATO, G., Some results of Bellman equation in Hilbert spaces. SIAM J.Control and Optim., <u>23</u>, 61–71 (1985).
- 3 CANNARSA P. & DA PRATO G., Second Order Hamilton-Jacobi equations in infinite dimensions, SIAM J. Control and Optim., <u>29</u>, 474–492. (1991).
- 4 CANNARSA, P. & DA PRATO G., Direct solutions of second order Hamilton-Jacobi equation in Hilbert spaces, Stochastic Partial Differential Equations and Applications, G. DaPrato and L. Tubaro, Editors, Pitman Research Notes in Math. <u>268</u>, 72–85, Longman, New York (1992).
- 5 GOZZI, F., Regularity of solutions of a second order Hamilton-Jacobi equation and application to a control problem, Preprints di Matematica # 09, Seuola Normale Superiore, Pisa (1994).

- 6 HAVARNEAU, T., Existence for the dynamic programming equation of control diffusion process in Hilbert space, Nonlinear Analysis. Theory, Methods & Applications, <u>9</u> 619– 628 (1985).
- 7 LIONS, P.L., Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part III: Uniqueness of viscosity solutions for general second-order equations. J. Funct. Analy. <u>86</u>, 1–18 (1989).
- 8 DA PRATO G., & ZABCZYK J., Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, UK (1992).
- 9 CHOW, P.L. & KHASMINSKII R.Z., Stationary solutions of nonlinear stochastic evolution equations, J. Stoch. Analy. & Applic. (to appear).
- 10 YOSIDA K., Functional Analysis, 2nd Ed., Springer-Verlag, Heidelberg-Berlin (1968).
- 11 LIONS, J.L., Equations Differentielles Operationnelles et Problems aux Limites, Springer-Verlag, Berlin (1961).