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ON THE OPTIMAL IMPULSE CONTROL PROBLEM
FOR DEGENERATE DIFFUSIONS*

J. L. MENALDI-

Abstract. In this paper, we give a characterization of the optimal cost of an impulse control problem as
the maximum solution of a quasi-variational inequality without assuming nondegeneracy. An estimate of the
velocity of uniform convergence of the sequence of stopping time problems associated with the impulse
control problem is given.

Introduction. Summary of main results. In this article, we develop the proofs of
results announced in Note [5].

The impulse control problem has been studied by several authors. A. Bensoussan
and J. L. Lions [2] treated nondegenerate diffusions, M. Robin [11 developed the case
of Feller processes, and J. P. Lepeltier and B. Marchal [4] investigated a similar problem
for a more general kind of Markov processes. In a purely analytical framework, L.
Tartar [13] considered an abstract coercive quasi-variational inequality and F. Mignot
and J. P. Puel [10] a first order quasi-variational inequality.

We study here the case of degenerate diffusions which lead to a second order
noncoercive quasi-variational inequality. The deterministic case leading to a first order
quasi-variational inequality is treated in [6].

Let (f, , P) be a probability space and {t}t>_0 be a nondecreasing right-
continuous family of completed sub-o,-fields of .

Let be any admissible impulse control and y(t) yx(t, z,, o), =>0, o l be the
diffusion with jumps on RN starting at x, with Lipschitz continuous coefficients g(. and

Suppose is an open subset of R, and r rx (z,, o) the first exit time of process y(t)
from .

Next, let ](x) be a bounded upper semicontinuous nonnegative real function on ,
and k(:) be a continuous real function on + such that

k(:)_-> ko> 0 Vsc_-> O, and

Given x 7 and an admissible impulse control v ={01, :1;""" Of, i;’" ", the
functional cost is defined by

(0.2) J,(,)=E [(y(t))e-’dt+ k(i)lo,<ooe-,
i=1

where a is a positive constant.
Our purpose is to characterize the optimal cost

(0.3) t(x) =inf {J,(v)/, an admissible impulse control},

and to obtain an optimal admissible impulse control.

* Received by the editors July 10, 1979, and in final revised form March 3, 1980.

" Universit6 de Paris IX (Dauphine), Paris, France.
See Def. (1.7).
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OPTIMAL IMPULSE CONTROL PROBLEM 723

We denote by Ao the second order differential operator associated with the Ito
equationz

02 ) O
(0.4) Ao -1/2 tr o’er* gx
and A Ao + c.

Let Fo c 0’ be the set of regular points, and let us use the integral formulation of
A3"

We define by M the operator

(0.5) [M,;b ](x) inf {k(C)+ (x + )/--> 0, x + e }.

Assume that ff is sufficiently smooth such thatM maps continuous functions b into
continuous functions Mb. We will give conditions below (Lemma 1.3), so that M has
the proposed regularity.

Finally, we introduce the problem" To find a real bounded measurable function on
’, u (x) such that

u 0 on Fo,

(0.6) u <= Mu

Au<=f

in 6\F0,

in the martingale sense on 6\Fo.

Now, we consider the following sequence of variational inequalities corresponding
to optimal stopping time problems (cf. [7]).

Let (x) be the bounded upper semicontinuous nonnegative real function on
such that

(0.7)
t 0 on Fo,

Aa=f in the martingale sense on \Fo,

and given tn-l(x), let t (x) be the bounded upper semicontinuous nonnegative real
function on (7 which is the maximum solution of

u" 0 on F0,

(0.8) u <-- Mtn-1 in \Fo,

Au" <-f in the martingale sense on \Fo.

We have the following characterization.

THEOREM 0.l. Assume that g, r are Lipschitz continuous, (0.1), and that f is
bounded upper semicontinuous and nonnegative. Then problem (0.6) admits a maximum
solution which is upper semicontinuous and given as the optimal cost (0.3). Moreover,
the following assertions are true.

(0.9)4 IIt II--<--
(0.10) a"(x) (x)(n oo) uniformly in

If B is a matrix, then B* denotes the transpose of B and tr (B) the trace of B.
See Def. (1.13).
I1" denotes the supremum norm on .
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Furthermore, if F0 is closed and f continuous, the function is also continuous on and
there exists an optimal admissible impulse control.

Regarding t as a distribution in 6, we have
THEOREM 0.2. Let the assumptions be the same as in Theorem 0.1. Suppose

02

Then the optimal cost verifies

(0.12)

Moreover, if F0 is closed and f continuous, the following equation

(0.13) Aa f in ’([t <Ma])

is also true.
Now, a quasi-variational formulation is given.
Let/30(x), fix(x) be the weight functions (1 +lx12) -x+1/2, (1 + [xl)-x/z, A > N/2

respectively. Introduce the following Hilbert spaces, H {V/oV L2(6)} with scalar
product (. ,. ), and V {v e H/fll(Ot)/Oxi) L2(’), /i 1,’ , N and v 0 on F}. The
space V’ is the dual of V, and (.,.) denotes the duality between V’ and V.

Consider the following quasi-variational inequality:

u V, u<-Mu,
(0.14)

(au, v u) >= (f, v u) qv e V, v <-_Mu.

Assume

02
(0.15) Ox’--’crr* L(6),

and that there exists a Lipschitz continuous subsolution , i.e.,

(0.16)5 Wo’ ((7) and A =<-f in ’(’),

where the constant a is assumed large enough.
For instance, if 6 N or trtr* is coercive on F, then the assumption (0.16) is

satisfied.
THEOREM 0.3. Let the conditions of Theorem 0.1, (0.15), and (0.16) hold. Suppose

that f is Lipschitz continuous; then the quasi-variational inequality (0.14) has a maxi-
mum solution which is Lipschitz continuous and explicitly given as the optimal cost
(0.2).

This work is divided into three sections. The first section establishes several useful
lemmas. In 2, the integral formulation of the impulse control problem is studied, and
in the last section, the associated quasi-variational inequality is treated.

In this paper, we will use extensively the results of [7].

1. Preliminary results. Let (fl, , P) be a probability space, {t}t__>0 a nondecreas-
ing right-continuous family of completed sub-or-fields of , and w(t) a standard
Brownian motion in N with respect to t.

Also in the martingale sense.



OPTIMAL IMPULSE CONTROL PROBLEM 725

Suppose we are given two Lipschitz continuous functions g(x) and r(x) on RN,
taking values in RN and N (R)IN, respectively, g (gi), r (o’ij),

(1.1)6
19gi )O’i]---, B(N), i,/, k 1,. ., N.
OXk

We consider the diffusion y(t) y0x (t, o9), > O, o) and x N, described by the Ito
equation

dy(t) g(y(t)) dt + cr(y(t)) dw(t), >-_ O,
(1.2)

y(0) =x.

Let A be a closed subset of RN, convex with respect to zero7. An impulse control v is
a set {0x, x;" 0, ;. .} where {0};x is an increasing sequence of stopping times
with respect to -t convergent to infinity (0i-<-0i/x, 0i) and {5i}1 is a sequence of
random variables taking values on A, adapted with respect to {Oi}i (ji’ A,
measurable).

Now, we define the sequence of diffusions with jumps {yn(t)}=x, yn(t)=
y 7 (t, v, o), -> 0, o 12, x N, and v any impulse control, by the Ito equation

(1.3)
dy(t)=g(yn(t))dt+(Y(t))dw(t)’ t>=O"’
y(t)=yn-X(t)+lo,=tn, t<=O.

We have

(1.4) y(t)= y’(t) on [O, O.] V, >=n.

So, if we define

(1.5) y(t, v)= lim y"(t),

the process y(t) yx(t, v, o), which is right-continuous8, satisfies the stochastic equa-
tion,

(1.6) dy(t) g(y(t)) dt + o-(y(t)) dw(t) + Y’. j8(t- 0,) dt, >= O,
i=1

y(0)=x,

where 6(t) is the Dirac measure.
Suppose 6 an open subset of N, and r r,(v, w), r

o
r, (w) the first exit time of

processes y(t), y(t) respectively, from .
We call v {0x, x;’" 0, i;...} an admissible impulse control if it satisfies

(1.7) y (r) e ( a.s. on [" < oo];

that is, no jump of the process y(t) is outside of ’ before r.

Denote by Fo the set of regular points (cf. D. W. Stroock and S. R. S. Varadhan
[12]),

(1.8) oFo {x e F O0/P(rx > O) 0}.

6 B([N) denotes the set of all Borel measurable and bounded functions on N taking values in .
7..e., ZA, [0, 1], ’qs A. Generally, we take A=0+.
y(t) has also left limits.
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LEMMA 1.1. Assume (1.1). Let , be any admissible impulse control, and 0 be any
stopping time; then the following assertions are true.

(1.9) P(y (r, u) Fo, r < oe) =0,

(1.10) E{[yx(O)- yx,(0)[

where the positive constant depends on the Lipschitz constant offunctions g and r.

Proof. Setting

,=sup { [ (r(x) r(x’))(r(x)

(1.11)
2(x x’)(g(x)- g(x’))/ }

and recalling that the process y(t)-y,(t) is a diffusion (from Ito’s formula) to the
function Ix 12 e -v’, we obtain (1.10) as Lemma 1.1 in [7].

Finally, using (1.7) from Markov’s property we get

(1.12) P(y"(r") Fo, r" < oo) 0,

where r" is the first exit time of process y"(t) from . So regarding (1.4), we deduce
(1.9).

Let u, v be real bounded9 upper semicontinuous functions on . Then the integral
formulation of operation A (cf. [7]) is given by

Au <- v in \Fo if the process

AO

(1.13)x Xt v(y(s)) e

is a submartingale for each x e 6Fo.

LEMMA 1.2. Assume (1.1) and smooth 11. Let f(x) be a real bounded continuous

function on . Suppose that there exists such that

# C(e), &,eB(e), 1,..., N,
(.4)

A& N-[ in ’(), &(x) O Vx F.

Then, for any admissible xz impulse control u {0, 1; 0, ; .} such that

(1.15)a Og [r ^ r,, rx Vi= l, 2,

the following estimation is true"

(1.16)
E f(yx(t)) e -st dt <= Ix-x Vx, x’ ,

where Iloa,loxll denotes the smallest Lipschitz continuous constant of .
9
U and v may have polynomial growth if is not bounded.

10 We say Au <- v in the martingale sense.
11 We also assume a large enough.
12 Clearly, admissible for x.
13 rx ^ r, denotes the minimum between rx and r,.
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Proof. First, assume C2(RN); , Ol2/OXi B(RN), 1,’’’, N. Ito’s formula
applied to function (x) and process y,(t) gives

E{(y. (r.)) e -7.x (y.(r. ^ rx,)) e -(7.x ^7.’)}
(1.17)

Since

=-E A&(y.(t))e-’tdt
7.x 7.x’

(yx(x)) 0 (yx,(x ^ x,))

from (1.17), we deduce

(1.18)

Next, defining

a.s. in (rx, <= r, < o],

E f(y (t)) e -st dt

Yo sup tr Ix x
(1.19)

(x x’)(g(x g(x’))
X,X [N+ Ix --X

and assuming a_->yo, from Lemma 1.1 and (1.18) we obtain (1.16). Finally, if
C2(’), by approximating by regular functions the lemma is proved. [3
Remark 1.1. Assume Wa’(ff),f C(ff) B(ff). Approximating by regular

functions, we deduce that [A -<f in ’(ff)] is equivalent to [A _-<f in the martingale
sense of (1.13)]. This fact will be used several times.

Suppose we are given a continuous real function k(:) on A, such that

(1.20)
k(sC) >= ko> 0 VsCA,

k(:)oo if [:[-oo with :A.

We define the operator M"B()B() by

(1.21) [M4,](x) inf {k(sc) + b(x + sc)/sc A, x +

We always assume ff and A smooth enough, such that

There exists P: (7AA measurable and uniformly continuous in x ff
verifying

(1.22) x+P(x,) VxG VA,

P(x,)=sc ifx+:6.
For instance, if A +u and 6 convex with regular boundary, we can take P(x, ) as the
projection of : on Af’I (6-x).

LEMMA 1.3. Assume (1.20) and (1.22). Then if c is upper semicontinuous (or
continuous) on 6, so is M4.

Proof. Starting at

[Mb](x) [Mb](x’) sup inf [(k (:) k (’) + (b (x + ) b (x’ + so’))],
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and choosing : P(x, ’), we get

[Mb](x) [Mb](x’) _-< sup [k (P(x, ’)) k (P(x’,
(1.23)

+sup [b(x + P(x, ’))-49(x’ + P(x’,

So, from (1.23) and the uniform continuity of function P(x,), the lemma is
proved.

LZMM 1.4. Suppose (1.20), (1.22) and

(1.24) b bounded and upper semicontinuous on

Then, for each > 0 there exists a function (x) such that

(1.25) " . A bounded_ and_ Borel measurable,

x+,(x) Vx,

(1.26) [Mb](x)+e >-[k(-(x))+qb(x +(x))] Vx

Moreover, if cb is continuous, there exists (x) verifying (1.25) and (1.26) with e O.
Proof. First, if b is continuous, the classical theorems of selection imply the result.
Next, if 4 is only upper semicontinuous, there exists a decreasing sequence

of continuous functions convergent to b. So, we also have Mb, decreasing to M&.
Let n (x) be a function which satisfies (1.25) and

[Mqb,](x)=[k(-"(x))+qb,(x +?"(x))] Vx m,
and let n (x) be the function

n (x) min {n ->_ 1/[Mcn](x) -< [Mb](x) + e }.

(1.27) (x) sc" (x) if n n (x),

the lemma is proved. [-1

2. Integral formulation. Let F0 be the set of regular points (1.8) and A be the
operator given by (1.13). Assume f(x) an upper semicontinuous function on such that

(2.1) feB(6), f>-_O.

Consider the following problem" To find u (x) such that

(2.2) u B(6), u(x) 0 x Fo,

(2.3) Au <-f in 6\Fo [martingale sense (1.13)],

(2.4) u <- Mu on 6\Fo.

Let us define the sequence {t"},-1 of solutions to variational inequalities corresponding
to optimal stopping time problems (cf. [7]). Starting with (x) verifying (2.2) and

(2.5) At=f in \Fo [martingale sense (1.13)],

we set tn(x) as the maximum solution of problem (2.2), (2.3) and

(2.6) u _-< Mt-1 on \F0,

Then, if we set
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This section is divided into two parts. First we solve problem (2.2), (2.3), (2.4) and
consider the case where the set of regular points F0 is closed. Next we studythe general
case and give some complementary results

2.1. Regular ease.
THEOREM 2.1. Let the assumptions (1.1), (1.20), (1.22) and (2.1) hold. Then the

problem (2.2), (2.3), (2.4) admits a maximum solution which is given by the decreasing
limit

(2.7) r/(x) lim t/"(x) Vx ft.

Moreover, the function (x is upper semicontinuous and the following estimate is true"

(2.8)

where I1" denotes the supremum norm on .
Proof. Using the monotone property of operator M,

(2.9) --< 4’ implies Me <-M4,

and knowing that 0 < t < t0,we deduce

(2.10) 0 < /n+l < n < 0 n=l,2,....

Then, for any solution u of problem (2.2), (2.3), the trivial maximum principle in the
martingale formulation implies u 6 0. Because of (2.4) and (2.9), we obtain

(2.11) ua" n=l,2,...

So, the function a defined by (2.7) is the maximum solution of problem (2.2), (2.3), and
(2.4). Since a" is upper semicontinuous (cf. [7]), we conclude the theorem.

Remark 2.1. If we set Ma, the maximum solution a can also be considered as
an optimal stopping time cost, i.e., the maximum solution of problem (2.2), (2.3) and
u .

We can also define the sequence {"}=a as the optimal costs

and given - we obtain n by

(2.13) (x) =ifE [(y(t))e-dt+Ma-(y(O))lo<,oe

where 0 is any stopping time of t.
TOM 2.2. Let the conditions (1.1), (1.20), (1.22), (2.1), and

(2.14) fe C(e),

(2.15) Fo closed,

hold. Then the maximum solution ofproblem (2.2), (2.3), (2.4) is continuous. Moreover,
is given as the optimal cost (0.3), and the following estimate is true"

(2.16) II"-Nko(n+l), n=O, 1,2,. ..
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Proof. Recalling that, from [7] and Lemma 1.3, fin is continuous, we need only to
show the estimate (2.16). Since F0 is closed, we are in the case of Feller processes (cf. A.
Bensoussan [1] and M. Robin [11]).

First, we are going to prove that

(2.17)14 ’(x)=inf{J(v)/v admissible impulse control such that Oi--c) ti>-n +1},

where the functional cost Jx(v) is given by (0.2).
Indeed, from Lemma 1.4, there exist functions i(x), 1, , n verifying (1.25)

and

(2.18) [Mu"-i](x) k(’(x)) + tn-(x + ’(x))
Thus, we define 3" {i, ffi}7=1 as follows.

(2.19)

(2.20)

(2.21) 15

(2.22) 16

(2.23)17

(2.24)

and next

(2.25)

(2.26)

We have

(2.27)

O { Oi if -<_ n and i < T,

co otherwise,
i- 1, 2,...,

i=0 ifi>=n+l.

y(t, ") )"(t), t>_-O,

i=0, 1,... ,n-l;

and from Markov’s property

(2.28) t" (x) Jx (P"),
(2.29) a"(x) =<J(,) if , has at most n impulses.

Then, (2.28) and (2.29) imply (2.17).
Now we are going to show the estimate (2.16).
Let ,={0i,:i}1 be any admissible impulse control; setting ,"={01,$1;

0,, so,; co, ,+1;"" "} we have

y(t, ,)= y(t, ,n)= yn(t if < 0, ^ r".

14 i.e., u has at the most n impulses.
15 We set ?i=c if i(t)Vt>=O.
16 We set i+1 ,i if the subset is empty.
17 If i+1= we set i+1 =0.
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Hence, if is given by (0.3), we obtain

(2.30) 0 =< " t -< sup El.
On ^.n

Since

f(y" (t)) e -’’ dt}.

e-" <--- Y’. k(i)lo,<oo e-’ko(n + 1),.=

and since it is possible to take the supremum only over all admissible impulse controls
such that

--cOiE k (:,) 1 o,< e [[f][,
i=1

the estimate (2.16) follows from (2.30).
Remark 2.2. The estimate (2.16) can be improved using a probabilistic version of

results in B. Hanouzet and J. L. Joly [3]. We have

(2.31) Ilan- all-<_ Cq n=0,1,2,...,

where constants C > 0 and q [0, 1[ depend only on Ilfll, , and ko. Indeed, we define
the operator S: C(ff) C() by

OA

(2.32) Sv=ifE f(y(t))e-tdt+Mv(y(O))lo<,oe

where 0 is any stopping time of
Let o be the function given by (2.12), so using estimate (2.8) and the fact that

ko N M(0), we deduce

ako
(2.33) is AaNS(0) if 0

Ilfll"
Clearly, the operator S is increasing and concave, hence it is easy to prove from

(2.33) the following property:

Vu, v C(), 0 N u, v N a and satisfying

(2.34)
-rv <- u v <- pu, r, pe[O,

we have

-(1 A)rSv <= Su Sv <= (1 A)pSu.

Next, we obtain from (2.34)

(2.35) IISnt Sall _-< (a A)’-" Ilall, m > n,

and recalling that a" =S"a, we have the estimate (2.31) with C =-11711 and q
1-A. I-1

COROLLARY 2.1. Let the assumptions be as in Theorem 2.2. Then there exists an
optimal admissible impulse control x,
(2.36) a(x)=Jx(),

where is given by (0.3).

18 We assume that A _-< 1.
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Proof. From Theorem 2.2, the function t(x) is continuous. Then, from Lemma
1.4, there exists a function :(x) verifying (1.25) and

(2.37) [Ma](x) k(-(x))+ a(x + (x)) Vx 6.

Then, we define {i, i}i=l by

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

if=0;
dg(t) g((t)) dt + r((t)) dw(t),

(0) =x;

r inf {t >= o/i (t)

_
6}, i=0, 1,2,...

ffi+l inf {t [i, .i]/a(i(t)) [M](i (t))},

i+a (i(i+x)), 0, 1, 2,...

d (t) g(i (t)) at + cr( (t)) dw(t),

’(’) ,-(,) + ,,
i(t) ;i-a(t), < i,

Ai-1if i<r
i=1,2,’...

otherwise,

and later on,

(2.44) 0i

i=0,1,2,...,

We have

(2.45) y(t, ) "(t) if 0_ < ,,,
and from Markov’s property

(2.46) (x)=E f((t))e-dt + 2 k(i)l,<oe
i=1

+ E{I.<--,a (f" (t, 11 e-S0"}.
Hence, letting n --> oo in (2.46) and, using (2.45) and (1.9), we obtain (2.36).

2.2. Complementary results. Now we omit assumptions (2.14) and (2.15).
THeOrEM 2.3. Let the conditions (1.1), (1.20), (1.22), and (2.1) hold. Then the

maximum solution ofproblem (2.2), (2.3), (2.4) is given as the optimal cost (0.3), and
the estimate (2.16) is true.

Proof. As in Theorem 2.2, we just need to prove (2.17). Moreover, we will only
show that

’de > 0 there exists P, an admissible impulse control
(2.47)" which has at most n impulses, such that

a"(x)+>-Jx().

Indeed, given e > 0, from Theorem 3.4 in [7], we can choose a stopping time which is
e-optimal and depends measurably on the initial point, so there exist functions t (x),

1, 2,. , n, such that

" t 12 --> [0, oo] is Borel measurable,
(2.48)

’x , (x) is a stopping time;
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u + e _-> E /(y(t)) e dt + 1

(2.49)
(yO(Oi))exp

Also from Lemma 1.4, there exist functions i (x), 1, 2, , n, verifying (1.25), and

(2.50) 2-n-1 "i[Mt "-i](x) + e >- k (( (x)) + ,-i (x + j; (x)) Vx

Thus, defining the admissible impulse control 3 {i, 5i}i=1 by (2.19), (2.20) and
,i(2.51) z =inf{t>-0/i(t)e!}, i=0, 1,..., n,

^i-1(2.52) ffi [ffi-1 + i ()3i-l(ffi-x))] ^ r 1,..., n,

(2.53) i ie-1 (i-l(ffi)), i= 1,""", n,

and (2.24), (2.25), (2.26) we deduce assertion (2.47) using Markov’s property, lq

COROLLARY 2.2. Let the assumptions be as in Theorem 2.3. Then given e > 0 there
exists a ]:unction 3(x)={ti(x), i(x)}=l such that i and i verify (2.48) and (1.25)
respectively, and

(2.54) (t(x)+e >-Jx((x)) Vx e ,
where is the optimal cost given by (0.3).

Proof. We just need to combine the methods of Theorem 2.3 and Corollary
2.1. El

Finally, the unction t3 is regarded as a distribution in ’. Notice that Theorem 0.1 is
completely proved.

Recalling that A is the differential operator (0.4) and assuming

0
2

ro’* Lo()(2.55)

we can define Au, for any u e B(), as the following distribution,

(2.56) (Au, c)= Ie uA*4) dx V& @((Y),

where A* is the adjoint of A,

(2.57) A*&

THEOREM 2.4. Assume the boundary F is smooth, and conditions (1.1), (1.20),
(1.22), (2.1), and (2.55) hold. Then the optimal cost given by (0.3) satisfies

(2.58) Aa <-[ in ’(e).

Moreover, if (2.14) and (2.15) are true, we also have

(2.59) 19 Aa je in ’([a < Mt]).

Proof. We need only to use Theorem 3.6 in [7] and Remark 2.1.

19 [/ <Mt] denotes the subset of (7 such that t(x)< Ma(x).
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3. Quasi-variational inequality. Let aij(x), ai(x) be functions for i, j 1,..., N
such that

(aij)i. is a nonnegative symmetric matrix and

(3.1) 02aii
a0 CI(N), L(NN)

OXk OXl
Vi, j,k,l=l,...,N,

(3.2) ai c(NN), Oai L(N) Vi, k l, N.
OXk

Define the following differential operator A,
N

(3.3) A
i,j=l OXj

where a is a positive constant.
We always identify g and o" given by (1.1) as

(aii)ij 1/2o’er*,
(3.4) Oaii

ai --gi.
10xi

Let /3o(X) and /31(x) be the weight functions (1
A > N/2, respectively.

Introduce the Hilbert spaces

(3.5) H {v/ov L2((2)},

with the inner product

(3.6)

and the norm l;

(3.7)

with the norm

(u, v)= Ie (/3oU)(/3oV) dx

{ 0v N}L2() Vk 1, ,V= v e H/BOx

(3.8)
1/2

V’ denotes the dual space of V and (.,.) the duality between V’ and V.
We have

v/(3.9) V Vi= 1,... ,N}c V.

Let a (.,.) be the bilinear form associated with the operator A,

(3.10)
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where

(1 + Ix[2)-laii(x),
(3.11) N

d,(x) (1 + Ixl)-/a,(x)- 2(A + 1)(1 + Ixl ) x a,i(x)xi.
/=1

Notice that ai, a are not supposed to be bounded, but a is at most of quadratic growth,
and a of linear growth. Then, di, dg in (3.11) are bounded.

This section is divided into two parts. First, we consider the case where ’--Eu.
Next, we study the general case.

3.1. Case =. Assume 7 Eu. After some calculation, we deduce

(3.12) a(u, v) (Au, v) Vu, v V, Au H,

(3.13)=0 La(u, ’-’)1-<- cllullll ll vu, ,., v,

and if c is large enough there exists Co > 0 such that

(3.14) a(u, v) >-_ Oo(U, u) Vu V.

Next, from (3.12) and (3.13), it follows that

a(u, v)=(Au, v) Vu, v V.

We recall that M denotes the operator given by (1.21). We define, for any
u V (’1L(Rr), the closed cone K(u) in V by

(3.16) g(u) {v V/v(x) <-_[Mu](x) a.e. in Rr}.
Let us consider the following quasi-variational inequality,

Find u Vr3L(Nr) such that u K(u) and
(3.17)

a(u, v-u)>=(f, v-u) VvK(u),

and also the sequence of variational inequalities

(3.18) Find u V such that a(u, v)= (, v) v V.

Find u V fqL(1) such that u K(u -1) and
(3.19)

a (u ", v u n) -_> (f, v u ") Vv K(u"-l).
We have

THEOREM 3.1. Let the assumptions (3.1), (3.2), (1.20), (2.1), and

L*(N), k 1, , N(3.20)
Oxk

hold. Then the quasi-variational inequality (3.17) admits a maximumsolution which is

given as the optimal cost (0.3). Moreover, is Lipschitz continuous and the following
estimates are true.

.3.21.21 _<

L O ]/0 L

2o C denotes a constant.
2x [IOa/OxlIL, denotes the smallest Lipschitz continuous constant of a, and 3’o is given by (1.19).
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(3.22) 0 <= u t <= C(n / 1)-1, n 0, 1,. ,
where the constant C depends only on the supremum norm of[ and a, ko.

Proof. First, from Theorem 4.1 in [7], the sequence defined by (3.18), (3.19)
coincides with that defined by (2.12), (2.13).

Then, from (2.17), we have

lug(x) u (x ’) -<_ sup {[J,(u)-J,(u)l/u an impulse control
such that Oi c f i>-n + 1}.

Hence, Lemma 1.1 and (3.20) imply

IlOu _<
1 ii0 11 ’n=0,1,2,....

Thus, using Theorem 2.2 and classical technique, the proof is completed.
Remark 3.1. Clearly, using only analytic methods, like B. Hanouzet and J. L. Joly

[3], we can prove that (Remark 2.2)

(3.24) O<=un-a <-_cq n, n =O, 1, with0<q<l.

3.2. General ease. Now, we come back to the general case, an open subset of RN

with boundary F sufficiently smooth.
Define the closed subspace of V,

(3.25) Vo={V e V/v =0 on F}.

that
Then, as in the case RN, if a is large enough there exists a constant ao > 0 such

(3.26) a(u, u)>=ceo(U, u) Vu e Vo,

and we also have

(3.27) a(u, v)= (Au, v) Vu, v e Vo.

For any u 6 Vo f3 L(6), we define Ko(u), the following closed cone in Vo by

(3.28) Ko(u)={v Vo/v <-Mu, a.e. in }.

Let us consider the quasi-variational inequality

Find u VofqL(6) such that u eKo(u) and
(3.29)

a(u, v-u)>-(f, v-u) VveKo(u),

and the associated sequence of variational inequalities,

(3.30) Find u Vo such that a(u, v) (f, v) lv Vo.
Find u VofqL(6) such that u Ko(u -1) and

(3.31)
a(u ’, v u ’) >- (f, v u") Vv e Ko(u"-).

22 ko is given in (1.20).
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Remark 3.2. Assume (2.1). Suppose that 6 is bounded and satisfies the uniform
exterior sphere condition of radius p > 0, and that

v=
(3.32) tD {x F/2g(x)n(x) < -tr (cr(x)r*(x))},

n (x) is the inner normal with modulus p.

Then, there exists a Lipschitz continuous subsolution

(3.33)z3
e C(6); , xeL(6), i= 1,..., N,

ArP=<-f in if, (x)=O VxF.

Indeed, we only need to use Lemma 1.5 in [7].
THORZM 3.2. Let the conditions (3.1), (3.2), (1.20), (1.22), (2.1), (3.33) andz4

e (if), k=l,... N,(3.34)
Ox

hold. Then the quasi-variational inequality (3.29) admits a maximum solution which is
given as the optimal cost (0.3). Moreover, is Lipschitz continuous and the estimates
(3.22) and

(3.35) I1 11 II ll +11211L 0 L L

are true.

Proof. As for Theorem 3.1, we just need to prove the following estimate,

(3.36)
Ou"

<
1 II011 011L O 0 L L

Indeed, starting at

(3.37) u"(x)- un(x ’) =sup inf [Jx(u)-Jx,(,’)],

we set, for any ’ ={01, :I}=1, the impulse control , ={0i, i}i=l defined by (1.2) and

(3.38) r,, inI {t => 0/yi (t) if}, 0, 1,...

(3.39)z5 Oi={ Oi

(3.40)

(3.41)

i-1 i-1if Oi < Tx A Tx,

otherwise;

if0<o and sc’
-1 (0,) 6,

if 0i co,

if0<oo and h+yl(0)F;

dy (t) g(y (t)) dt + tr(y (t)) dw(t), >- 0,

y’(O)= y’-a(O,)+,i,
i--1y (t)= y (t), < Oi.

23 In the martingale sense with c large enough.
24We also assume a large enough and k(A:)-<_ k(:), VsCA, A [0, 1].
25

rx, is given as rx in (3.38).
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Notice that i is well defined, because if sol + y/-i (Oi) and Oi < O0 we have ye-1 (0)
and so there exists Z [0, 1] such that ,scl + yi- (Oi) [’

Thus, , is an admissible impulse control for x, and choosing z, as above in (3.37), we
deduce

(3.42)

u (x)-u (x’)-<supE f(yx(t,u))e dt
’ .rx .rx,

+sup E ]f(yx(t, ))-f(y,(t, ,’))1 e -t de

where the supremum is taken over all admissible impulse controls ,’.
Finally, from Lemma 1.2 and the fact that

(3.43) yx(t, z,)= yx(t, v’), a.s. in [0, r. ^ rx,[,

the estimate (3.36) follows from (3.42).
THEOREM 3.3. Under the conditions of Theorem 3.2, the following quasi-varia-

tional inequality

t W" (), t _<-Mt in
(3.44)

At =<f in ’(ff), At =f in ’([t <Mt]),

has one and only one solution . Moreover, is given as the optimal cost (0.3).
Proof. We only need to prove the uniqueness of problem (3.44). Moreover, it

suffices to show that any solution of (3.44) is a solution of (2.46).
Indeed, using a classical technique (cf. D. W. Stroock and S. R. S. Varadhan [12]),

we can prove that if verifies

a e W0’ (0’), At =f in @’([a <Ma]),

then we also have

Aa f in the martingale sense on [t < Ma].

Therefore, as in Corollary 2.1, we obtain the equality (2.46) and the theorem is
established.

Remark 3.3. It is possible to consider a function ao(x) instead of the constant c for
the definition of cost (0.2). Moreover, we can also consider f not necessarily bounded
and k k (x,

Remark 3.4. All these results can be extended to the parabolic case.
Remark 3.5. In [9], we give an application to the impulse control problems with

partial information.
Final Remark. In a separate paper (cf. [8]) the stopping time and impulse control

problems for degenerate diffusions with boundary conditions will be studied.

REFERENCES

[1] A. BENSOUSSAN, On the semigroup formulation of variational inequalities and quasi-variational
inequalities, First Franco-Southeast Asian Mathematical Conference, Singapore, May-1979.

[2] A. BENSOUSSAN AND J. L. LIONS, Contrdle impulsionnel et indquations quasi-variationnelles, Dunod,
Paris, to be published.

[3] B. HANOUZETAND J. L. JOLY, Convergence uniforme des itdrds ddfinissant la solution d’une indquation
quasi-variationnelle abstraite, C.R. Acad. Sci. Paris S6r. A, 286 (1978), pp. 735-738.



OPTIMAL IMPULSE CONTROL PROBLEM 739

[4] J. P. LEPELTIER AND B. MARCHAL, Techniques probabilistes daBs le contrdle impulsionnel, Stochas-
tics, 2 (1979), pp. 243-286.

[5] J. L. MENALDI, Sur le problme de contrdle impulsionnel et l’inquation quasi-variationnelle
d3g3n3r3e associe, C.R. Acad. Sci. Paris S6r. A, 284 (1977), pp. 1499-1502.

[6] ., Le problkme de contrle impulsionnel d3terministe et l’inquation quasi-variationnelle de premier
ordre associde, Appl. Math. Optim., to appear.

[7] , On the optimal stopping time problem for degenerate diffusions, this Journal, this issue, pp.
697-721.

[8], On the degenerate variational inequality with Neumann boundary conditions, submitted to J.
Optim. Theory Appl.

[9] , The separation principle ]:or impulse control problems, Proc. Amer. Math. Soc., to appear.
[10] F. MIGNOT AND J. P. PUEL, In3quations variationnelles et quasi-variationnelles hyperboliques du

premier ordre, J. Math. Pures et Appl., 55 (1976), pp. 353-378.
11] M. ROBIN, Contrdle impulsionnel des processus de Markov, Thse d’Etat, Universit6 de Paris IX, Paris,

1977.
[12] D. W. STROOCK AND S. R. S. VARADHAN, On degenerate elliptic-parabolic operators of second order

and their associated diffusions, Comm. Pure Appl. Math., 25 (1972), pp. 651-713.
[13] L. TARTAR, In3quations quasi-variationnelles abstraites, C.R. Acad. Sci. Paris S6r. A, 278 (1974), pp.

1193-1196.


	Wayne State University
	11-1-1980
	On the Optimal Impulse Control Problem for Degenerate Diffusions
	J. L. Menaldi
	Recommended Citation


	tmp.1479306433.pdf.sT_w_

