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ON THE OPTIMAL REWARD FUNCTION OF THE CONTINUOUS TIME
MULTIARMED BANDIT PROBLEM*

JOSI LUIS MENALDI- AND MAURICE ROBIN

Abstract. The optimal reward function associated with the so-called "multiarmed bandit problem" for
general Markov-Feller processes is considered. It is shown that this optimal reward function has a simple
expression (product form) in terms of individual stopping problems, without any smoothness properties of
the optimal reward function neither for the global problem nor for the individual stopping problems. Some
results relative to a related problem with switching cost are obtained.

Key words, variational inequality, switching problem, bandit problem, dynamic programming, index
policy

AMS(MOS) subject classifications. 35B37, 49A60, 49B60, 60J25, 93E20

1. Introduction. This paper deals with the properties of the optimal reward func-
tion associated with the so-called "multiarmed bandit problem." Let us recall, formally,
the statement of the problem: assume that there are N independent machines, xi(t),
R+ is the state (for instance the production) of machine i. At each time t, one

operates only one machine, the others being frozen. When machine is operating,
xi(t) evolves as a continuous time Markov process with a given semigroup i(t). If
i(t) denotes the number of the machine in operation at time t, we want to maximize
a global payoff

(1.1) J E e-rf(i(t), Xi(t)(t)) dt

where f is a given instantaneous reward.
The multiarmed bandit problem has been studied by Gittins [4] and Whittle [8]

in the discrete time case, and more recently by Varaiya, Walrand, and Buyukkoc [7]
in a more general setting. Karatzas [5] studied the continuous time case when xi(t) is
a one-dimensional diffusion process. The most general study is done in Mandelbaum
[13], [14] who formulated the problem as the control of a multiparameter process.
This approach allows, in particular, a strong formulation of the optimal process when
xi(t) is a diffusion process.

In Whittle [9] it is shown that the optimal reward function has a simple expression
in terms of an individual stopping problem each involving only one machine. Such an
expression is shown to hold true for the diffusion bandit problem in Karatzas [5]
thanks to the smoothness of the reward function which allows explicit computations.

In this paper, the main objective is to obtain such an expression when the xi(t)
are general Feller processes, without smoothness properties of the optimal reward
function neither for the global problem nor for the individual stopping problem.

Let us describe briefly what expression we are looking for.
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98 JOSI LUIS MENALDI AND MAURICE ROBIN

Following Whittle [9], we will use the variant of the problem where one can
decide, at any time, to stop the control problem, with a reward M if this "retirement
option" is chosen.

Assume that xi(t) is for each i, a Markov process with values in some space
with semigroup i(t).

If _x denotes the initial state of the whole set of machines, and if u(_x, M) is the
corresponding optimal reward function, then by applying, formally, the dynamic
programming arguments, u(_x, M) is shown to be the minimum solution ofthe following
inequalities"

(1.2)
u(x_, M) > e-ti(t)u(x_, M)+ e (s)fi(xi) as

u(x_,M)>-M.

The individual stopping problems have optimal cost functions (bi(xi, M), i=
1, N), where b is the minimum solution of

(1.3)
i(xi, M)>-e-ati(t),d?i(xi, M)+ e-aSdpi(s)fi(xi) ds

)i(Xi, M) >= M
when ak fi(xi) aK, Vi, Vxi.

The objective is to show that

I K I a/)
(1.4) u(x_,M)=K- dm.

M i=lOm

It would be nice to obtain such a formula by analytic methods, as it can be shown
that (1.2) and (1.3) have a minimal solution (cf. [1], [2], [3]). However, without
smoothness on bi, we do not know how to show the result by analytic methods.

Here we will use an intermediary control problem ( 2.1) which is suitable for
our objective, although it does not contain a general statement of the multiarmed
bandit itself when there is no switching cost.

Using this particular interpretation of the minimal solution of (1.2), we will show
(1.4) using an extension to the continuous time case of the Tsitsiklis’ lemma [6]. In

3, we investigate the problem with switching cost, showing a similar lemma; it does
not seem possible, however, to obtain an expression of the optimal reward in terms
of some individual problems.

2. Problem without switching cost. We start with a control problem which will
provide a stochastic interpretation of (1.2).

2.1. An intermediary control problem. Let Ei, 1 N be a family of compact
metric spaces endowed with their Borel r-algebra.

Define E E1 x. EN. Throughout the paper,

_x will denote an element of E, i.e.,

_x (xl ," ", xN), xi e Ei.
We are given a family of Markov semigroups i(t) i= 1,..., N, (t) being defined
and continuous on C(Ei), the Banach space of continuous functions on Ei.

So, (I)i is a Feller semigroup on C(Ei), cf. Dynkin [10].
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If fi D(R+, Ei), the space of right continuous, left limited functions on R+ with
values in Ei, we denote by Q, the probability measure on fi corresponding to
and we define - ’1 X... X "N
and {Ft} the associated canonical r-algebra.

In order to define the controlled process, we first consider the probability measure
corresponding to constant trajectories for the-components j # (i being the number
of the process which is active, the others being frozen), and which gives the markovian
evolution corresponding to (t) for the component i: in other words we define

Pix X" X x,_, X QiXi X 6Xi+l X 6XNO(2.1)

Notice that, if

then

_xt(to) to(t) for to 12,

Ei,_g(_x,) Ei,g(xl, xi-, xi(t), xi+, XN)

where E,_ (respectively, E,) denotes the, expectation with respect to Pi,_, (respectively,

Assume now that

(2.2) f(x) is a positive function f C(E), /i a > 0 a discount factor

(2.3) Vwillbethesetof admissiblecontrolsand v V:v=(O,)o, Oo=0,
where (0n) is an increasing sequence of Ft stopping times, :n a Fo,,-
measurable random variable with values in {1,..., N} and we assume

(2.4) On(to) " +o Vto.

For any v 6 V, _x E, we define, as in [11], the following sequence of probability
measures on (f, F), if o

pO= Pi,_x

P is the (unique) probability measure on (f, F) such that

pl__ p0 on Fo,
P’(’Oo, BIFo,) P, (B) pO a.s.,,01

’qB Borel subset of 12, r/t being the shift operator,

and so on...

Defining

P" is similarly defined from pn-1

pn pn-1 on Fo.
P"(rlo, BlVo.) P,,xo (B), pn-1 a.s.

(t)=n fort6[0,,0n+,[, n>--0.

We consider the discounted reward

f On+l
(v) lim E_ e-"f((t), x_t) dt

dO
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where

f(:, _x)=f(xi) iff = i.

Actually, with the assumptions 0. ’ +c, one can know that there exists a unique
probability measure Pi,_ on (l, F) such that

(2.5) P
and one can also define our total reward by

(. (v e-(,, , a.

We now add another control possibility, namely the retirement option."
Let T be the set of F, stopping times, for v V, r e T, and (i, ) e U x , we define

the total reward as

(.7

where M is a given constant.
We will use, as in Whittle [9], the additional assumption

where k < K are given nonnegative constants.
The optimal reward function is

(2.9) u(,M)=Sup(J(v, ), (v, r)e Vx T).

Using aformal dynamic programming argument, it is easy to check that u(, M) should
solve the following inequalities

w(,M)e-’(t)w+ e-S(s)(x)ds, Vt>0 ViU,

(2.0)

w(., M) is a bounded measurable function.

In the following section, we will show that u is actually the minimum solution of these
inequalities (for fixed M).

Let us recall the following result (cf. Bensoussan and Robin [3], Bensoussan [1]):
THgOREM 2.1. Under the assumption (2.2) there exists a minimum solution of

(2.10) in the space ofbounded measurablefunctions. Moreover is upper semicontinuous.
Remark 2.1. In Bensoussan and Robin [3], another kind of interpretation was

given for (, M). The present one will be more suitable for the problem we consider... Cretert f tetl rerg (.). In order to characterize u(, M)
as defined in (2.9), we introduce another switching problem, with a switching cost e.
Namely, we consider the same problem as in 2.1, but now, at each switching time a
cost e (i.e., a reward -e) is involved. This is in fact a classical switching problem
(which can be considered as an impulse control problem where the state is (,, ), cK
Bensoussan [1], Bensoussan and Lions [2] for the general theory).

In this context, let

be the set of admissible controls, 0, being defined as previously.
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For (i, _x) U x E, define the reward

(2.11) i,_x ,/), 7")--Ei, e-Sf((t),x_t) dt-e 2 e-:Xoj<+e-’M
j>-I

where Ei._ is defined as in 2.1, (v, ’) Vo T, and XB(w) is the characteristic function
of the set B and sCo for the construction of P,.",_.

We also define

(2.12) U (_x, M)= sup, ,._ (v, r), (v, ’) Vo T).

Let u (u,. ., u).

From impulse control theory (cf. Bensoussan and Lions [2], [11]) we know that,
for fixed M, u is the minimum element of the set of bounded measurable functions
w satisfying

Wi(X_ > e-’’(t)wi + e-aSfi(s)fi(xi) as,

(2.13) w,(_x) => e + max wj(_x),

Vt>O,

w,(x_)>=M.

Moreover, uT(_x) C(E), Vi 1,..., N.
We first establish the following result.
TIaEOREM 2.2. Let u_ (x_, M) be the minimum solution of the inequalities (2.10), then

(2.14) lim u(_x, M)= _u(_x, M)
e$0

pointwise in x_.
Proof It is clear that uT(_x, M) increases when e decreases, and that uT(_x, M) is

bounded (say by (1/)llfll / M). Let us define

From (2.13), we have

(2.15)

Hence

W_ Ui

_wi--> max wj(_x, M), Vi.

_w,(_x, M)= _w(_x, M) Vi.

But _u(_x, M), the minimum solution of (2.10), satisfies obviously (2.13) and therefore

So we deduce, when e 0,

(2.16)

u(_x, M)-<_u(_x, M) Ve, i.

w_(x_,M)<=u_(x_,M).

But we see that _w(_x, M) will also satisfy (2.10), since this is identical to (2.13) when
e 0 for a function which does not depend explicitly on i.

Therefore

w_(x_,M)>=u_(x_,M).
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Hence

and the theorem is proved.
Let us define

_w(_x, M) _u(_x, M)

(2.17) u(_x, M)=sup (J(v, "r), (v, "r)c V T).

Then we have the following Theorem.
THEOREM 2.3.

(2.18) u_(x_,M)=u(x_,M).

Proof. Since e > 0, we have

’ ), (v, ) VoX T)u,(_x, M)=sup i._; (v,

and

i,_x

where ((i, 0), v), and (5, z) V T.
Therefore

u(x_,M)<-u(x_,M),

hence

(2.19) u_(x_,M)<=u(x_,M).

Now, for any solution w of the inequalities (2.10), one can show as in [11, Thm. VII,
3.1] or [2b, 6.4], that

w(x_) > E ’x e-S ’^w(x_o.,+,^) + e-tf(x_,, v,) dt

for any admissible control (v, z), v (0, :i)i=>o where E is the expectation correspond-
ing to the measure P associate to (v, z) as in 1, with 0., ^ z instead of

From this inequality, we deduce, when m - +c, since w(_x) >- M and Om ^ z ’ z, that

and therefore

Finally, this gives

w(x_ )>- J(v, -)

w(x_)>=u(x_,M).

_u(_x, M)>_- u(_x, M),

which, with (2.19), proves the result. [3

2.3. Reduction to write off policies. Following Whittle, a write off policy is defined
as a policy such that there exists a family of "write-off" sets S c E with the following
properties.

as soon as x (the state of the processi) belongs to Si, the process is abandoned;
one retires as soon as all the processes have been abandoned, and only then;
before retiring, one works only with those processes which have not been
abandoned.
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In this section we are going to show a lemma similar to the one obtained by Tsitsiklis
[6] for discrete time, showing that we can restrict ourselves to write off policies with
write off sets defined by optimal stopping problems for the individual processes.

The individual stopping problems. Let us consider the optimal stopping reward

(2.20) 6i(xi, M) sup IMs, (r)

(2.21) ia4 -at -’Mx, (’)= E e (xit) dt + e

It is known from standard theory (see Bensoussan [1]) that (x, M) is the minimum
element of the set of functions w(x) satisfying

(2.22)
w(x) e-’(t)w+ e-’(s)(x) ds, Vt>0

(x) e M, e C().

Let us show the following results which extend the discrete time case (cf. Whittle [9])
and the diffusion case (Karatzas [5]).

LMMA2.1. Underthe assumpions (2.2)-(2.8), (x, M)= (xi, M) has thefollow-
ing properties:

(i (x, M Me;
(ii) (x, M) Io e-’*(t)(x) dr, VM N k;
(iii) Vx , (x, is an increasing convex function;
(iv) (x,. is Lipschitz continuous and in every M where the derivative exists

o40NN1;
OM

(v) in every poin where the derivative exists

O
_

(x,M)=xe
OM

where is optimal for (2.20), namely

= inf (t 0, (x, M)= M).

Proo (i) This shows that 0 is optimal in (2.20) whenever M K. Since NK

J(r) N x{(1- e-’)K +
=K+e-’(M-K),

clearly if M K, 0 gives the maximum value.
(ii) k implies

Wo(X)= e-(t) dt k

and since wo(x)=e-’(t)wo+Ioe-(s)ds, we see that wo satisfies (2.22) for
M=k.

Moreover + in (2.22) gives

w(x) wo(x) Vw solution of (2.22).

(iii) If 0 N I N 1, then we check that. a(x, m+ ( a(x,
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satisfies (2.22) for m Am1 + (1 A)m2 and therefore

wa -> (x, Am1 + (1 A )m2).

The increasing property is obvious from (2.20).
(iv) From (2.21) one has, for an arbitrary r

I+() Iff(’)= E e-3

therefore, for 6 > 0

I+(r) I(r) + 6(x, M)+ 6

implying

(x,+ )_-< (x, M)+

and since (x, M+ 6)->_ (x, M), we see that

(v) Let -= inf(t => 0, 4(x, M)= M), we know (of. [1]) that

6(x, M) Iff ).

Therefore, if 6 > 0,

hence

Taking 6 < 0, we get

I+(’) I(’) + 6Ex e-=(x,M)+6Ee

(x, M + 6)- (x, M) => 6E,, e-"

O+b (x, M) => E, e-".
OM

OM

Therefore, in M such that the derivative exists, we get the result.
COROLLnRY. O+c/OM is a right continuous increasing function such that

0=<0+=< 1,
OM

0+4,
(x, M) 1 VM>-K

OM

(x, M) =0 VM<k.
OM

Let us now define, for fixed

yi=(X1, ,Xi-l,Xi+l, ,XN)

Ui(yi, M) the optimal reward function when only the processes different from are
available.
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From the previous section, Ui(yi, M) is the minimum solution of

(2.23)
W(y, M)>- e-’(t) w, + e-’(s)f(x) s, t>0, j e

(y, M) N M, (., M) bounded and measurable.

We can now state the Tsitsiklis’ lemma in continuous time.
LMMA 2.2. (Tsitsiklis’ lemma in continuous time). One has

(2.24) u(s, M)

Proof Let (, M) be the right-hand side of (2.24). We are going to show that
satisfies (2.10) and since u is the minimum solution, this will show the lemma.

Notice that since U M and Cg M, we have

(,M)M.

Moreover, since U does not depend on x,

--si(S --ti i e-,e-ati(t)W e )fds: e (t)iW e (s)ds + [Ui M]

=I+II.

We have,

and, since Ui M => 0,

{ e-’pJ
Hence, using (2.23)

I-<_ 4 by (2.22)

H<= Ui-M.

Then, for j i, since bi does not depend on xj, j i,

e-’p(t) Wi+ e-’dp(s)fds

t) U + e-Sd(s)f ds + e-[4- M] III + IV.

and

IV- i-M since bi- M -> O.

Therefore the lemma is proved. 71
COROLLARY. Define$ {xi Ei, qbi(xi, M) M}, then one can restrict the policies

to be write off with respect to (S, i= 1,..., N).
Proof Notice that Ui(yi, M)<= u(x_, M). If xi S, then (2.24) gives, with the

above inequality,

u(x_, M): Ui(Yi, M)

which means that the optimal reward is the same as the one with N-1 processes
where the process has been dropped. If there exists such that, for _x (Xl, , xN),
x S, then u(_x, M) _-> b(x, M) > M implies that it is not optimal to retire. Finally
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if _x is such that xi S, /i, then u(_x, M) Ui ’qi and we can use the same argument
for N-1 processes to show that

u(x_, M)= j(xj, M)= M /j.

Let us denote by Vo the set of admissible write off policies corresponding to
(SY, i= 1,..., N). We will use the following lemma due to Whittle (cf. [9]).

LEMMA 2.3. If V, r) is a write offpolicy, then

N

E e-"= H E, e-"’
i=1

where r is the retirement times when only the process is available.
Proof For the proof see Whittle [9].
In our context, this means that, if

(2.25) r inf (t _>- 0, &(x,, M) M),

then, for all write off policies,

(2.26) E e- I-I Ex. e-We can then deduce the product formula for u.
THEOREM 2.4.

(2.27) U(x_, M)= K (x,, m) dm.
M i=1

Proof Let (v, r) be an admissible write off policy with respect to (S, i=
1,-.., N). We have,

J+(v, r)-J(v, r)= 6E e-.
From the previous lemma

N

J+(v, r)-J(v, r)= . 1-I Ex, e-"’,

therefore

N

u(x_,M+a)>-J(v,r) +6 [I Exi e-r.
i=1

Note that the last term is independent from (v, r) as far as (v, r) is a write off policy
with respect to (S). Therefore, maximizing with respect to (v, r)

u(x_, M + 6) >= u(x_, M) + 6 rl E, e-y

which implies, for 6 > 0,

(x_, M) >= l-I Ex, e
OM

and for 6 < 0

(x_, M) <- [-I E, e-,
OM
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Therefore, at every point where the derivatives exist, we have, thanks to the Lemma 2.1,

OU N

(_x, M)= ,II (x,, M).
i=

Integrating from M to K, using the fact that u(_x, K)= K, we get (2.27).
Remark. From Bensoussan and Robin [3], we can show that the optimal reward

of the discrete time problem converges to the u(_x, M) when the time step h goes to
zero. However, we have not been able to show the product formula in continuous time
by letting h go to zero on the product formula of the discrete time case.

2.4. The forward induction lemma. Let us consider the discrete time version of the
stopping problems (2.22). Namely, for h > 0, we define (dropping the index i)

r(x) Ex e-’f(Xs) ds

QhZ= dp(h)z

[3 e -ah.
Then the optimal reward for the discrete stopping problem ebb(X, m) is the unique
solution of

chh (x, m) max rh + QhChh, m ).

Defining Vh {r, stopping times with values in Nh {nh, n >= 0}}, we can write

4h(X, m)= sup E e-f(Xs) ds + e-’m
V

The index is defined, as previously, as

Mh(X)=inf (m> k, Oh(X, m)= m).

On the other hand, Whittle [9] shows that Mh(X) has the following representation:

M (x) sup
v 1- E e

with Vh* {r stopping times with values in N Nh--{0}}.
The extension of the formula (2.28) to diffusion processes was done by Karatzas

[5] using explicit calculation for one-dimensional processes. We are going to show the
same formula in our context; the idea being to approximate the stopping problem
(2.22) by a discrete time problem (like in Bensoussan-Robin [3]).

LEMMA 2.4. Let O(x, m) be defined as in (2.20) (where we drop the index i), and
define

M(x)=inf(m> k, O(x,m)=m),andV*=U V,
h

then

E,, o e-’f(x) ds
M(x)- sup

v* 1 Ex e

where V* { (.J h V*h }.
Proof. Starting with Mh(X) we have

k<=Mh(x)<-K Vx,
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Clearly, Vh* is increasing as h decreases to zero and therefore Mh(X) is increasing
when h $ 0. For fixed x, let

then

v(x) lim Mh(x)
h$O

v(x) sup Z(z), where Z(z)=
v* 1 Ex e

Indeed, for all e, there exists h, such that

t) >= Mh > V e36(e) s.t. Mh 6(e) > V-- e

and from the definition of Mh, we can find Zh(6(e)) such that, Zh e Vh*,

Mh >=Z(%)> Mh--6(e).

Therefore for all e, there exists r V* such that v -> Z(r) > v e proving that v
sup (Z(z), ’ V*).

Let us prove that v M(x). Assume that m->_ v, then

m >- v >- Ex o e-’Sf(x,) ds
Vr V*

1-E,,e

m>=Ex e-"f(xs)+e-"m

(and for z=0, we have the equality). Therefore m _>-b(x, m).
But 4(x, m) -> m, for all m implies 4(x, m)= m for all m => v. Now assume that

Let us assume that for such m

This would imply

b(x, m) su,p Ex e-’f(x,) + e-’m m.

m >= Ex o e-’’f(Xs) ds
V’r e V*

l_Ee

which contradicts the assumption m < v.
Therefore

m < v=:>ch(x, m) > m, hence v M(x). [-1

Remark. As it was stressed in Katehakis-Veinott [12] we can also characterize
Mh(X) using the "restart in x-problem" for which the optimal reward function v(.)
is given by

v(y) =max (rh(y) + flQh), rh(X)-k- flQhVh)

and then (see [12]) we have

Mh(X)= V’(x).
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In continuous time, in order to define a similar problem, we can use the discrete time
solution; namely, as in Bensoussan-Robin [3], we could show that for h 2-N

vu(y)= v(y)

is increasing when N--> +, (and bounded).
Then

vX(y) lim vu(y)
N

is the minimum solution of the inequalities

vX(y) >_ e-’(t)v + e-Sdp(s)fds

vX(y) >= vX(x), Vy

vX(x) bounded measurable functions.
This is the continuous time version of the restart in x-problem.

3. The problem with switching cost. We now turn back to the case where there is
a switching cost incurred at each time we change the active process. This was already
considered in 2.2 when we constructed the functions uT. Recall that this is a more
or less standard impulse control problem where the underlying state is in fact (z, _x)
where z {1,. ., N} is the number of the active process. It would be interesting to
know if a product formula like (1.4) holds. We do not know the answer, neither for
the question of the optimality of some index rule. However, we can show that the
concept of write off policy is still valid in this case and this gives some more information
on the optimal policies than the mere interpretation of the dynamic programming
condition. The reduction to write off policies will be a consequence of the following
simple result, similar to the Tsitsiklis’ lemma. Let us make precise some notations" we
drop the e in the optimal reward which is now

jM r),(v,r(3.1) u(z,x,M)=sup( z,_(v, )e VoX T)

JzM,_(V, r), Vo, T being defined as in (2.11), with z e {1,..., N}. We know that u is
the minimum element of the set ofbounded and measurable functions w(z, x_) satisfying

w(z,x_)>=e-’dPz(t)w+ e-"’Z(S)fz(Xz) ds

(3.2) w(z, x_ >= -e + max w(j, x_ ),

We denote by

w(z, x_ >= M, Vze{1,. ., N}.

Yi (xa,j # i),

U(z, Yi, M) the optimal reward when only the processes different from are available,
and when the initial active process is the process number z.

LEMMA 3.1. We have for arbitrary {1,’’., N},

(3.3) u(j,x_,M)<=[dpi(xi, M)-(M+e)]++ U(j, yi, M) Vj#

(3.4) u( i, x_, M)<- c/)i(xi, M)-M+ max [M, -e + max,#i U(j, Yi, M)].



110 JOSt LUIS MENALDI AND MAURICE ROBIN

Proof Let us define, for fixed i:

w(, _x)
4(x, M) M+max M, -e + max U(j, y, M) for z i.

j

We are going to show that w(z, _x) satisfies (3.2) and since u(z, x_, M) is the minimum
solution, this will prove the lemma. We have,

e-’(t)w(z, x_)+ e-SZ(s)f(x) ds

e-’(t)U(z,y, M)+ e-’(S)fz(X) ds

+ e-’[(x, M)-(M + e)]+ if z

e-’()4+ e-(s)(x) ds

+e-’[max[M,-e+max U(j,y,M)]-M] ifz=i.

In the first case, thanks to (3.2), the right-hand side is less than

U(z, y,, M)+ e-’[d,(x,, M)-(M+ e)]+

i.e., less than

U(z, Yi, M)+[di(xi, M)-(M + e)]+= w(z, x_ ).

In the second one, thanks to (2.22) for 4i, the right-hand side is less than

(i(Xi, M)-M+max [M, -e + maxj#i U(j, Yi, M)] w(z, x_) if z= i.

Therefore the first inequality of (3.2) is satisfied. It is obvious that w(z, x_)>= M. Now,
for the second inequality of (3.2), we must check that

(3.5) w(i, x_ = -e + max ([i(xi, M)-(M+ e)]+ + U(j, y,, M))
ji

and, for z

f[dp(x,M)-(M+e)]i+U(j, Yi, M) VJi

](3.6) w(z, _x) -> -e + max
cbi(xi, M) M +max M, -e + max U(j, Yi, M)

ji

But, since dpi(xi, M)-M >- [4)i(xi, M)-(M+ e)]+, (3.5) is obvious from the definition
of w(i, x_). For (3.6), since

U(z, y, M) >- e + max U(h y,, .M)
j

we have

w(z, x_ >--_ -e +. [4)(x, M) -(M + e)]+ + max U(j, yi, M)
j#i
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and since [(i(Xi, M)-(M+ e)]+ ->_ li(Xi, M)-M- e, we also have

w(z, x_ >- -e + ch,(xi, M)-M+max [M, -e +max U(j, Yi, M)].
k joi _l

Therefore, the lemma is obtained. [3

Let us define the following write off sets:

S/ {(z, _x) {1,. ., N} Ei such that either z and thi(x, M) M,
(3.7)

or z # and d(xi, M) <- M + e}.

THEOREM 3.1. We can restrict the admissible policies to be write off with respect to

(SiI, i- 1,..., N), in other words
(i) if ::li s.t. (z,x_):S, we continue (i.e., we do not use the retirement option)
(ii) if V i, (z, x_ S, we retire

(iii) if (z, x_ Si, the process is abandoned.
Proof (i) Assume that ::li s.t. (z, _x) S
then -either z and th(x, M) > M hence u(i, x_, M) >- cki(xi, M) > M,

therefore we do not retire;

-or z # and b(x, M) > M+ e

hence u(z, x_, M) >- -e + max u(j, x_, M) >- -e + cki > M.

Therefore we do not retire.
(ii) Assume that

(3.8) Vi, (z, _x) 6 S
and to fix the idea, take z N, then (3.3) implies, since (z, _x) e S, and U(z, Yl, M) _-<

u(z,x_,M),

u(z, x_, M)- U(z, y, M).

Denote U by UC-(z, y-, M) to make explicit that U is the optimal reward of a
problem where only the N- 1 first components are available, i.e., y- (x2, , x).

Then applying again (3.3) to the N-1 dimensional bandit problem we get, with
i=2

u(z, x_, M)= uN-I(z, ylN-l, M)= uN-2(z, y2-2, M)
with yN-1 (X3,. ", Xr).

This process goes on until

u(z, x_, M)= U’(z, Xz, M)= Ckz(X, M)

which by the assumption and (3.4) is equal to M. Therefore we must retire if (3.8) holds.
(iii) Assume (z, _x) e S
-either z# then (3.3) and u(z,x_, M)>-_ U(z, yi, M) implies u(z,x_, M)=
U(z, y, M) meaning that we never use again the process

-or z- and b(x, M)= M, then (3.4) implies that either we retire, or we have

u(z, _x, M) -e + max U(j, Yz, M)
jOT

meaning that we switch to another process and never use the process z i. This
completes the proof of Theorem 3.1. [3
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