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Abstract. In this paper we study stopping time and impulse con-
trol problems for stochastic Navier-Stokes equation. Exploiting a lo-
cal monotonicity property of the nonlinearity, we establish existence
and uniqueness of strong solutions in two dimensions which gives a
Markov-Feller process. The variational inequality associated with the
stopping time problem and the quasi-variational inequality associated
with the impulse control problem are resolved in a weak sense, using
semigroup approach with a convergence uniform over path.
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1 Introduction

Optimal control theory of fluid dynamics has numerous applications such
as aero/hydrodynamic control, combustion control, Tokomak magnetic fu-
sion as well as ocean and atmospheric prediction. During the past decade
several fundamental advances have been made by a number of researchers
as documented in Sritharan [21]. In this paper we develop a new direction
to this subject, namely we mathematically formulate and resolve impulse
and stopping time problems. Impulse control of Navier-Stokes equations has
significance beyond control theory. In fact, in optimal weather prediction
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the task of updating the initial data optimally at strategic times can be re-
formulated precisely as an impulse control problem for the primitive cloud
equations (which consist of the Navier-Stokes equation coupled with temper-
ature and species evolution equations, cf. Dymnikov and Filatov [11]), see
Bennett [1], Daley [9], Monin [15].

For the study of optimal stopping problem alone, it is possible to impose
regularity assumptions on the stopping cost. However, in our case, optimal
stopping problems are used as intermediate steps to treat the impulse control
problem through an iteration process. This dictates that we must work with
stopping costs which have only continuity property.

Optimal stopping and impulse control problems are very well known,
particularly for diffusion processes (e.g., see the books of Bensoussan and
Lions [3, 4]), for degenerate diffusion with jumps (e.g., Menaldi [13]) and for
general Markov process (e.g., Robin [18], Shiryayev [19], Stettner [20]). The
main technical challenge is to give a characterization of the value function
(or optimal cost) and to exhibit an optimal control. In these works certain
conditions are imposed on the data which make the theory not applicable
to fluid dynamics. Although the variational technique has been adapted to
Gauss-Sobolev spaces (e.g., Chow and Menaldi [8], Zabczyk [26]) with partial
results, but because of the technical difficulties associated with the domain of
the generator, we prefer to follow the semigroup approach. Certainly, most
of the effort is dedicated to give a suitable sense to the stochastic Navier-
Stokes equation in a two-dimensional domain (cf. [14], among others) to
produce a Markov-Feller process in a Hilbert space (non-locally compact)
with a weakly continuous semigroup. Some related results can be found in
Bensoussan [2] and Zabczyk [25], but they are not directly applicable to our
model. To discuss only optimal stopping time, we may impose regularity on
the stopping cost. However, due to the iteration procedure used to study
impulse control problems, we need to be able to treat stopping costs which
are only continuous. For numerical approximation, we can use the general
arguments presented in Quadrat [17].

The organization of the paper is as follows. First in Section 2, we discuss
the Markov-Feller process generated by stochastic Navier-Stokes equation
in a two-dimensional domain. Next, in Section 3 we study stopping time
problems and finally in Section 4, we consider switching and impulse con-
trol problems. Notice that Sections 3 and 4 are actually independent of the
Navier-Stokes equation, only key conditions established in Section 2 are nec-
essary to completely develop the theory of impulse control for Markov-Feller
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semigroup not necessarily strongly continuous.

2 Fluid Dynamics as Markov-Feller Process

Let O be a bounded domain in R2 with smooth boundary ∂O. Denote by u
and p the velocity and the pressure fields. The Navier-Stokes problem (with
Newtonian constitutive) can be written in a compact form as follows:

∂tu+Au+B(u) = f in L2(0, T ;V′), (2.1)

with the initial condition

u(0) = u0 in H, (2.2)

where now u0 belong to H and the field f is in L2(0, T ;H). The Sobolev
spaces and operator used are as follows:

V = {v ∈ H1
0(O,R2) : ∇·v = 0 a.e. in O}, (2.3)

with the norm

∥v∥V :=

(∫
O
|∇v|2dx

)1/2

= ∥v∥, (2.4)

and H is the closure of V in the L2-norm

∥v∥H :=

(∫
O
|v|2dx

)1/2

= |v|. (2.5)

The linear operators{
PH : L2(O,R2) −→ H, orthogonal projection,

A : H2(O,R2) ∩ V −→ H, Au = −νPH∆u, ν > 0
(2.6)

and the nonlinear operator

B : DB ⊂ H×V −→ H, B(u,v) = PH(u·∇v), (2.7)

with the notation B(u) = B(u,u), and clearly, the domain of B requires
that (u · ∇v) belongs to the Lebesgue space L2(O,R2).
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Using the triple duality V ⊂ H = H′ ⊂ V′ we may consider A as mapping
V into its dual V′. The inner product in the Hilbert space H (i.e., L2-scalar
product) is denoted by (·, ·) and the induced duality by ⟨·, ·⟩.

Let us consider the Navier-Stokes equation (2.1) subject to a random
(Gaussian) term i.e., the forcing field f has a mean value still denoted by f
and a noise denoted by Ġ. We can write1 f(t) = f(x, t) and the noise process
Ġ(t) = Ġ(x, t) as a series dGk =

∑
k gk(x, t)dwk(t), where g = (g1,g2, · · · )

and w = (w1, w2, . . .) are regarded as ℓ2-valued functions. The stochastic
noise process represented by g(t)dw(t) =

∑
k gk(x, t)dwk(t, ω) (notice that

most of the time we omit the variable ω) is normal distributed in H with a
trace-class co-variance operator denote by g∗g = g∗g(t) and given by

(g∗g(t)u,v) :=
∑
k

(gk(t),u) (gk(t),v)

Tr(g∗g(t)) :=
∑
k

|gk(t)|2 <∞,
(2.8)

i.e., the mapping (stochastic integral) induced by the noise

v 7→
∫ T

0

(g(t)dw(t),v) :=
∑
k

∫ T

0

(gk(t),v) dwk(t) (2.9)

is a continuous linear functional on H with probability 1 and the noise is
the formal time-derivative of the Gaussian process G(t) =

∫ t

0
g(t)dw(t). A

multiplicative noise of the form g(t, u)dw(t), where g(t, u) is a continuous
operator from V into L2(0, T ; ℓ2(H)), can be also considered, however, for
the sake of simplicity we adopt only additive noise, cf [14].

We interpret the stochastic Navier-Stokes equation as an Itô stochastic
equation in variational form

d(u(t),v) + ⟨Au(t) +B(u(t)),v⟩ dt =

= (f ,v) dt+
∑
k

(gk,v) dwk(t), (2.10)

in (0, T ), with the initial condition

(u(0),v) = (u0,v), (2.11)

1to simplify notation we use time-invariant forces
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for any v in the space V.
We may use as initial time a stopping time τ (random variable) with re-

spect to the natural filtration (Ft, t ≥ 0) (right-continuous and completed)
associated with the Wiener process, and initial value u0 = uτ (x, ω) which
is a Fτ–measurable random variable. Similarly, we may allow random forc-
ing terms f(x, t, ω) and g(x, t, ω) or even having a nice dependency on the
solution u. For the random initial conditions we have to write the stochas-
tic Navier-Stokes equation (2.10), (2.11) in its integral (variational) form,
namely

(u(θ),v) +

∫ θ

τ

⟨Au(t) +B(u(t)),v⟩ dt = (uτ ,v)+

+

∫ θ

τ

(f(t),v) dt+
∑
k

∫ θ

τ

(gk(t),v) dwk(t),

(2.12)

for any stopping time τ ≤ θ ≤ T and any v in the space V. Actually, by a den-
sity argument we may allow any adapted process v(t) in L2(Ω;L2(0, T ;V))∩
L4(O×(0, T )×Ω).We now state the following result valid for smooth bounded
and unbounded domains.

Proposition 2.1 (2-D). Let τ and uτ be an stopping time with respect to
(Ft, t ≥ 0) and a Fτ–measurable random variable such that

0 ≤ τ ≤ T, uτ ∈ Lp(Ω;H), (2.13)

for some p ≥ 4. Suppose f(x, t) and g(x, t) satisfy

f ∈ Lp(0, T ;V′), g ∈ Lp(0, T ; ℓ2(H)). (2.14)

Then there exists a unique adapted process u(t, x, ω) with the regularity

u ∈ Lp(Ω;C0(τ, T ;H))∩L2(Ω;L2(τ, T ;V)) (2.15)

and satisfying (2.12) and the following a priori bound holds,
E
{

sup
τ≤t≤T

|u(t)|p +

∫ T

τ

|∇u(t)|2|u(t)|p−2dt
}
≤

≤ CpE
{
|u(τ)|p +

∫ T

τ

[
∥f(t)∥p

V′
+ Tr(g∗g(t))p/2

]
dt
}
,

(2.16)
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for any p ≥ 2 and some constant Cp = C(T, ν, p) depending only on T > 0,
ν > 0 and p ≥ 2. Moreover, if ū(t, x, ω) is the solution with another initial
data, we have

|u(θ)−ū(θ)| exp
[
−32

ν3

∫ θ

τ

∥u(t)∥4
L4(O)

dt
]
≤ |uτ−ū(τ)|, (2.17)

with probability 1, for any τ ≤ θ ≤ T. �

The proof of this result can be found in [14]. The reader is referred to
the books by Vishik and Fursikov [24] and Capinski and Cutland [6] for a
comprehensive treatment on statistical and stochastic fluid dynamics. Our
strong solution can be considered as a variational version of the result re-
ported in Da Prato and Zabczyk [10, Chapter 15]. Using methods similar to
the proof of estimate (2.17) we can get with probability 1,

|u(θ)−ū(θ)|2 e−r(θ,τ,u) + ν

∫ θ

τ

∥u(t) − ū(t)∥2e−r(t,τ,u)dt ≤

≤|u(τ) − ū(τ)|2 +

∫ θ

τ

⟨δf(t),u(t) − ū(t)⟩e−r(t,τ,u)dt+

+
∑
k

∫ θ

τ

⟨δgk(t),u(t) − ū(t)⟩e−r(t,τ,u)dwk(t),

(2.18)

where r(t, τ,u) := 32
ν3

∫ θ

τ
∥u(s)∥4

L4(O)
ds and ū(·) is the solution corresponding

to the data f − δf and g − δg.
As direct consequence of Proposition 2.1, we have a realization in the

canonical space C0(0, T ;H) of the Markov-Feller process associated with the
(non linear) stochastic Navier-Stokes equation (2.10). We also have

Proposition 2.2 (V–regularity). Let the assumptions (2.13) and (2.14)
hold as in Proposition 2.1. If

uτ ∈ Lp(Ω;V), f ∈ Lp(0, T ;H), g ∈ Lp(0, T ; ℓ2(V)), (2.19)

with p ≥ 2, then the solution u(t) of the stochastic Navier-Stokes equation
(2.10) with initial condition (2.12) has the regularity

u ∈ C0(τ, T ;V)∩L2(τ, T ;H2(O;R2)) (2.20)
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with probability 1, and the following estimate

E
{

sup
τ≤t≤T

[
|∇u(t)|pe−r(t,τ,u)

]
+

+

∫ T

τ

|∆u(t)|2|∇u(t)|p−2e−r(t,τ,u)dt
}
≤ Cp

{
E{|∇u(τ)|p}+

+

∫ T

τ

[
∥f(t)∥p

H
+ (TrV(g∗g(t)))p/2

]
e−r(t,τ,u)dt

}
,

(2.21)

where r(t, τ,u) := cν
∫ t

τ
∥u(s)∥4

L4(O)
ds, for some constants Cp, cν depending

only on p, T and ν > 0.

Proof. In general, if u(t) belongs to H∩H2(O,R2) then ∆u(t) (respectively
∇u(t) does not necessarily belong to H (respectively V), however the norms
|∆ · | (respectively |∇ · |) and |A · | (respectively |A1/2 · |) are equivalent,
for instance we refer to Temam [23] for details and more comments. Let us
assume that with probability 1, the solution u(t) of the stochastic Navier-
Stokes equation (2.10) belongs to L2(0, T ;H2(O,R2)) and that ∂tu(t) belongs
to L2(0, T ;H). Then multiplying equation (2.10) by −PH∆u(t) we have

1

2
d|∇u(t)|2 + ν|PH∆u(t)|2dt =

[
⟨B(u(t)),∆u(t)⟩ + (f(t),∆u(t))+

+
1

2

∑
k

|∇gk(t)|2
]
dt+

∑
k

(∇gk(t),∇u(t))dwk(t),

after recalling that PHf(t) = f(t) and PHgk(t) = gk(t). Next, using Hölder
inequality and estimating the L4-norm we find a constant C0 > 0 such that

|⟨B(u),∆u⟩| ≤ 2|∆u| |∇u|L4 ∥u∥L4 ≤
≤ C0|∆u| |∇u|1/2 (|∇u|1/2 + |∆u|1/2) ∥u∥L4 .

Because |PH∆u| is equivalent to |∆u|, there is a constant c0 > 0 such that
c0|∆u| ≤ |PH∆u| and then we obtain

d
[
|∇u(t)|2e−r(t,τ,u)

]
+ c0ν |∆u(t)|2e−r(t,τ,u)dt =

= F (t)e−r(t,τ,u)dt+ 2
∑
k

(∇gk(t),∇u(t))e−r(t,τ,u)dwk(t),
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where

r(t, τ,u) := cν

∫ t

τ

[
∥u(s)∥4

L4(O)
+ 1

]
ds,

F (t) ≤ C1

(
|f(t)|2 +

∑
k

|∇gk(t)|2
)

+
c0ν

2
|∆u|2,

for suitable constants C1, cν > 0. depending only on ν, c0 and C0. Since

E
{

sup
τ≤t≤T

∣∣∑
k

∫ t

τ

(∇gk(t),∇u(t))e−r(t,τ,u)dwk(t)
∣∣} ≤

≤ 2
[∑

k

∫ T

τ

|∇gk(t)|2e−r(t,τ,u)dt
]1/2 [

E
{

sup
τ≤t≤T

|∇u(t)|2e−r(t,τ,u)
}]1/2

we deduce the a priori estimate (2.21) for p = 2. Actually, we need to redo
the above arguments on the finite-dimensional approximation of the solution
and then pass to the limit to justify the result. For p > 2, we use Itô formula
for the (real) process |∇u(t)|2 and the function (·)p/2 to get

d|∇u(t)|p =
p

2
|∇u(t)|p−2d|∇u(t)|2+

+
p(p− 2)

8

∑
k

|∇u(t)|p−4|(∇gk(t),∇u(t))|2dt.

By means of Hölder inequality, we can show (2.21) for p > 2 with arguments
similar to the case p = 2.

In what follows and for the sake of simplicity, we assume that the processes
f(x, t, ω) and g(x, t, ω) are independent of t, i.e.,

f ∈ V′ and g ∈ ℓ2(H) (2.22)

and we denote by u(t;u0) the random field, i.e., the solution of Navier-Stokes
equation (2.10), (2.11), usually we substitute u0 with v.

Proposition 2.3 (continuity). Under the condition (2.22) the random field
u(t;v) is locally uniformly continuous in v, locally uniformly for t in [0,∞).
Moreover, for any p > 0 and α > 0 there is a positive constant λ sufficiently
large such that the following estimate

E{e−αt(λ+|u(t;v)|2)p/2} ≤ (λ+|v|2)p/2, ∀t ≥ 0, v ∈ H (2.23)
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holds, even for any stopping time t = τ. Furthermore, if f and g belong
to H and ℓ2(V), respectively, then the random field is also locally uniformly
continuous in t, locally uniformly for v in V.

Proof. Let us re-phrase the fact that the random field u(t;v) is locally uni-
formly continuous in v, locally uniformly for t in [0,∞) as follows: for any
ε > 0 there is a δ > 0 such that for any T in [0, 1/ε] and v, v̄ in H satisfying
|v− v̄| < δ, |v| ≤ 1/ε and |v̄| ≤ 1/ε we have P

{
sup0≤t≤T |u(t;v)−u(t; v̄)| ≥

ε
}
< ε. To show this fact, we notice that if we set r(t;v) :=

∫ t

0

∥u(s;v)∥4
L4(O)

ds, and

τr(v) := inf
{
t ≥ 0 : |u(t;v)|4 + r(t;v) ≥ r

}
,

(2.24)

then from estimates (2.16) with p=4 and

∥φ∥4
L4

≤ 2∥φ∥2
L2
∥∇φ∥2

L2
,

we deduce that for any t in the stochastic interval [s, τr(v)]

|u(t;v)|4 +r(t;v) ≤ r, (2.25)

and for any T > s there is a constant CT > 0, which depends only on T and
ν, such that

r P{τr(v) ≤ T} ≤ CT

{
|v|4+∥f∥4

V′
+[Tr(g∗g)]2

}
, (2.26)

Thus, even though balls are not compact on H, we can get uniform conver-
gence on any ball. Indeed, from estimate (2.17) we have

|u(t∧τr;v)−u(t∧τr; v̄)| ≤ Cr|v− v̄|,

for some constant Cr, while (2.26) yields

P{u(t;v) ̸= u(t∧τr;v)} ≤ P{τr < T} ≤ CT

|v|4 + ∥f∥4
V′

+ [Tr(g∗g)]2

r
,

for any 0 ≤ t ≤ T and some constants CT depending only on T and ν. This
establishes the continuity in v.

The locally uniformly continuity of the random field in t can be re-phrased
as follows: for any ε > 0 there is a δ > 0 such that for any v in V, with
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∥v∥ < 1/ε have P
{

sup0≤t≤δ sup0≤s≤1/ε |u(t + s;v) − u(s;v)| ≥ ε
}
< ε. To

estimate the modulus of continuity of the random field u(t,v) we make use of
the following estimate. For any α β > 0 there exists a constant C0 = C0(α, β)
such that

sup
|t−s|<δ

|v(t)−v(s)|α ≤ C0 δ
β

∫ T

0

dt

∫ T

0

|v(t) − v(s)|α

|t− s|2+β
ds, (2.27)

for any measurable function v on [0, T ] and any δ > 0, cf. Da Prato and
Zabczyk [10, Theorem B.1.5, pp. 311-316]. Therefore, if for some constants
p, q, C > 0 a process v(t, ω) satisfies

E
{
|v(t)−v(s)|p

}
≤ C|t−s|1+q, ∀t, s ∈ [0, T ], (2.28)

then for any 0 < r < q there is another constant C0 = C0(p, q, C, r) such
that if ρT (δ;v) := sup

{
|v(t) − v(s)| : t, s ∈ [0, T ], |t − s| < δ

}
, we have

E
{

[ρT (δ;v)]p
}
≤ C0 δ

r, for any δ > 0. Therefore, in view of estimate (2.26),
to show the continuity in t it suffices to prove an estimate of the form (2.28)
for the stopped random field ur(t;v) := u(t ∧ τr;v), where τr is given by
(2.24). To this purpose, from estimate (2.21) and definition (2.24) we obtainE

{
sup

0≤s≤T

[
|∇ur(s;v)|p + |ur(s;v)|p

L4(O)

]}
≤

≤ Cr,T

{
|∇v|p + |f |p + (TrV(g∗g))p/2

}
,

(2.29)

for any r > 0, T > 0 and p ≥ 4, and some constant Cr,t depending only
on r, T, p, and ν. On the other hand, by means of (2.18) with ū(t) := v,
δf(t) := f − Av −B(v), and δg(t) := g, and the bounds

∥Av∥V′ ≤ ν∥v∥V , ∥B(v)∥V′ ≤ ∥v∥2
L4(O)

,

we get{
E
{
|ur(t;v) − v|2p

}
≤ Cr,T

[
|∇v|2p + |v|4p

L4(O)
+ ∥f∥2p

V′
+

+ (Tr(g∗g))p
]
tp, ∀t ∈ [0, T ].

(2.30)

Next, the strong Markov property, estimates (2.29), (2.30), the fact that
H ⊂ V′ and V ⊂ L4((O)) ∩H yield{

E
{
|ur(t+ s;v) − ur(s;v)|p

}
≤ Cr,T

{
1 + ∥v∥2p + |f |2p+

+ (TrV(g∗g))p
}
tp/2, ∀t, s ∈ [0, T ],

(2.31)
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for any p ≥ 2, r > 0, T > 0 and some other constant Cr,T depending only on
p, r, T, and ν. Hence, the desired estimate on the modulus of continuity of
the form (2.28) follows.

To prove estimate (2.23), we notice that in view of the energy equation
d|u(t)|2 + 2ν |∇u(t)|2dt =

= Tr(g∗g)dt+ 2 ⟨f ,u(t)⟩ dt+ 2
∑
k

(gk,u(t)) dwk(t), (2.32)

we can apply Itô’s formula to the (real-valued) process y(t) := |u(t)|2 and
the function (λ+ y)p/2e−αt, with positive constants λ, p and α, to get

d(λ+ |u(t)|2)p/2e−αt =

[
p

2

Tr(g∗g) + 2 |⟨f ,u(t)⟩| − 2ν |∇u(t)|2

λ+ |u(t)|2
+

+
p(p− 2)

4

Tr(g∗g) |u(t)|2

(λ+ |u(t)|2)2
− α

]
(λ+ |u(t)|2)p/2e−αt dt+

+ p
∑
k

(gk,u(t)) (λ+ |u(t)|2)p/2−1e−αt dwk(t).

Since 
α0(λ) := sup

{
2p

Tr(g∗g) + 2 |⟨f ,u⟩| − ν |∇u|2

λ+ |u|2
+

+ p(p− 2)
Tr(g∗g) |u|2

(λ+ |u|2)2
: u ∈ V

}
,

(2.33)

is an infinitesimal 0(1/
√
λ), for any fixed p. Thus for any α > 0 and p > 0

there is a λ sufficiently large such that 4α ≥ α0(λ) and then estimate (2.23)
holds. Actually, we also have

E{sup
t≥0

e−αt(λ+|u(t;v)|2)p/2} ≤ Cp(λ+|v|2)p/2, (2.34)

for any v in H and for some constant Cp > 0.

Then the Navier-Stokes semigroup (NS–Semigroup) (Φ(t), t ≥ 0) defined
by Φ(t)h(v) := E{h(u(t;v))}, is indeed a Markov-Feller semigroup on the
space Cb(H) of continuous and bounded real function on H endowed with the
sup-norm. Since the base space H is not locally compact, the NS–Semigroup
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is not strongly continuous. After establishing the strong Feller property of
the NS–Semigroup, i.e., (t,v) 7→ Φ(t)h(v) is continuous for any t > 0, v in
H and any Borel and bounded function, we can use the energy estimate to
show

lim
r→∞

sup
{ 1

T

∫ T

0

P{|∇u(t;v)| > r} dt
}
,

for some T0 > 0 and v in H. If the domain O is bounded, then we can use
the results in Chow and Khasminskii [7] to obtain an invariant measure µ,
i.e., ⟨h, µ⟩ = ⟨Φ(t)h, µ⟩, for any Borel and bounded function h. Details re-
garding the uniqueness of the invariant measure are reported in Flandoli and
Maslowski [12]. This approach allows us to consider the NS–Semigroup in a
Gauss-Sobolev space of the type L2(H, µ), similar to Chow and Menaldi [8],
where (Φ(t), t ≥ 0) becomes a strongly continuous semigroup. In our ap-
proach, it is convenient to work with unbounded functions. To that purpose,
we proceed as follows.

Let Cp(H) be the space of real uniformly continuous functions on any
ball and with a growth bounded by the norm to the p ≥ 0 power, in another
words, the space of real functions h on H such that v 7→ h(v)(1 + |v|2)−p/2

is bounded and locally uniformly continuous, with the weighted sup-norm

∥h∥ = ∥h∥Cp := sup
v∈H

{|h(v)|(λ+|v|2)−p/2}, (2.35)

where λ is a positive constant sufficiently large so that

α ≥ α0(p), p ≥ 0. (2.36)

holds, where α0(p) is given by (2.33). It is clear that Cb(H) ⊂ Cq(H) ⊂ Cp(H)
for any 0 ≤ q < p.

Then for any α ≥ 0, (linear) Navier-Stokes semigroup (NS–Semigroup)
(Φα(t), t ≥ 0) with an α–exponential factor is defined as follows

Φα(t) : Cp(H) −→ Cp(H), Φα(t)h(v) := E{e−αth[u(t;v)]}, (2.37)

where u(t;v) denotes the solution u(x, t, ω) of the stochastic Navier-Stokes
equation (2.10) with initial (deterministic) value u(x, 0, ω) = v(x).

Proposition 2.4 (semigroup). Under assumptions (2.22) and (2.36) the
NS–Semigroup (Φα(t), t ≥ 0) is a weakly continuous Markov-Feller semi-
group in the space Cp(H).
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Proof. We the above notation, we have to show that
Φα(t+ s) = Φα(t)Φα(s), ∀ s, t ≥ 0,

∥Φα(t)h∥ ≤ ∥h∥, ∀ h ∈ Cp(H),

Φα(t)h(v) → h(v) as t→ 0, ∀ h ∈ Cp(H),

Φα(t)h(v) ≥ 0, ∀ h ≥ 0, h ∈ Cp(H).

(2.38)

The Feller character and the weak continuity follows from the locally uniform
continuity of the random field with respect to time and initial data. Indeed,
by means of Proposition 2.3, and the density of the space V into H we obtain

lim
δ→0

E
{

sup
0≤s≤T

sup
0≤t≤δ

|u(t+s;v)−u(s;v)|
}

= 0, (2.39)

for any T > 0 and any v in H.
To actually prove that Φα(t)h is locally uniformly continuous we use the

inequality

|Φα(t)h(v)−Φα(t)h(v̄)| ≤ |Φα(t)hr(v)| + |Φα(t)hr(v̄)|+
+ e−αtE

{
|h(u(t;v)) − h(u(t; v̄))|1u(t;v)<r, u(t;v̄)<r

}
,

where hr(v) := h(v) if |v| ≥ r and hr(v) := 0 otherwise. Next, we use
definition of the norm (2.35) to get

|Φα(t)hr(v)| ≤ ∥h∥CpE{(λ+|u(t;v)|2)q/2e−αt} rp−q,

for any q > p, and in view of estimate (2.34), we deduce that |Φα(t)hr(v)|
and |Φα(t)hr(v̄)| approach zero as r goes to infinity, locally uniformly in v
and v̄. Next, by means of the locally uniform continuity of the random field
u(t;v), we conclude.

Since the NS–Semigroup is not strongly continuous, we cannot consider
the strong infinitesimal generator as acting on a dense domain in Cp(H).
However, this Markov-Feller semigroup (Φα(t), t ≥ 0) may be considered as
acting on real Borel functions with p-polynomial growth, which is Banach
space with the norm (2.35) and denoted by Bp(H). It is convenient to define
the family of semi-norms on Bp(H)

p0(h,v) := E
{

sup
s≥0

|h(u(s;v))| e−α0s
}
, ∀v ∈ H, (2.40)
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where α0 = α0(λ) is given by (2.33) and λ is sufficiently large so that
(2.36) holds. If a sequence {hn} of equi-bounded functions in Bp(H) sat-
isfies p0(hn − h,v) → 0 for any v in H, we say that hn → h boundedly
pointwise convergence relative to the above family of semi-norms. In view of
(2.39), it is clear that p0(Φα(t)h− h,v) → 0 as t → 0, for any function h in
Cp(H) and any v in H.

Definition 2.5. Let C̄p(H) be the subspace of functions h̄ in Bp(H) such
that the mapping t 7→ h̄[u(t;v)] is almost surely continuous on [0,+∞) for
any v in H and satisfies

lim
t→0

p0(Φα(t)h̄−h̄,v) = 0, ∀v ∈ H. (2.41)

where p0(·, ·) is given by (2.40). �
This is the space of function (uniformly) continuous over the random field

u(·,v), relative to the family of semi-norms (2.40) and it is independent of
α, as long as (2.36) holds. Hence, we may consider the NS–Semigroup on the
Banach space C̄p(H), endowed with the norm (2.35). The weak infinitesimal
generator −Āα with domain Dp(Āα) (as a subspace of C̄p(H)) is defined by
boundedly pointwise limit [h − Φα(t)h]/t → Āαh as t → 0, relative to the
family of semi-norms (2.40). By means of the finite-dimensional approxima-
tions, we can show that if h is smooth cylindrical function in H then the
(weak) infinitesimal generator have the form

−Āαh(u) =
1

2
Tr[g∗gD2

uh(u)]+⟨Au+B(u)−αu, Duh(u)⟩,

when considering A and B(·) as mappings from H into the dual of V ∩
H2(O,R2) and the dual V ∩W1,∞(O,R2), respectively. Also, it is clear that
p0(Φα(t)h̄,v) ≤ p0(h̄,v) for any t ≥ 0, h̄ in C̄p(H) and v in H.

Proposition 2.6 (density). If assumptions (2.22) and (2.36) hold, then
Cp(H) ⊂ C̄p(H), the NS–Semigroup leaves invariant the space C̄p(H) and for
any function h̄ in C̄p(H), there is a equi-bounded sequence {h̄n} of functions
in Dp(Āα) satisfying p0(h̄n − h̄,v) → 0 for any v in H.

Proof. Indeed, since any function h in Cp(H) is such that v 7→ h(v) (λ +
|v|2)−q/2, q > p is uniformly continuous for v in H, we may use estimate
(2.34) to reduce the prove of property (2.41) to the following condition

lim
t→0

P
{

sup
0≤s≤T

|u(t+s;v)−u(s;v)|
}

= 0, ∀v ∈ H, T > 0, (2.42)
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which follows from (2.39). This verifies the fact that Cp(H) ⊂ C̄p(H).
Next, from the strong Markov property we deduce

p0(Φα(t)h̄,v) = E
{

sup
s≥0

E{|h̄[u(t+ s;v)]|e−α0(t+s) : Ft}e−(α−α0)t
}
≤

≤ E
{

sup
s≥0

|h̄[u(t+ s;v)]|e−α0(t+s)} = p0(h̄,v),

for any v in H and t ≥ 0. Therefore,

p0(Φα(r + t)h̄− Φα(t)h̄,v) = p0(Φα(t)[Φα(r)h̄− h̄],v) ≤
≤ p0(Φα(r)h̄− h̄,v),

which prove that the space C̄p(H) is invariant under the NS–Semigroup.
Finally, to approximate any function h̄ in C̄p(H) by regular functions, we

can define the sequence {h̄n n = 1, 2, . . . } by

h̄n(v) := n

∫ ∞

0

e−ntΦα(t)h̄(v)dt =

∫ ∞

0

e−tE
{
h̄(u(

t

n
;v))e−α( t

n
)
}
dt,

and apply Markov property to get∣∣E{ sup
s≥0

[h̄n(u(s;v)) − h̄(u(s;v))]e−α0s
}∣∣ ≤

≤
∫ ∞

0

e−t
[
E
{

sup
s≥0

|h̄(u(s+
t

n
;v))e−α( t

n
) − h̄(u(s;v))|e−α0s

}]
dt.

Thus, from estimates (2.34) and (2.39) we deduce

lim
n→∞

∣∣E{ sup
s≥0

[h̄n(u(s;v))−h̄(u(s;v))]e−α0s
}∣∣ = 0,

for any fixed v in H.

Under the assumption (2.22), a clear consequence of the above results is
that given α > 0, p ≥ 0, λ sufficiently large to ensure (2.23) and a function
h̄ in C̄p(H) there is another function ū in Dp(Āα) such that Āαū = h̄, where
the solution admits the explicitly representation

ū =

∫ ∞

0

Φα(t)h̄ dt. (2.43)
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The right-hand side is called the weak resolvent operator and denoted by
either Rα := Ā−1

α or Rα := (Ā0 + αI)−1. Moreover, if α0 = α0(λ) is the
positive constant defined by (2.33) then for any p > 0 we have α0(λ) → 0 as
λ→ ∞, and for any stopping time τ,

p ν

2
E
{∫ τ

0

|∇u(t;v)|2(λ+ |u(t;v)|2)p/2−1e−α0tdt
}

+

+ E
{
e−α0τ (λ+ |u(τ ;v)|2)p/2

}
≤ (λ+ |v|2)p/2, ∀v ∈ H,

(2.44)

and then for any α > α0 we obtain

∥Φα(t)h̄∥ ≤ e−(α−α0)t ∥h̄∥, p0(Φα(t)h̄,v) ≤ e−(α−α0)tp0(h̄,v), (2.45)

for any t ≥ 0, and

∥Rαh̄∥ ≤ 1

α− α0

∥h̄∥, p0(Rαh̄,v) ≤ 1

α− α0

p0(h̄,v), (2.46)

for any v in H and where the norm ∥ · ∥ and the semi-norms p0(·,v) given
by (2.35) and (2.40), respectively. Notice that α0(λ) = 0 for p = 0, and it is
clear that for any h̄ ≤ h (pointwise) we have Rαh̄ ≤ Rαh, which is a weak
form of the maximum principle.

Notice that the weak infinitesimal used above is a variation of the one
proposed in Priola [16].

3 Stopping Time Problem

For the sake of simplicity, we consider only the time-independent case, we
assume (2.22), i.e. f ∈ V′ and g ∈ ℓ2(H). The time-evolution case can be
studied with essentially the same techniques.

Recall that C̄p(H) is as in Definition 2.5. Then, given two functions F
and G in C̄p(H) and α > 0 we consider the cost functional

J(v, τ) := E
{∫ τ

0

F (u(t;v))e−αtdt+1τ<∞G(u(τ ;v))e−ατ
}

(3.1)

and the optimal cost

Û(v) := inf
τ
J(v, τ), (3.2)
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where the infimum is taken over all stopping times τ. Our purpose is to give
a characterization of the optimal cost functional Û and to exhibit an optimal
stopping time τ̂ .

This type of optimal stopping time problems is very well known, but only
a few number of results are available for Markov processes on (not necessarily
locally compact) polish spaces, cf. Bensoussan [2, Chapter 7, pp. 279–353]
and Zabczyk [25], where some conditions are given under which the optimal
cost (or value function) is continuous and the first moment of hitting the
contact set is an optimal one. However, they cannot be used directly in this
context.

A natural way of studying optimal stopping times is via the so-called
penalized problems. Given α, ε > 0 and F and G in C̄p(H), we want to solve
the nonlinear equation

Uε ∈ Dp(Āα) such that ĀαUε+
1

ε
(Uε−G)+ = F, (3.3)

where (·)+ denote the positive part and Dp(Āα) is the domain of the weak
infinitesimal generator −Āα of the NS–Semigroup (Φα(t), t ≥ 0). The solu-
tion Uε of (3.3) can be interpreted as an optimal cost (or valued function) of
a stochastic optimal control problem.

Proposition 3.1. Let conditions (2.22), (2.36) and

F, G ∈ C̄p(H), (3.4)

hold. Then, for any ε > 0, there is one and only one solution of (3.3). More-
over, if F and G belong to Cp(H) then Uε also belongs to Cp(H). Furthermore,
if G belongs to Dp(Āα) then the following estimate

0 ≤ Uε(v)−Uε′(v) ≤ Cp ε ∥(F−ĀαG)+∥ (λ+|v|2)p/2, (3.5)

is valid for any 0 < ε′ < ε, v in H and Cp as in (2.34).

Proof. First we notice that (Uε − G)+ = Uε − Uε ∧ G, where ∧ denotes the
minimum between two values. Thus

ĀαUε +
1

ε
Uε = F +

1

ε
(Uε∧G),

i.e., equation (3.3) is equivalent to a fixed point of the mapping Tε from
C̄p(H) into itself defined by

Tε(h) := (Āα+1/ε)
−1[F +

1

ε
(h∧G)].
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Since

Tε(h)−Tε(h̄) =
1

ε
(Āα+1/ε)

−1[h∧G−h̄∧G],

we have

∥Tε(h)−Tε(h̄)∥ ≤ 1/ε

α− α0 + 1/ε
∥h∧G−h̄∧G∥,

after using (2.46). Thus, Tε is a contraction mapping on C̄p(H), and there is
a unique solution to equation (3.3), denoted by Uε. Since, Tε leave invariant
the subspace Cp(H), if F and G belong to Cp(H) then Uε belongs to Cp(H).

Since

Āα(Uε−Uε′) = −
( 1

ε′
−1

ε

)(
Uε′−G

)+−1

ε

[
(Uε′−G)+−(Uε−G)+

]
,

we deduce that for 0 < ε′ < ε

Āα(Uε−Uε′) ≤ 0 if Uε′−Uε > 0,

which yields Uε′ ≤ Uε.
If G belongs to Dp(Āα) then

Uε −G = (Āα+1/ε)
−1[F − 1

ε
(G− Uε)

+ − ĀαG] ≤

≤ (Āα+1/ε)
−1[F − ĀαG].

Hence{
∥(Uε −G)+∥ ≤ ε ∥(F − ĀαG)+∥,
p0([Uε −G]+,v) ≤ ε p0((F − ĀαG)+,v),

(3.6)

for any v in H and ε > 0.
Since 0 < ε′ < ε we have Uε′ ≤ Uε, and then

Āα+1/ε(Uε − Uε′) ≤
1

ε′
(Uε′ −G)+, if Uε′ ≥ G,

Āα(Uε − Uε′) ≤ 0, if Uε′ < G,

yields

Uε−Uε′ ≤
1

ε′
E
{∫ ∞

0

[Uε′(u(t;v))−G(u(t;v))]+ e−αt χε,ε′(t)dt
}
,
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with

χε,ε′(t) = exp
[
− 1

ε

∫ t

0

1Uε′ (u(s;v))>G(u(s;v))ds
]
.

Hence

0 ≤ Uε(v) − Uε′(v) ≤ ∥[u′ε − ψ]+∥
ε′

×

× E
{

sup
t≥0

e−αt (λ+ |u(t;v)|2)p/2
∫ ∞

0

1Uε′ (u(s;v))>G(u(s;v)) χε,ε′(t) dt
}
,

for any v in H and ε > ε′ > 0. This yields estimate (3.5), after using estimates
(2.34) and (3.6).

Notice that most of the above estimates can be obtained from the repre-
sentation of uε as the following optimal cost

Uε(v) := inf
{
J0(v, δ) : δ adapted, 0 ≤ εδ ≤ 1

}
, where

J0(v, δ) = E
{∫ ∞

0

[F (u(t;v)) + δ(t)G(u(t;v))] e−
∫ t
0 (α+δ(s))ds dt

}
,
(3.7)

valid for any v in H and ε > 0.

Let us consider the problem of finding

U ∈ C̄p(H) such that U ≤ G, and ĀαU ≤ F, (3.8)

usually referred to as a sub-solution. Notice that since U does not necessary
belongs Dp(Āα), the domain of the weak infinitesimal generator −Āα of the
NS–Semigroup (Φα(t), t ≥ 0), the last inequality ĀαU ≤ F is understood in
the semigroup sense, i.e.,

U(v) ≤ Φα(t)U(v)+

∫ t

0

Φα(s)F (v)ds, ∀t ≥ 0, v ∈ H. (3.9)

We have

Theorem 3.2 (VI). Under conditions (2.22), (2.36) and (3.4), the optimal
cost Û defined by (3.2) is the maximum sub-solution of problem (3.9) and it is
given as the boundedly pointwise limit2 of the penalized solutions Uε of (3.3)

2relative to the family of semi-norms (2.40)
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as ε goes to zero. Moreover the exit time of the continuation region τ̂ = τ̂(v)
defined by

τ̂(v) := inf
{
t ≥ 0 : Û [u(t;v)] = G[u(t;v)]

}
, ∀v ∈ H, (3.10)

is optimal, i.e., Û(v) = J(v, τ̂). Furthermore, if G belongs to Dp(Āα) then
the Lewy-Stampacchia inequality

F ∧ĀαG ≤ ĀαÛ ≤ F (3.11)

holds and Uε converges to Û in the sup–norm of Ĉp(H), therefore Û belongs
to Cp(H), whenever F and G are in Cp(H).

Proof. First, in view of (3.5) of Proposition 3.1, we can define

Ū := lim
ε→0

Uε, (3.12)

as a monotone limit. If G belongs to Dp(Āα) then the above convergence is

also in norm, so that U belongs to Ĉp(H). Since uε can be re-written as an
optimal cost in the form (3.7), from estimates (2.34) and (2.46) we obtain{

∥Uε(G) − Uε(Ḡ)∥ ≤ Cp ∥G− Ḡ∥, and

p0(Uε(G) − Uε(Ḡ),v) ≤ p0(G− Ḡ,v), ∀v ∈ H,
(3.13)

where Uε(G) and Uε(Ḡ) denote the penalized solutions corresponding to G
and Ḡ, respectively. Now, in view of the density of Dp(Āα) in Ĉp(H) es-
tablished in Proposition 2.6 and the above estimate (3.13), we deduce that
the limit (3.12) used to define Ū holds true as a boundedly pointwise limit
relative to the family of semi-norms (2.40).

Next, if U is a sub-solution, i.e., a solution of (3.9) then

U ≤ (Āα+1/ε)
−1[F+

1

ε
(U∧G)] = Tε(U),

and by iteration

U ≤ TεU ≤ T 2
ε U ≤ · · · ≤ T n

ε U → Uε,

as n go to infinity. Therefore U ≤ Uε, which yields U ≤ Ū proving that
the function Ū , given by the limit (3.12), is the maximum sub-solution of
problem (3.8).



J.L. Menaldi and S.S. Sritharan 21

To establish the Lewy-Stampacchia inequality (3.11), which is interpreted
in the semigroup sense (3.9), we consider the linear equation

Vε ∈ Dp(Āα) such that Āα+1/εVε =
1

ε
(F−ĀαG)+, (3.14)

to notice that, as in the prove of estimate (3.7), we have

1

ε
[Uε(v)−G(v)] ≤ Vε(v), ∀v ∈ H. (3.15)

Since

Vε(v) =

∫ ∞

0

e−tΦα(εt)[(F−ĀαG)+](v)dt, ∀v ∈ H,

we obtain Vε → (F − ĀαG)+ boundedly pointwise and (3.11) follows.
It remains to prove that Ū is actually the optimal cost Û given by (3.2).

To that purpose, first we notice that for any stopping time τ we have

Uε(v) ≤ E
{∫ τ∧T

0

e−αtF [u(t;v)]dt+e−ατ∧TUε[u(τ∧T ;v)]
}
, (3.16)

and as ε→ 0 and T → ∞ we get

Ū(v) ≤ E
{∫ τ

0

e−αtF [u(t;v)]dt+e−ατG[u(τ ;v)]1τ<∞

}
after remarking that Ū ≤ G. Thus Ū(v) ≤ J(v, τ), for any v in H and any
stopping time τ. On the other hand, take τ = τ ε,

τ ε(v) := inf
{
t ≥ 0 : Uε[u(t;v)] ≥ G[u(t;v)]

}
,

to have an equality in (3.16), i.e.,

Uε(v) = E
{∫ τε∧T

0

e−αtF [u(t;v)]dt+e−ατε∧TUε[u(τ ε∧T ;v)]
}
.

Hence, as T → ∞ and ε → 0 we obtain Ū(v) = J(v, τ̄), where τ̄ is the
(monotone increasing) limit of τ ε. This proves that Ū = Û .

Let us show that τ̄ is actually the exit time of the continuation region to
complete the proof. Indeed, since Uε ≥ Û , we get τ̂ ≥ τ ε, i.e., τ̂ ≥ τ̄ . Now,
if θ < τ̂ then Û [u(t;v)] < G[u(t;v)], for any t ≤ θ. Using the fact that Uε

converges to Û uniformly over trajectories of the random field u(t;v) for any
fixed v in H and t in [0, θ], we must have Uε[u(t;v)] < G[u(t;v)], for any
t ≤ θ, provided ε is sufficiently small. This is τ̄ ≥ θ, which yields τ̄ ≥ τ̂ .



J.L. Menaldi and S.S. Sritharan 22

Notice that by considering the semigroup formulation (3.9), the penal-
ized problem (3.3) and the sub-solution problem (3.8) make sense for any
function F and G in Bp(H). Based on the monotonicity in F and G of the
representation of Uε, the main results of Proposition 3.1 and Theorem 3.2 are
still valid if F and G are in the semi-space C̄u

p (H) of upper-continuous func-
tions over the random field, i.e. pointwise limits of decreasing equi-bounded
sequences of functions in C̄p(H). This means that for any data F and G in

C̄u
p (H), there is a maximum sub-solution Û of (3.8) in C̄u

p (H). Consider the
following semi-space

Definition 3.3. Let Du
p (Āα) denote the semi-space of functions h such that

there is a decreasing sequence {hk} in C̄p(H) satisfying{
hk(v) → h(v) ∀v ∈ H,
∥hk∥p + ∥Āαhk∥ ≤ C, ∀k = 1, 2, . . . ,

(3.17)

for some constant C depending on h and where ∥ · ∥ is the norm (2.35). By
convention we set Āαh := ∧kĀαhk, meaning the pointwise infimum in k. �

Corollary 3.4. Let us assume (2.22), (2.36) and (3.4). If G belongs to
the semi-space Du

p (Āα) then the optimal cost Û belongs to the semi-space
Du

p (Āα), and estimates (3.5) and (3.11) hold. Moreover the penalized solution

Uε converges Û in the norm (2.35), in particular Û belongs to Cp(H) (is
continuous) if F and G are in Cp(H).

Proof. Repeating the arguments of Proposition 3.1 and Theorem 3.2 we ob-
tain the a priori estimates (3.5) and (3.11), after observing the monotonicity
of Uε with respect to G and the fact that ∧k≤nĀαGk belongs to C̄p(H), for
any n = 1, 2, . . . , if Gk are also in Dp(Āα).

In general, if F and G are only Borel measurable functions in Bp(H) then
we cannot ensure neither that the maximum sub-solution exists nor that the
penalized solutions Uε converges to a sub-solution.

Another way to extend the meaning of the weak infinitesimal generator
is to set up the sub-solution problem (3.8) as the following complementary
problem. Find U in C̄p(H) such that

U ≤ G, ĀαU ≤ F, and ĀαU = F in [U < G], (3.18)
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where Āα is interpreted in the martingale sense, i.e., ĀαU ≤ F means that
the process

U [u(t;v)]+

∫ t

0

F [u(s;v)] ds, ∀t ≥ 0, v ∈ H, (3.19)

is a (continuous) sub-martingale, which is equivalent to the semigroup sense
(3.9). The key point is the meaning given to ĀαU = F in [U < G] as

τ := inf{ t ≥ 0 : U [u(t;v)] ≥ G[u(t;v)] },

U [u(t ∧ τ ;v)] +

∫ t∧τ

0

F [u(s;v)] ds, ∀t ≥ 0, v ∈ H
(3.20)

is a (continuous) martingale. Thus, under the assumptions of Theorem 3.2,
the maximum sub-solution of problem (3.8) or the optimal cost (3.2) is the
unique solution of the so-called variational inequality (3.18).

4 Impulse Control Problem

In the previous section, our only action on the stochastic dynamic systems
u(t;v) is to stop (or to continue) the evolution. Continue the evolution
involves a running cost represented by the functional F and a decision to
stop at the random time τ incurs in a terminal cost given by G. If the costs
are reduced to money, then α is interpreted as the discount factor.

Now, we would like to sequentially control the evolution of the stochas-
tic dynamic systems u(t;v) by changing the initial conditions v. To that
purpose, we are given a controlled Markov chain qk(i) in H with transition
operator Q(k) where the control parameter k belongs to a compact met-
ric space K. This is, for a sequence of independent identically distributed
H–valued random variables (ζi, i = 1, 2, . . .) we have{

qk(i+ 1) = q(qk(i), ζi | k), ∀i = 1, 2, . . . ,

E
{
h(q(v, ζ1 | k))

}
= Q(k)h(v), ∀v ∈ H,

(4.1)

for any initial value q(1), any bounded and measurable real-valued function
h on H and any k in K. For the sake of simplicity, this Markov chain (i.e.,
each random variable ζi) is assumed to be independent of the Wiener process
w = (w1, w2, . . .) used to model the disturbances in dynamic equation (2.10).
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An impulse control is a sequence {τi, ki; i = 1, 2, . . .} of stopping times τi
and decisions ki such that τi approaches infinity. At time t = τi the system
has an impulse described by the (controlled) Markov chain qk(i) with k = ki.
Between two consecutive times τi ≤ t < τi+1, the evolution follows the Navier-
Stokes equation (2.10). This is{

u(t) = u(t, τi;u(τi)), if τi ≤ t < τi+1,

and u(τi) = q(u(τi−), ζi | ki),
(4.2)

where u(t, s;v) is the NS–random field with initial conditions v at the time
s, and the τi− means the left-hand limit at τi. Since τi → ∞, we can
construct the process u(t) by iteration of (4.2), for any impulse control
{τi, ki; i = 1, 2, . . .} and initial condition v in H. Therefore, the dynamic
evolution is a stochastic process no continuous (even in probability), it is
only right-continuous with left-hand limits. Notice that the control where
all the stopping time τi = ∞, is valid and means that we are keeping the
same initial conditions, i.e., no-intervention decision. It is clear that τi is an
stopping time with respect to the Wiener process enlarged by the σ–algebras
generated by the random variables ζ1, ζ2, . . . , ζi−1. Also, the decision random
variables ki are measurable with respect to the σ–algebra generated by τi.

To each impulse we associate a strictly positive cost, referred to cost-per-
impulse and given by the functional L(v, k). The total cost for an impulse
control {τi, ki; i = 1, 2, . . .} and initial condition v is given by

J(v, {τi, ki}) := E
{∫ ∞

0

F (u(t))e−αtdt+
∑
i

L(u(τi−), ki)e
−ατi

}
(4.3)

and the optimal cost

Û(v) := inf
{τi,ki}

J(v, {τi, ki}), (4.4)

where the infimum is taken over all impulse controls, and u(t) is the evolution
constructed by means of (4.2) with initial condition v. Specific forms of F
and L in fluid mechanics can be found in [21].

Although impulse control problems are very well known in finite dimen-
sional setting, only a few results are available for Markov processes on general
polish spaces (which are not necessarily locally compact, cf. Bensoussan [2,
Chapter 8, pp. 355–397]). Hence as noted earlier we adapt the semigroup
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approach to follow the hybrid control setting described in Bensoussan and
Menaldi [5]. The dynamic programming principle yields to the problem:
Find U in C̄p(H) such that

U ≤MU, ĀαU ≤ F, and ĀαU = F in [U < MU ], (4.5)

where Āα is interpreted in the martingale sense and M is the following non-
linear operator on C̄(H) given by

Mh(v) := inf
k

{
L(v, k)+Q(k)h(v)

}
, ∀v ∈ H, (4.6)

where the transition operator Q(k)h(v) = E{h(q(v, ζ1 | k))} is as in (4.1).
Problem (4.5) is called a quasi-variational inequality.

To solve (4.5) we define by induction the sequence of variational inequal-
ities {

Ûn+1 ∈ C̄p(H) such that Ûn+1 ≤MÛn,

ĀαÛ
n+1 ≤ F and ĀαÛ

n+1 = F in [Ûn+1 < MÛn],
(4.7)

where Û0 = U0 solves the equation ĀαU
0 = F. Notice that (4.7) can be

formulated as a maximum sub-solution problem

Un+1 ∈ C̄p(H) such that Un+1 ≤MUn, ĀαU
n+1 ≤ F, (4.8)

for any n ≥ 0. In view of Theorem 3.2 in the previous section, we need only
to assume that M operates on the space C̄p(H) to define the above sequence

Ûn of functions. This means that first, we impose the condition{
∥L(·, k)∥ ≤ C, ∀ k ∈ K,

lim
t→0

sup
k
{p0(Φα(t)L(·, k) − L(·, k),v)} = 0, ∀v ∈ H, (4.9)

and next{
E
{
|q(v, ζ1 | k)|m

}
≤ Cm(1 + |v|m), ∀ k ∈ K, v ∈ H,

lim
t→0

sup
k
{p0(Φα(t)Q(k)h−Q(k)h,v)} = 0, ∀h ∈ C̄p(H), (4.10)

for any m ≥ 0, some positive constant Cm and where the norm ∥ · ∥ and
the semi-norms p0(·,v) given by (2.35) and (2.40), respectively. Since the
space K is compact, assumption (4.9) is not a strong restriction. However,
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condition (4.10) is essentially a smoothness property on the transition kernel
of q(v, · | k)) as well as on the distribution of the perturbation ζ1 used in (4.1).
One of the main differences between impulse and continuous type control is
the positive cost-per-impulse, i.e., the requirement

L(v, k) ≥ ℓ0 > 0, ∀v ∈ H, k ∈ K, (4.11)

which forbids the accumulation of impulses. We also need

F ∈ C̄p(H), F (v) ≥ 0, ∀v ∈ H, (4.12)

to set up the sequence (4.7).
An important role is played by the function Û0 = U0, which solves

ĀαU
0 = F, and by the function Û0 = U0, which are defined as the solu-

tion of the following variational inequality Û0 ∈ C̄p(H) such that Û0 ≤ inf
k
L(·, k),

ĀαÛ0 ≤ F and ĀαÛ0 = F in [Û0 < inf
k
L(·, k)],

(4.13)

or as the maximum sub-solution of the problem

U0 ∈ C̄p(H) such that U0 ≤ inf
k
L(·, k), ĀαU0 ≤ F. (4.14)

In view of estimate (3.5) of Proposition 3.1, we deduce that if the semi-
norm p0([F − ĀαL(·, k)]+,v) vanishes3 for any k and some v in H then
U0(v) = U0(v) and indeed all the Ûn(v) are equals to Û0(v).

Consider the following quasi-variational inequality (QVI){
Û ∈ C̄p(H) such that Û ≤MÛ,

ĀαÛ ≤ F and ĀαÛ = F in [Û < MÛ ],
(4.15)

or the maximum sub-solution of the problem

U ∈ C̄p(H) such that U ≤MU, ĀαU ≤ F, (4.16)

under the condition

there exist r ∈ (0, 1] such that r U0(v) ≤ U0(v), ∀v ∈ H
(4.17)

on which we will comments later.
3Recall that [·]+ denotes the positive part
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Theorem 4.1 (QVI). Let the assumptions (2.22), (2.36), (4.9),. . . , (4.12)
hold. Then the VI (4.7) defines a (pointwise) decreasing sequence of functions
Ûn(v) which converges to the optimal cost Û(v), given by (4.4), for any v in
H. Moreover, if (4.17) is satisfied then we have the estimate

0 ≤ Ûn−Ûn+1 ≤ (1−r)n Û0, ∀n = 0, 1, . . . , (4.18)

the automaton impulse control {τ̂i, k̂i}, generated by the continuation region
[Û < MÛ ] and defined by τ̂0 := 0,{

τ̂i := inf
{
t ≥ τ̂i−1 : Û [u(t;u(τi−1))] = MÛ [u(t;u(τi−1))]

}
,

k̂i := arg min
{
L(u(τi), k) +Q(k)Û(u(τi)) : k ∈ K

} (4.19)

is optimal, i.e., Û(v) = J(v, {τ̂i, k̂i}), and the optimal cost Û is the unique
solution of the QVI (4.15) or the maximum sub-solution of problem (4.16).

Proof. In view of the assumptions (4.9) and (4.10), the operator M defined
by (4.6) maps the space C̄(H) into itself. Next, Theorem 3.2 ensures that
the sequence of VI (4.7) is decreasing and well defined. Moreover, a simple
application of the strong Markov property shows that Ûn can be interpreted
as the optimal cost of an impulse control problem where a maximum of n
impulses are only allowed, i,e.,

Ûn(v) := inf
{
J(v, {τi, ki}) : {τi, ki}, with τi = ∞, ∀i > n

}
. (4.20)

Hence the sequence Ûn(v) converges to the optimal cost Û(v), for any v.
Now, we need to establish estimate (4.18) to conclude. So first, define

the nonlinear operator V 7→ Û := T (V ) as the solution of the VI{
Û ∈ C̄p(H) such that Û ≤MV,

ĀαÛ ≤ F and ĀαÛ = F in [Û < MV ].
(4.21)

It is clear that T is a monotone (increasing) and concave operator on C̄(H),
i.e., {

U ≤ V implies T (U) ≤ T (V ),

θT (U) + (1 − θ)T (V ) ≤ T (θU + (1 − θ)V ), ∀ θ ∈ [0, 1].
(4.22)
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Condition (4.17) means T (0) = U0 ≥ rU0, which together with (4.22) yields{
if T (V ) ≤ U0 and V − U ≤ θV, for some r ∈ (0, 1]

then T (U) − T (V ) ≤ θ(1 − r)T (U).
(4.23)

Indeed, θ0 + (1 − θ)V ≤ U implies

T (U) ≥ T (θ0+(1−θ)V ) ≥ θT (0)+(1−θ)T (V )

and so

T (V )−T (U) ≤ θT (V )−θT (0) ≤ θT (V )−θrU0 ≤ θ(1−r)T (V ).

Therefore, in view of Ûn+1 = T (Ûn) we can iterate (4.23) as follows. Since
T (Û0) ≤ Û0 and Ûn ≥ 0 we have 0 ≤ Û0− Û1 ≤ Û0. By means of (4.23) with
θ = 1 we get 0 ≤ Û1 − Û2 ≤ (1 − r)Û1 and then (4.23) with θ = (1 − r)n−1

yields

0 ≤ Ûn− Ûn+1 ≤ (1−r)nÛn,

which provides estimate (4.18) after noticing that Ûn ≤ Û0.

The argument above also shows that if instead of (4.17) we only know
that {

there exist r ∈ (0, 1] and v ∈ H
such that p0((r U

0 − U0)
+,v) = 0,

(4.24)

then we have the estimate

p0([Û
n−Ûn+1−(1−r)n Û0]+,v) = 0, ∀n = 0, 1, . . . (4.25)

and the automaton impulse control {τ̂i, k̂i}, generated by the the continuation
region [Û < MÛ ], is optimal for that particular v in H. It is also clear that
Û0 ≤ ∥F∥/(α − α0) and so (4.18) provides a uniform convergence of the
sequence of VI (4.7).

If we impose

L(v, k) ≥ ℓ0(1+|v|2)p/2 > 0, ∀v ∈ H, k ∈ K, (4.26)
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instead of (4.11), then assumption (4.17) holds for any 0 < r < 1 such that
r ∥F∥ ≤ ℓ0(α− α0). In particular, we notice that condition (4.11) suffices to
ensure (4.17), when p = 0 (i.e., when F and L are bounded).

It is clear that with the above technique we may consider to control also
the coefficients ν, f and g of the Navier-Stokes equation (2.10), e.g, the
transition operator Q(k) is now acting on H × V′ instead of only H. In this
case, the state of the dynamic system is the continuous evolution u(t) and
the Markov chains with transition operators Q(k). The QVI (4.15) becomes
a system of QVI (e.g., indexed by the f) of the type

Û(·, f) ∈ C̄p(H) such that Û(·, f) ≤M(Û , ·, f),
Āf

αÛ(·, f) ≤ F (·, f), in H and

Āf
αÛ(·, f) = F (·, f) in [Û(·, f) < M(Û , ·, f)],

(4.27)

where Āf
α is the weak infinitesimal generator associated with f and the non-

linear operator M(U) = M(U,v, k) is now given by

M(U,v, f) := inf
k

{
L(v, f , k)+Q(k)U(v, f)

}
, ∀v ∈ H, f ∈ V′, (4.28)

where L(v, f , k) and F (v, f) are the impulse and running costs, respectively.
Despite the large indexing in f belonging to the dual space V′, only a count-
able number is used (the state of the Markov chain) and it should be adapted
to each particular application, i.e., if only a finite number of possible f are
available then only those f are used and (4.27) is a finite system of QVI.
Notice that the only coupling in the system of QVI (4.27) is produced by
the nonlinear operator M, and therefore, the sequence of VI, similar to (4.7),
corresponding to (4.27) is actually a system of independent (not coupled) VI
to which Theorem 3.2 still applies. Hence, we may solve (4.27) in a way very
similar to the one presented for (4.15)4, but the notation and the numerical
resolution is far more complicated.
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