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Introduction

The objective of this paper is to study the stochastic version of a previous
paper of the authors, in which hybrid control for deterministic systems was
considered. The modelling is quite similar to the deterministic case. We have
a system whose state is composed of a continuous part and a discrete part.
They are affected by a continuous type control and an impulse control. The
dynamics is moreover perturbed by noise, also a continuous and a discrete
noise process. The Markovian character of the state process is preserved. We
develop the model and show how the dynamic programming approach leads
to some involved quasi-variational inequality.

1 Stochastic Hybrid Model

In this section we present first a formal description and next an abstract
model of hybrid control for diffusion processes. The continuous and the dis-
crete parts of the state variable have their own natural evolution, but the
main point is how they interact. Our model uses a “set-interface” (set-of-
discontinuity or set-of-marked-states) and “time-interface” (or time-of dis-
continuity) to describe the analog/digital interface. We conclude this section
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with a quick summary of the main points and assumptions of our abstract
model.

1.1 Formal Description

The time t is measured continuously. The state of the system is represented
by a continuous variable x and a discrete variable n. Similarly the control has
two parts, a continuous-type control v and a discrete-type (or impulse) con-
trol k. The intrinsic difference between the discrete and continuous variable
is not merely the fact that the former can assume only a countable number
of values, but also the way how they involve through time. A stochastic
differential equation models the continuous evolution, which affects only the
continuous state variable x. The discrete dynamics produces transitions in
both (continuous and discrete) state variables x, n. Thus, a sample trajectory
has the form (x(t), ni, t ≥ 0, i = 0, 1, . . .), where (x(t), t ≥ 0) is piecewise con-
tinuous. Let {0 ≤ t0 ≤ t1 ≤ . . . ≤ ti ≤ ti+1 ≤ . . .} be the sequence of times
at which the continuous and the discrete part of the system interact or ex-
change information (and therefore the discrete dynamics is activated). This
sequence (called “time-interface”) may or may not be part of the control.
This sequence of time-interface is generated when the state of the system
passes through a set of “marked states”, denoted by D and referred to as the
“set-interface”.

The dynamics of the system can be formally characterized as follows:
(i) if (x, n) is not in D then the variable x follows a stochastic differential
equation and the variable n remains unchanged, (ii) if (x, n) belongs to D
then a discrete transition takes place instantaneously, (iii) the continuous-
type control v acts only on the continuous transition (of the continuous state
variable x) and the impulse-type control k acts only on the discrete transition
(of the joint state variables x, n).

Assuming that the discrete transition dynamics (i) takes place instanta-
neously is not a restriction on the model. Actually this allows us to describe
in more detail the behavior of the system during a “waiting time”, i.e. the
period of time where the system is waiting (or delayed) for and impulse action
to be executed.

To preserve the Markovian character it is necessary to include all dynamic
information on the state variable (x, n) in such a way to satisfy condition (iii)
on the controllable parameters of the system. This is not a restriction on the
model, it is only a convenient normalization for modeling.
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If the sequence of time-interface is not part of the control then the set-
interfaceD is given a priori. Otherwise, the set-interface is part of the control
and subject to various constrains.

Since the discrete transitions are instantaneous, it is natural (in most
cases) to assume that a continuous transition must follow any discrete tran-
sition. In this way, the sequence of time-interface satisfies {0 ≤ t0 < t1 <
. . . < ti < ti+1 < . . .}, c.f. Remark 1.1. Thus, a sample trajectory has
the form (x(t), n(t), t ≥ 0), where x(t) is piecewise continuous and n(t) is
piecewise constant.

1.2 Abstract Model

The dynamics of the system is continuously observed at any time t in [0,+∞)
and the state variable (x, n) belongs to a subset S of Rd × Rm. Trajectories
are piecewise continuous for the continuous variable x, piecewise constant for
the discrete variable n and they are normalized to be right-continuous with
left-hand limits, and to each trajectory {(x(t), n(t)), t ≥ 0} it is associated
a unique sequence {0 ≤ t0 < t1 < . . . , < ti < ti+1 . . .} of times where
the function t 7→ (x(t), n(t)) is discontinuous. This is also referred to as the
sequences of “impulse-times”. There is a closed setD ⊂ S of “marked states”
where discontinuities of trajectories are produced, called set-interface.

Remark 1.1. Notice that two simultaneous impulses (or discrete transitions)
are not allowed. This may look as a restriction, however the number of
impulses in a bounded time-interval is usually a priori finite (otherwise a finite
terminal-time would exist). In our model, an impulse can be decomposed into
several simultaneous impulses-per-coordinate. Thus, by adding more state
variables, we can include in our model the case where a finite number of
simultaneous impulses is allowed. 2

A continuous-type control is a measurable stochastic process v(t) taking
values in a compact subset V of Rp; and an impulse-type control is a sequence
{k0, k1, . . . , ki, ki+1, . . .} of random variables with values in a compact subset
K of Rq. The impulse-type control satisfy some “compatibility” restrictions
imposed by the set-interface D, which we will discuss later.

To describe the dynamics, we need to consider a d1-dimensional Wiener
process (w(t), t ≥ 0) in a complete probability space (Ω, F, P ), and a se-
quence (ζ1, ζ2, . . .) of i.i.d. m1-dimensional random variables, which are in-



A. Bensoussan and J.L. Menaldi 4

dependent of the Wiener process. On D the discrete transition is used,{
x(ti) = X(x(ti−), n(ti−), ki, ζi+1),

n(ti) = N(x(ti−), n(ti−), ki, ζi+1),
(1.1)

where the notation (ti−) means the left-hand limit and the transition func-
tions X,N satisfy

(X,N) : D×K×Rm1 → S\D, continuous. (1.2)

While in S\D, the continuous evolution is activated for t > ti,{
dx(t) = g(x(t), n(t), v(t))dt+ σ(x(t), n(t))dw(t),

n(t) = n(ti),
(1.3)

until the hitting time of D

ti+1 = T (ti, x(ti), n(ti), v(·)) (1.4)

defined by

T (ti, x(ti), n(ti), v(·)) = inf
{
t > ti; (x(t−), n(t−)) ∈ D

}
(1.5)

which is set equal to +∞ if the process never hits the target D. Thus, by
induction on (1.1), (1.3) and (1.4) we construct the process (x(t), n(t), t ≥ 0).

It is clear that we must assume that the continuous-type control (v(t), t ≥
0) is non-anticipative w.r.t. the Wiener process, i.e.

v(t) is independent of w(s)−w(t), ∀s > t. (1.6)

Similarly, the impulse-type control is non-anticipative w.r.t. the sequence of
i.i.d. random variables, i.e.

ki is independent of ζj, ∀j > i. (1.7)

The controlled drift g and diffusion matrix σ are continuous,

g : (S\D)×V −→ Rd, σ : S\D −→ Rd×Rd1 , (1.8)

plus some conditions (to be discussed later) to ensure a proper continuous
evolution on S\D.
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In order to generate (by means of the above induction procedure) a tra-
jectory defined for every t ≥ 0, we need to know that ti → +∞ a.s. as i→ ∞.
This issue will be considered later.

If the controller has total access to the set-interface (i.e., the action of
switching from the continuous dynamics to the discrete dynamics is always
an option) then the time-interface are part of the control instead of being
defined by (1.4). The other extreme situation is when the controller cannot
access the set-interface (i.e., the set D is given a priori). Other cases are
discussed in the next section. In short we have

dx(t) = {g(x(t), n(t), v(t)) +
∞∑
i=0

[
X(x(ti−), n(ti−), ki, ζi+1)−

− x(ti−)
]
δ(t− ti)}dt+ σ(x(t), n(t))dw(t),

n(t) =
∞∑
i=0

[
N(x(ti−), n(ti−), ki, ζi+1)− n(ti−)

]
1(ti≤t),

(1.9)

where δ is the Dirac measure.

1.3 Model Summary

The key point is the set-interface D, of which only the boundary ∂D is really
used. We suppose that there are a minimal and a maximal set-interface.
When the state reaches the minimal set, a mandatory impulse (jump or
switch) takes place. While the state belongs to the maximal set, an optional
impulse (jump or switch) may be applied, upon decision of the controller.

Summing up, the data are as follows:
state-spare S ⊂ Rd × Rm, open or closed,

minimal set-interface D
∧ ⊂ S, closed,

maximal set-interface D
∨ ⊂ S, closed, D

∧ ⊂ D
∨
,

control-spaces V ⊂ Rp, K ⊂ Rq, compact.

(1.10)

Sometimes V ×K may not be assumed compact, but then some assump-
tions on the performance index (such as coercitivity) may be needed to insure
the existence of an optimal control. The discrete and continuous transitions
are governed by

(X,N) : D
∨×K×Rm1 → S\D∧

, uniformly continuous, (1.11)
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and 
g : (S\D∧

)× V → Rd, σ : S\D∧ → Rd × Rd1 ,

uniformly continuous, bounded and such that

|g(x, n, v)− g(x′, n, v)|+ |σ(x, n)− σ(x′, n)| ≤ M |x− x′|,
(1.12)

for any x, x′, n, v and some constant M > 0.
The trajectories (x(·), n(·)) are normalized to be right continuous with

left-hand limits, the continuous component x(·) is piecewise continuous and
the discrete component n(·) is piecewise constant, and the dynamics follows
the rule

(i) a mandatory impulse is applied on D
∧
,

(ii) a continuous evolution takes place on S \D∨
,

(iii) the controller chooses either (i) or (ii) on D
∨ \D∧

.

(1.13)

Without any loss of generality the impulses (jumps or switching) are imple-
mented ”instantaneously.” When the state of the system hits the set D

∧
or

belongs to the set D
∨\D∧

and the controller chooses to switch (from con-
tinuous to discrete dynamics) an impulse is produced following the discrete
transition (1.1). The continuous evolution (1.3) takes place on S \ D

∨
and

also on D
∨\D∧

, at the controller option. It is implicitly understood that the
continuous evolution takes place in some

Sn = {x ∈ Rd : (x, n) ∈ S} (1.14)

If Sn is not the whole space Rd then some assumptions on the controlled drift
g, diffusion matrix σ and domains Sn,

D∧
n = {x ∈ Rd : (x, n) ∈ D∧} (1.15)

are needed.
Let (Ω, F, P ) be a complete probability space; (w(t), t ≥ 0) be a d1 di-

mensional Wiener space; and (ζ0, ζ1, . . . , ζi, ζi+1, . . .) be a sequence of i.i.d.
m1-dimensional random variables, which are independent of the Wiener pro-
cess.

To properly define the control process, we consider the family of σ-
algebras {F t

i , t ≥ 0, i = 1, 2, . . .} generated by (w(s), ζj, s ≤ t, j ≤ i), com-
plete and right-continuous, i.e. the smallest family of complete σ-algebras
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satisfying
w(s) and ζj are F t

i -measurables, ∀s ≤ t, j ≤ i,∩
s>t

F t
i = F t

i , ∀t ≥ 0, i = 1, 2, . . . (1.16)

A continuous-type control is a measurable stochastic process (v(t), t ≥ 0)
with values in V, and an impulse-type control is a sequence of random vari-
ables (ki, i = 0, 1, . . .) with values in K. Moreover, there are adapted to the
family of σ-algebras (F t

i , t ≥ 0, i = 1, 2, . . .). For a given initial state (x, n)
and set-interface D we proceed by induction as follows:{

if (x, n) ∈ S \D then set x(0) = x, n(0) = n,

if (x, n) ∈ D then set x(0−) = x, n(0−) = n.
(1.17)

Now, set t0 = 0 and use either{
x(ti) = X(x(ti−), n(ti−), ki, ζi+1),

n(ti) = N(x(ti−), n(ti−), ki, ζi+1),
(1.18)

or {
dx(t) = g(x(t), n(ti), v(t))dt+ σ(x(t), n(ti))dw(t),

n(t) = n(ti), ti ≤ t < ti+1,
(1.19)

and

ti+1 = inf
{
t > ti : (x(t−), n(t−) ∈ D

}
(1.20)

Notice that we start with (1.18) if (x, n) is in D and we use (1.19) otherwise.
In (1.18) the notation (ti−) means the left-hand limit.

The control satisfies{
v(t)1(t ≤ ti) is adapted to F t

i , t ≥ 0, i = 1, 2, . . . ,

ki is measurable w.r.t. F ti
i , i = 0, 1, . . . ,

(1.21)

Another way of expression is condition is to consider a sequence of controls
{vi(t) : i = 1, 2, . . .}, where vi is adapted to F ti

i and it is used only after ti,
i.e., the global control v(t) is equal to vi(t) for t in (ti, ti+1).
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Notice that the initial impulse-type control k0 (deterministic) is only used
when (x, n) is in D. We have(

x(ti−), n(ti−)
)
∈ D on [ti < ∞], ∀i = 1, 2, . . . . (1.22)

The sequence of time-interface{0 < ti < t2 < . . .} defined by (1.10) is
subordinate to the set-interface (it depends also on v(t), ki, x, n). Thus if
D

∧
= D = D

∨
[automation case] this time-interface is not directly accessible

to the controller. However, the extreme case where D
∧
= ϕ and D

∨
= S

(therefore D is any closed set in S) classic impulse or switching control), the
sequence of time-interface is completely part of the control, we may replace
(1.20) by the condition{

ti stopping time w.r.t. F t
i ,

ti < ti+1 on [ti+1 < ∞].
(1.23)

Definition 1.2 (admissible control). A control process (v(t), ki, t ≥ 0,
i = 0, 1, . . .) is called admissible w.r.t. a prescribed set-interface D and a
given initial state (x, n) if (1.21) and

ti → ∞ as i → ∞. (1.24)

are satisfied. 2

Thus, an admissible control allows us to define the controlled process
(x(t), n(t)) for any t ≥ 0. If we fix a feedback function (v, k),{

v : (S \D∧
) −→ V, k : D

∨ −→ K,

v(t) = v(x(t), n(t)), ki = k(x(ti−), n(ti−))
(1.25)

then we obtain a Markov process.
It may happen that the impulsive dynamic has to be used several times

before switching to the continuous evolution. In this case we use the conven-
tion

ni+1 = N(x(ti−), ni, ki, ζi+1), n(ti−) = ni, (1.26)

so that essentially we keep record of the transitions (n1, n2, . . .), but we denote
by n(ti−) the state ni. Thus, the actual evolution of the state of system is
(x(t), ni, t ≥ 0, i = 0, 1, . . .).
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As discussed later, a natural condition to obtain admissible controls is to
impose the condition{

∃ c > 0 such that ∀z, ∀k ∈ K, ∀(x, n), (ξ, η) ∈ D∧

|ξ −X(x, n, k, ζ)|+ |η −N(x, n, k, ξ)| ≥ c.
(1.27)

Even more general, if we allow up to r discrete transitions before going into
the continuous evolution, we replace X and N by their r-power Xr and N r

in the condition (1.27).

2 Controlled Hybrid Process

2.1 Autonomous Switching or Jumps

Suppose that the set interfaceD is given a priori and contains all states where
a switching or jump is enabled. Any trajectory (or path) of the controlled
hybrid process has discontinuities when hitting the set D. These switching
and jumps are autonomous, and the set D is not part of the control, i.e. the
controller cannot modify the set D = D

∧
= D

∨
.

The controller selects a dynamics by means of the discrete variable n. We
assume that{

Sn =
{
x ∈ Rd : (x, n) ∈ S

}
is open,

Dn =
{
x ∈ Rd : (x, n) ∈ D

}
is closed

(2.1)

(the set Sn may also be the closure of an open set) and usually require that

N =
{
n ∈ Rm : Sn ̸= ϕ

}
is countable, (2.2)

and

the boundary ∂Sn is piecewise smooth. (2.3)

Thus the continuous evolution is well defined until the first exit time of
(x(t−), n(t−)) from S. It is clear that the discrete (or impulse) transition X
and N may be called the jump and switching (respect.) transition functions.
Some natural examples may be represented by the case where

Dn = ∂Sn, (2.4)
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and the values of the discrete variable n (i.e., the set N) need not be count-
able.

For the non-degenerate case (i.e. σ(x, n) is invertible) the continuous
evolution will leave any bounded region Sn. Thus a controller/modeler deci-
sion should be taken on the boundary ∂Sn. For instance, we may stop the
process at the first exit time from Sn; or we may produce a reflection on the
boundary; or even a jump so that ∂Sn is a part of Dn. These situations will
be discussed, in some detail later.

Notice that this model can be regarded as a “stochastic differential au-
tomation” following the approach in Tavernini [27] and more general as in
Back et al. [3], Branicky et al. [12].

In order to be sure that at least for some control we do not have infinitely
many impulses simultaneously, we need the following assumption:

sup
k∈K

inf
(x,n),(ξ,η)∈D

{
|ξ−X(x, n, k, ζ)|+|η−N(x, n, k, ζ)|

}
≥ c > 0. (2.5)

On the other hand, if we do not allow simultaneous impulses for any control
then we may impose

inf
k∈K

inf
(x,n),(ξ,η)∈D

{
|ξ−X(x, n, k, ζ)|+|η−N(x, n, k, ζ)|

}
≥ c > 0, (2.6)

in lieu of (2.5). Both for any ζ in Rm1 .
As mentioned above, to check that the trajectories (x(t), n(t)) are well

defined we need to know that ti+1 > ti and if possible that ti → ∞ or i → ∞.
Assumptions of the type (2.5) or (2.6) give reason to the so-called “im-

pulse with state-delay”.

Definition 2.1 (state-delay). The dynamic of a system, has a deterministic
state-delay δ > 0 if for any two consecutive impulses ti and ti+1 we have
|x(ti+1−)− x(ti)| ≥ δ, with probability 1. 2

Consider the stopping time{
T (x, n, t, v) = inf

{
s > t : (y(s), n) ∈ D

}
,

y(t) = x, dy(s) = g(y(s), n, v(s))ds+ σ(y(s), n)dw(s).
(2.7)

By construction we have

ti+1−ti = T (x(ti), n(ti), ti, v(·)), ∀i. (2.8)
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So that, if we define{
τ(x, n, t, v) = inf

{
s > t : |y(s)− x| ≥ δ

}
,

y(t) = x, dy(s) = g(y(s), n, v(s))ds+ σ(y(s), n)dw(s),
(2.9)

we see that condition (2.6) implies

T (x, n, t, v) ≥ τ(x, n, t, v), ∀x, n, t, v(·) (2.10)

for δ = c. Thus, under assumption (2.6) our system has a deterministic
state-delay for any choice of controls. Similarly, condition (2.5) provides a
state-delay for certain choice of controls.

Theorem 2.2. Under the assumptions (1.11) and (1.12), any state-delay
system has its trajectories well defined, i.e., ti+1 > ti → +∞. Moreover, we
have the estimate

E{e−ατ} ≤ ||g||2 + ||σ||2

αδ + ||g||2 + ||σ||2
, ∀x, n, t, v(·), (2.11)

where τ, δ are as in (2.9), α ≥ 1 and || · || denotes the supremum norm.

Proof. Since

−|g(y, n, v)|2+2(g(y, n, v), y−x)−α|y−x|2 ≤ 0

if α ≥ 1, we have

2(g(y, n, v), y − x) + tr[σσ∗(y, n)]− α|y − x|2 ≤
≤ ∥g∥2 + ∥σ∥2.

Thus form Itô’s formula we deduce

E{|y(τ)−x|2e−ατ} ≤ (∥g∥2+∥σ∥2)E{1− e−ατ

α
},

where τ and y(·) are given by (2.9). Hence[
δ+

1

α
(∥g∥2+∥σ∥2)

]
E
{
e−ατ

}
≤ 1

α
(∥g∥2+∥σ∥2)

which implies (2.11) and the desired result. 2

Remark 2.3. If we assume (2.6) then the dynamic system has a (determinis-
tic) state-delay δ > 0 and Theorem 2.2 can be applied. On the other hand, if
we only assume (2.5) then Theorem 2.2 will apply only for controls satisfying
(2.5). 2

Let us mention that to study the continuity of the trajectory with respect
to the initial state is a delicate issue, which is not discussed here.
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2.2 Totally Controlled Switching or Jumps

The big difference with the previous section is the fact that the set-interface
D is now part of the control. The qualifier “totally” refer to the case where
D

∧
= ∅, i.e., there are not mandatory switching or jumps but in the region

S \ D
∨
, only continuous evolution is allowed. In this case, we extend the

definition of the function (X,N) as follows(
X(x, n, ·, ·), N(x, n, ·, ·)

)
= (x, n), ∀(x, n) ∈ S\D∨

. (2.12)

This extension does not preserve the uniform continuity of the discrete tran-
sition function (X,N), but it is used only formally. Thus, on the region
S \D∨

we allow impulsion, but they do not actually modify the continuous
evolution.

In this case, a continuous-type control is a sequence of measurable stochas-
tic processes (v(t), t ≥ 0 with values in V, and an impulse-type control is
a sequence (ti, ki, i = 1, 2, . . .) of times ti < ti+1, for any i, and random
variables ki with values in K. Moreover, they are adapted to the family of
σ–algebras (F t

i , t ≥ 0, i = 1, 2, . . .), defined by (1.16). This means that
(a) ti is a stopping time w.r.t. F t

i+1, t0 = 0

(b) ki is measurable w.r.t. F ti
i ,

(c) v(t)1(t≤ti) is adapted to F t
i ,

(2.13)

for any i = 1, 2, . . . , cf (1.21). Because the times (ti) are totally part of the
control we may allow ti ≤ ti+1, for all i. In any case, also we impose that
ti → +∞ as i → ∞ to have an admissible control, cf. Definition1.2.

To define the controlled process (x(t), n(t)) with initial state (x, n) and
controls (v(t), t ≥ 0), (ti, ki, i = 1, 2, ...) we proceed as follows by induction.
Set t0 = 0, and{

if ti > 0 then set x(t0) = x, n(t0) = n,

if t1 = 0 then set x(t0−) = x, n(t0−) = n.
(2.14)

Now, use either the discrete transition{
x(ti) = X(x(ti−), n(ti−), ki, ζi+1),

n(ti) = N(x(ti−), n(ti−), ki, ζi+1),
(2.15)
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or the continuous transition (evolution){
dx(t) = g(x(t), n(ti), v(t))dt+ σ(x(t), n(ti))dw(t),

n(t) = n(ti), ti ≤ t < ti+1.
(2.16)

Comparing with the construction in the previous section, we notice that the
exit time expression by (1.20) is necessary. Also, recall that the non impulsion
restriction on the region S−D

∨
is enforced by the “singular” extension (2.12).

There is a vast bibliography on this class of problems, but without the
discrete variable n (i.e. S ⊂ Rd, all continuous-type variables) and with
S = D

∨
(cf. Bensoussan and Lions [7]).

Note that in this open-loop setting (2.14),. . . , (2.16), the set-interface has
no reference, even no reference to D∨ . However, for a feedback formulation
we need to use a set-interface D ⊂ D

∨
, a continuous-type feedback function

v : (S\D) −→ V, Borel measurable (2.17)

and an impulse-type feedback function

k : D −→ K, Borel measurable. (2.18)

We proceed as in (1.17),. . . , (1.20) with{
ki = k(x(ti−), n(ti−)), i = 0, 1, ...

v(t) = v(x(t), n(t)), ti < t < ti+1.
(2.19)

For the open-loop controls we can study the continuity w.r.t. the initial
data. Let us assume that the coefficients are bounded, Lipschitz continuous
in the state variable (on S \ D

∨
) and uniformly continuous in the control

variable i.e., for some constants C,M > 0 we have{
|g(x, n, v)|+ |σ(x, n)|+ |x− X̄(x, n, k)|+

+ |n− N̄(x, n, k)| ≤ C, ∀(x, n, k) ∈ S ×K,
(2.20)


|g(x, n, v)− g(x′, n′, v′)|+ |σ(x, n)− σ(x′, n′| ≤

≤ M
[
|x− x′|+ |n− n′|+ ρ(|v − v′|)

]
,

∀(x, n), (x′, n′) ∈ S, v, v′ ∈ V,

(2.21)
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|X̄(x, n, k)− X̄(x′, n′, k′)|+ |N̄(x, n, k)− N̄(x′, n′, k′)| ≤

≤ M
[
|x− x′|+ |n− n′|+ ρ(|k − k′)

]
,

∀(x, n), (x′, n′) ∈ S \D∨
, k, k′ ∈ K,

(2.22)

where ρ(·) is a modulus of continuity i.e., is positive, increasing and vanishing
at zero and X̄(x, n, k) = E{x(x, n, k, z1)}, N̄(x, n, k) = E{N(x, n, k, z1)}.
Notice that (X,N) has been extended to the whole space S, but usually
(2.22) does not hold on S ×K. Moreover, if the discrete state-space or the
impulse control-space is discrete (i.e., composed of only isolated points in the
Euclidian space) then all functions are continuous (or Lipschitz continuous)
in that variable.

Let (ti, ki, i = 0, 1, . . .) and (t′i, k
′
i, i = 0, 1, . . .) be two admissible impulse

control such that{
ti = t′i, ∀i = 1, 2, . . . , t0 ≤ t′0,

(ti) increases (a.s.) to +∞,
(2.23)

i.e., they have the same impulse times after the initial impulse. The number
of impulses up to the time t > 0 is given by the counting process

∞∑
i=1

1(ti≤t<ti+1) = i if t ∈ [ti, ti+1). (2.24)

We define the following (exponentially) decay process

r(t) = exp
[
−αt−(ln β)

∞∑
i=1

1(ti≤t<ti+1)

]
, t ≥ 0, (2.25)

which is adapted to the filtration Fitvti. Notice that the constant M in as-
sumptions (2.20), (2.21) and (2.22) will be used to choose α, β > 0. For
any initial states (x, n), (x′, n′) and continuous type controls v(t), v′(t), we
consider the corresponding state processes (x(t), n(t)) and (x′(t), n′(t)).

Theorem 2.4. Let’s assume D
∧
= ∅, D∧ ⊂ S, (2.20), (2.21) and (2.22).

Then with the above notation, we can choose constants α, β > 0 and M
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(depending only on the bounds in the assumptions) so that

E
{
|x(t)− x′(t)|r(t) + |n(t)− n′(t)|r(t)

}
≤ M

[
|x− x′|+

+ |n− n′|+ |t0 − t′0|1/2
]
+ E

{ ∞∑
i=0

ρ(|ki − k′
i|) r(ti)

}
+

+ E
{∫ t

0

ρ(|v(s)− v′(s)|) r(s)ds
}
,

(2.26)

where x, x′, n, n′, t0, t
′
0 are deterministic values.

Proof. Based on assumption (2.22) and the fact that the sequence (zi, i =
0, 1, ...) is i.i.d., we have{

E
{[
|x(ti)− x′(ti)|+ |ni+1 − n′

i+1|
]
r(ti)

}
≤

≤ M E
{[
|xi − x′

i|+ |ni − n′
i|+ ρ(|ki − k′

i)|
]
r(ti)

}
,

(2.27)

for any i = 1, 2, ...
Now, we use Itô’s formula for the process z(t) = [x(t)−x′(t), n(t)−n′(t)]

and the function

t 7→
(
ε+ |z|2

)1/2
e−αt β−i, between ti and ti+1,

d
(
ε+ |z(t)|2

)1/2
e−αt β−i = ℓ(t) dt+ dMt,

where (Mt) is an Itô’s integral and

ℓ(t) =
(
ε+ |z(t)|2

)−1/2 (
x(t)− x′(t)

)
·
(
g(x(t), n(t), v(t))−

− (g(x′(t), n′(t), v′(t)
)
+
(
ε+ |z(t)|2

)−1/2 1

2
tr
[
(σ(x(t), n(t))−

− σ(x′(t), n′(t)))(σ(x(t), n(t))− σ(x′(t), n′(t)))∗
]
−

−
(
ε+ |z(t)|2

)−3/21

2
tr
[
(σ(x(t), n(t))− σ(x′(t), n′(t)))×

× (x(t)− x′(t)) (x(t), x′(t))∗(σ(x(t), n(t))− σ(x′(t), n′(t)))∗
]
.

Thus, for α large enough we have

|ℓ(t)| ≤ M ρ(|v(t)−v′(t))|) e−αtβ−i



A. Bensoussan and J.L. Menaldi 16

and

E
{[
|x(t)− x′(t)|1(ti≤t<ti+1) + |ni − n′

i|
]
e−αt β−i

}
≤

≤ E
{
M

∫ t∧ti+1

ti

ρ(|v(s)− v′(s)|) r(s)ds
}
+

+ E
{[

|x(ti)− x′(ti)|+ |ni − n′
i|
]
e−αti βi}.

Hence

E
{[

|xi+1 − x′
i+1|+ |ni − n′

i|
]
r(ti+1)

}
≤

≤ 1

β
E
{[

|x(ti)− x′(ti)|+ |ni − n′
i|
]
r(ti)

}
+

+
M

β
E
{∫ ti+1

ti

ρ(|v(s)− v′(s)|) r(s)ds
}
.

(2.28)

By means of (2.27) we get

E
{
|xi+1 − x′

i+1| r(ti+1)
}
≤ M

β
E
{
|xi − x′

i| r(ti+1)
}
+

+
M + 1

β
E
{
|ni − n′

i| r(ti)
}
+

M

β
E
{
ρ(|ki − k′

i|) r(ti)
}
+

+
M

β
E
{∫ ti+1

ti

ρ(|v(s)− v′(s)|) r(s)ds
}

and again, going back to (2.27) we have

E
{
|ni+1 − n′

i+1| r(ti+1)
}
≤ M

β
E{|xi − x′

i| r(ti)
}
+

+
M

β
E
{
|ni − n′

i| r(ti)
}
+

M

β
E
{
ρ(|ki − k′

i|) r(ti)
}
.

Now, take β ≥ 2(M + 1) to deduce

E
{[
|xi+1 − x′

i+1|+ |ni+1 − n′
i+1|

]
r(ti+1)

}
≤

≤ E
{[
|xi − x′

i|+ |ni − n′
i|
]
r(ti)

}
+ E

{
ρ(|ki − k′

i|) r(ti+1)
}
+

+ E
{∫ ti+1

ti

ρ(|v(s)− v′(s)|) r(s)ds
}
,



A. Bensoussan and J.L. Menaldi 17

which implies

E
{[

|xi − x′
i|+ |ni − n′

i|
]
r(ti)

}
≤ E

{[
|x1 − x′

1|+

+ |n1 − n′
1|
]
r(t1)

}
+ E

{ ∞∑
i=1

ρ(|ki − k′
i)| r(ti)

}
+

+ E
{∫ ∞

t1

ρ(|v(t)− v′(t)|) r(t)dt
}
.

(2.29)

On the stochastic interval [0, t1] we have only two possible impulses at
t0 ≤ t′0. So we can obtain

E
{[
|x1 − x′

1|+ |n1 − n′
1|
]
r(t1)

}
≤ M

[
|x− x′|+ |n− n′|+

+ |t0 − t′0|1/2 + ρ(|k0 − k′
0|)

]
+ E

{∫ t1

0

ρ(|v|t)− v′(t)|) r(t)dt},

from which (2.26) follows. 2

3 Dynamic programming

First we add a performance index in the form of a cost, next we study the
volume function and finally we discuss the quasi-variational inequality.

3.1 Performance index

In order to set up a control problem we need to compare control policies.
The orientation used is given through a certain performance index. In our
model, we normalize the problem to the minimization case. Therefore, we
refer to a cost to be minimized.

Our control policy affects the state of the system in several ways. A cost
is associated with each intervention.

The continuous part of control is active in the region S \ D, and a dis-
counted marginal cost.

f(x(t), n(t), v(t)) exp
(
−
∫ t

0

c(x(s), n(s), v(s))ds
)

(3.1)

is paid. Usually, the discount factor is constant, i.e.

exp
(
−
∫ t

0

c(x(s), n(s), v(s))ds
)
= e−ct (3.2)
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and because of our infinite horizon setting, we need either to assume c > 0
or to stop the system evolution after a finite time. Thus, on a single period
of continuous controlling, say [ti, ti+1], we incur a “running” cost of∫ ti+1

ti

f(x(t), n(t), r(t)) exp
(
−
∫ t

0

c(x(s), n(s), v(s))ds
)
dt. (3.3)

The impulsive part of the control is active in the region D, and a dis-
counted cost-per-impulse

ℓ(x(ti−), n(ti−), ki) exp
(
−
∫ ti

0

c(x(s), n(s), v(s))ds
)

(3.4)

must be paid. Notice that in order to make evident the fact that the optional
decision of switching from continuous to discrete evolution has some cost, we
need to impose

ℓ(x, n, k) ≥ ℓ0 > 0, ∀(x, n) ∈ D
∨\D∧

, ∀k ∈ K. (3.5)

Actually, this condition establishes the key condition between a continuous-
type control and an impulse-type control.

For a given control policy v = v(·), k = k(·) we have a total “expected”
cost given by

Jx,n(v, k) = E
{ +∞∫

0

f(x(t), n(t), v(t))ev,k(t)dt+

+
∞∑
i=0

ℓ(x(ti−), n(ti−), k(ti−))ev,k(ti)}

(3.6)

where ev,k(t) = exp
(
−
∫ t

0
c(x(s), n(s), v(s))ds

)
, and (x, n) is the initial state.

Therefore, the data are the following functions{
f, c : S × V −→ [0 +∞), uniformly continuous

ℓ : D
∧ ×K −→ [0 +∞), uniformly continuous

(3.7)

and all three functions are bounded and (3.5) holds. Sometime, we only have

f, c : (S \D∧
)×V −→ [0+∞) (3.8)

be bounded and uniformly continuous and the restriction of ℓ to (D
∨\D∧)×K

and to (D
∧
)×K are bounded and uniformly continuous.
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3.2 Value function

Let us denote by P the set of admissible control policies, i.e. the set of
measurable stochastic processes (v(t), t ≥ 0) with values in V, the sequence
of random variables (k0, k1, . . .) with values in K and a sequence of times
(t0, t1, . . .) satisfying (2.13) and such that

0 = t0 ≤ t1 ≤ ... ≤ ti ≤ ti+1 ≤ ..., ti → +∞ as i → +∞ (3.9)

and

ti+1 = inf
{
t ≥ ti : (x(t−), n(t−)) ∈ D

}
(3.10)

for some closed set D satisfying

D
∧ ⊂ D ⊂ D

∧
. (3.11)

The value function or optimal (minimal) cost is given by

v(x, n) = inf
{
Jx,n(v, k) : (v, k) ∈ P

}
. (3.12)

To discuss some “implementable” approximation of the value function
we consider two relatively trivial approximation methods for the trajectory.
Given an admissible impulse control policy k, we denote by kε and kε, for
ε > 0, the two impulse control policies constructed as follows:

kε is identical to k up to the first [1/ε]

(mandatory or optional) impulses, and

afterward, only mandatory impulses are applied

(3.13)

and 
kε is identical to k up to the first [1/ε]

(mandatory or optional) impulses, and

no more impulses are applied,

(3.14)

where [1/ε] denotes the largest integer number inferior or equal to 1/ε. No-
tice that in our terminology, the impulse control input kε is admissible, but
kε may not be so. If we represent the policy k by the sequence (t0, t1, . . .)
and (k0, k1, . . .) then we see that the policy kε is represented by sequences
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(t0, t1, . . . , ti, t
ε
i+1, t

ε
i+2 . . .), and (k0, k1, . . .), where [1/ε] = i + 1 are manda-

tory or optional impulses and (tεi+1, t
ε
i+2, . . .) are mandatory impulses only.

Similarly, the policy kε is represented by finite sequences (t0, t1, ..., ti) and
(k0, k1, . . . , ki), where again i is equal to [1/ε] − 1. For the sake of simplic-
ity with notation, we identify any finite sequence, e.g. (t0, t1, . . . , ti), with
a sequence with infinite symbols, i.e. with (t0, t1, . . . , ti,∞,∞, . . .). This is
necessary for the sequence of time-interfaces, but useless for the sequence of
impulses.

It is clear that, for a given admissible control policy (v, k), the construc-
tion of Section 1 allows us to define trajectories (x(·), n(·)), (xε(·), nε(·)) and
(xε(·), nε(·)) associated with the control inputs (v, k), (v, kε) and (v, kε), re-
spectively. Moreover{

(x(t), n(t)) = (xε(t), nε(t)), ∀t ∈ [0, τε),

(x(t), n(t)) = (xε(t), nε(t)), ∀t ∈ [0, τ ε),
(3.15)

where both times satisfy

τε, τ
ε → +∞ as ε → 0. (3.16)

Recall that in order to avoid an undesirable accumulation of little jumps
for autonomous jump/switching mechanism we need to assume (2.5) or (2.6).
On the other hand, for an infinite horizon we need to assume that

c(x, n, v) ≥ c0 > 0, ∀(x, n) ∈ S, ∀v ∈ V. (3.17)

Otherwise, we need to work on a finite horizon i.e. to assume that one of the
continuous state variables, say the σ1(x, n) = 0, first one, is the time, so for
any x = (t, x′), n, v, k we have

g1(x, n, v) = 1, σ(x, n), X1(x, n, k) = t, (3.18)

f(x, n, v) = ℓ(x, n, k) = 0 if t ≥ τ, (3.19)

for some finite time τ > 0. Clearly, another alternative may be also consid-
ered. Notice that under (3.18) and (3.19), we count only impulses which are
strictly before the final time τ. In the discounted cost-per-impulse (3.4) we
assumed implicitly c(·) > 0, otherwise we need to add a factor which is equal
to 1 only if ti < +∞ (or ti < τ) and it is equal to 0 otherwise. This resolves
the incompatibility of (3.5) and (3.19) for a continuous data ℓ.
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Denote by Pε and P ε the set of all control policies constructed as in (3.13)
and (3.14).

uε(x, n) = inf
{
Jx,n(v, kε) : (v, kε) ∈ Pε

}
, (3.20)

and

uε(x, n) = inf
{
Jx,n(v, k

ε) : (v, kε) ∈ Pε

}
, (3.21)

where the cost is given again by (3.6). Since Pε ⊂ P we have u, which is not
true (in general) for uε instead of uε.

Contrary to the deterministic case, we do not have a (deterministic) time-
delay, i.e. some k0 > 0 such that ti+1 ≥ ti+k0 for two consecutive mandatory
impulses. Under the condition (2.5) or (2.6) we only have a so-called state-
delay, of Definition 2.1.

Theorem 3.1. Let the assumptions (1.10), (1.11), (1.12), (1.27), (3.5), (3.8),
(3.17) [or (3.9) and (3.19)], and (3.23) be satisfied. Then all (admissible)
control policies in Pε have finite costs (which is almost obvious for policies
in P ε). Moreover we have the estimates

0 ≤ uε(x, n)−u(x, n) ≤ Cεr, ∀(x, n) ∈ S, (3.22)

|uε(x, n)−u(x, n)| ≤ Cεr, ∀(x, n) ∈ S, (3.23)

for the values functions (3.12), (3.12), (3.20), (3.21) and for some positive
constants C, r depending only on the various hypotheses. 2

At this point, we may proceed as in the deterministic case. Most of the
results remain true, however, some more details are necessary.

3.3 Quasi-variational inequalities

Either the dynamic programming principle (e.g. Bellman [5]) or the (open-
loop) maximum principle (Pontryagin et al. [25]) formally express the fact
that a global (in the time horizon) optimal trajectory is also locally (in the
time horizon) optimal. In another way, the optimality is a local property and
therefore the feedback control policy should be optimal all the time. In our
case, a feedback control policy is as follows:
(i) on D∧ we must apply an impulse (mandatory, impulsive control),
(ii) on D∨ \D∧ we may apply an impulse (optional impulsive control),
(iii) if an optional impulse is not applied, then a continuous control is used.
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Since these three actions are mutually exclusive, an optimal feedback
control should optimize all of them. Thus, the value function (3.13) should
satisfy (in some appropriate sense!) the conditions:

u(x, n) ≤ ℓ(x, n, k) + u(X(x, n, k), N(x, n, k)), (3.24)

∀(x, n) ∈ D∧, ∀k ∈ K,

u(x, n) ≤ ℓ(x, n, k) + u(X(x, n, k), N(x, n, k)), (3.25)

∀(x, n) ∈ D∨ \D∧, ∀k ∈ K, and

c(x, n, v)u(x, n) ≤ f(x, n, v) + g(x, n, v) · ∂u
∂x

(x, n), (3.26)

∀(x, n) ∈ S \ D∧, ∀v ∈ V, and the optimal (feedback) control policy should
be such that the equality holds (i.e. the inequality is tight) at least for one
of the inequalities (3.24), (3.25) or (3.26) at any time (i.e. for any states
x, n). This set of conditions was referred to as “quasi-variational inequal-
ities” (QVI) under other assumptions. Without the discrete state variable
n (and all its consequences) we can find several references, e.g. the books
of Bensoussan and Lions [7] for stochastic diffusion processes, Davis [16] for
piecewise deterministic process, and e.g. the papers by Menaldi [22, 23] for
degenerate dynamics, among others. Once the model has been properly set,
most of the techniques of the above references can be adapted to this new
situation. Clearly, new difficulties and challenges need to be considered.

To properly phrase the dynamic programming principle we need some
notation:

Mφ(x, n) = inf
{
E[φ(X(x, n, k, ζ1), N(x, n, k, ζ1))] +

+ℓ(x, n, k) : k ∈ K
}

(3.27)

defined for bounded functions, and the continuous part of the Hamiltonian
operator

Hφ(x, n) = min
{
(1/c(x, n, v))

(
f(x, n, v) + g(x, n, v) · ∇xφ(x, n) +

+(1/2)tr[σ(x, n)σ∗(x, n)∇2
xφ(x, n)]

)
: v ∈ V

}
,(3.28)

where ∇xφ = ∂φ
∂x

is the gradient in the first variable x and ∇2
xφ is the hessian.

Thus we can rewrite the QVI as

u(x, n) = Mu(x, n), ∀(x, n) ∈ D∧ (3.29)



A. Bensoussan and J.L. Menaldi 23

u(x, n) = min{Hu(x, n),Mu(x, n)} ∀(x, n) ∈ D∨ \D∧, (3.30)

u(x, n) = Hu(x, n) ∀(x, n) ∈ S \D∨, (3.31)

with the above notation. Similarly to the case deterministic, we can obtain

Theorem 3.2. Let us assume (1.10), (1.11), (1.12), (3.5), (3.7), (3.17) [or
(3.18) and (3.19). Then the following versions of the dynamic programming
principle hold true

u(x, n) = inf
(v,k)

E
{∫ t0

0

f(x(t), n(t), v(t))ev,k(t)dt+

+Mu(x(t0−), n(t0−))ev,k(t0)
}
, (3.32)

and 
u(x, n) = inf

(v,k)
E
{∫ τ

0

f(x(t), n(t), v(t))ev,k(t)dt+

+
∞∑
i=0

ℓ(x(ti−), n(ti−), ki)ev,k(ti)1(ti<τ)+

+u(x(τ−), n(τ−))ev,k(τ)Big},

(3.33)

where t0 is the first impulse-time of the admissible control policy (v, k), τ ≥ 0
is an arbitrary time [which may depend on the policy v, k],

ev,k(t) = exp(−
∫ t

0

c(x(s), n(s), v(s))ds) (3.34)

is the discount factor (or rate) and u(x, n) is the value function defined by
(3.13). 2

At this point, we do not have a tool to show that the value function u(x, n)
given by (3.32) is differentiable everywhere. However, under the assumptions
of the previous theorem we have the equality (3.29). Moreover, if the value
function u is continuous, and twice differentiable in the first variable at the
point (x, n) then we have either (3.30) or (3.31) depending on where the
point (x, n) belong.

The above analysis can be extended to the approximate value functions
(3.20) and (3.21). This requires the use of “variational inequalities”.
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3.4 Viscosity solutions

If the system is non-degenerate, i.e., σ−1(x, n) exists and is bounded, then
the classic treatment as in Bensoussan and Lions [7] can be used. For the
degenerate case, we may us the semigroup formulation and the concept of
maximum solution, e.g., Bensousaan [6], Menaldi [22, 23]. An alternative
powerful and elegant way is to use the so-called viscosity solutions, e.g. see
Crandall et al. [15], Fleming and Soner [18], Lions [20].

It may be important to realize at this moment that the discrete state
variable n plays the role of a parameter in the Hamiltonian (3.28). Its only
active role is within the non-local operator (3.27). Thus, our “hybrid” QVI
or Hamilton-Jacobi-Bellman (HJB) equation can be viewed as a system of
HJB equation in the continuous state variable x, indexed by the discrete
state variable n, and couples through the infimum-type operator M defined
by (3.27).

The Hamiltonian (3.28) was written as a minimum [as well as condition
(3.30)] to emphasize the fact that originally, the performance criterion was
to minimize a cost functional [instead of maximizing the utility, for instance].
However, to deal with viscosity arguments and agree with standard notation,
we need to rewrite the Hamiltonian (3.28) as a maximum, i.e.

H(x, n, r, p) = max{c(x, n, v)r − g(x, n, v)·p− f(x, n, v) : v ∈ V },(3.35)

and the HJB equation is then

u(x, n) = Mu(x, n), ∀(x, n) ∈ D∧ (3.36) max{−1

2
tr(σσ∗(x, n)

∂2u

∂x
(x, n)) +H(x, n, u(x, n),

∂u

∂x
(x, n)),

, u(x, n)−Mu(x, n)} = 0, ∀(x, n) ∈ D∨ \D∧
(3.37)

 −1

2
tr(σσ∗(x, n)

∂2u

∂x
(x, n) +H(x, n, u(x, n),

∂u

∂x
(x, n)) = 0,

∀(x, n) ∈ S \D∨.
(3.38)

Sometimes, one may want to include the second order derivative into the
Hamiltonian (3.35), i.e., H̄(x, n, r, p, q) = max{c(x, n, v)r − g(x, n, v) · p−

−1

2
tr(σσ∗(x, n)q − f(x, n, v) : v ∈ V },

(3.39)
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which becomes relevant when the diffusion coefficient σ is allowed to depend
on the continuous-type control v. For the sake of simplicity, we do not include
this case, even if the viscosity technique is very well adapted to this situation.

Let us recall one of the several equivalent ways of defining what is a
continuous viscosity solution.

Definition 3.3. Denote by BUC(S) the space of bounded and uniformly
continuous function in S. We say that a function w is a viscosity sub-(resp.
super-) solution of the HJB equation (3.36), (3.37) and (3.38) if for any
smooth function φ [e.g. bounded, with continuous and bounded second order
derivative, φ = φ(x)] the following property holds. At each local maximum
(resp. minimum) point (x0, n) of w(x, n)− φ(x) in Sn \D∧

n we have:
either (x0, n) ∈ Sn \D∨

n and
(i) H̄(x0, n, w(x0, n),∇xφ(x0),∇2

xφ(x0)) ≤ 0 (resp. ≥ 0),
or (x0, n) ∈ D∨

n \D∧
n and

(ii) max{H̄(x0, n, w(x0, n),∇xφ(x0),∇2
xφ(x0)), w(x0, n)−

−Mw(x0, n)} ≤ 0 (resp. ≥ 0).

(3.40)

Notice the fact that n is an “index parameter”1 for the property (3.40). A
viscosity solution is a sub- and super-solution simultaneously. 2

Other equivalent definitions may be used, e.g. we may replace the ”local”
character in (3.40) with “global”, and in that case we may even replace Mw
by Mφ for (3.40).

Noticing that only continuity and boundness in S \ D∧ is used for the
viscosity definition, we can use the same technique of Theorem 3.2 to prove
the following result.

Theorem 3.4. Under the assumptions of Theorem 3.2 and if uε is contin-
uous in S \ D∧, we deduce that the value function u, given by (3.12), is a
continuous [may not be uniformly continuous] viscosity solution of (3.37) and
(3.38). 2

In order to incorporate the boundary condition (3.36) into the (viscosity)
QVI (3.37) and (3.38), we need to discuss more details on the continuity
assumption. First, it is clear that only the boundary points of D∧ will play
some active role. So, we assume that D∧ is a piecewise smooth boundary

1recall that viscosity solutions for system of equations have not yet been considered,
here the system is coupled only through the “infimum-type” operator M
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(of some dimension strictly inferior to d, the dimension of the continuous
state variable x), i.e. for some function ρ(x, n), piecewise twice-continuously
differentiable in x and continuous in n we have the representation{

D∧ = {(x, n) ∈ S : ρ(x, n) = 0},
|∇xρ(x, n)| ≥ ρ0 > 0, ∀(x, n) ∈ D∧.

(3.41)

In most of the cases, we state that the continuous evolution would transverse
this boundary D∧ if the automata jump/switch were not present. Then, it
is natural to assume that for some constant c0 > 0{

|(1/2)tr(σσ∗(x, n)∇2
xρ(x, n) +∇xρ(x, n) · g(x, n, v)| ≥ c0 > 0,

∀(x, n) ∈ D∧, ∀v ∈ V.
(3.42)

Sometimes, a weaker version of 3.42, namely{
∀(x, n) ∈ D∧ ∃v ∈ V such that
|(1/2)tr(σσ∗(x, n)∇2

xρ(x, n) +∇xρ(x, n) · g(x, n, v)| ≥ c0 > 0
(3.43)

may suffice. The analysis is however easier under 3.42. By continuity, the
inequality 3.42 holds in a neighborhood of D∧, denoted by

Sε = {(x, n) ∈ S : dist((x, n), D∧) < ε}, (3.44)

for some ε > 0. It makes sense to define
S+
ε =

{
(x, n) ∈ Sε \D∧ : (1/2)tr(σσ∗(x, n)∇2

xρ(x, n)+

+∇xρ(x, n) · g(x, n, ·) ≥ c0/2, if ρ(x, n) < 0,

or (1/2)tr(σσ∗(x, n)∇2
xρ(x, n)+

+∇xρ(x, n) · g(x, n, ·) ≤ −c0/2 if ρ(x, n) > 0
}(3.45)

and its complement S−
ε = Sε \ (S+

ε ∪D∧).
We see that under the continuous evolution, points in S+

ε are attracted
(directed toward) by D∧, but, points in S−

ε are repelled (directed backward)
byD∧. Hence, if we can approachD∧ by points in S−

ε , then we see a “natural”
discontinuity. Any trajectory, where the jump-transition X produces jumps
on D∧, is going to be discontinuous across D∧ if we are coming from S−

ε . It
is clear that this discontinuity is passed to the value function 3.12. Viscosity
solution can be discontinuous, but its treatment is more delicate. To avoid
this situation, we will assume that

X(x, n, k, ζ) = x, ∀x ∈ S
−
ε ∩D∧, (3.46)
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which is somehow equivalent to assume that S−
ε is empty.

The boundary condition (3.36) is then translated to

max
{
H̄(x, n, u(x, n),∇xu(x, n),∇2

xu(x, n)),

, u(x, n)−Mu(x, n)
}
= 0, ∀(x, n) ∈ S

−
ε ∩D∧ (3.47)

and

u(x, n) = Mu(x, n), ∀(x, n) ∈ D∧ \ S−
ε . (3.48)

It is clear that (3.47) is going to be understood in the viscosity sense [like

(3.40)] and that (3.48) makes sense in view of the continuity across D∧ \S−
ε .

In order to simplify this presentation, we will assume that

D∧ = ∅ and {x ∈ Rd : (x, n) ∈ S} = Rd (3.49)

so that no boundaries are considered. Without (3.49), the discussion is more
complicate and a more fine analysis is necessary.

Theorem 3.5. Let the assumptions of Theorem3.2 and condition (3.49) hold
true. Then the value function (3.12) is the unique bounded and uniformly
continuous viscosity solution of the QVI (3.47), (3.48), (3.37) and (3.38). 2

The proof is very similar to the one in [8] and the guidelines in Cran-
dall et al. [15], Fleming and Soner [18], Lions [20]. For convenient to the
reader, several references regarding hybrid (deterministic) control problems
and related subject have been added. Specific comments were made in [8].
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