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A B S T R A C T   

Single nucleotide polymorphism (SNP) data generated with microarray technologies have been used to solve 
murder cases via investigative leads obtained from identifying relatives of the unknown perpetrator included in 
accessible genomic databases, an approach referred to as investigative genetic genealogy (IGG). However, SNP 
microarrays were developed for relatively high input DNA quantity and quality, while DNA typically obtainable 
from crime scene stains is of low DNA quantity and quality, and SNP microarray data obtained from compro
mised DNA are largely missing. By applying the Illumina Global Screening Array (GSA) to 264 DNA samples with 
systematically altered quantity and quality, we empirically tested the impact of SNP microarray analysis of 
compromised DNA on kinship classification success, as relevant in IGG. Reference data from manufacturer- 
recommended input DNA quality and quantity were used to estimate genotype accuracy in the compromised 
DNA samples and for simulating data of different degree relatives. Although stepwise decrease of input DNA 
amount from 200 ng to 6.25 pg led to decreased SNP call rates and increased genotyping errors, kinship clas
sification success did not decrease down to 250 pg for siblings and 1st cousins, 1 ng for 2nd cousins, while at 25 
pg and below kinship classification success was zero. Stepwise decrease of input DNA quality via increased DNA 
fragmentation resulted in the decrease of genotyping accuracy as well as kinship classification success, which 
went down to zero at the average DNA fragment size of 150 base pairs. Combining decreased DNA quantity and 
quality in mock casework and skeletal samples further highlighted possibilities and limitations. Overall, GSA 
analysis achieved maximal kinship classification success from 800 to 200 times lower input DNA quantities than 
manufacturer-recommended, although DNA quality plays a key role too, while compromised DNA produced false 
negative kinship classifications rather than false positive ones.   
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1. Introduction 

For almost three decades, forensic DNA profiling with standard sets 
of polymorphic short tandem repeat (STR) markers has successfully 
been used to identify perpetrators of crime, thereby contributing to
wards solving numerous criminal cases worldwide [1,2]. However, in 
principle, forensic STR profiling is unsuitable for identifying unknown 
perpetrators, whose STR profiles are not yet included in national 
forensic DNA databases or are unknown to the investigative authorities 
otherwise. This consequently leads to cold cases with STR profiles of 
crime scene stains being available but not matching any known suspect, 
including all criminal offenders stored in the national forensic DNA 
database. Such situation allows perpetrators to continue their criminal 
activities and justice is denied to victims of crime or their families. 

Over the last years, several DNA-based approaches for tracing un
known perpetrators have emerged. One such way is to use the STR- 
profile of the unknown to search for family members of the unknown 
in the national forensic DNA database (i.e., familial search) [3]. This 
approach, however, is limited in its success to first degree relatives, 
because of the limited number of autosomal STRs used in routine 
forensic DNA profiling [4]. Notably, this disadvantage can be overcome 
by applying male-specific STRs from non-recombining regions of the 
Y-chromosome (Y-STRs) that can highlight male relatives of the un
known male perpetrator, given that the vast majority of perpetrators of 
major crimes are males [5]. However, because forensic DNA databases 
in almost all countries consist of DNA profiles from autosomal STRs, but 
not from Y-chromosomal STRs, familial search based on Y-STRs is 
restricted to voluntary DNA mass screenings [5]. A more indirect way to 
trace unknown perpetrators via focused police investigation is through 
investigative leads obtained via the prediction of externally visible 
characteristics of the unknown stain donor from crime scene DNA, 
including appearance traits [6], bio-geographic ancestry [7], and 
chronological age [8], in the context of Forensic DNA Phenotyping [9]. 
Most recently, investigative genetic genealogy (IGG) has started to 
emerge as new approach to trace unknown perpetrators with the help of 
DNA [4,10]. 

IGG, also known as forensic genetic genealogy (FGG), is based on 
genomic data from hundreds of thousands of autosomal single nucleo
tide polymorphisms (SNPs) typically generated with SNP microarray 
technology [10]. Because of the large number of autosomal SNPs 
involved, IGG allows close and distant relatives from both, maternal and 
paternal sides to be identified [4,11]. Over the last years, genomic da
tabases consisting of high-density SNP data have emerged, albeit outside 
the forensic field. Instead of governmental authorities, these genetic 
genealogy databases are managed by private companies or private cit
izens, such as GEDmatch consisting of around 1.3 million high-density 
SNP profiles as of 2020 [12]. The most commonly used method for 
identifying relatives in IGG is via DNA segments shared between the 
unknown perpetrator obtained from crime scene DNA and individuals in 
genomic databases [10,13,14]. These identical-by-descend (IBD) seg
ments that originate from the same ancestor signal a familial relation 
between the highlighted person in the genomic database and the un
known perpetrator, and the length of the shared segments translates into 
how close the family relationship is. Police investigation to find the 
unknown perpetrator is then focused on the highlighted relative via 
genealogical research [10]. 

The resolution of the Golden State Killer case in the USA, together 
with several other cases, demonstrated the power of IGG [15,16]. As of 
November 2020, IGG had assisted in over 200 cold cases, of which at 
least 28 were solved [17,18]. In May 2019, GEDmatch, the most 
prominent genomic database used for IGG, updated its privacy regula
tions to require users to opt-in for law enforcement to search their SNP 
profiles, and by October 2019, only ~ 185,000 GEDmatch users had 
done this [12], reflecting a dramatic decrease of law enforcement access 
compared to previous times when GEDmatch access for law enforcement 
was unrestricted. In December 2019, the GEDmatch genomic database 

was acquired by the forensic genomics firm Verogen. Another company, 
FamilyTreeDNA (FTDNA) also hosts a SNP microarray database of 2 
million of its customers that was initially established for other than 
forensic reasons, while the company actively works with law enforce
ment to permit database access for IGG [12,19]. FTDNA customers now 
need to opt-out to restrict law enforcement from using their SNP profiles 
for searches. 

Currently, all genomic databases available for IGG consist of SNP 
microarray data obtained from DNA of customer collected cheek swab or 
saliva samples, also known as direct-to-consumer genetic testing [10]. In 
principle, SNP profiles extracted from whole genome sequencing (WGS) 
data obtained from crime scene DNA can also be used to search DTC SNP 
databases given the SNP overlap, which was recently exemplified in a 
murder case in Sweden [20]. However, genomic databases for IGG that 
are based on WGS data are yet to be established. 

Besides the various ethical, societal, regulatory, and other di
mensions in relation to the forensic use of genomic databases that were 
not established for forensic purposes [4,10,21], there is an important 
technical dimension related to SNP microarray typing of forensic DNA 
for IGG (and other) purposes. All currently available SNP microarrays 
were developed and optimized for relatively high input DNA quality and 
quantity, which typically is not available from human biological stains 
found at crime scenes. Moreover, the DNA hybridization principle un
derlying all SNP microarray technologies is not expected to be 
well-suited for compromised input DNA of low quantity and quality 
typically available from crime scene stains. While the statistical methods 
to genetically classify relatives from high-density SNP data in the 
context of IGG are being established throughout the last years [14,22], 
studies that applied SNP microarrays to compromised DNA samples are 
scarce [23–25]. More importantly, as far as we are aware, in-depth 
studies to systematically test for the impact the use of SNP micro
arrays in compromised DNA has on kinship classification success in the 
context of IGG are missing completely from the scientific literature as of 
yet. It has been recognized by several authors that the lack of empirical 
data on the performance of SNP microarrays in compromised DNA, and 
its consequence on forensic use, marks a serious problem for the forensic 
application of SNP microarrays in general and IGG in particular [4,10, 
26]. 

In this study, we performed systematic SNP microarray experiments 
on hundreds of DNA samples from multiple individuals with varying 
degrees of DNA input quantity and quality to test the impact of resulting 
SNP microarray genotyping errors on kinship classification success in 
the context of IGG. From the individual DNA samples of which we used 
DNA samples of varying quality and quantity for SNP microarray anal
ysis, we also generated high-quality reference data from the high quality 
and quantity DNA input conditions recommended by the microarray 
manufacturer. Together, these data were used to calculate genotype 
accuracy for the compromised DNA samples. The high-quality data were 
additionally used to simulate data of different degree relatives for 
kinship classification. To get further insights, we additionally performed 
SNP microarray genotyping on DNA samples with a combined decrease 
of quantity and quality i.e., DNA from mock casework samples of 
varying storage temperature, time, and artificial degradation as well as 
naturally degraded DNA obtained from skeletal remains. The overall 
SNP microarray data set we generated in this study allowed us to 
quantify the effect of decreased DNA quality and quantity on SNP 
microarray genotyping quality regarding the ability to classify relatives 
of different degrees of relationship. This data is vital for the develop
ment of IGG applications based on SNP microarray analysis of DNA 
obtained from human crime scene samples, as well as for other usage of 
SNP microarrays on low quality and/or quantity DNA in forensic genetic 
casework and anthropological genetic studies. 
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2. Materials and methods 

2.1. DNA samples 

Two types of human biological samples were used in this study: i) 
high-quality EDTA blood samples from 24 completely anonymous blood 
donors of European descent that A.U.G. received in 2003 from the 
Sanquin blood bank in Rotterdam, Netherlands, for the purpose of ge
netic research and genetic method evaluation, and ii) DNA samples from 
18 skeletons collected by a forensic pathologist after medico-legal ex
amination of human remains found on a forest surface or exhumed for 
genetic identification, at the Department of Forensic Medicine in Kra
kow, Poland, including teeth, skull bones, humeri, femoral, clavicle and 
metacarpal bone. 

2.1.1. Blood-derived DNA 
EDTA blood samples were provided by the Sanquin blood bank in 

Rotterdam in 2003 for the purpose of scientific research and method 
testing. Genomic DNA was extracted with standard salting out proced
ures from 5 ml of whole blood. The quality of each extracted DNA 
sample was assessed by measuring the OD260/280 and OD260/230 
ratios with the Nanodrop spectrophotometer (ThermoFisher Scientific, 
United States). DNA integrity was assessed by running a 0.7% agarose 
gel. DNA concentrations were initially measured with Nanodrop and the 
picogreen fluorescence assay (Invitrogen, United States). For more ac
curate measurements, DNA concentrations were also measured in trip
licate with the Investigator Quantiplex kit (Qiagen, Germany) on the 
Quantstudio 7 Flex (Applied Biosystems, United States). Only DNA 
samples with an optimal quality (OD260/280: 1.8–1.9, OD260/230: >
1.9 and DNA integrity: > 10 kbp) were selected for the mock case 
experiments. 

2.1.2. DNA derived from skeletal remains 
A set of 18 samples, including teeth, skull bones, humeri, femoral, 

clavicle and metacarpal bone, were collected by a forensic pathologist 
after medico-legal examination of human remains found on a forest 
surface or exhumed for genetic identification, at the Department of 
Forensic Medicine in Krakow, Poland. For remains found on a forest 
surface, post-mortem interval (PMI) was not available but from 
analyzing effect of environmental conditions and skeletonization of 
corpse it was concluded that PMI exceeded one year at least. PMI of 
exhumed cadavers ranged from 6,5 years to 7.5 years except for one 
man, who was arrested and shot in 1951, buried in a nameless grave and 
exhumed in 2018. The storage time prior to medico-legal examination 
and bone extraction ranged from 5 to 27 months at − 18 ◦C. Genomic 
DNA isolation was performed up to one week after sample collection. 
Firstly, bones were treated with 15% bleach, then repeatedly shaken 
with 70% ethanol and distilled water (dH2O), and finally, UV irradiated 
for 5 min on each side in a UVP CL-1000 Ultraviolet Crosslinker. After 
decontamination, samples were individually crushed and decalcified 
using EDTA buffer (0.5 M, pH 8.0). DNA was isolated using the Sherlock 
AX Kit (A&A Biotechnology, Poland) and quantified using the Investi
gator Quantiplex Kit (Qiagen) on a 7500 Real–time PCR System (Applied 
Biosystems) according to the manufacturer’s instructions. Total DNA 
amounts from the different samples ranged from 36 pg to 78,5 ng 
(Table S8). These amounts were fully consumed for GSA genotyping. All 
DNA samples were genotyped using the GlobalFiler PCR amplification 
kit (ThermoFisher Scientific) that targets 24 loci, including 21 auto
somal short tandem repeats (STRs), 1 Y-STR, and two loci, the X- and Y- 
copy, of amelogenin. Therefore, females are expected to have a 22-locus 
complete profile, whereas males a 24-loci profile. 

2.2. DNA quantity and quality setup 

2.2.1. DNA titration 
The manufacturer-recommended amount of input DNA for the 

Illumina GSA microarray is 200 ng [27]. DNA from crime scene traces 
typically is of much lower DNA quantity. In this series of experiments, 
we therefore tested for the effect of input DNA amount below the 
optimal 200 ng in terms of genotyping suboptimal amounts of DNA i.e., 
1000 pg, 250 pg, 100 pg, 50 pg, 25 pg, 12.5 pg and 6.25 pg. DNA 
amounts were via DNA titration and confirmed via a qPCR assay (Qiagen 
Investigator Quantiplex Kit). The minimal amount of 6.25 pg roughly 
equals the genomic DNA content of one human diploid cell. Given that 
for each of the 24 individuals tested we analyzed 8 different input DNA 
amounts, this DNA quantity experiment included a total of 192 DNA 
samples that were processed for SNP microarray genotyping. 

2.2.2. DNA fragmentation 
The manufacturer’s recommendation on input DNA quality for the 

Illumina GSA microarray is to use high molecular weight DNA. DNA 
samples obtained from crime scene stains are usually of low molecular 
weight due to DNA degradation caused by various factors that impact on 
biological stains at the scene of crime, such as temperature and hu
midity, or long time periods since sample deposition at the scene of 
crime prior to collection. In this series of experiments, we therefore 
tested for the effect of input DNA with decreased quality. We opted for 
DNA fragmentation as one component of DNA degradation and used the 
adaptive focused acoustics technology (Covaris), which has the advan
tage of fragmenting DNA to a preset average fragment length. For 12 
samples, randomly sampled from the initial 24, we degraded 1 ng of 
DNA to average fragment sizes of 1000 bp, 500 bp, and 150 bp as 
analyzed on the Labchip GX (Perkin Elmer). Given that for each of the 12 
individuals tested we analyzed 4 different input DNA amounts, this DNA 
quality experiment included a total of 48 DNA samples that were pro
cessed for SNP microarray genotyping. 

2.3. Mock casework samples 

To test the performance of the Illumina GSA microarray on forensic- 
type samples, we generated mock casework samples that mimic crime 
scene stains. In total, 24 bloodstains from whole blood of one of the 24 
blood donors were exposed to different conditions that are often 
encountered in forensic samples. Additionally, we tested the effects of 
PCR inhibitor hematin and non-human DNA on microarray genotyping. 

2.3.1. Blood stains 
A total of 23 bloodstains were prepared using whole blood of a single 

individual from the EDTA blood samples. The factors that we considered 
included the stain size (the volume of blood used), substrate (surface or 
material that the bloodstain was deposited on), storage temperature, 
storage time and relative humidity, as well as DNA damage (via UV 
radiation) and incubation time. Table S5 depicts the conditions under 
which all bloodstains were prepared and exposed. Genomic DNA was 
isolated using the body fluid stains protocol of the QIAamp® DNA 
Investigator kit (Qiagen) according to manufacturer’s instructions. DNA 
was quantified using the Quantifiler™ Human DNA Quantification kit 
(Qiagen) on a CFX96 Touch Real-time PCR Detection System (Bio-Rad, 
United States). Total DNA amounts from these mock bloodstains ranged 
from 167 pg to 127.8 ng. In all cases the full DNA amount (Table S5) was 
used as input to the array. 

2.3.2. Hematin inhibition 
PCR inhibitors, such as hematin, are commonly found in forensically 

relevant DNA samples including blood and can negative affect forensic 
DNA genotyping [28]. To test whether hematin acts as an inhibitor 
during the whole-genome amplification included in the Illumina™ GSA 
analysis, we prepared a total of 24 samples using high-quality DNA (200 
ng) from three individuals (samples 102,114 and 87, from the original 
24 samples) on eight different hematin concentrations (1600 µM, 1200 
µM, 800 µM, 400 µM, 200 µM, 100 µM, 50 µM, 25 µM in 10 µl sample 
volume). 
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2.3.3. Animal DNA testing 
To test the specificity of the Illumina™ GSA we analyzed DNA from 

common pets and other animals including mouse, rat, cow, cat, dog, pig 
and horse. Animal cells were obtained from the Coriell Institute for 
Medical Research. Genomic DNA was isolated with the DNAdvance kit 
(Beckman Coulter, United States) and quantified with the picogreen 
fluorescence assay (Invitrogen). Each animal DNA sample was analyzed 

on the Illumina™ GSA according to the standard protocol. 

2.4. SNP microarray genotyping 

The study used the Infinium Global Screening Array (GSA) for all 
SNP microarray genotyping [27]. The choice was made partly based on 
its popularity in the Direct-to-Consumer Genetics industry, but also due 

Fig. 1. Description of our novel approach to conditionally simulate relatives illustrated for two SNPs. The algorithm starts with a genotype with unknown 
phase, denoted ‘Original’. The genotype is first phased as described in the main text. Our simulation starts using the phased genotypes for the original sample (also 
referred to as Golden standard) For each chromosome the algorithm randomly draws the genotype of a relative, denoted ‘Target’ (illustrated as a first cousin). The 
identical by descent (IBD) probabilities for first cousins compose Pr(IBD = 0) = 0.75, Pr(IBD = 1) = 0.25 and Pr(IBD = 2) = 0. The novelty is illustrated in the final 
step of our algorithm whereby the original (Golden standard) sample is replaced with an imperfect sample, e.g., a mock or low-quality DNA sample. Ultimately, we 
compute relationship metrics using the target (relative) and the imperfect sample in addition to performing computations using the original sample (for compar
ative reasons). 
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to its rich up-to-date SNP content. Array genotyping was performed 
according to standard Illumina protocols [29]. We decided to refrain 
from additional sample or data treatment, e.g. the use of restoration kits 
on the DNA samples or application of Hardy-Weinberg equilibrium on 
the SNP data. Microarray scan data was converted to genotypes using 
Genome Studio 2.0, the standard software for processing Illumina SNP 
microarrays. As this project consisted of samples of sub-optimal input 
DNA quantity and quality, standard microarray QC protocols, such as 
filtering on SNP or sample call rates, were not executed. We extracted a 
subset of markers based on the overlap with the 1000 Genomes phase III 
reference panel [30], resulting in a total of 519,300 SNP markers. Ge
netic positions in centiMorgan (cM) were extracted from Rutger’s map 
or alternatively interpolated for markers absent from the repository 
[31]. For each gold standard sample, the genotypes were phased to 
generate haplotypes employing the Eagle V2.4 algorithm [32] with the 
European (CEU) individuals from the 1000 Genomes Project as refer
ence data [30]. 

2.5. Genotype quality assessment 

The high-density SNP profiles obtained from GSA analysis of each 
tested condition was rated by two main measures of quality: SNP call 
rate and genotype discordance to the gold standard, which was obtained 
from manufacturer-recommended input DNA quantity and quality for 
each of the 24 individuals. SNP call rate is the fraction of the total probes 
with genotype calls and it is the most common quality measure used in 
SNP microarray analysis. The number of false genotypes in each dataset 
was determined by direct comparison of the genetic profile from each 
tested condition to their corresponding gold standard reference dataset 
obtained from optimal DNA conditions. Heterozygous error rate is 
defined as the percentage of false heterozygotes among all heterozy
gotes, and homozygous error rate is defined as the percentage of ho
mozygotes that are either heterozygotes or opposite homozygote in the 
gold standard reference data. 

2.6. Simulation of relatives and kinship classification 

2.6.1. Conditional simulations of relatives 
For each of the 24 individuals, we generated relatives through a 

conditional simulation approach using the gold standard reference 
dataset obtained from manufacturer-recommended input DNA quantity 
and quality. Fig. 1 provides an overview of our algorithm to simulate 
family members based on our gold standard samples. In brief, the 
approach uses phased genotype data from high quality samples and 
proceeds by conditionally generating relatives for each sample. We 
restricted the algorithm to siblings, 1st cousins, 2nd cousins and 3rd 
cousins (In the figures abbreviated as S1–S4), spanning a range of the 
most relevant degrees of relationships for IGG purposes. Other kinship 
classes commonly encountered in standard forensic casework, e.g. half 
siblings and parent-child relationships, were not included since they are 
reasonably rare in IGG settings. For each of the 24 gold standard sam
ples, we repeated this relative simulation process 1000 times for each 
type of relation. In detail, the simulation process starts at the first SNP on 
a chromosome and initiates by drawing alleles from the gold standard 
sample with probabilities equal to the identical by descent (IBD) prob
abilities for each degree of relationship [14,33]. Moving along the 
chromosome, the process either continues with the same IBD state as for 
the previous marker or change IBD state with probabilities equal to the 
rate of recombination between the markers. Ultimately, the process 
generates a complete high-density SNP dataset for the relative with a 
mosaic of shared DNA with the gold standard sample. In contrast to 
approaches that employ population allele frequencies and gene drop
ping to generate pedigree data, our approach i) considers the known 
phased genotype of the original sample, and ii) uses phased haplotypes 
from the population to draw non-IBD alleles; thus, mitigating potential 
biases caused by linkage disequilibrium. The novelty in our approach is 

the combination of conditional simulation with the final step in which 
the original, gold standard, genotype is replaced with an imperfect 
sample. 

2.6.2. Calibration of segment approach 
To investigate our approach used to classify relatives, some addi

tional analyzes were conducted. Our study used what we refer to as the 
segment model, whereby the length of shared DNA segments is accu
mulated across two genetic profiles and subsequently used to determine 
the degree of relationship. In detail, the model uses half-identical 
stretches of DNA, such that only one allele needs to be shared between 
the two profiles. In other words, only opposite homozygote genotypes 
can terminate a shared segment (given that bi-allelic SNP markers are 
used). The model has two important input parameters, the length 
required for a segment to be defined as identical by descent IBD 
(measured in cM) and the number of SNPs in each called segment. Since 
appropriately setting these thresholds is crucial for identifying true IBD 
segments, we conducted simulations to find the optimal settings, in 
addition to using results from previous studies. More specifically, we 
varied the length of the segment from 1 to 7 cM (Fig. S1) and the number 
of SNPs in each segment from 100 to 700 (Fig. S2). Additionally, we 
studied how decreasing the call rate from 100% to 2%, without intro
ducing errors, affects family classifications. In detail, we started with the 
original set of 519,300 SNPs and for each thinning we varied the inter- 
marker distance (measured in cM) to decide whether to include a marker 
in each set. The approach creates a genetic map with markers evenly 
located across the genome (spaced with the given distance threshold). 
We further performed another set of simulations where we generated 
1000 relatives with total call rates 100%, 75%, 50%, 25% and 10% 
(including errors). We subsequently used the segment model where we 
varied the threshold on the number of SNPs in an IBD segment from 100 
to 700 to investigate potential improvements in classification rates. 

2.6.3. Inferring degree of relatedness 
Genealogy assessment, referred here as kinship classification, was 

performed by inferring the degree of relatedness of the imperfect sample 
to the simulated relatives (see Fig. 1). The term imperfect is used as an 
umbrella for inhibited, degraded or quantity-reduced DNA samples. We 
used a version of what we call the segment approach to infer degree of 
relatedness between individuals. The algorithm is described in for 
example [13,34,35] and detailed for forensic purposes in Kling et al. 
[14]. The version implemented by direct-to-consumer company 
Ancestry.com is also outlined in a white paper [36]. Briefly, the most 
naïve version of the approach measures stretches of genotypes where at 
least one nucleotide is identical at each base position between the pair of 
individuals (IBS1 or IBS2) to ultimately infer IBD segments. The 
stretches are only terminated if opposite homozygous genotypes are 
detected (IBS0). Furthermore, to accurately define a segment as IBD the 
algorithm needs thresholds, firstly the length as measured in cM and 
secondly the total number of overlapping SNPs in each segment. Both 
thresholds have the purpose of excluding non-IBD segments. The length 
restriction was tuned to include short enough segments for distant rel
atives and still large enough not to include unrelated individuals as 
relatives. We used 5 cM as the length detection threshold, corroborated 
by previous studies [37] as well as our own studies (Fig. S1). We further 
explored the impact of the second threshold i.e., the number of over
lapping SNPs required in each segment. As the imperfect samples may 
contain several locus dropouts, a default requirement of say 500 SNPs 
can result in missed segments. Therefore, we explored 100–700 SNPs as 
thresholds, detailed in Fig. S2. Finally, to explore the isolated effect of 
decreasing number of markers, we thinned the data, resulting in reduced 
marker subsets ranging from the original 519,300 down to 10,379 
markers (Fig. S3). We proceeded to infer relatedness with each reduced 
set of markers using the methods previously described. 
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3. Results 

Aiming to evaluate SNP microarray technology for quantity and/or 
quality compromised input DNA and to test the consequence of resulting 

genotyping errors for kinship classification in the context of IGG, we 
performed a series of SNP microarray experiments by applying the 
widely used Illumina Global Screening Array (GSA). We started out by 
generating SNP microarray data of 24 individuals by using high input 

Fig. 2. Kinship classification of simulated relatives based on SNP microarray genotype data obtained from input DNA of decreased quantity. Each plot in 
this matrix represents a simulated kinship relation and a specific kinship classification based on a SNP microarray dataset obtained from stepwise decreasing input 
DNA quantity. Each of the 24 individual DNA samples used in this experiment had 1000 relatives simulated for each degree of relative, which were S1 (Full siblings), 
S2 (1st cousins), S3 (2nd cousins), S4 (3rd cousins) or unrelated from the high-quality reference data generated from manufacturer-recommended input-DNA 
quantity and quality; the kinship classification was restricted to these possible relation categories. For each of these 24 individuals, 8 input DNA quantity levels i.e., 
200 ng, 1 ng, 250 pg, 100 pg, 50 pg, 25 pg, 12.5 pg, and 6.25 pg were processed on the GSA. The estimated genetic relation between such dataset from quantity- 
compromised DNA and the relatives simulated from high-quality reference data was then classified per each of the 24 individuals. The x-axis of the matrix de
scribes the classified kinship relations, while the y-axis of the matrix describes the original simulated relations, across the 24 individuals used. For the individual 
plots, the x-axis describes the input DNA quantity, and the y-axis describes the average kinship classification rate. The green bar plots represent correctly classified 
true relation and the red bar plots represent the incorrect classifications. Error bars display the 75% confidence interval. 
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DNA quantity and quality by meeting the recommendations of the 
microarray manufacturer i.e., 200 ng of high molecular weight DNA. 
This reference dataset was then used to conditionally simulate SNP data 
of relatives of these 24 individuals based on four degrees of relationships 
i.e., full siblings, 1st cousins, 2nd cousins, and 3rd cousins. We also used 
this high-quality reference dataset to determine genotyping errors in the 
data obtained from the compromised DNA samples of the same in
dividuals, respectively (see methods for details). 

3.1. Impact of decreased input DNA quantity on kinship classification 
success 

We quantified the impact of decreased input DNA quantity on the 
success of kinship classification based on SNP microarray data. For this, 
we generated 8 GSA datasets per each of the 24 individuals based on 
manufacturer-recommended 200 ng input DNA as well as based on 
seven lower amounts i.e., 1000 pg, 250 pg, 100 pg, 50 pg, 25 pg, 
12.5 pg, and 6.25 pg, and used them to perform kinship classification. 

We found that on average the success of kinship classification 
remained over 98.5% for input DNA amounts from 200 ng down to 
250 pg for siblings and 1st cousins, and down to 1 ng for 2nd cousins 
(Fig. 2). With 25 pg (approximately 4 cells worth of DNA) and lower 
input DNA amounts, the kinship classification success was zero for rel
atives of all four degrees (Fig. 2, Table S1). Notably, we observed 
considerable variation between DNA samples of the same input amount 
between the 24 individuals on how decreasing input DNA quantity 
impacted on kinship classification success. Classification of siblings 
remained 100% correct for all 24 individuals from 200 ng down to 
250 pg and for 17 individuals also with 100 pg (average classification 
rate of 93%). With 50 pg, 5 individuals still had 100% success rate for 
sibling classification, while with 25 pg 22 individuals showed 0% clas
sification success for siblings and any other relatives tested. For 1st 
cousins, 100% classification success was revealed for all 24 individuals 
with 200 ng and 1 ng, while with 250 pg it was for 22 individuals 
(average classification success of 99.4%), and with 100 pg for 13 in
dividuals (76.6% success on average across individuals). None of the 24 
individuals had 100% classification success when applying 50 pg input 
DNA (18.5% success on average). For 2nd cousins, classification success 
was close to 99% for all 24 individuals with 200 ng, which remained 
stable down to 1 ng (98.6% success on average) and dropped to 91.6% 
with 250 pg, 55.7% with 100 pg and 6.6% with 50 pg. For 3rd cousins, 
we first note that even with ideal input DNA quantity of the 
manufacturer-recommended 200 ng, classification success was on 
average only 74.6% across the 24 individuals, with no individual sample 
having more than 81.5% success rate, likely due to insufficient identical- 
by-descent (IBD) sharing. The classification success rate was slightly 
reduced from 1 ng input DNA (72.6% success). Using 250 pg input DNA, 
the 3rd cousin classification success dropped down to 62.6%, with all 
but one sample decreasing in classification success by more than 1%, 
and further down to 30.7% with 100 pg, where all samples had 
decreased success rate but none yet at zero, and down to 3.3% with 
50 pg, where 11 samples had 0% classification success. From input DNA 
amounts of 25 pg and lower, 3rd cousin classification success was zero 
for all 24 individuals. When the true kinship relations were no longer 
classified correctly due to compromised input DNA quantity, mis
classifications always occurred at the lower degrees of relatedness (e.g., 
siblings misclassified as cousins) and did not result in false over
estimations of the classified degree of relationship. 

3.2. Effect of decreased input DNA quantity on SNP genotype accuracy 

Aiming to better understand the observed impact of decreased input 
DNA quantity on decreased kinship classification success, we investi
gated the effect of decreased DNA quantity on SNP microarray genotype 
accuracy by calculating microarray-based SNP call rates and genotype 
errors rates depending on varying input DNA amounts (as detailed in the 

methods). 
We found that the stepwise decrease of input DNA quantity from 

optimal 200 ng down to 6.25 pg led to a gradual decrease in the SNP call 
rate (Fig. 3, Table S2). In particular, with manufacturer-recommended 
200 ng, call rates for all 24 individuals were high as expected at 
99.9% (SD 0.0%), and decreased to an average of 96.7% (SD 2.5%) with 
1 ng, 90.6% (SD 5.0%) with 250 pg, 84.4% (SD 4.5%) with 100 pg, and 
further down to a minimal call rate of 42.8% (SD 6.3%) from the lowest 
amount of 6.25 pg. While the number of called SNPs decreased with 
decreasing input DNA amounts, an increase in the number of false ge
notypes was seen, as may be expected, while differently so for the 
different types of genotype errors. Errors were classified as “false het
erozygotes” when a homozygous SNP was incorrectly typed as a het
erozygote, and “false homozygotes” when a heterozygous SNP was 
incorrectly typed as a homozygote. The error rate started to increase 
already with the first DNA dilution step below the manufacturer rec
ommended 200 ng i.e., with 1 ng, albeit with a small average of 1.8% 
(SD 2.4%) for heterozygote errors, while homozygote errors remained 
close to zero at 0.01% (SD 0.01%) (Fig. 3, Table S2). With 250 pg the 
heterozygote error rate increased to an average of 7.9% (SD 6.8%) and 
the homozygote error rate to an average of 0.15% (SD 0.27%). Both 
error rates gradually increased further with further stepwise decreased 
input DNA amounts, with the heterozygote error rate more so than the 
homozygote error rate. With 25 pg, where the kinship classification 
success rate was zero for all degrees of relationship, the heterozygote 
error rate was on average 43.3% (SD 9.7%), while the homozygote error 
rate was 8.1% (SD 2.6%). With the lowest input DNA amount of 6.25 pg, 
the heterozygous and homozygous error rates were highest with on 
average 72.6% (SD 2.7%) and 21.3% (SD 4.3%), respectively (Fig. 3, 
Table S2). 

3.3. Impact of decreased input DNA quality on kinship classification 
success 

Further, we investigated the effect of compromised DNA quality on 
kinship classification success. This included non-degraded DNA samples 
as recommended by the microarray manufacturer and degraded samples 
in three DNA fragmentation steps with decreased average fragment size 
of 1000 bp, 500 bp and 150 bp for 12 individuals, of which 1 ng of DNA 
was used for SNP microarray analysis (details in the methods section). 
Data from sample #526 at the fragmentation level of 1000 bp was 
removed from the final data set for being an outlier (Supplementary 
Table 9). 

We observed that a stepwise decrease of input DNA quality by 
increasing the severity of DNA fragmentation led to a gradual decrease 
in kinship classification success (Fig. 4, Table S3). More specifically, 
while an average fragment size of 1000 bp (least severe degradation 
level tested) had no effect on the classification success for siblings for all 
12 individuals (100% success), the first cousin classification success of 
two individuals was no longer 100% (average success of 99.8%). A more 
severe effect was seen for the classification of 2nd cousins, where success 
decreased to an average of 89.7% from the 98.3% obtained with non- 
fragmented DNA. An average fragment size of 500 bp resulted in a sig
nificant drop of kinship classification success for all degrees of relatives 
tested i.e., to 56.7% for siblings (5 samples (41.7%) still at 100% suc
cess), 45.8% for 1st cousins (1 sample still at 100% success, while 4 
samples were at 0% success), and 19% for 2nd cousins (5 samples at 0% 
success rate). As also seen in the DNA quantification experiments for 
optimal DNA amounts, for 3rd cousins the classification success was 
already reduced with non-degraded DNA (average 70.8%), and 
decreased further to 53.7% at 1000 bp fragmentation, and further to 
9.5% at 500 bp. Finally, the genotype profiles obtained from the most 
severely fragmented DNA samples of 150 bp were insufficient to 
perform any accurate kinship classification (0%) for any of the relatives 
tested. Similar to the DNA quantification experiments, there were no 
cases where compromised input DNA quality resulted in an increase in 
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the degree of kinship misclassification (no false positives); in fact, all 
samples not correctly classified only saw a decrease in the degree of 
kinship misclassification (Fig. 4, Table S3). 

3.4. Effect of decreased input DNA quality on SNP genotype accuracy 

Aiming to better understand the observed negative impact decreased 
DNA quality has on kinship classification success, we studied the effect 
of quality-compromised input DNA on SNP call rate and genotype error 
rate. Stepwise decrease of DNA quality by increase of DNA fragmenta
tion from non-fragmented down to highly fragmented resulted in a 
gradual decrease in SNP call cate and an increase in genotyping errors, 
as may be expected. In particular, an average fragment size of 1000 bp 
had an immediate negative effect on the SNP call rate with an average of 
84.6% (SD 4.4%) and a negative effect on genotype accuracy with 
increasing heterozygous error of 16.6% (SD 6.5%) on average and ho
mozygous error of 0.2% (SD 0.2%), compared to the non-degraded DNA 
samples with averages of 96.5% (SD 1.7%) 1.7% (SD 1.3%) and 0.0% 
(SD 0.0%), respectively. An average fragment size of 500 bp resulted in a 
further decrease of the SNP call rate to an average of 75.1% (SD 5.7%), 
and a further decrease of the genotype accuracy with increasing average 
heterozygote error of 32.4% (SD 10.0%) and 2.3% (SD 1.5%) homozy
gote error. Finally, the most severely fragmented input DNA of 150 bp 
had an average SNP call rate of 62.7% (SD 7.2%), an average hetero
zygote error of 53.6% (SD 9.7%), and an average homozygote error of 
8.1% (SD 2.7%) (Fig. 5, Table S4). 

3.5. Additional factors influencing genotype accuracy and kinship 
classification 

To further test SNP microarray performance on the type of DNA 
samples typically confronted with in forensic casework, and its impact 
on kinship classification success in the context of IGG, we performed 
SNP microarray analysis of forensic mock casework DNA samples. Mock 
casework samples are a typical element of forensic validation studies; 

they are produced in a way to mimic real crime scene samples. These 
mock casework samples were produced from blood of individuals for 
which we had generated high-quality reference data, thus allowing to 
estimate genotype accuracy, and testing the impact on kinship classifi
cation. To this end, we ran a total of 55 mock casework DNA samples 
from i) one individual’s whole blood in making 24 bloodstains of 
different size (blood volume), prepared on different substrates, and 
exposed under different environmental conditions such as storage time, 
temperature, humidity, and UV radiation, the latter to mimic sun 
exposure, ii) blood DNA samples from three individuals at 200 ng on 
eight different artificial PCR inhibition levels, and iii) seven non-human 
DNA samples (for details see material and methods) (Table S5). 

Overall, we found that varying levels of blood stain storage condi
tions regarding humidity, substrate type and storage time (up to 25 
days) did not seem to have any effect on the SNP microarray genotype 
accuracy and thus not on the kinship classification success (Table S5). In 
contrast, and as expected, the size of bloodstain (DNA quantity) and 
DNA damage via direct UV treatment (DNA quality) both appeared to 
affect genotype accuracy and kinship classification success (Table S5). 
Particularly for the smallest bloodstains produced from 1 µl of blood, the 
total isolated DNA amounts ranged from 0.167 to 5.163 ng depending 
on various conditions. The effect of low DNA amount was evident in 
bloodstain 17 (296 pg), which resulted in a lower accuracy of classifi
cation of 3rd cousins (47.1%), in line with what we expected from the 
DNA quantification experiments (Fig. 2, Table S1). However, when we 
combined the effect of low DNA quantity with low DNA quality by 
damaging small amounts of DNA with direct UV treatment (30 min) as 
in bloodstain 22 (167 pg), we observed a decreased classification ac
curacy for 2nd cousins of 52.2% compared to 89.7% in the non-treated 
DNA sample (Table S5). Notably, this decrease of kinship classification 
success was not evident in bloodstain 23 despite the increased time of 
UV exposure (60 min), likely caused by the higher input DNA amount 
(1.35 ng) in this sample (Table S5). Finally, our chosen PCR inhibitor, 
hematin [28], did not seem to affect SNP microarray genotype accuracy. 
Independently from the hematin concentration, all samples yielded 

Fig. 3. Quality metrics of SNP microarray data from input DNA of decreased quantity. The x-axis represents the 8 stepwise decreased input DNA quantities 
tested (200 ng to 6.25 pg) and the degrees of kinship classification (S1 – Full siblings, S2 – 1st cousins, S3 – 2nd cousins, S4 – 3rd cousins) across the 24 individuals 
used. The y-axis runs from 0% to 100%, depicting call rate (1), homozygote error rate (2), heterozygote error rate (3) and kinship classification success (the bar plot). 
Genotype call rate and error rates are the average of the 24 genotype datasets obtained for each input DNA quantity level. Error bars represent the 75% confi
dence interval. 
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Fig. 4. Kinship classification of simulated relatives based on SNP microarray data from input DNA of decreased quality. Each plot in this matrix represents a 
simulated kinship relation and a specific kinship classification based on a SNP microarray dataset obtained from decreasing input DNA fragment size. Each of the 12 
samples used in this experiment had 1000 relatives simulated for each degree of relative, which were S1 (Full siblings), S2 (1st cousins), S3 (2nd cousins), S4 (3rd 
cousins) or unrelated from the high-quality reference data generated from manufacturer-recommended input-DNA quantity and quality; the kinship classification was 
also restricted to these possible relation categories. For each of these 12 individuals, four input DNA fragmentation levels i.e., unfragmented, 100 bp, 500 bp, 150 bp 
were processed on the GSA to obtain a genetic dataset. The estimated genetic relation between such quality-compromised dataset and the relatives simulated from 
high quality reference data was then classified for each of the 12 individuals. The x-axis of the matrix describes the classified relations, while the y-axis of the matrix 
describes the original simulated relations, across the 12 individuals used. For the individual plots, the x-axis describes the average fragment size of the input DNA, 
and the y-axis describes the average kinship classification rate. The green bar plots represent correctly classified relation and the red bar plots represent the incorrect 
classifications. Error bars display the 75% confidence interval. 
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perfect call rates of over 99% (Table S6). Given the very high call rate 
observed, estimation of kinship classification success was not performed 
with the SNP array data from the hematin experiment. Moreover, SNP 
microarray genotyping of all seven animal cell DNA samples, derived 
from common pets and domesticated animals whose DNA is often 
recovered from crime scenes, resulted in very low SNP call rates below 
70% (Table S7), highlighting the human specificity of the GSA. Notably, 
such low call rates were in our systematic DNA quantity and quality 
experiments only observed for the ‘worst’ human DNA samples, namely 
those with lowest input DNA quantity (12.5 and 6.25 pg) (Fig. 3) and 
quality (150 bp fragment size) (Fig. 5). 

3.6. Correlation between QC metrics and kinship classification success 

In typical practical applications of SNP microarray genotyping, such 
as for IGG but also for other forensic and non-forensic purposes, only the 
SNP call rate is available as quality control (QC) measure. Nevertheless, 
users of SNP microarray technology in practical applications shall be 
interested in the reliability of the data they obtained from their analyzed 
DNA samples. As a first step towards providing guidance on this matter 
of high practical relevance, we tested if our diverse set of experimentally 
generated SNP microarray data from various input DNA quantities and 
qualities would allow us to establish a preliminary measure on the 
reliability of SNP microarray when deviating from the manufacturer 
recommendations for input DNA quantity and quality. To this end, 

aiming at maximizing the statistical power, we pooled all data we 
generated from high and low quality and quantity human DNA samples 
i.e., from DNA quantity, DNA quality, and mock human bloodstain ex
periments, resulting in a combined dataset containing call rate, geno
type errors rates and classification successes from a total of 264 DNA 
samples (Tables S5, S8, S9). Using these data, and by employing n- 
parameter logistic regression to fit a model, we correlated total SNP call 
rate with i) total genotype error rate, ii) heterozygote error rate and iii) 
homozygote error rate and obtained very high positive r2 estimates of 
0.98, 0.99, and 0.95, respectively (Fig. 6A). Furthermore, we correlated 
total SNP call rate with kinship classification success rate for all four 
degrees of relatives (Fig. 6B), where the fitted model achieved an r2 of 
0.89 for siblings, 0.87 for 1st cousins, 0.95 for 2nd cousins, and 0.94 for 
3rd cousins. We also made a model correlating homozygote error rate 
with kinship classification success and achieved an r2 of 1.00 for sib
lings, 1.00 for 1st cousins, 1.00 for 2nd cousins, and 0.98 for 3rd cousins 
(Fig. S4). 

As may be expected, we saw that all three genotyping error rates 
(total, heterozygote and homozygote) increased as the SNP call rate 
decreased, with the heterozygote error being impacted the most 
(Fig. 6A). While the heterozygote error rate increased immediately with 
decreased SNP call rate, the homozygote error rate remained below 
0.05% as long as 93% of the array SNPs were called (Fig. 6A). More 
importantly, we found that within certain boundaries it was possible to 
predict kinship classification success solely based on SNP call rate 

Fig. 5. Quality metrics of the GSA genotype data from input DNA of decreased quality. The x-axis represents the 4 stepwise fragmentation levels tested 
(unfragmented, 1000 bp, 500 bp and 150 bp) and the degrees of kinship classification (S1 – Full siblings, S2 – 1st cousins, S3 – 2nd cousins, S4 – 3rd cousins) across 
the 12 individuals used. The y-axis runs from 0% to 100%, depicting call rate (1), homozygote error rate (2), heterozygote error rate (3) and classification success (the 
bar plot). Genotype call rate and error rates are the average of the 12 genotype datasets obtained for each input DNA fragmentation level. Error bars represent the 
75% confidence interval. 
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(Fig. 6B). Whereas for the most distant relationships, i.e., 3rd cousins, 
kinship classification rate gradually decreased with call rate, the success 
of classifying siblings, as well as 1st and 2nd cousins, remained at 100% 
until the call rate reached certain thresholds. These thresholds were 
different for the different degrees of relationship and were lower the 
more closely related the family members were. With SNP call rates 
below these thresholds, kinship classification success decreased rapidly 
(Fig. 6B). More specifically, we observed a remaining high kinship 
classification success until, and drastic decrease below, 90% SNP call 
rate for 2nd cousins, ~ 86% for 1st cousins, and ~ 82% for siblings. 
Universally and independently of family relationship, we found that 
DNA samples with SNP call rates below 75% appeared unsuitable for 
correctly inferring kinship relations, as below this threshold we 
observed 0% classification success for all four degrees of relationship. 

3.7. SNP microarray analysis of naturally degraded DNA from skeletal 
remains 

Finally, to assess SNP microarray performance on naturally degraded 
DNA, thereby combining compromised DNA quantity with compro
mised DNA quality through a natural body decomposition process, we 
analyzed DNA samples obtained from skeletal remains buried under
ground or found on forest surface that had experienced various natural 
conditions for various times of postmortem intervals. A total of 18 bone 
or teeth derived DNA samples were GSA-genotyped (Table S10). These 
DNA samples were additionally genotyped with a commercial forensic 
STR kit commonly used for forensic identification. The latter allows a 
comparison between the performance of both DNA technologies. Due to 
the nature of this sampling set-up, SNP microarray reference data ob
tained from manufacturer-recommended input DNA quantity and 

Fig. 6. Relations of SNP microarray data quality 
metrics and kinship classification success. To 
describe the relation between the studied quality con
trol metrics of our experiment, models were fitted with 
n-parameter logistic regression, using the genotype 
error, call rate and kinship classification success data 
from the compromised quantity and quality as well as 
mock casework SNP microarray analysis in a total of 
264 samples (Tables S5, S8, S9). A) Relationship of SNP 
call rate and genotyping error rate. Three types of 
genotyping errors were considered for this model: ho
mozygote error, heterozygote error, and the total gen
otyping error by combining both. The homozygote 
error model had a standard error (SE) of 0.016 with a 
goodness-of-fit (GoF/r2) of 0.948, the heterozygote 
error model had a SE of 0.0247 with a GoF of 0.991, 
and the total error model a SE of 0.014 with a GoF of 
0.980. B) Relationship of SNP call rate and kinship 
classification success. One model was fitted for each 
degree of relation: S1–S1 (full sibling), S2–S2 (1st 
cousin), S3–S3 (2nd cousin), and S4–S4 (3rd cousin). 
The full sibling classification success prediction model 
had a SE of 0.163 with a GoF of 0.886. The 1st cousin 
success prediction model had a SE of 0.174 with a GoF 
of 0.872. The 2nd cousin success prediction model had 
a SE of 0.110 with a GoF of 0.946. The 3rd cousin 
success prediction model had a SE of 0.084 with a GoF 
of 0.943.   
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quality were not available for the individuals of which bone DNA sam
ples were analyzed, thus not allowing genotype accuracy estimations 
and kinship classification success quantifications. However, by applying 
our established relation between SNP call rate and kinship classification 
success (see above, Fig. 6B), we used the SNP call rate obtained from 
these naturally degraded DNA samples as proxy for SNP microarray data 
quality, and from the obtained results, provided expectations on kinship 
classification success in case such samples would be used for IGG 
purposes. 

Two out of the 18 bone DNA samples (bones 17 & 18) with the 
highest recovered DNA amounts of 27.09 and 78.5 ng fully consumed 
for GSA analysis, produced microarray-based SNP genotype profiles 
with a call rate above 95% (Table S10). According to our fitted models, 
these data could be used to correctly classify relatives up to 3rd cousins 
(Fig. 6B). These two bone DNA samples also yielded complete 24-loci 
forensic DNA profiles. Two other bone DNA samples (bones 14 & 16) 
with total input DNA amounts of 2.16 ng and 3.14 ng yielded call rates 
of 85.3% and 88.7%, respectively (Table S10), which according to our 
fitted models could still be used to classify relatives up to 3rd cousins 
(Fig. 6B), albeit with reduced success rate. Sample 14 yielded a complete 
24-locus forensic DNA profile, while sample 16 missed two non- 
autosomal loci. Additionally, 12 of the bone DNA samples with total 
input DNA amounts at the picogram level resulted in call rates below 
70% (ranging from 32.6% to 69.7%), which according to our models is 
unsuited to obtain any accurate kinship classification (Fig. 6A). Of these 
12 bone DNA samples, 7 gave complete 24-loci forensic DNA profiles, 
while 5 had partial profiles between 14 and 22 of the 24 markers. The 
remaining two bone DNA samples (bones 1 and 2) with total input DNA 
amounts of 36 pg and 56 pg failed the GSA analysis completely as they 
produced no signals. In the forensic DNA profiling, these two DNA 
samples had produced results for 16 and 22 of the 24 loci, respectively. 

4. Discussion 

Our work represents the first study that systematically explores the 
impact SNP microarray analysis of quantity and quality compromised 
DNA has for kinship classification success, which is relevant for inves
tigative genetic genealogy (IGG). Earlier studies on SNP microarray 
genotyping of forensic DNA samples did not report genotype reliability 
and whether the genetic data would be applicable for kinship classifi
cation [18] or investigated the use of SNP microarrays for low quantities 
of DNA in less samples and not analyzing DNA below 1 ng [23,25]. 
Moreover, as far as we are aware, no previous study empirically inves
tigated in a systematic way the impact of quantity and/or quality 
compromised DNA on SNP microarray-based kinship classification 
success, which, however, is highly relevant for applying SNP micro
arrays for IGG purposes in forensic practice. 

The model commonly used in genetic genealogy for classifying rel
atives from genomic data implements versions of the so-called segment 
approach [13,34–36], which we also applied here in a modified way. 
The novelty in our approach lies in the combination of conditional 
simulation with the final step in which the original (perfect), gold 
standard reference genotype, is replaced with an imperfect sample (e.g., 
DNA of low quantity and/or quality). Using this novel approach on the 
SNP microarray data acquired from optimal 
manufacturer-recommended input DNA of high quantity and quality, 
25% of the 3rd cousins were not correctly classified, while for 2nd 
cousins this only was 1%, and for 1st cousins and for siblings we had 
100% classification success (Fig. 2). This finding is in line with expec
tations, as the more distant the family relationship is, the less likely one 
will be able to detect shared DNA because recombination can make the 
shared segment shorter or can lead to not inheriting the shared DNA at 
all [38]. On the other hand, approximately 10% of unrelated individuals 
will be classified as 3rd cousins in our experiments with high quality 
data, suggesting that an unnecessary pedigree search might be under
taken fairly often. However, there is another side of IGG where 

genealogy might not be pursued in each particular case based on other 
evidence. For instance processes such as triangulation, detailed segment 
analysis and meta data might further remove unlikely relationship 
classifications [10]. In summary, a single 3rd cousins match may only be 
a weak link that requires further data to support a full pedigree search. 

In our quantity-compromised DNA experiments, an amount of 
250 pg of high molecular weight DNA yielded similarly high success 
rates of near 100% for classifying siblings and 1st cousins, and 1 ng for 
2nd cousin, as did the manufacturer-recommended 200 ng. Although 
these reduced input DNA quantities resulted in decreased SNP call rates 
and increased rates with which homozygous loci are erroneously called 
as heterozygotes, we did not notice any measurable impact on kinship 
classification success. This picture changed when the input DNA quan
tity was decreased below these critical amounts, which resulted in 
gradually decreased kinship classification success down to 25 pg DNA 
and lower, where kinship classification success was zero for all four 
degrees of relatives tested. While an increase in the homozygote error 
rate was observed, the kinship classification success rates dropped. 

On the other hand, in our quality-compromised DNA microarray 
experiments, when 1 ng of DNA was gradually fragmented and used for 
SNP microarray analysis, the first fragmentation level of 1000 bp yiel
ded similarly high success rates of 100% for classifying siblings and 1st 
cousins as the non-fragmented input DNA did, while decreases in SNP 
call rates and increases in genotype error rate were seen compared to 
non-fragmented input DNA. For 2nd cousins and 1000 bp fragmenta
tion, a reduced classification success was found, which further decreased 
for all relatives with further increased fragmentation levels. At the 
highest fragmentation level of 150 bp, the kinship classification success 
was zero for all degrees of relatives. These findings together imply the 
main deciding factor if kinship classification based on SNP microarray 
data from compromised DNA is successful or not is the amount of proper 
quality DNA in a sample. 

Another novelty of our work is that we empirically determined how 
GSA microarray genotype data is affected when compromised DNA is 
analyzed. We found that false heterozygotes were much more prevalent 
than false homozygotes when degrading the DNA quality and quantity. 
Previous work has highlighted how detrimental genotyping errors are 
for relative classification [39,40]. We analyzed both genotyping error 
types separately as these were different in prevalence and how they 
affected relative classification rate. Our data strongly suggests that the 
false homozygote genotypes are the driving cause for relative misclas
sification. This is expected, as the segment approach is highly sensitive 
to homozygote genotype errors. Only a false homozygote can cause IBS0 
(where neither of the alleles are similar between the individuals) and 
pre-maturely end a shared segment. This is corroborated by our finding 
that homozygote genotyping error rate and kinship classification success 
rates are strongly correlated (r2 of 0.999 for siblings, r2 of 1.00 for 1st 
cousins, r2 of 0.999 for 2nd cousins and a r2 of 0.976 for 3rd cousins) 
(Fig. S4). The false homozygote genotype calls will terminate segments 
in the kinship classification model rather than prolonging them; thus, 
resulting in a decreased degree of inferred relatedness instead of an 
increased one. This could explain why decreasing DNA quantity or 
quality did not inflate the false positive kinship classification rate i.e., 
the degree of relatedness was always underestimated in our experi
ments. In particular we note that the classification of true unrelated 
pairs of individuals improves as the quality/quantity decreases (Figs. 2, 
4, S3). This observation is likely explained by the fact that shared seg
ments (IBD) between unrelated individuals are broken down by geno
typing errors, rather than new shared segments being created. Other 
models to infer family relationships from genomic data may have a 
different sensitivity to genotyping errors, which may be explored in 
future studies. In particular, the likelihood ratio-based model, adopted 
in forensic STR profiling, could be an alternative [39,41,42]. With this 
model, fewer markers are needed in the calculations compared to the 
segment model [39]. Lareu et al. [43] as well as Kling et al. [22] pre
sented early works on the use of high density SNP microarray data with 
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forensic kinship applications. Nevertheless, a virtue of the segment 
approach used here is that it is unaffected by the most frequent error of 
Illumina GSA SNP genotyping microarrays as we showed here i.e., 
heterozygote genotyping errors. Another advantage of the segment 
approach is that it allows kinship classification to be estimated in the 
absence of specifically stated pairs of hypotheses of relatedness, which 
instead is a key requirement for applying the likelihood ratio approach. 
We note that several implementations of the segment approach mitigate 
issues with genotyping errors, for instance through allowing opposite 
homozygote genotypes in a shared segment [34,44]. 

As a side aspect, we studied the isolated effect of decreasing SNP 
numbers, as proxy for SNP call rate, on the kinship classification success 
under optimal input DNA conditions. For this, the used the high-quality 
reference data, leaving aside the effects of decreased input DNA quantity 
and quality. This exercise illustrates that for closer relationships (e.g., 
siblings) SNP genotyping call rates as low as 5.6% can still allow accu
rately classification through detection of shared segments, while for 
more distant relationships (e.g. 3rd cousins) it needs SNP genotyping 
call rates above 50% to be sufficient (Fig. S3). These minimal SNP 
numbers rather serve as theoretical expectations, whereas practically 
relevant thresholds of SNP call rates to achieve trustworthy kinship 
classifications are seen in Fig. 6. These findings confirm our observations 
from quantity and quality compromised DNA samples that SNP geno
typing call rate alone is not driving kinship classification success (Figs. 2, 
4 and 5). This further corroborates the finding that SNP genotyping 
errors are the main driving force of kinship misclassification, even so, a 
decrease in SNP genotyping call rate can be accounted for in the segment 
approach by tuning the number of SNPs required to define IBD seg
ments. However, we demonstrated that decreasing this threshold can 
have a detrimental impact on kinship classification success (Fig. S2). 
Decreasing the number of SNPs per segment will lead to false inclusion 
of random segments as IBD, thus, resulting in an estimated higher degree 
of family relationship compared to the true degree. 

Remarkably, we had quite high kinship classification success with 
low input DNA amounts of 100 pg. We attribute this to the whole 
genome amplification (WGA) step that is part of the standard SNP 
microarray protocol. WGA increases the amount of DNA several thou
sand fold [29,45], potentially compensating in part for a low input DNA 
amount. WGA is typically not utilized in forensic DNA analysis, as it can 
cause STR profiling to result in extraneous bands [46] and unequal 
amplification between different targeted loci [47]. While these concerns 
are relevant for forensic STR profiling, the detrimental effect of WGA on 
SNP microarray genotypes is reported to be considerably lower [45,48]. 
WGA-based SNP microarray genotype data were found to be highly 
concordant with the SNP microarray data from the respective gDNA 
[49]. An additional benefit of WGA is that it is unaffected by the pres
ence of the PCR-inhibitor hematin (Table S6). However, the assumed 
WGA-based compensation effect of low input DNA quantity has limits, as 
our study clearly demonstrated. 

By decreasing the DNA quantity and quality below the recommen
dations of the microarray manufacturer, we also observed a notable rise 
of genotyping errors, where the increase of false heterozygous genotypes 
was larger than that of false homozygote genotypes (Figs. 3 and 5). The 
intrinsic mechanisms of the Illumina GSA suggest an explanation why 
heterozygote genotype calls are more prone to be false than homozygote 
genotype calls. We provide a brief description of Infinium technique 
behind Illumina GSA arrays in Fig. S5. We hypothesize that most false 
genotype calls observed with decreased input DNA quantity and quality 
were caused by decreasing probe intensity due to less DNA being bound 
to hybridization probes, and a subsequent effect on the signal processing 
and genotype interpretation software (Figs. S5 and S6). When probe 
intensity decreases, the chance increases that the SNP call shifts to a 
different genotyping cluster. The heterozygote cluster is found closest to 
the lowest intensity values, which may cause homozygotes to be called 
as heterozygotes, explaining the higher heterozygote error rate 
compared to homozygote error rate, which we observed at increasingly 

compromised input DNA for both input DNA quantity and quality. 
Judging the suitability of a DNA sample for SNP microarray analysis 

is generally difficult since a number of factors such as quantity, frag
mentation, and DNA damage could impact genotype accuracy. In typical 
practical applications of SNP microarrays to compromised DNA, such as 
IGG, reference data from manufacturer-recommended input DNA 
quantity and quality are unavailable so that genotyping errors cannot be 
determined. Therefore, we used quality metrics that are available for 
every SNP microarray dataset, such as SNP call rate, to address if a SNP 
microarray dataset is suitable for kinship classification, or not. Our re
sults show that SNP genotyping call rate is highly correlated with gen
otyping error rate and with kinship classification success rate (Fig. 6A 
and B). Therefore, we suggest that the SNP call rate, being the most 
common SNP microarray genotyping quality metric available, can be 
used as a primary indicator to estimate the reliability of Illumina GSA 
genotype datasets, and thus its suitability for kinship classification such 
as in IGG. In our data analysis, we observed a steady increase in false 
SNP genotypes in SNP microarray datasets with SNP call rates below 
99% (Fig. 6B). Different SNP genotyping call rate thresholds are applied 
by different users, with 95% being one standard call rate cut-off [50,51]. 
We found that samples with SNP call rates of 90% or above yielded 
reliable kinship classification; while below 90% we started to observe a 
decrease in kinship classification success, first for 2nd cousins, then on 
lower call rate levels also for 1st cousins and for siblings (Fig. 6B). Third 
cousin classification started at a 75% success rate even at high quality 
and quantity input DNA and declined gradually with decreasing call 
rates. Based on our data, for SNP genotyping call rates below 75% it is 
unlikely that kinship classification will be successful for any degree of 
family relationship. Consequently, there is a grey zone between 75% and 
90% call rate where the kinship classification success is still high for 
close relationships (e.g., siblings), but quickly drops for distant re
lationships (e.g., 2nd cousins). Notably, these thresholds coincide with 
the increase in homozygote error rate, starting at roughly 90% call rate 
as well (Fig. 6B). 

Since experimental DNA degradation is artificial and does not 
resemble natural degradation processes, we additionally analyzed bone 
and tooth derived DNA samples from skeletal remains. These DNA 
samples naturally degraded under varying conditions and combine 
decreased DNA quantity and decreased quality, which is typical in 
missing person cases [52]. However, only a minority of the 
skeleton-derived naturally degraded DNA samples yielded high-enough 
call rates sufficient for concluding high genotype accuracy (two samples 
had call rate > 93%, two others were in the grey zone > 85% call rate). 
These four bone DNA samples also had comparatively high amounts of 
quantified DNA, highlighting the importance of input DNA amount for 
GSA analysis. The qPCR-measured input DNA amounts of these four best 
performing bone DNA samples were all above 2.1 ng, while we obtained 
similar call rates of ~ 85% using 100 pg of non-fragmented DNA. As our 
DNA quality experiments have shown that severely degraded DNA 
cannot be genotyped accurately with the GSA, the lower SNP microarray 
genotyping reliability can be attributed to the poor quality of nuclear 
DNA in the majority of the bone or teeth DNA samples tested [52]. 
Notably, the SNP microarray results of these bone and teeth derived 
DNA samples were not in good agreement with results from forensic STR 
profiling. Although we found that 3 of the 4 samples with high SNP call 
rates had complete forensic STR profiles, this was also seen for 7 of the 
samples with low SNP call rates. A difference in success rates of forensic 
STR profiling and SNP microarrays is not unexpected given the sub
stantial differences in the underlying genotyping technologies and in the 
number of analyzed DNA markers with each technology. 

While the majority of naturally degraded DNA samples from skeletal 
remains did not result in reliable SNP genotype profiles, our mock 
casework samples that simulated crime scene samples generally did 
result in high quality genotyping profiles as well as high kinship clas
sification success (Table S5). This is most likely due to the fact that blood 
stains generally are a good source for DNA [53] and that the artificial 
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DNA degradation applied to the mock casework samples was less severe 
in impact and time than the natural DNA degradation in the skeletal 
remains. These preliminary data provide optimistic expectations that 
SNP microarray genotyping might find application in the forensic cases, 
including IGG, as long as DNA yield is high enough e.g., with input DNA 
amounts above 250–500 pg, and DNA degradation is rather low, such as 
obtained from crime scene stains that experienced rather mild envi
ronmental conditions similar to what we simulated in our mock case
work samples. For DNA samples of lower quantities and/or more severe 
degradation, as seen in the skeletal remain samples and the severely 
fragmented DNA samples analyzed here, SNP microarray analysis is 
rather not suitable. Besides DNA quantification to select samples for SNP 
microarray analysis, the achieved SNP call rate and the preliminary 
models we introduced here can be used as guidance on the suitability of 
the generated data such as for kinship classification in IGG applications. 

While our study is the first to empirically investigated the impact of 
quantity and/or quality compromised DNA on SNP microarray-based 
kinship classification success in the context of IGG, others previously 
reported on the use of SNP microarrays on forensic DNA samples, or 
other samples with quantity limitations. The company Parabon Nano
labs (USA) reported results from about 250 forensic case samples gen
otyped on the CytoSNP-850k array [18], a predecessor of the Illumina 
GSA array [54]. Roughly half of the DNA samples analyzed with SNP 
microarrays were reported with SNP call rates above 95%, while also 
about half had more than 10 ng of input DNA used [18]. Based on our 
analyzes, those cases are expected to find kinship matches in IGG 
database investigations using the segment approach as long as the 
respective relative is included in the database used. Wendt et al. [23] 
recently performed DNA titration experiments from 200 ng to 1 ng on 3 
DNA samples obtained from postmortem blood samples with Illumina 
array (Omni2.5Exome-8 v1.3) genotyping as part of their DNA input 
pretesting for a genome-wide association study (GWAS). They found 
that the SNP microarray genotypes from 200 ng down to 25 ng did not 
differ significantly and thus used 25 ng as input DNA threshold for their 
GWAS. Similar to our findings, which were based on larger sample size 
and larger titration span going down to 6.25 pg, the authors showed 
higher rates of allelic drop-in (false heterozygotes) than allelic drop-out 
(false homozygotes) with decreasing DNA quantity. Another recently 
published study explored how long-time stored serum samples, with an 
average input DNA amount of 5.8 ng, performed on two other types of 
SNP microarrays, the Affymetrix Axiom Array (Thermo Fisher Scientific) 
and the Illumina HumanCoreExome array (Illumina). In 80% of these 
DNA samples, SNP call rates above 94% were reported. In comparison, 
92% of our 1 ng high-quality DNA samples had SNP call rates above 
94%. The level of degradation was not quantified in that previous study, 
which could account for the lower number of reported samples with 
high call rate. However, the authors had made alterations to the stan
dard SNP microarray genotyping protocol to account for the expected 
low DNA quality, given the use of long-time stored serum. For Axiom 
Array analysis the number of WGA cycles was doubled, and for the 
Illumina Human Core Exome array analysis DNA restoration kits were 
used [25]. These are options that might improve SNP call rates, which 
we did not explore here and may deserve systematic investigation in the 
future. 

Ultimately, whole genome sequencing (WGS) or hybridization cap
ture designs may be the go-to-methods for samples with very low quality 
or quantity. Although massively parallel sequencing (MPS) approaches 
are still comparatively expensive, they results in read data that can be 
used in a probabilistic genotyping model, whereby the true genotype is 
conditioned on the reads rather than being determined exactly [55]. 
Recent hybridization capture designs allow simultaneous targeting of 
1.4 million SNPs [56] and may be a more cost-effective way of obtaining 
data for IGG purposes, compared to WGS whereby the entire genome is 
sequenced, provided that the genomic databases used for IGG include 
the captured SNPs (or a sufficient number thereof). 

5. Conclusion 

Our study provides the first systematically obtained empirical evi
dence how SNP microarray analysis of quantity- and quality- 
compromised DNA impacts on kinship classification success, which is 
highly relevant in the context of IGG. The GSA used here as an example 
of a widely used SNP microarray was able to obtain high-density SNP 
profiles that were accurate enough to achieve high kinship classification 
success at 800 times lower input DNA amounts for siblings and 1st 
cousins, and 200 times lower for 2nd cousins, compared to the amount 
recommended by the microarray manufacturer. Decreasing DNA quan
tity or quality reduced the number of called SNPs and introduced het
erozygote and, to a lesser extent, homozygote genotyping errors. These 
genotyping errors, believed to be caused by low probe intensity, are the 
primary cause of incorrect kinship classification as result of using 
compromised DNA for SNP microarray analysis. When applied for IGG 
purposes, the consequence may potentially be to miss a match to a 
relative included in the genetic genealogy database, while the geno
typing errors are unlikely to result in a false positive kinship match as 
our study implies. Overall, our results are relevant for SNP microarray 
applications of compromised DNA for IGG purposes, aiming at finding 
unknown perpetrators of crime via their relatives stored in genomic 
databases accessible by law enforcement agencies. They are also rele
vant for other forensic SNP microarray applications such as appearance 
prediction and biogeographic ancestry inference of unknown perpetra
tors or missing persons from compromised DNA, aiming at helping to 
identify unknown perpetrators and missing persons via focused inves
tigative intelligence. 
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genome sequencing of human remains to enable genealogy DNA database searches 
– a case report, Forensic Sci. Int.: Genet. 46 (2020), 102233. 

[21] E. Murphy, Law and policy oversight of familial searches in recreational genealogy 
databases, Forensic Sci. Int. 292 (2018) e5–e9. 

[22] D. Kling, J. Welander, A. Tillmar, Ø. Skare, T. Egeland, G. Holmlund, DNA 
microarray as a tool in establishing genetic relatedness—current status and future 
prospects, Forensic Sci. Int.: Genet. 6 (3) (2012) 322–329. 

[23] F.R. Wendt, A.L. Rahikainen, J.L. King, A. Sajantila, B. Budowle, A genome-wide 
association study of tramadol metabolism from post-mortem samples, Pharm. J. 20 
(1) (2020) 94–103. 

[24] S. Cho, H.J. Yu, J. Han, Y. Kim, J. Lee, S.D. Lee, Forensic application of SNP-based 
resequencing array for individual identification, Forensic Sci. Int.: Genet. 13 
(2014) 45–52. 

[25] T.B. Rounge, M. Lauritzen, S.E. Erlandsen, H. Langseth, O.L. Holmen, R. 
E. Gislefoss, Ultralow amounts of DNA from long-term archived serum samples 
produce quality genotypes, Eur. J. Hum. Genet.: EJHG 28 (4) (2020) 521–524. 

[26] J. Ge, B. Budowle, How many familial relationship testing results could be wrong? 
PLoS Genet. 16 (8) (2020), e1008929. 

[27] Illumina (ed.), Infinium™ Global Screening Array-24 v3.0 BeadChip, 2016. 
[28] M. Sidstedt, C.R. Steffen, K.M. Kiesler, P.M. Vallone, P. Rådström, J. Hedman, The 

impact of common PCR inhibitors on forensic MPS analysis, Forensic Sci. Int.: 
Genet. 40 (2019) 182–191. 

[29] Illumina (ed.), Infinium HTS Assay: Reference Guide, 2019. 
[30] C. Genomes Project, A. Auton, L.D. Brooks, R.M. Durbin, E.P. Garrison, H.M. Kang, 

J.O. Korbel, J.L. Marchini, S. McCarthy, G.A. McVean, G.R. Abecasis, A global 
reference for human genetic variation, Nature 526 (7571) (2015) 68–74. 

[31] T.C. Matise, F. Chen, W. Chen, F.M. De La Vega, M. Hansen, C. He, F.C. Hyland, G. 
C. Kennedy, X. Kong, S.S. Murray, J.S. Ziegle, W.C. Stewart, S. Buyske, A second- 
generation combined linkage physical map of the human genome, Genome Res 17 
(12) (2007) 1783–1786. 

[32] P.-R. Loh, P. Danecek, P.F. Palamara, C. Fuchsberger, A Reshef, H. K Finucane, 
S. Schoenherr, L. Forer, S. McCarthy, G.R. Abecasis, R. Durbin, A. L Price, 
Reference-based phasing using the Haplotype Reference Consortium panel, Nat. 
Genet. 48 (11) (2016) 1443–1448. 

[33] B.S. Weir, A.D. Anderson, A.B. Hepler, Genetic relatedness analysis: modern data 
and new challenges, Nat. Rev. Genet. 7 (10) (2006) 771–780. 

[34] B.M. Henn, L. Hon, J.M. Macpherson, N. Eriksson, S. Saxonov, I. Pe’er, J. 
L. Mountain, Cryptic distant relatives are common in both isolated and 
cosmopolitan genetic samples, PLoS One 7 (4) (2012), e34267. 

[35] A. Gusev, J.K. Lowe, M. Stoffel, M.J. Daly, D. Altshuler, J.L. Breslow, J. 
M. Friedman, I. Pe’er, Whole population, genome-wide mapping of hidden 
relatedness, Genome Res. 19 (2) (2009) 318–326. 

[36] Ball C.A., Barber M.J., Byrnes J., Carbonetto P., Chahine K.G., Curtis R.E., et al., 
(eds.), Ancestry DNA Matching White Paper Discovering genetic matches across a 
massive, expanding genetic database, 2016. 

[37] E.Y. Durand, N. Eriksson, C.Y. McLean, Reducing pervasive false-positive identical- 
by-descent segments detected by large-scale pedigree analysis, Mol. Biol. Evol. 31 
(8) (2014) 2212–2222. 

[38] M.D. Edge, G. Coop, Donnelly (1983) and the limits of genetic genealogy, Theor. 
Popul. Biol. 133 (133) (2020) 23–24. 

[39] D. Kling, On the use of dense sets of SNP markers and their potential in relationship 
inference, Forensic Sci. Int.: Genet. 39 (2019) 19–31. 

[40] J.M. Monroy Kuhn, M. Jakobsson, T. Günther, Estimating genetic kin relationships 
in prehistoric populations, PLoS One 13 (4) (2018), e0195491. 

[41] D.W. Gjertson, C.H. Brenner, M.P. Baur, A. Carracedo, F. Guidet, J.A. Luque, 
R. Lessig, W.R. Mayr, V.L. Pascali, M. Prinz, P.M. Schneider, N. Morling, ISFG: 
recommendations on biostatistics in paternity testing, Forensic Sci. Int. Genet. 1 
(3–4) (2007) 223–231. 

[42] G.R. Abecasis, S.S. Cherny, W.O. Cookson, L.R. Cardon, Merlin – rapid analysis of 
dense genetic maps using sparse gene flow trees, Nat. Genet. 30 (1) (2002) 97–101. 

[43] M.V. Lareu, M. García-Magariños, C. Phillips, I. Quintela, Á. Carracedo, A. Salas, 
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