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Abstract

Singular control for multidimensional Gaussian-Poisson processes
with a long-run (or ergodic) and a discounted criteria are discussed.
The dynamic programming yields the corresponding Hamilton-Jacobi-
Bellman equations, which are discussed. Full details on the proofs and
further extensions are left for coming works.
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1 Introduction

We use our joint paper with Michael Taksar [9] as our starting point to extend
(most of the results there) to a class of Gaussian-Poisson processes, following
most of the calculation developed in [6] and [10]. Checking recent references,
the reader can find that the so-called singular control has interesting appli-
cations (including in finance), but the mathematical setting has been mainly
on diffusion (or Gaussian) processes on finite or infinite time horizon, and
sometimes with a long-run (ergodic) criteron, but not very often, the com-
bination of diffusion with jumps and ergodic cost. A comprehensive work is
the books by Arapostathis et al. [1], Bensoussan [2], Fleming and Soner [4]
and Øksendal and Sulem [11], among many others. A possible explanation is
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the fact that suitable estimates for the transition density function related to
jump-diffusion processes are more complicated and recently developed, e.g.
see the book Garroni and Menaldi [5].

The “singular” control refers to the fact that the controls in the cost func-
tional are not necessarily absolutely continuous with respect to time. Actu-
ally, we assume that the fluctuation of the stochastic system under control is
described by an d-dimensional Gaussian-Poisson process (y(t) : t ≥ 0) with a
time-varying drift, a constant diffusion matrix and jump term. The control
is realized by a non-anticipating process of bounded variation (ν(t) : t ≥ 0),
i.e., the state equation is the following stochastic differential equation in the
Itô’s sense: dy(t) =

(
g + fy(t)

)
dt+ σdw(t) +

∫
Rd
∗

zp̃(dz, dt) + dν(t), t > 0,

y(0) = x,

(1)

where w(t) : t ≥ 0) is a d-dimensional standard Wiener process, p(dz, dt) is
a Poisson measure in Rd

∗ with Lévy measure π(dz) = E{p(dz, ]0, t])}/t, and
p̃(dz, dt) = p(dz, dt) − E{p(dz, ]0, t])} is a martingale or centered Poisson
measure, and all this is realized in a filtered probability space (Ω, P,F(t) :
t ≥ 0), where the filtration (F(t) : t ≥ 0) satisfies the usual conditions.
The coefficients g, f and σ are constant, i.e. g is a d-dimensional column
vector, f and σ are d × d square matrices. Adjusting the dimensions of the
coefficients involved, a n-dimensional standard Wiener process (d 6= n) and
a m-dimensional Poisson measure (m 6= d) could be used, but it seems no
essential to this model.

The cost associated with the position of the process is measured by a
convex nonnegative function h, and the cost of controlling is proportional to
the displacement (i.e., the variation of ν) induced by this control. We are
interested in minimizing the limiting time average expected (i.e., ergodic or
long-run) cost

λ = inf
ν

lim
T→∞

1

T
E
{∫ T

0

h(y(t))dt+ c|ν|(T )
}
, (2)

where c is a positive real number, and |ν|(T ) denotes the total variation of
ν on [0, T ). More precisely, if (ν(t) : t ≥ 0), ν(t) = (ν1(t), . . . , νd(t)) is an
adapted process with bounded variation (on any bounded time-interval) then

2



the one-dimensional variation process t 7→ |ν|(t) is given by |ν|(T ) = sup
{
|ν(t0)|+

k∑
i=1

|ν(ti)− ν(ti−1)| :

: 0 = t0 < t1 < · · · < tk = T
}
,

(3)

where | · | denotes the Euclidean norm in Rd. Note that under the action
such a control ν, the initial condition in the stochastic differential equation
(1) becomes y(0) = x+ ν(0).

Beside the long-run cost (2), another class of infinite-horizon problems
deals with the minimization of the total expected discounted cost

uα(x) = inf
ν
E
{∫ ∞

0

h(y(t))e−αtdt+ c

∫ ∞
0

e−αtd|ν|(t)
}
. (4)

If the control ν = 0 then the state equation (1) is related to the linear
second-order integro-differential operator

Aϕ(x) =
1

2

d∑
i,j=1

( d∑
k=1

σikσjk

)
∂ijϕ(x) +

d∑
i=1

(
gi

d∑
j=1

fijxj

)
∂iϕ(x) +

+

∫
Rd

(
ϕ(x+ z)− ϕ(x)− z · ∇ϕ(x)

)
π(dz),

(5)

with ∂i, ∂ij denoting the first and second partial derivatives, and ∇ =
(∂1, · · · , ∂d).

In the ergodic case, a formal application of the dynamic programming
gives the following Hamilton-Jacobi-Bellman (HJB) equations

min
{
Av(x)− λ+ h(x), c− |∇v(x)|

}
= 0, in Rd, (6)

with two unknowns, the constant (optimal cost) λ and the function (poten-
tial) v.

In the discounted case, using again a formal of the dynamic programming,
we obtain the following HJB equation

min
{
Auα(x)− αuα(x) + h(x), c− |∇uα(x)|

}
= 0, in Rd, (7)

with only one unknown, the optimal cost uα.
Our interest is to discuss theses two problems and their relation, as in our

previous work with Taksar [9], where the simple case of Gaussian processes
were considered.
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2 Main Results

We assume that the parameters of the model satisfy the conditions{
α, c are positive constants, σ is an invertible matrix,

f is a stable matrix, i.e., etf is bounded as t→∞,
(8)

and the Lévy measure satisfies∫
Rd

|z|pπ(dz) <∞, ∀p ≥ 2, (9)

i.e., the uncontrolled evolution has finite moments of any order, but the small
jumps are of second order. The d-dimensional standard Wiener process and
the centered Poisson measure p̃(dz, dt) are both independent martingales
with respect to the complete and right continuous filtration (F(t) : t ≥
0). Some variations of the above assumption could be used, but the non
degeneracy of σ (i.e., invertible) seems necessary in various points of the
discussion below.

The set of control functionals V consists of all right continuous with left-
hand limits (cad-lag) processes (ν(t) : t ≥ 0) taking values in Rd, progres-
sively measurable with respect to the complete and right continuous filtration
(F(t) : t ≥ 0) and such that the variation process t 7→ |ν|(t) defined by (3)
satisfies

E{|ν|(t)} <∞, ∀t > 0, (10)

and for technical reason, we adopt the convention that ν(0−) = 0 and
|ν(0)| = |ν|(0).

Also, the holding cost function h satisfies the polynomial growth condi-
tions below, namely, there exist positive constants C0, C1, C2 and m > 1 such
that, for any x, χ in Rd, 0 < |χ| < 1, we have

0 ≤ h(x) ≤ C0(1 + |x|m),

|h(x)− h(x+ χ)| ≤ C1|χ|
(
1 + h(x)

)
,

0 < h(x+ χ) + h(x− χ)− 2h(x) ≤ C2|χ|2
(
1 + h(x)

)
.

(11)

Moreover, we suppose that h is strictly convex and that

|x|−1h(x)→∞ as |x| → ∞. (12)
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For instance, h(x) = x2 has this properties.
The costs are defined as follows:

J (x, ν, α) =

∫ ∞
0

h(y(t))e−αtdt+ c

∫ ∞
0

e−αtd|ν|(t),

J(x, ν, α) = E
{
J (x, ν, α)

}
,

K(x, ν) = lim
T→∞

1

T
E
{∫ T

0

h(y(t))dt+ c|ν|(T )
}
,

(13)

and therefore{
uα(x) = inf

{
J(x, ν, α) : ν ∈ V},

λ = inf
{
K(x, ν) : ν ∈ V},

(14)

where λ is expected to be independent of x. Note that if the assumption (11)
is imposed then the condition (9), for p = 2 and p = max{2,m}, implies that
the costs J(x, ν, α) and K(x, ν) are both finite, at least for ν = 0.

Our main results

Theorem 2.1. Under the assumptions (8),. . . ,(12), the ergodic cost λ is
independent of the initial state x and

αuα(x)→ λ as α→ 0, (15)

where the convergence is locally uniform in x belonging to Rd.

Theorem 2.2. There exist a convex and Lipschitz continuous function v
with v(0) = 0 and a bounded, open, and nonempty region D in Rd such that{

Av + h ≥ λ in D(Rd),

|∇v| ≤ c a.e. in Rd,
(16)

and v belongs to W 2,∞(D), and{
Au+ h = λ a.e. in D,

|∇v| = c a.e. in ∂D.
(17)

Moreover, if ∂D is of class C3, u is three times continuously differentiable
on D = D ∪ ∂D, and ∇v is never tangent to ∂D, then there exists ν∗x in V
such that

K(x, ν∗x) = λ, (18)

i.e., ν∗x is an optimal ergodic (or stationary) policy.
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Remark that D′(Rd) denotes the space of Schwartz distributions in Rd

and W 2,∞(D) is the Sobolev space of bounded functions with Lipschitz first
derivatives in D.

3 A Priori Estimates

Considering the Gaussian-Poisson process

β(t) = gt+ σw(t) +

∫
Rd
∗×]0,t]

zp̃(dz, ds), (19)

the state (y(t) : t ≥ 0) of the system (1) can be written as

y(t) = etfx+

∫ t

0

e(t−s)fdβ(s) +

∫ t

0

e(t−s)fdν(s), (20)

and if each control ν is decomposed into its continuous part νc and its purely
jump part νj, with ν = νc+νj, νc(0) = 0 and νj(0−) = 0, all by components,
then the cost of controlling becomes the constant c times the integral∫ ∞

0

e−αtd|ν|(t) =

∫ ∞
0

e−αtd|νc|(t) +
∑
t≥0

e−αt|νj(t)− νj(t−)|, (21)

Note that νc and νj have locally bounded variation, νj is right continuous
with left-hand limits and with countably many discontinuities. Essentially
based on [6] and [10] we have

Proposition 3.1. If (8),. . . ,(12) are satisfied then exists a constant K0 > 1
such that, for any x, χ in Rd, 0 ≤ |χ| ≤ 1, and α > 0, we have

0 ≤ uα(x) ≤ c|x|+ (K0 − 1)α−1,

|uα(x)− uα(x+ χ)| ≤ C1|χ|
(
c|x|+K0α

−1),
0 ≤ uα(x+ χ) + uα(x− χ)− 2uα(x) ≤ C2|χ|2

(
c|x|+K0α

−1). (22)

where c is the constant in (8) that appears in the cost (13), and C1, C2 are
the constants in assumptions (11).
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Proof. We follows the arguments in the joint paper with Taksar [9]. For
instance, to show the first part (22), consider the reflected diffusion processes
with jumps

dy0(t) = fy0(t)dt+ dβ(t)− y0(t)dξ0(t),
y0(0) = 0, ξ0(0) = 0,

|y0(t)| ≤ 1, ∀t ≥ 0,

dξ0(t) 6= 0 only if |y0(t)| = 1,

(23)

where β given by (19) and (ξ0(t) : t ≥ 0) is a one-dimensional increasing
cad-lag (continuous from the right with left-hand limits) process, e.g., see
[8]. Then Itô formula applied to the function (y, t) 7→ |y|2e−αt yields

|y0(T )|2e−αT + α

∫ T

0

|y0(t)|2e−αtdt+ 2

∫ T

0

e−αtdξ0(t) =

= 2

∫ T

0

y0(t) · [fy0(t)dt+ dβ(t)] +

∫ T

0

Tr(σσ∗)e−αtdt+

+ 2

∫ T

0

e−αtdt

∫
Rd
∗

|z|2π(dz),

(24)

which implies the estimate

αE
{∫ T

0

e−αtdξ0(t)
}
≤ |g|+ |f |+ 1

2
Tr(σσ∗) +

∫
Rd
∗

|z|2π(dz). (25)

The reflected diffusion processes with jumps shows that, under the action
of the bounded variation control process dν(t) = y0(t)dξ0(t), the state of
system (i.e., y0(t)) remains within the unit ball if it starts in this ball. Thus,
a recipe to keep the state of the system within the unit ball is to make an
initial jump to the origin and then reflect the process on the boundary.

This means that if for each x in Rd we define νx(t) = −x−
∫ t

0

y0(s)dξ0(s), ∀t ≥ 0,

yx(t) = y0(t), ∀t ≥ 0, as in (23),

(26)

then (yx(t) : t ≥ 0) is the solution of the stochastic differential equation (20)
for the initial condition x and the control νx, and

uα(x) ≤ J(x, νx, α) = c|x|+ J(x, ν0, α). (27)
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Next, in view of the estimate (25), we deduce the first part of (22) with

K0 = 1 + |g|+ |f |+ 1

2
Tr(σσ∗) +

∫
Rd
∗

|z|2π(dz) + sup
|x|≤1
|h(x)|. (28)

To verify the second part of (22), use the inequality

|uα(x)− uα(x+ λχ)| ≤ sup
ν
|J(x, ν, α)− J(x+ λχ, ν, α)|,

for |χ| = 1 and λ in (0, 1], where the supremum is taken over all controls ν
satisfying

J(x+ λχ, ν, α) ≤ c(|x|+ 1) + (K0 − 1)α−1.

Next, if C1 is the constant in assumption (11) then combine the above in-
equalities with∣∣h(yx(t))− h(yx+λχ(t)

)∣∣ ≤ C1λ|etfχ|
[
1 + h

(
yx(t)

)]
,

to deduce the second part of (22), after remarking that |etfχ| ≤ 1.
For the last part, as above begin with

|uα(x+ λχ) + uα(x− λχ)− 2uα(x)| ≤
≤ sup

ν
|J(x+ λχ, ν, α) + J(x− λχ, ν, α)− 2J(x, ν, α)|,

for |χ| = 1 and λ in (0, 1], where again the supremum is taken over all controls
ν satisfying

J(x± λχ, ν, α) ≤ c(|x|+ 1) + (K0 − 1)α−1.

Next, if C2 is the constant in assumption (11) then combine the above in-
equalities with∣∣h(yx+λχ(t)

)
+ h
(
yx−λχ(t)

)
− 2h

(
yx(t)

)∣∣ ≤
≤ C2λ

2|etfχ|2
[
1 + h

(
yx(t)

)]
,

to complete the proof.
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A direct consequence of the above Proposition is the fact that if the second
derivatives of h are bounded and all eigenvalues of f are strictly negative then
the second derivatives of uα are equi-bounded in α > 0.

Following the arguments in [6], [10] and [9], the optimal cost uα satisfies
uα ∈ W 2,∞

loc (Rd), i.e., locally Lipschitz first detivatives,

Auα − αuα + h ≥ 0, a.e. in Rd,

|∇uα| ≤ c in Rd,

Auα − αu+ αh = 0, a.e. in [|∇uα| < c],

(29)

where [|∇uα| < c] denotes the set of points x in Rd satisfying |∇uα(x)| < c.
Next, define the open set (the continuation region)

Dα =
{
x ∈ Rd : |∇uα(x)| < c

}
, (30)

and define the sets D and S as follows:

Definition 3.2. A point x in Rd belongs to the set D if there exits a constant
r = r(x) > 0, and sequences xk → x and αk → 0 as k → ∞ such that
{|y − xk| < r} ⊂ Dαk

, for every k. While a point x in Rd belongs to S if
there exit sequences xk → x and αk → 0 as k →∞ such that xk 6∈ Dαk

, for
every k.

As in [9], we can show that under the assumptions of Proposition 3.1 the
set D is bounded and open, the set S is closed and Rd = D ∪ S. Actually,
a key point is the use of assumption (12) to show that Dα is included in the
ball {x ∈ Rd : |x| ≤ K1} with K1 defined by{

K1 = sup
{
x ∈ Rd : h(x) ≤ a+ b|x|

}
,

with a = c|g|+K0 and b = c(1 + |f |),
(31)

where K0 is the constant (28). Moreover

Theorem 3.3. Under the assumptions (8),. . . ,(12), the set D given in Def-
inition 3.2 is nonempty. Moreover, for every 0 < α < 1, we have

|∇uα(x)−∇uα(x′)| ≤ K2|x− x′|, ∀x, x′ ∈ Dα (32)

for some constant K2 independent of α, and outside of the continuation set
Dα, the function uα is linear along the gradient, i.e.,

uα
(
x+ θ∇uα(x)

)
= uα(x) + c2θ, ∀x 6∈ Dα and θ > 0, (33)

9



where uα(x) is the discounted optimal cost function (14), and c is the constant
that appears in the cost (13).

Proof. Because uα is convex we have∫
Rd

(
uα(x+ z)− uα(x)− z · ∇uα

)
π(dz) ≥ 0, (34)

which implies that

0 = Auα − αuα + h ≥ Luα − αuα + h in Dα, (35)

where L is the strict partial differential operator in A.
By means of the almost-local Schauder estimate for integro-differential

operators (e.g., see [7] or Garroni and Menaldi [5]) the function uα is smooth,
and to show (32), we need to verify that for some set of d independent
directions (χ1, . . . , χd) in Rd we have

d∑
k=1

∂2uα(x)

∂χ2
k

≤ K2, ∀x ∈ Dα. (36)

Thus, combining (35), if σk denotes the k column of the matrix σ and χk =
σk|σk|−1 then

d∑
k=1

∂2uα(x)

∂χ2
k

≤
(

min
k
|σk|
)−2(

αuα(x)−

− (g + fx) · ∇uα(x)− h(x)
)
.

(37)

Hence, the constant K2 is given by

K2 = 2
(

min
k
|σk|
)−2(

K0 − 1 + c|g|+ c(1 + |f |)K1

)
, (38)

where K0 and K1 are the constants appearing in (28) and (31).
Now, to show that D is nonempty, let xα be a point in Rd, where uα(·)

attains its absolute minimum. Then ∇uα(xα) = 0 and xα belongs to Dα.
Next, use estimate (32) to deduce that

{x ∈ Rd : |x− xα| ≤ ε} ⊂ Dα for 0 < α < 1, 0 < ε ≤ cK−12 , (39)

where K2 is the constant given by (38), which appears in estimate (32).
Therefore, any limit point of the family {xα : 0 < α < 1} belongs to D. Note
that at least one limit point exists in view of the bound Dα ⊂ {x ∈ Rd :
|x| ≤ K1} with K1 given by (31).
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As a Corollary of the above Theorem we can mention that if the second
derivatives of h are bounded and all eigenvalues of f are strictly negative
then the estimate (32) holds true for any x in Rd. There are other interesting
questions that we leave for a more detailed paper.

4 Potential Function and Optimal Control

In the previous section we studied most of the preliminary steps to deduce the
main results. By no means, this presentation was comprehensive (actually,
full details would need much more space), our intention was to convince the
reader of the validity of our assertions. In this section, even with less details,
we discuss briefly the proofs of Theorems 2.1 and 2.2. As mentioned earlier,
full details (and extensions) of all these arguments will appear in a later work.

There are two points to cover, the passage to the limit as α→ 0 and the
validity of the Hamilton-Jacobi-Bellman equations, both points are obtained
almost simultaneously. Indeed, essentially due to the a priori estimates on
uα, specially the fact that the gradients ∇uα are equi-bounded and uα are
convex, we deduce that αuα(x) → λ and vα(x) = uα(x) − uα(0) → v(x),
locally uniformly in x, for some sequence α = αk → 0, where λ ≥ 0 is a
constant and v is a Lipschitz convex function. This implies the relation (16)
and (17) as α→ 0, actually, Av is a Radon measure. Again, the almost-local
Schauder estimate for integro-differential operators implies that v is smooth
on D and the estimates (32) and (33) of Theorem 3.3 hold true for v instead
of uα. This also implies that |∇v(x)| = c for almost every x in S = Rd rD.

If the continuation region D is smooth then there exists a smooth function
ρ such that

D =
{
x ∈ Rd : ρ(x) < 0

}
,

∂D =
{
x ∈ Rd : ρ(x) = 0

}
,

|∇ρ(x)| ≥ 1 on ∂D,

(40)

and there exists a function M(x) from a neighborhood of ∂D into the set
of d × d symmetric matrices, which is twice-continuously differentiable and
satisfies{

z ·M(x)z > 0, ∀z ∈ Rd, z 6= 0, ∀x,
−∇v(x) = M(x)∇ρ(x), ∀x ∈ ∂D,

(41)
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i.e., the free boundary ∂D and the potential v are smooth, and ∇v is never
tangent to ∂D. Under these assumptions we can build the reflected diffusion
process on D (see e.g., [8]), which provides an optimal stationary control
policy.

Another hard question is the regularity of the free boundary ∂D. This is
very related to the W 3,∞-regularity of the value function v. Results in this
direction can be found in Soner and Shreve [12], where a two-dimensional
case with unidirectional control is studied, and in Williams et al [13], where
local regularity (outside of some lower-dimensional region) is obtained. Cer-
tainly, there are several recent papers on this type of singular control, e.g.
Bensoussan et al [3], among many others.

Remark that if the matrix f is not assumed to be stable then the cost of
the control (due to the rate function h) may force the system to be stable.
Moreover, the bounded variation controls may cause the system to remain
within a bounded region, see (23). Thus, a little more analysis is necessary
to deal with the case when the matrix f is not necessarily stable, this (and
other related questions) will be discussed in a coming paper.

Acknowledgement: The authors would like to thank the referee for the
detailed first review that allows us to improve our paper.
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