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a b s t r a c t 

Conditional Random Fields (CRFs) are often used to improve the output of an initial segmentation model, 

such as a convolutional neural network (CNN). Conventional CRF approaches in medical imaging use man- 

ually defined features, such as intensity to improve appearance similarity or location to improve spatial 

coherence. These features work well for some tasks, but can fail for others. For example, in medical im- 

age segmentation applications where different anatomical structures can have similar intensity values, an 

intensity-based CRF may produce incorrect results. As an alternative, we propose Posterior-CRF , an end- 

to-end segmentation method that uses CNN-learned features in a CRF and optimizes the CRF and CNN 

parameters concurrently. We validate our method on three medical image segmentation tasks: aorta and 

pulmonary artery segmentation in non-contrast CT, white matter hyperintensities segmentation in multi- 

modal MRI, and ischemic stroke lesion segmentation in multi-modal MRI. We compare this with the 

state-of-the-art CNN-CRF methods. In all applications, our proposed method outperforms the existing 

methods in terms of Dice coefficient, average volume difference, and lesion-wise F1 score. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1

(  

d

(

2

o

p  

M  

c

(

a

a

p

s

p

a

2

v

s

a

T

a

s

i

p

p

t

F

q

i

F

i

b

a

s

h

1

. Introduction 

After the breakthrough of deep learning in computer vision 

 Krizhevsky et al., 2012; He et al., 2016; Long et al., 2015 ),

eep convolutional neural networks (CNNs) and their variants 

 Ronneberger et al., 2015; Çiçek et al., 2016; Kamnitsas et al., 

017 ) quickly started to dominate medical image segmentation, 

utperforming traditional machine learning methods in many ap- 

lications ( Yu et al., 2016; Bakas et al., 2018; Kuijf et al., 2019;

aier et al., 2015 ). To refine the prediction from the CNN, it is

ommon to combine CNN with a conditional random field (CRF) 

 Krähenbühl and Koltun, 2011 ). By modeling pairwise relationships 

nd interactions between voxel-wise variables over the whole im- 

ge, the CRF can improve the coherence of the segmentation. In 

revious work, CRFs based on predefined features such as inten- 

ity similarity and spatial coherence have been used as an efficient 

ost-processing technique or trained in an end-to-end manner in 

 recurrent neural network to refine the CNN outputs ( Chen et al., 

017; Dou et al., 2017; Kamnitsas et al., 2017; Zheng et al., 2015 ). 
∗ Corresponding author. 

E-mail address: s.chen.2@erasmusmc.nl (S. Chen). 
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Most often, a CRF uses a combination of voxel intensity and 

oxel location as pairwise potentials. Although this works well in 

everal computer vision applications ( Zheng et al., 2015; Schwing 

nd Urtasun, 2015 ), there can be challenges in other applications. 

he approach assumes that voxels that have similar intensity and 

re close to each other in the image are likely to belong to the 

ame class. There are many applications among others in medical 

mage analysis in which this assumption does not hold. For exam- 

le, the intensity-based features of the CRF are not sufficient for 

roblems where the intensity is not informative enough to iden- 

ify object boundaries, such as the artery segmentation problem in 

ig. 2 a. The spatial component of the CRF, on the other hand, re- 

uires extra careful tuning when the CRF is applied to data with 

solated small objects, such as the white matter hyperintensities in 

ig. 2b, which may be erroneously removed by excessive smooth- 

ng. In stroke lesion segmentation, a large appearance difference 

etween lesion objects of the same class also goes against the CRF 

ssumption that the same class objects should have similar inten- 

ity (see Fig. 2 c). 

In this paper, we propose Posterior-CRF , a new learning-based 

RF approach for image segmentation that allows the CRF to use 

eatures learned by a CNN, optimizing the CRF and CNN parame- 

ers concurrently. The learning-based CRF makes the CNN features 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Different CRF-based approaches For each graph: (a) Post-processing CRF 

( Chen et al., 2017; Kamnitsas et al., 2017 ); (b) End-to-end training CRF with pre- 

defined features ( Zheng et al., 2015 ); (c) Proposed Posterior-CRF, which uses CNN 

feature maps as CRF reference maps. Best viewed in color with zoom. 
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pdate to work best with CRF in an end-to-end manner. During 

raining, the CRF inference works in the CNN feature space, which 

s more likely to contain useful high-level features for segmenta- 

ion compared to the original intensity values. 

We demonstrate our method in three medical image analysis 

pplications. Our first application is the segmentation of the aorta 

nd pulmonary artery in non-contrast, non-ECG-gated chest CT 

cans. In these images, the aorta and the pulmonary artery share 

imilar intensity values, which goes against the CRF assumption 

hat similar classes should share similar intensity ( Sedghi Gamechi 

t al., 2018; Xie et al., 2014 ). The boundaries between the objects 

re not recognizable by intensity alone, making a standard CRF less 

ffective ( Fig. 2 a). Our second application is the segmentation of 

hite-matter hyperintensities in brain MRI. These small objects are 

parsely distributed in the brain (see Fig. 2 b) and may be removed 

y the CRF, which optimizes for the spatial coherence of segmen- 

ation. Our third application is the segmentation of ischemic stroke 

esions in brain MRI, which have very heterogeneous intensities 

nd shapes within the same lesion class ( Fig. 2 c). 

ontributions 

1. We present a new end-to-end trainable algorithm for image 

egmentation called Posterior-CRF using learnable features in CRF 

airwise potentials. We explore how the proposed method affects 

NN learning during training. 

2. We compare the performance of a fully-connected CRF in 

everal settings: post-processing, end-to-end training with prede- 

ned features, and end-to-end training with learned features. Ab- 

ation experiments are conducted to investigate the influence of 

RF parameters and which level of the CNN feature maps are more 

ikely to benefit the CRF inference. We found that the features in 

he last CNN feature maps provide a more consistent improvement 

han features in early CNN layers and predefined intensity features. 

3. We evaluate our methods in three applications: aorta and 

ulmonary artery segmentation in non-contrast CT, which can be 

sed to compute important biomarkers such as the pulmonary 

rtery to aorta diameter ratio ( Sedghi Gamechi et al., 2018 ); 

hite matter hyperintensities segmentation in multi-sequence 

RI, which is of key importance in many neurological research 

tudies ( Kuijf et al., 2019 ); and ischemic stroke lesion segmentation 

n multi-sequence MRI, which can provide biomarkers for stroke 

iagnosis ( Maier et al., 2015 ). In the experiments, the proposed 

osterior-CRF outperforms CNN without CRF, post-processing CRF, 

nd-to-end intensity-based CRF, and end-to-end spatial-based CRF. 

A preliminary version of this work, focused on a single applica- 

ion and with less validation, appeared as an extended abstract in 

 Chen and de Bruijne, 2018 ). 

. Related work 

.1. End-to-end training of CRF and CNN 

CRF is widely used as an efficient post-processing method to 

efine the output of CNN segmentation models (for example, Chen 

t al., 2017; Dou et al., 2017; Kamnitsas et al., 2017 ). However, ap-

lying a CRF as post-processing means that the CNN is not able 

o adapt its output to the CRF. Zheng et al. (2015) proposed to 

ptimize CNN and CRF jointly by reformulating the CRF inference 

s a recurrent neural network (RNN) operation, such that the CRF 

eights can be learned together with the CNN. This approach 

akes the unary potentials and the kernel weights in pairwise 

otentials trainable, which saves the computational cost of grid 

earch for other approaches to tune these weights, although the 

RF still works in the predefined fixed feature space. In this paper, 

e focus on a new CRF approach where the CRF inference works 

n a learning-based CNN feature space. 
2 
.2. Locally-connected CRFs with learned potentials 

While conventional CRFs use predefined Gaussian edge poten- 

ials, the potentials can also be learned through a neural network. 

emulapalli et al. (2016) learn the pairwise potentials of a Gaus- 

ian CRF in a bipartite graph structure. This approach uses a sim- 

ler continuous CRF model which provides better convergence of 

ean-field inference than the conventional discrete CRF models. 

n this paper, we focus on the most widely used discrete CRF 

odel which is a natural fit for the dense segmentation problem. 

in et al. (2016) ; Li and Ping (2018) and Wang et al. (2018a) learn

airwise CRF potentials to model patch-wise (or local) relation- 

hips using free form functions learned by neural network rather 

han a combination of predefined Gaussians to calculate the pair- 

ise potentials. The patch-wise potentials provide a better abil- 

ty to model the semantic compatibility between image regions 

nd have different effects compared to our approach, where we 

o not consider patch-wise relationships. Our method uses tradi- 

ional Gaussian edge potentials ( Krähenbühl and Koltun, 2011 ) sim- 

lar to Zheng et al. (2015) which are easier to compute in a fully- 

onnected manner. Unlike Zheng et al., we derive the potentials 

rom the feature space learned by a CNN. This allows us to model 

lobal interactions between voxel-wise variables using learning- 

ased features. 

.3. Other methods related to CRF 

Next to CRF, there are several other approaches that aim to 

odel interactive relationships or add global information to neural 

etworks. Graph neural networks (GNN) ( Scarselli et al., 2008; Sel- 

an et al., 2018 ) model interactions between variables by applying 

raph convolution filters, which allow them to learn global rela- 

ionships between voxels. We further address GNN in the Discus- 

ion. The recently proposed non-local CNN ( Wang et al., 2020 ) uses 

ayer-wise self-attention ( Vaswani et al., 2017; Wang et al., 2018b; 

uan et al., 2019 ) to make each layer in the network focus on the

reas that encoded the most non-local information in the preced- 

ng layer. While this allows non-local CNNs to model long-range 

ependencies, they are unable to model the interactions that can 

e learned by a CRF or GNN. In this paper, we focus on the fully-

onnected CRF model which is an efficient approach of modeling 

oth interactive relationships and global information. 

. Methodology 

Our method consists of two parts that are optimized jointly: 

D CNN and 3D CRF. In Section 3.1 , we describe the CNN model, 

hich provides unary potentials for the CRF inference as well as 

eatures for the pairwise potentials for the proposed Posterior-CRF. 
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Fig. 2. Difficult cases for conventional CRF inference in medical image segmentation. (a) Segmentation of arteries in CT: first row shows two axial slices of the CT scan 

with red arrows indicating indistinguishable boundaries; second row shows the corresponding ground truth of the aorta (yellow) and pulmonary artery (green); (b) White 

matter hyperintensities segmentation in MRI: four examples are shown with the ground truth of the lesions (green), red arrows indicate small isolated lesions that can be 

easily removed by CRF; (c) Ischemic stroke lesions segmentation in MRI: first row shows the ground truth of the lesions (green) where large appearance difference between 

lesions can be observed (red arrows); second row shows a close-up view of the lesions. Best viewed in color with zoom. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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hen we introduce the CRF in Section 3.2 . We show two previously 

roposed ways to perform CRF inference using predefined features: 

ost-processing ( Section 3.3.1 ) and end-to-end training with pre- 

efined features ( Section 3.3.2 ). Our proposed end-to-end train- 

ng with learned features is presented in Section 3.4 , followed by 

ection 3.4.1 about the back-propagation of the proposed learning- 

ased CRF. The mean-field inference algorithm used in the pro- 

osed method is explained in Appendix Section 8. 

.1. CNN Model 

Our CNN model is based on UNet ( Ronneberger et al., 2015 ), 

he most widely used network architecture for medical image seg- 

entation. It has a multi-scale design with skip-connections that 

onnect the encoding and decoding parts of the network, which 

llow the decoding path to use the early, high resolution feature 

aps without losing information through pooling. We use 3D UNet 

s the basic CNN architecture to provide the unary potentials for 

RF inference as well as features for the pairwise potentials for 

he proposed Posterior-CRF. Details of the network layout used in 

ur experiments are given in Fig. 3 . 

.2. Conditional random fields 

In this section, we describe the CRF as proposed in 

 Krähenbühl and Koltun, 2011 ). In image segmentation, a CRF mod- 

ls voxel-wise variable x i taking values in { 1 , . . . , C} as a set of ran-

om variables X = { x 1 , . . . , x N } , where C is the number of classes

nd N is the number of voxels in the image. During training, x i 
s converted into a soft classification vector of length C, indicat- 

ng for each class the probability that the i th voxel belongs to that 

lass, with the L 1 norm | x | = 1 . x i obey a Markov property condi-

ioned on a global observation, the image I consisting of variables 

 = { I 1 , . . . , I N } . In this paper, I is the observed 3D CT/MRI scans,

ith its length given by the number of imaging modality channels 

times the number of voxels per channel N. 

Consider a fully-connected pairwise CRF model ( X , I ) character- 

zed by a prior Gibbs distribution: 

 ( X | I ) = 

1 

Z(I ) 
exp (−

∑ 

c∈ C ζ
φc (X c | I )) (1) 

here ζ = (V, E ) is an undirected graph describing the random 

eld X . Each clique c in a complete set of unary and pairwise 
3 
liques C ζ in ζ , and φ is the potential for each clique. We seek 

 maximum a posteriori probability (MAP) estimation x that mini- 

izes the corresponding Gibbs energy E( X = x | I ) : 
( X = x | I ) = 

∑ 

i 

ϕ u (x i | I ) + 

∑ 

i< j 

ϕ p (x i , x j | I ) (2)

AP (P (X | I )) : x 

∗ = argmin 

x 
E( X = x | I ) (3) 

here i and j range from 1 to N. The first term ϕ u (x i ) in Eq. (2) is

he unary potential, which in our case is the current C length vec- 

or of voxel i representing the class probabilities in the CNN pos- 

erior probability maps. The second term ϕ p (x i , x j ) is the pairwise

otential: 

 p (x i , x j ) = μ(x i , x j ) 
K ∑ 

m =1 

ω m 

k m 

(4) 

here μ(x i , x j ) is the label compatibility function that describes 

he interactive influences between different pairs of classes, ω m 

is 

he linear combination weight of different pre-defined kernels k m 

nd K is the total number of kernels. Each k m 

is a modified Gaus- 

ian kernel with specific feature vector f : 

 (f i , f j ) = 

S ∏ 

s =1 

exp 

(
−1 

2 

( f s i − f s j ) 
T �s ( f s i − f s j ) 

)
(5) 

he feature vector f is defined from S arbitrary feature spaces. �
s a symmetric positive-definite precision matrix that defines the 

hape of each kernel. In semantic segmentation, typically a com- 

ination of intensity ( I) and position features ( p) has been used 

 Krähenbühl and Koltun, 2011; Zheng et al., 2015; Kamnitsas et al., 

017 ): 

ϕ p (x i , x j ) = μ(x i , x j ) 

[
ω 1 exp 

(
−| p i − p j | 2 

2 θ2 
α

− | I i − I j | 2 
2 θ2 

β

)

+ ω 2 exp (−| p i − p j | 2 
2 θ2 

γ

) 

] (6) 

here the first kernel controlled by ω 1 is called appearance kernel 

nd the second kernel controlled by ω 2 is called smoothness kernel . 

he parameters θα , θβ and θγ control the influence of the corre- 

ponding feature spaces. The appearance kernel is inspired by the 

bservation that nearby voxels with similar intensity are likely to 
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Fig. 3. Proposed feature-learning-based CRF using early/later CNN feature maps. The backbone architecture is based on 3D UNet. The skip-connections concatenate the 

feature maps from the encoder path with the upsampled ones from the decoder path. The CRF module is placed on top of the CNN and infers the most likely posterior 

class probability conditioned on the CRF features. M is the number of input imaging modalities. C is the number of output classes. Two proposed CRF variants are shown 

in this figure: 1. Posterior-CRF (red rectangle and arrows), which uses the last CNN layer as CRF reference maps; 2. FL-CRF-e-1 (blue rectangles and arrows), which uses the 

first level CNN layer as CRF reference maps. Best viewed in color with zoom. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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e in the same class, while voxels that are either further away or 

ave larger intensity difference are less likely to be in the same 

lass. The smoothness kernel can remove isolated regions and pro- 

uce smooth segmentation results ( Krähenbühl and Koltun, 2011; 

amnitsas et al., 2017 ). Note that the position feature appears in 

oth appearance kernel and smoothness kernel, where spatial in- 

ormation has different contributions to each of the two kernels, 

epending on the spatial standard deviations θα and θγ . 

.3. CRF with predefined features 

Conventional CRFs use predefined features, such as the image 

ntensity and spatial position shown in Eq. (6) . These features are 

ommonly used in CRFs to encourage intensity and spatial coher- 

nce, based on the assumption that voxels that have a similar in- 

ensity or are close together are likely to belong to the same class. 

We evaluate two state-of-the-art approaches to combine CRFs 

ith predefined features with a CNN: 1. Apply the CRF as post- 

rocessing to refine the CNN outputs ( Section 3.3.1 ); 2. Implement 

he CRF as a neural network layer that can be trained together with 

he CNN in an end-to-end manner ( Section 3.3.2 ). 

.3.1. CRF as post-processing 

After we train a CNN model and get its predictions, we can 

pply CRF as a post-processing method to refine the results 

 Chen et al., 2017 ). We refer to this method as Postproc-CRF 

 Fig. 1 a). 

.3.2. End-to-end training CRF 

The CNN and CRF can be combined more elegantly by optimiz- 

ng them together in an end-to-end manner ( Zheng et al., 2015 )

 Fig. 1 b), which allows the CRF to influence the CNN optimiza- 

ion. The end-to-end CRF uses the same pairwise potentials as that 

n the post-processing CRF ( Eq. (6) ). We refer to this variant as

ntensity-CRF . 

To investigate the spatial term in the end-to-end CRF, we can 

lso use only the position features as the CRF feature space, which 

eans that the CRF layer will only encourage nearby voxels to have 

he same class. We implement this CRF by setting the weight of 

he appearance kernel ω 1 to zero and make it not trainable. We 

efer to this method as Spatial-CRF . 
4 
.4. Proposed CRF with learning-based features 

Our proposed CRF uses a learning-based feature space. We re- 

lace the intensity feature vector I in the CRF kernel ( Eq. (6) ) with

he new feature vector F (I ) from the CNN feature maps. The in- 

ormation in these CNN feature maps differs per level: in the first 

evel of UNet the feature maps contain information close to the in- 

ensity, while in the last level of the UNet they contain more con- 

ext for each voxel and potentially more class-discriminative infor- 

ation. 

We refer to the CRF that uses features learned by CNN as 

eature-learning-based CRF (see Fig. 1 c) and refer to the specific 

orm of CRF using the features in the last CNN softmax layer as 

osterior-CRF (see Fig. 3 ). 

Unlike the CRFs with predefined features, our CRF takes CNN 

eature maps as the reference maps and updates the random field 

 based on F (I ) instead of on I directly. Compared to the original

RF pairwise potential in Eq. (6) , the feature I is replaced with F (I )

nd the new pairwise potential becomes: 

ϕ p (x i , x j ) = μ(x i , x j ) 

[
ω 1 exp 

(
−| p i − p j | 2 

2 θ2 
α

−| F i (I ) − F j (I ) | 2 
2 θ2 

β

)
+ ω 2 exp 

(
−| p i − p j | 2 

2 θ2 
γ

)] (7) 

.4.1. Back-propagation of the learning-based CRF 

The back-propagation of the proposed end-to-end feature- 

earning-based CRF is shown in Fig. 4 . There are five steps within 

ne optimization iteration. Steps 1 ∼3 are the forward process that 

enerates the output of the CNN. In the 4th step, CRF weights will 

dapt to the outputs calculated by the reference maps and unary 

aps, both given by CNN feature maps before back-propagation. 

n the 5th step, CNN weights are updated to provide new unary 

aps and reference maps for CRF for the next iteration. When the 

ptimization converges, both CNN and CRF weights become stable 

lose to their optimal values. Note that the mean-field inference 

n CRF happens in the forward process (after step 2 and before 

tep 3) and thus contributes to the gradient updates of both CNN 

nd CRF weights. The derivation of the mean-field inference gradi- 

nt is omitted due to the length of the paper and can be found in

ection 4.2 of the paper by Zheng et al. (2015) . 
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Fig. 4. One end-to-end optimization iteration of the proposed CRF method. Best 

viewed in color with zoom. 

Table 1 

Post-processing CRF parameters for each dataset. Search range 

indicates the range of parameter values explored during grid 

search. 

Datasets CT Arteries WMH ISLES Search range 

ω 1 6.39 3.85 9.75 (0.1, 10) 

θα 4.09 4.46 8.74 (0.1, 10) 

θβ for CT 1.10 - - (0.1, 10) 

θβ for T1 - 7.01 9.26 (0.1, 10) 

θβ for T2 - - 9.73 (0.1, 10) 

θβ for FLAIR - 2.64 2.36 (0.1, 10) 

θβ for DWI - - 6.85 (0.1, 10) 

ω 2 3.40 1.41 2.34 (0.1, 10) 

θγ 4.83 0.11 1.35 (0.1, 10) 

Iterations 3 1 2 (1, 5) 

Table 2 

Initial end-to-end CRF parameters for each dataset. 

Methods ω 1 θα θβ ω 2 θγ Iterations 

CT Arteries 

Spatial-CRF - - - 3.40 4.83 3 

Others 6.39 4.09 1.10 3.40 4.83 3 

WMH 

Spatial-CRF - - - 1.41 0.11 1 

Others 3.85 4.46 4.83 1.41 0.11 1 

ISLES 

Spatial-CRF - - - 2.34 1.35 2 

Others 9.75 8.74 7.05 2.34 1.35 2 
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. Experiments 

In this section, we present experiments to evaluate the pro- 

osed method and compare it to the baseline methods: 3D UNet, 

ost-processing CRF, Intensity-CRF, and Spatial-CRF. Implementa- 

ion details are discussed in Section 4.1 , followed by the experi- 

ental settings ( Section 4.2 ), the description of the datasets and 

re-processing ( Section 4.3 ), data augmentation and training de- 

ails ( Section 4.4 ) and evaluation metrics ( Section 4.5 ). 

.1. Implementation 

.1.1. CNN Implementation 

We implement all the algorithms in the TensorFlow framework. 

he detailed CNN architecture for the experiments is shown in 

ig. 3 . All convolution layers use ReLU as the activation function 

xcept for the last output layer, which uses softmax to produce 

he final probability maps. For a fair comparison, the 3D UNet ar- 

hitecture that is tuned for the CNN baseline method is applied to 

ll the CRF methods in Table 3 . The 5-layer depth of UNet (tuned

rom 3 to 6) and 32 base feature maps (tuned from 8 to 64) are

uned based on all three datasets. 
5 
All segmentation models are optimized by minimizing the Dice 

oss ( Isensee et al., 2020 ): 

 dc = − 2 

| C| 
∑ 

c∈ C 

∑ 

i ∈ I u 

c 
i 
v c 

i ∑ 

i ∈ I u 

c 
i 
+ 

∑ 

i ∈ I v c i 
(8) 

here v c 
i 

is the predicted probability that voxel i belongs to the cth 

lass. u 
j 
i 

is the true label. The loss is minimized using the Adam 

ptimizer ( Kingma and Ba, 2014 ). 

.1.2. CRF Implementation 

In CRF, mean-field approximation can be used to calculate 

he maximum a posteriori probability (MAP) of the inference. 

e use an efficient approximation algorithm for mean-field infer- 

nce ( Krähenbühl and Koltun, 2011; Monteiro et al., 2018 ) built 

n a fast high-dimensional filtering using the permutohedral lat- 

ice ( Adams et al., 2010 ) that allows voxel-wise fully-connected 

RF to be iteratively computed in linear time. For a fair com- 

arison, all the CRF methods in this paper are implemented 

n 3D fully-connected manner. The codes are publicly available: 

ttps://github.com/ShuaiChenBIGR/Posterior-CRF. 

.2. CRF Settings 

.2.1. Post-processing CRF 

For Postproc-CRF , we fix the label compatibility μ in Eq. (6) to 

he identity matrix, which means that the CRF does not model 

abel-specific interaction. In the case of multi-modal input, each 

maging modality has a specific θβ to control the strength of the 

ntensity term. 

.2.2. End-to-end CRF with predefined features 

We consider two forms of end-to-end CRFs with predefined fea- 

ures: Intensity-CRF uses intensity of the input image I and po- 

ition information as its feature space. Spatial-CRF uses only the 

osition information (the smoothness term in Eq. (6) ). The label 

ompatibility is a C × C parameter matrix which is optimized dur- 

ng training to allow the CRF to learn the label compatibility au- 

omatically. The weights ω 1 of the appearance kernel for Intensity- 

RF and ω 2 of the spatial kernel for Spatial-CRF are C × C matrices, 

hich we restrict to diagonal matrices because the relationship be- 

ween classes is already covered by the label compatibility matrix. 

nner product is calculated by multiplying the matrices. For sim- 

licity, only one θβ is applied for all modalities. 

.2.3. End-to-end CRF with learned features 

The proposed Posterior-CRF uses the last softmax layer of the 

NN as its reference map. The hyperparameters are the same as 

nd-to-end CRF with predefined features. Note that Posterior-CRF 

s a special case of the feature-learning-based CRF. We can also use 

arly CNN feature maps as CRF reference maps. An ablation study 

nvestigating other CRF variants can be seen in Section 5.4 . 

.2.4. CRF Parameters 

Parameters in the post-processing CRF for each dataset were 

btained by grid search on the validation set and are shown in 

able 1 . We computed results with 500 different configurations of 

ostproc-CRF on each dataset for grid-search. Parameters in the 

nd-to-end CRFs ( Intensity-CRF, Spatial-CRF, Posterior-CRF ) are ini- 

ialized with the same values as were used in post-processing CRF. 

lthough the end-to-end CRF approaches have the ability to learn 

RF weights automatically during training, we initialize all CRF ap- 

roaches in the same way to facilitate visualization of the evolu- 

ion of CRF parameters during training (see Fig. 5 ). We study the 

ensitivity to different CRF parameter initializations in Section 5.3 . 

The initial label compatibility matrix is set to an identity matrix 

nd can be optimized during training. In the multi-modality case, 
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Table 3 

Results. Mean (standard deviation). The best results are marked in bold. Each experiment is repeated 5 times with different random 

data split. The last two colomns are lesion-wise metrics. ∗: significantly better than CNN baseline ( p < 0 . 05 ). �: significantly worse than 

Posterior-CRF ( p < 0 . 05 ). P-values are calculated by two-sided paired t -test. All CRF methods are implemented in 3D fully-connected 

manner and share the same CNN architecture and hyperparameters. 

Methods DSC H95(mm) AVD( % ) Recall Recall(lesion) F1(lesion) 

CT Arteries: Aorta 

CNN baseline 0.9291(0.02) � 5.5560(1.96) � 6.8780(4.17) � 0.8993(0.03) � N/A N/A 

Postproc-CRF 0.9264(0.02) � 5.1591(1.59) � 8.5326(4.81) � 0.8878(0.04) � N/A N/A 

Intensity-CRF 0.9457(0.01) ∗� 3.2802(0.77) ∗� 3.1967(2.58) 0.9548(0.02) ∗ N/A N/A 

Spatial-CRF 0.9188(0.02) � 7.6562(3.98) � 6.1013(5.13) � 0.8939(0.05) � N/A N/A 

Posterior-CRF 0.9538 (0.01) ∗ 2.8699 (0.86) ∗ 2.3688 (2.29) ∗ 0.9555 (0.02) ∗ N/A N/A 

CT Arteries: Pulmonary Artery 

CNN baseline 0.8510(0.05) � 10.3000(4.87) � 16.7687(12.60) � 0.8867(0.09) N/A N/A 

Postproc-CRF 0.8561(0.05) 10.0052(5.22) � 13.7071(10.26) � 0.8698(0.09) � N/A N/A 

Intensity-CRF 0.8773(0.04) ∗ 8.9208(3.09) ∗ 11.8671(8.66) ∗ 0.9079 (0.06) N/A N/A 

Spatial-CRF 0.8558(0.06) � 10.5672(5.19) � 13.7399(13.47) 0.8603(0.09) � N/A N/A 

Posterior-CRF 0.8935 (0.04) ∗ 7.6635 (3.92) ∗ 8.9245 (7.07) ∗ 0.8979(0.07) N/A N/A 

WMH 

CNN baseline 0.7557(0.13) � 6.5015(9.87) � 28.3351(45.64) � 0.7977 (0.14) 0.6476(0.14) 0.6648(0.11) �

Postproc-CRF 0.6970(0.17) � 8.8659(7.79) � 35.0786(22.69) � 0.5947(0.20) � 0.3476(0.16) � 0.4831(0.16) �

Intensity-CRF 0.7706(0.10) � 4.9403(4.58) 15.6263(16.44) ∗ 0.7751(0.12) 0.6803(0.15) ∗ 0.6705(0.10) �

Spatial-CRF 0.7602(0.11) � 5.8469(5.82) � 23.5154(25.76) � 0.7831(0.13) 0.6876 (0.14) ∗ 0.6569(0.11) �

Posterior-CRF 0.7887 (0.09) ∗ 4.2972 (3.87) ∗ 14.8427 (12.66) ∗ 0.7707(0.12) 0.6670(0.14) 0.6952 (0.10) ∗

ISLES 

CNN baseline 0.5795(0.28) 27.6725(25.58) 72.3048(121.12) 0.6590(0.31) 0.7586(0.33) 0.4941(0.35) 

Postproc-CRF 0.5621(0.31) 19.5302 (20.72) 59.1030(85.99) 0.6132(0.34) 0.6518(0.39) 0.5545(0.36) 

Intensity-CRF 0.5758(0.26) 46.6002(32.17) � 65.9278(68.98) 0.6397(0.30) 0.7350(0.33) 0.4094(0.31) �

Spatial-CRF 0.5898(0.26) 31.1519(29.50) 93.1006(171.83) 0.6794 (0.28) 0.7848 (0.31) 0.4945(0.34) 

Posterior-CRF 0.6075 (0.24) 25.1834(23.27) 47.5171 (38.34) 0.6501(0.29) 0.7443(0.31) 0.5625 (0.32) 

Fig. 5. CRF parameters during training in WMH dataset. The initial values of the CRF parameters can be found in Table 2 . Best viewed in color with zoom. 
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he initial value of θβ is averaged over all modalities. The initial 

alues for each dataset are shown in Table 2 . 

.2.5. Computation costs of CRF 

The training and testing time of the proposed CRF method is 

he same as Intensity-CRF but a bit slower than Spatial-CRF, since 

here is no bilateral term in Spatial-CRF. Although the proposed 

RF uses CNNs features to compute the pairwise potential, the gra- 

ients only flow through the unary map path but not the refer- 

nce map path which is the same as that in traditional Intensity- 

RF. Therefore, there is no additional time and memory cost of 

he proposed method compared to traditional end-to-end CRF ap- 

roaches with fixed feature space. Post-processing CRF is after the 

NN training and takes more time for inference compared to the 

nd-to-end CRFs, since the inference is done by CPU but not GPU. 

.3. Datasets and preprocessing 

We evaluate the proposed method on three segmentation prob- 

ems: CT arteries, MRI white matter hyperintensities, and MRI is- 

hemic stroke lesions. We chose these problems to study the gen- 
6 
ralizability of the method as these applications differ a lot in ob- 

ect shapes and appearances, imaging modalities, and suffer from 

ifferent problems (see Fig. 2 ). 

.3.1. CT Arteries dataset 

We use 25 non-contrast lung CT scans from 25 different sub- 

ects enrolled in the Danish Lung Cancer Screening Trial (DLCST) 

 Pedersen et al., 2009 ). The selection of the 25 subjects was com- 

letely random and it was done before the development of this 

lgorithm for an unrelated study. The aorta and pulmonary artery 

ere manually segmented by a trained observer (ZS). Images have 

n anisotropic voxel resolution of 0 . 78 mm × 0 . 78 mm × 1 . 00 mm

nd are of size 512x512 with on average 336 slices (range 271–

94). The 25 scans are split into three parts of 10, 5, and 10 scans

or training, validation, and testing respectively. Due to the limi- 

ation of GPU memory, we first crop the original CT images and 

nly keep the axial central part of 256 × 256 voxels for all slices. 

hen, 3D patches of the size 256 × 256 × 16 are extracted from the 

ropped images. All training patches have 80% overlap in z-axis 

etween neighboring patches to mitigate border effects. In total, 
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here are 840 3D patches for training. We use the original CT in- 

ensities without normalization. 

.3.2. MRI White matter hyperintensities (WMH) dataset 

The White Matter Hyperintensities (WMH) Segmentation Chal- 

enge ( Kuijf et al., 2019 ) provided images from 60 subjects (T1 and

LAIR) acquired from three hospitals and manually segmented for 

ackground and white matter hyperintensities. We randomly split 

hese in 36 subjects for training, 12 for validation, and 12 for test- 

ng. For each subject, we cropped/padded MRI images into a con- 

tant size 200 × 200 × Z , where Z is the number of slices in the

mage. We use Gaussian normalization to normalize the intensities 

nside the brain mask in each image to zero mean and unit stan- 

ard deviation. We extract training patches of size 200 × 200 × 16 

ith 80% overlap in z-axis between patches. In total, there are 528 

D patches for training. 

.3.3. MRI Ischemic stroke lesions (ISLES) dataset 

The ISLES 2015 Challenge ( Maier et al., 2017 ) is a public dataset

f diverse ischemic stroke cases. There are 4 MRI sequences avail- 

ble for each patient (T1, T2, FLAIR, and DWI). We use the sub- 

cute ischemic stroke lesion segmentation (SISS) dataset (28 sub- 

ects) with the lesion labels for experiments and randomly split 

hem as 14 for training, 7 for validation and 7 for testing. The im- 

ges are cropped/padded to the size 200 × 200 × Z. Gaussian nor- 

alization is applied for normalizing the intensities in each image. 

raining patches of the size 200 × 200 × 16 with 80% overlap in z- 

xis are extracted. In total, there are 560 3D patches for training. 

.4. Data augmentation and training details 

The network is trained on all mini-batches (each mini- 

atch contains one 3D patch). For each 3D patch in 

he current mini-batch we apply 3D random rotation 

ampled from ([ −5 , 5] , [ −5 , 5] , [ −10,10]) degrees, shifting

[ −24 , 24] , [ −24 , 24] , [ −7,7]) voxels, as well as random hori-

ontal (left and right) flipping. We stopped training when the 

alidation loss is not decreasing anymore and chose the model 

hat achieved the best validation performance. The experiments 

re run on an Nvidia GeForce GTX1080 GPU. The average training 

ime is 5 ∼10 h for one CNN baseline model and 1 ∼2 h more when

he CRF layer is added. 

.5. Evaluation metrics 

We use four voxel-wise metrics of segmentation quality: Dice 

imilarity coefficient (DSC), indicating the relative overlap with the 

round truth (larger is better); 95th percentile Hausdorff distance 

H95), showing the extremes in contour distance from ground 

ruth to the prediction (smaller is better); Average volume dif- 

erence (AVD) as a percentage of the difference between ground 

ruth volume and segmentation volume over ground truth volume 

smaller is better), and Recall score (larger is better). For the lesion 

egmentations (WMH and ISLES), we additionally assess accuracy 

f lesion detection by computing the lesion-wise Recall and lesion- 

ise F1 score (larger is better). The lesion-wise metrics use the 3D 

onnected components, while the voxel-wise metrics do not use 

D connected components. The correct detection of a lesion is de- 

ermined by the overlap (at least one voxel) of the 3D components. 

1 score is equivalent to lesion-wise Dice score and is calculated by 

 

∗(precision 

∗recall)/(precision+recall), where precision is calculated 

y true positives/(true positives+false positives). 
7 
. Results 

.1. Segmentation results 

Table 3 shows the segmentation results for all three datasets. 

n most metrics, Posterior-CRF had the best performance in all 

atasets. For all datasets, CNN without CRF provides good baseline 

esults, which indicates that 3D UNet is an efficient architecture 

o extract useful features for segmentation in these applications. 

ntensity-CRF performed worse on DSC than Posterior-CRF (statis- 

ically significant in aorta segmentation and WMH segmentation), 

hich reveals the limitation of intensity features. Among all end- 

o-end CRF methods, Spatial-CRF performs worst for all datasets 

xcept ISLES. From these results, we conclude that spatial coher- 

nce alone is not sufficient and often detrimental to segmentation 

ccuracy, and that the CNN features in the last layer are more in- 

ormative for CRF than the intensity features in the original images. 

CRFs that depend strongly on intensity-based features have dif- 

culties detecting objects that are similar in intensity. Examples of 

his problem can be observed in the segmentations for the CT ar- 

eries and ISLES datasets ( Fig. 6 ). In CT arteries segmentation, the 

orta and pulmonary artery have very similar intensities, which 

auses most of the methods in our experiments to sometimes mis- 

lassify part of the aorta as pulmonary artery. This is especially 

rue for Post-processing CRF but also for Intensity-CRF. 

Posterior-CRF achieves a DSC segmentation overlap of 95.4% and 

n H95 lower than 2.87mm in aorta segmentation, which is sig- 

ificantly better than all other methods on this dataset. We argue 

hat this is because the features from the last CNN feature maps 

re more informative than the intensity-based features, which al- 

ows the CRF inference to focus on refining the object boundary 

ithout expanding into neighboring class voxels with similar in- 

ensities. The Posterior-CRF also gives a performance improvement 

n the segmentation of the pulmonary artery, but this is not always 

tatistically significant. One reason is that the blurred boundary 

etween the aorta and pulmonary artery often results in the over- 

egmentation of pulmonary artery, the errors in pulmonary artery 

re emphasized because the overall pulmonary artery volume is 

ower. Another reason could be the curved shape of the pulmonary 

rtery, which makes the results vary a lot between patients. 

We see similar behavior on the ISLES dataset. The intensity 

oundaries of the large ischemic stroke lesions are ambiguous and 

heir appearance varies a lot between lesions. Most of the methods 

ail to segment the boundaries accurately (see Fig. 6 ISLES). Post- 

rocessing CRF hardly solves the problem and performs slightly 

orse than CNN. Posterior-CRF achieves better (while less signif- 

cant due to the large prediction variance between samples) seg- 

entation performance on DSC, AVD, lesion-wise F1. 

A properly tuned spatial component of the post-processing CRF 

an benefits CT arteries and ischemic stroke lesion segmentation 

Appendix Section 9, Fig. 2 (a) and (c)). However, it can cause prob- 

ems to white matter hyperintensities no matter how we try to 

une it (Appendix Section 9, Fig. 2 (b)), where we can see a posi-

ive ω 2 always leads to a decreased performance since the spatial 

moothing contributes to remove both isolated true positives and 

alse positives if they are small enough. The complete SHAP analy- 

is will be discussed in Appendix Section 9. 

The negative effect of the spatial smoothing results in the 

ow average lesion-wise recall score in WMH segmentation for 

ostproc-CRF (34.8%) and can be observed in the WMH segmenta- 

ion results (see Fig. 6 ). In this case, Postproc-CRF is always worse 

han vanilla CNN (within our grid-search range). This is because 

he scenario where post-processing CRF has no influence (with 

oth ω 1 and ω 2 set to zero) was not included in the grid search

ange (0.1,10). Intensity-CRF has a higher lesion-wise average recall 

han CNN baseline (68% to 64.8%) but a lower (not significantly) 
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Fig. 6. Example segmentation results. From left for each row : (1) Original image (2) Manual annotation (3) CNN baseline (4) Postproc-CRF (5) Intensity-CRF (6) Spatial-CRF 

(7) Posterior-CRF. Aorta is colored with yellow and the pulmonary artery is green, white matter hyperintensities and ischemic stroke lesions in yellow. Red/blue rectangles 

indicate areas with over/under segmented voxels and the orange rectangle indicates another branch of pulmonary artery whose annotation starts in the next few slices and 

merged with the main branch gradually. In the WMH example (second row), only detections that do not overlap with any ground truth voxel (false positive lesions) or 

ground truth lesions for which no voxel is detected (false negative lesions) are highlighted, and in the zoomed patches red and blue voxels indicate false positive and false 

negative lesions respectively. Better viewed in color with zoom. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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oxel-wise recall (77.5% to 79.8%): although it detects more correct 

esions than CNN due to the intensity features, its use of spatial 

eatures causes it to undersegment individual lesions (see Fig. 6 ). 

patial-CRF also suffers from this problem, with a high lesion-wise 

ecall of 68.8% but low lesion-wise F1 of 65.7%. 

For CT arteries, the proposed method performs better than 

he state-of-the-art ( Sedghi Gamechi et al., 2018 ) in aorta seg- 

entation (0.95 vs. 0.94) and worse in pulmonary segmentation 

0.89 vs. 0.92). Note that five-fold cross-validation is applied in 

 Sedghi Gamechi et al., 2018 ) and in this paper we apply five

andom data splits, which may lead to different test data. Unlike 

n ( Sedghi Gamechi et al., 2018 ), we do not cut the pulmonary

rtery prediction from the bottom level. In some cases, our method 

roduces segments that extend beyond the manual annotations, 

hich leads to a lower Dice performance. For WMH, the proposed 

ethod performs slightly worse than the best performance in the 

eaderboard using 5 2D UNet ensembles (0.78 vs. 0.81) using the 

ame test data. The top 3 methods in the leaderboard are all 2D 

Net ensembles (0.81 vs. 0.80 vs. 0.80), which shows a well-tuned 

Net can provide strong baseline performance for WMH segmen- 

ation. The best non-ensemble approach is brain atlas guided at- 

ention UNet which is more comparable to the proposed method 

0.79 vs. 0.78). For ISLES, note that the test sets used in this paper

re different from the ones that are used to calculate the leader- 

t

8 
oard performance. The performance of the proposed method us- 

ng 14 training images is quite comparable to the best performance 

n the leaderboard (0.61 vs. 0.59), which is the only CNN-based 

ethod ( Kamnitsas et al., 2017 ) among the top-3 methods in Dice 

etrics (0.59 vs. 0.55 vs. 0.47). 

.2. Optimization of the end-to-end CRF 

We show the evolution of the trainable CRF parameters in one 

ata split of WMH dataset in Fig. 5 . For the four parameters in

he 2 × 2 compatibility matrix μ and the two diagonal spatial ker- 

el weights ω 2 , Spatial-CRF falls into different local optimal val- 

es compared to other CRF methods, probably because different 

arameter scaling due to the lack of the appearance kernel. In 

ontrast, Intensity-CRF and Posterior-CRF converged to similar op- 

imal values for μ and ω 2 . For the two diagonal bilateral ker- 

el weights in ω 1 that control the appearance kernel, Intensity- 

RF and Posterior-CRF converged to two different optimal values. 

his suggests that different CRF f eature spaces contribute mostly 

hrough the appearance kernel and less through the compatibil- 

ty matrix or the spatial kernel. Interestingly, for the second diago- 

al bilateral weight ω 

(2) 
1 

, there is a different trend of Posterior-CRF 

ompared to Intensity-CRF, which may indicate that at the early 

raining stage Posterior-CRF uses similar feature space like that in 
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Fig. 7. Dice performance of varying θ for CRF methods on WMH dataset. CNN 

result is shown as the black dash line. Purple crosses indicate the values used in 

Table 4 . Best viewed in color with zoom. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 

Performance (Dice score) across 5 different initializations of CRF 

weights on WMH dataset. 

Methods Intensity-CRF Spatial-CRF Posterior-CRF 

Mean (std) 0.7570 (0.008) 0.7507 (0.02) 0.7833 ( 0.003 ) 
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Fig. 8. Dice performance of end-to-end CRFs using different CNN f eature maps in 

an independent run on WMH dataset. Different blocks indicate different level of 

CNN feature maps used as CRF reference maps. Best viewed in color with zoom. 
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ntensity-CRF, but at the later stage it finds and learns another set 

f features that may help categorize the lesion class better, which 

re more reliable than the original intensity features. 

.3. Influence of CRF hyperparameters 

We conduct experiments to investigate the influence of CRF hy- 

erparameters on both end-to-end CRF with predefined features 

nd the proposed CRF with learned features. 

Trainable CRF parameters. The CRF weights μ, ω 1 , and ω 2 in 

he end-to-end CRF learning can be automatically updated together 

ith CNN weights. We run Intensity-CRF and Posterior-CRF using 

MH datasets with five different initializations of CRF weights 

andomly sampled from the search scale with all other parameters 

he same as in Table 2 . The CNN initializations are the same for all

xperiments. The results in Table 4 show that Intensity-CRF and 

osterior-CRF converge to similar optimal points across different 

nitializations. Spatial-CRF shows higher variances across experi- 

ents and is less stable to the change of initializations. Posterior- 

RF is more robust to changes in initialization, achieving higher 

verage performance and smaller standard deviations compared to 

ntensity-CRF and Spatial-CRF. 

Empirically tuned parameters. The CRF standard deviation pa- 

ameters θα and θγ , controlling the spatial terms, and θβ control- 

ing the appearance term, were tuned empirically to give the best 

esults for post-processing CRF. We here test, for WMH segmenta- 

ion, five different values of θα , θβ , and θγ for Intensity-CRF and 

osterior-CRF and five different values of θγ for Spatial-CRF within 

he search scale. All other parameters are the same as in Table 2 .

he results are shown in Fig. 7 . We can see that Posterior-CRF 

s more robust to θα and θβ and has consistently better perfor- 

ance than Intensity-CRF within the search scale, suggesting that 

osterior-CRF parameters are more easy to tune. All CRF methods 

egenerate performance when θγ becomes larger and show the 

est performance when using a similar value as that in the grid 

earch for post-processing CRF. Spatial-CRF is more robust to θγ

ompared to other CRF methods and has similar performance as 

NN baseline with larger θγ . This indicates that large θγ reduces 

he CRF effect and the spatial term may introduce more incorrect 

egmentation when there is also an appearance term in the end- 

o-end CRF like Intenity-CRF and Posterior-CRF. 

.4. Influence of hierarchical CNN features as CRF reference maps 

We conduct experiments to investigate which level of fea- 

ures – earlier or deeper in the network – are more useful for 
9 
he feature-learning-based CRF. We implement nine variants of 

eature-learning-based CRF with different levels of CNN feature 

aps as reference maps in the same 3D UNet architecture. For ex- 

mple, the method FL-CRF-e-1 indicates the feature-learning-based 

RF using the level 1 feature maps in the UNet encoder path as 

RF reference maps. The implementation detail of FL-CRF-e-1 is 

hown in Fig. 3 . To reduce the computational cost and keep the 

ame layer capacity as Posterior-CRF, the 32-channel (or more in 

eeper layers) feature maps are encoded into C-channel feature 

aps and go through a softmax layer as the CRF reference maps. 

ince there is no gradient flowing back through the reference map 

ath, we optimize the softmax layer with the segmentation loss 

irectly in order to preserve as much semantic information as pos- 

ible. Note that for CRF methods that use deeper CNN layers as ref- 

rence maps, such as FL-CRF-e-2 to FL-CRF-d-2, we upsample the 

eference maps to the original image scale using nearest neighbor 

nterpolation and optimize them with the segmentation loss, simi- 

ar to FL-CRF-e-1. 

The results are shown in Fig. 8 . Note that if we use the CNN

nput as CRF reference maps, it turns into Intensity-CRF; if we use 

he last CNN layer as CRF reference maps, it turns into Posterior- 

RF. In the figure, we can see that all feature-learning-based CRF 

pproaches (including Posterior-CRF) outperform Intensity-CRF and 

he overall Dice performance in the decoder path is better than 

hat in the encoder path, indicating that CNN learned features are 

ore useful to the CRF inference than intensity is and later CNN 

eatures are more useful than early features. The performance de- 

enerates towards the middle part of the UNet (from FL-CRF-e-1 

o FL-CRF-e-5 and FL-CRF-d-1 to FL-CRF-d-4) but fluctuates at the 

nd/3rd level. We argue that this may be due to the pooling ef- 

ect which enables CNN to extract higher-level features but loses 

he spatial information at the same time. Posterior-CRF achieves 

he best performance among all variants and we argue that this is 

ecause the last CNN layer are more likely to contain more useful 

nformation for CRF inference and it still keeps the same spatial 

cale as the original image. 

.5. Evolution of CNN and CRF outputs 

The concurrent optimization of CNN and CRF in our end-to-end 

odels allows the CNN and CRF to interact during training. We ob- 

erved that this has a strong effect on what the CNN learns in the 

arly training epochs. Fig. 9 shows the evolution of CNN and CRF 

utputs for three typical examples. The baseline CNN without CRF 

onverges quickly and focuses on the large lesions, already pro- 

ucing a fairly sparse output after the first epoch. The end-to-end 

odels converge more slowly, and in this case the output of the 

NN is influenced by the choice of CRF mostly in the early stage 

f training. For example, the CNN in the Intensity-CRF model ini- 

ially tends to highlight voxels with similar intensity as the fore- 

round (1 to 20 epoch), while the CNN in the Spatial-CRF model 

reserves the spatial coherence between voxels and outputs many 



S. Chen, Z. Sedghi Gamechi, F. Dubost et al. Medical Image Analysis 76 (2022) 102311 

Fig. 9. Evolution of CNN and CRF outputs during training. The CNN output maps and CRF results for WMH segmentation in 3 different MRI images (columns) are shown 

at, from top row to bottom row, epoch 1, 5, 20, and the best epoch. The best epoch is chosen when the model shows the best validation performance till the end of training 

(usually at 50 ∼80 epoch). FLAIR: the input FLAIR image of the current training sample. GT: ground truth. CNN baseline: the last layer (softmax output) of CNN. Intensity-CRF, 

Spatial-CRF, Posterior-CRF: the probability maps before/after the CRF layer at different epochs during training. Best viewed with zoom. 
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1

mall groups of voxels (5 epoch). The CNN in the Posterior-CRF 

odel first focuses on the coarse area that might contain the target 

esions (1 to 5 epoch) and then refine the prediction gradually to 

he ground truth (5 to 20 epoch). Eventually, all models converge 

o a result close to the ground truth. 

. Discussion 

In this paper, we explored efficient methods to combine the 

lobal inference capabilities of a CRF with the feature extraction 

rom a CNN. Our end-to-end approach optimizes the CRF and CNN 

t the same time, and allows the two components of the ap- 

roach to cooperate in learning effective feature representations. 

his gives our method an advantage over traditional CRFs that 

nly use the original image intensities and position information. 

ntensity-based features can be suboptimal for problems where the 

ntensity does not provide sufficient information to find the object 

oundaries, for example because the contrast between objects is 

oo small. 

Unlike other CRF methods, our Posterior-CRF uses adaptive 

earning-based features that are learned by the CNN and can com- 

ine spatial and appearance information in a way that suits the 

RF. The results show our method can achieve stable, good per- 

ormance across a range of segmentation applications and imag- 

ng modalities. FL-CRF variants that use early CNN features in 

ection 5.4 achieve in-between performance between Intensity-CRF 

nd Posterior-CRF, using learning-based features that range from 

ore similar to intensity to more similar to posterior probability 

aps. Finally, we found that integrating learned features into the 
10 
RF model reduces the need to fine-tune CRF parameters, making 

he method easier to apply than CRF methods with predefined fea- 

ures. 

.1. Interaction between CRF and CNN 

Fig. 9 leads to the counter-intuitive observation that, at least 

nitially, the CNNs in end-to-end models seem to imitate the CRF 

nstead of complementing it. For example, the CNN output in 

ntensity-CRF highlights the ground truth, but also finds areas with 

imilar intensities, producing something that looks very similar to 

he original image (20 epoch). The CNN output in Spatial-CRF se- 

ects the ground truth but also includes clusters of voxels in other 

reas (5 epoch). 

This effect can be explained by the way the CNN and CRF inter- 

ct during training. In Intensity-CRF and Spatial-CRF, the only inter- 

ction between CRF and CNN takes place through the unary map 

 Fig. 4 , step 5, green arrow). For example, consider how this works 

n the Intensity-CRF. In WMH segmentation, the ground truth is 

sually high-intensity area. However, for the voxels with high in- 

ensities but not the target lesions, it is difficult to get both low 

airwise CRF potentials and low segmentation loss, since labeling 

hem as non-lesion goes against the CRF assumption that voxels 

ith similar high-intensities are more likely to be the lesion class. 

or convenience, we call these voxels as hard voxels , indicating the 

oxels that do not fit the CRF assumption. In order to keep the 

orrectly segmented lesions and reduce the CRF effect on the hard 

oxels at the same time, the CNN tends to provide unary maps that 

) highlight the ground truth area for lower segmentation loss, and 
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) look similar to the CRF reference maps on the hard voxels for 

ower pairwise CRF potentials. In the later stage of training, CNN 

s encouraged to push the confidence of its outputs even further 

o minimize unary potentials and thus prevent CRF from undo- 

ng segmentation improvement on the hard voxels. From Fig. 9 , 

e can see that there are many hard voxels in Intensity-CRF (1 

o 20 epoch, areas that look like the original image) and Spatial- 

RF (5 epoch, clusters of voxels that do not belong to the ground 

ruth) which may harm the segmentation. This indicates that the 

redefined features may not be the optimal feature space for the 

nd-to-end CRF. 

In the Posterior-CRF model, the CRF inference happens within 

he CNN feature space, which can improve the interaction between 

NN and CRF. First, the features learned by CNN during train- 

ng may contain information that is more useful for segmenta- 

ion than that in the predefined features, which makes CRF ben- 

fit most from the CNN features. Second, using the learning-based 

eatures as CRF reference maps avoids the CRF assumption of the 

redefined features which may introduce many hard voxels, e.g., 

ntensity-CRF and Spatial-CRF, as discussed in the previous para- 

raph. With fewer hard voxels, the CNN in Posterior-CRF may pro- 

ide better unary maps for the CRF inference. 

.2. Posterior-CRF vs. mean-field network 

The mean-field approximation (MFA) in Posterior-CRF is some- 

hat similar to that in Mean-field networks (MFN) ( Li and 

emel, 2014 ), since both methods use it to get the posterior prob- 

bilities of the variables. Therefore, MFN could be a promising al- 

ernative to the MFA process in our method. MFN has the advan- 

age that it utilizes each layer of the network as an iteration of 

FA, which has the advantage of allowing more relaxation on pa- 

ameters and provides some efficiency improvements. This makes 

he idea of formulating Posterior-CRF as a feed-forward network 

ike MFN very attractive. There are, however, a few limitations that 

ould need to be solved. 

The first limitation is in training. MFN is designed to provide 

 faster and more flexible way to obtain the prediction of MFA, 

y fitting a powerful function that predicts the real MFA result. 

o train an MFN, we first need to acquire the ground truth calcu- 

ated by conventional mean-field iterations, which takes time dur- 

ng training but saves time during inference. On the other hand, 

osterior-CRF provides a flexible and adaptive feature space for the 

onventional MFA, speeding up the procedure by applying Gaus- 

ian convolution in the message passing updates. As a result, the 

hing Posterior-CRF does is difficult to replicate with a MFN be- 

ause the feature space of a Posterior-CRF changes during training, 

hile MFN requires a predefined feature space to get the ground 

ruth. 

The second limitation is the tradeoff between dense inference 

nd computation cost in the MFN. In its feed-forward network im- 

lementation, the computation cost increases exponentially when 

ore neighbor nodes and number of layers are included, which 

imits its ability to model dense prediction problems such as seg- 

entation tasks. 

.3. Posterior-CRF vs. graph neural networks 

The proposed Posterior-CRF shares some similarities with graph 

eural networks (GNN) ( Scarselli et al., 2008; Selvan et al., 2018 ):

oth approaches aim to model interactions between variables 

ithin a graph model. The difference is that Posterior-CRF pre- 

efines the global relationship between variables through the 

ean-field assumptions and solves the maximum a posteriori 

roblem, whereas GNN learns the global variable relationship by 
11 
pplying graph convolution filters and mapping the input graph to 

he output graph ( Selvan et al., 2018 ). 

It could be interesting to combine the global view of the 

osterior-CRF and the more local view of the GNN. The Posterior- 

RF might benefit from using a GNN to replace its CNN component 

or feature extraction. The graph-based network may extract better 

eatures for Posterior-CRF than a CNN, which is not designed to ex- 

ract unary and pairwise features for a graphical model. Similarly, 

he GNN may benefit from the efficient message passing of the 

osterior-CRF, which would allow it to use the local graph-based 

eatures as CRF features for global interactive modeling in a com- 

utationally efficient way. 

.4. Limitations 

In this paper, we show that the proposed Posterior-CRF method 

as benefits in the three medical imaging applications. Consider- 

ng the medical imaging datasets are usually small largely because 

he manual annotations are very expensive to make, difference be- 

ween Posterior-CRF and UNet may be smaller in larger training 

ets. But we know from literature that Intensity-CRF helps in some 

omputer vision applications with large training sets (e.g., 10k 2D 

mages or even more), it would be promising to test our method 

n these datasets. This is considered as our future work. 

In Section 5.3 , we show that Posterior-CRF is robust to differ- 

nt CRF initializations and hyperparameters. However, the standard 

eviation parameters still require careful tuning, especially for θγ

n the spatial term. θγ is sensitive to the image scale of different 

atasets and the size of the target object in different applications. 

evertheless, we recommend the researchers to use the default (or 

ptimal if it is available) setting of post-processing CRF as a ref- 

rence for tuning Posterior-CRF rather than random initialization. 

osterior-CRF is more robust to θα and θβ compared to Intensity- 

RF, which facilitates exhaustive tuning of these parameters. 

The computational expense of the CRF also restricts the choice 

f applications. Compared to UNet ( ∼5 mins for 1 epoch in WMH 

xperiment), there is around 20% training time increased on aver- 

ge when applying a CRF layer on top of the network ( ∼6 mins for

 epoch). All end-to-end CRFs share similar computational costs. 

iven that Posterior-CRF uses posterior probability maps as its ref- 

rence maps, it can become computationally expensive in multi- 

lass segmentation problems. For a similar reason, Intensity-CRF 

nd Postproc-CRF can become expensive when there are too many 

maging modalities in the input channels M. 

In the experiments, we use a plain 3D UNet as the backbone 

etwork for all methods. The training pipeline and hyperparame- 

ers are determined empirically and kept the same for all datasets, 

hich could be suboptimal compared to elaborate automatic con- 

guration strategies like nnU-Net ( Isensee et al., 2020 ). On the 

MH dataset we therefore checked the performance of nnU-Net 

3D version without ensembling). Average Dice score of nnU-net 

0.77) was slightly higher than our CNN baseline (0.76, difference 

ot statistically significant) but lower than the proposed poste- 

ior CRF using the CNN baseline as a backbone (0.79), which per- 

ormed significantly better than the CNN baseline (see Table 3 ). 

hough our experiments have been limited to a standard 3D U- 

et architecture, We expect that posterior CRF can improve results 

f other segmentation architectures and other hyperparameter set- 

ings (such as nnU-net) as well. 

. Conclusions 

In conclusion, we present a novel end-to-end segmenta- 

ion method called Posterior-CRF that uses learning-based, class- 

nformative CNN features for CRF inference. The proposed method 
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s evaluated in three medical image segmentation tasks, includ- 

ng different MRI/CT imaging modalities and covering a range of 

bject sizes, appearances and anatomical classes. In the quanti- 

ative evaluation, our method outperforms end-to-end CRF with 

arly CNN features, end-to-end CRF approaches with predefined 

eatures, post-processing CRF, as well as a baseline CNN with sim- 

lar architecture. In two of the three applications, our method sig- 

ificantly improves the segmentation performance. The qualitative 

omparison demonstrates that our method has good performance 

n segmenting blurred boundaries and very small objects. 
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