Medical Image Analysis 76 (2022) 102311

Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier.com/locate/media

An end-to-end approach to segmentation in medical images with CNN = g

and posterior-CRF

Check for
updates

Shuai Chen®* Zahra Sedghi Gamechi?, Florian Dubost?, Gijs van Tulder?, Marleen de

Bruijne P

A Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
b Machine Learning Section, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark

ARTICLE INFO

Article history:

Received 12 May 2021

Revised 8 November 2021
Accepted 22 November 2021
Available online 27 November 2021

Keywords:
Segmentation
CNN

CRF

Graph model
Medical images

ABSTRACT

Conditional Random Fields (CRFs) are often used to improve the output of an initial segmentation model,
such as a convolutional neural network (CNN). Conventional CRF approaches in medical imaging use man-
ually defined features, such as intensity to improve appearance similarity or location to improve spatial
coherence. These features work well for some tasks, but can fail for others. For example, in medical im-
age segmentation applications where different anatomical structures can have similar intensity values, an
intensity-based CRF may produce incorrect results. As an alternative, we propose Posterior-CRF, an end-
to-end segmentation method that uses CNN-learned features in a CRF and optimizes the CRF and CNN
parameters concurrently. We validate our method on three medical image segmentation tasks: aorta and
pulmonary artery segmentation in non-contrast CT, white matter hyperintensities segmentation in multi-
modal MRI, and ischemic stroke lesion segmentation in multi-modal MRI. We compare this with the
state-of-the-art CNN-CRF methods. In all applications, our proposed method outperforms the existing

methods in terms of Dice coefficient, average volume difference, and lesion-wise F1 score.

© 2021 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

After the breakthrough of deep learning in computer vision
(Krizhevsky et al., 2012; He et al, 2016; Long et al, 2015),
deep convolutional neural networks (CNNs) and their variants
(Ronneberger et al., 2015; Cicek et al., 2016; Kamnitsas et al.,
2017) quickly started to dominate medical image segmentation,
outperforming traditional machine learning methods in many ap-
plications (Yu et al, 2016; Bakas et al.,, 2018; Kuijf et al., 2019;
Maier et al.,, 2015). To refine the prediction from the CNN, it is
common to combine CNN with a conditional random field (CRF)
(Krdhenbtiihl and Koltun, 2011). By modeling pairwise relationships
and interactions between voxel-wise variables over the whole im-
age, the CRF can improve the coherence of the segmentation. In
previous work, CRFs based on predefined features such as inten-
sity similarity and spatial coherence have been used as an efficient
post-processing technique or trained in an end-to-end manner in
a recurrent neural network to refine the CNN outputs (Chen et al.,
2017; Dou et al., 2017; Kamnitsas et al., 2017; Zheng et al., 2015).
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Most often, a CRF uses a combination of voxel intensity and
voxel location as pairwise potentials. Although this works well in
several computer vision applications (Zheng et al., 2015; Schwing
and Urtasun, 2015), there can be challenges in other applications.
The approach assumes that voxels that have similar intensity and
are close to each other in the image are likely to belong to the
same class. There are many applications among others in medical
image analysis in which this assumption does not hold. For exam-
ple, the intensity-based features of the CRF are not sufficient for
problems where the intensity is not informative enough to iden-
tify object boundaries, such as the artery segmentation problem in
Fig. 2a. The spatial component of the CRF, on the other hand, re-
quires extra careful tuning when the CRF is applied to data with
isolated small objects, such as the white matter hyperintensities in
Fig. 2b, which may be erroneously removed by excessive smooth-
ing. In stroke lesion segmentation, a large appearance difference
between lesion objects of the same class also goes against the CRF
assumption that the same class objects should have similar inten-
sity (see Fig. 2c).

In this paper, we propose Posterior-CRF, a new learning-based
CRF approach for image segmentation that allows the CRF to use
features learned by a CNN, optimizing the CRF and CNN parame-
ters concurrently. The learning-based CRF makes the CNN features
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update to work best with CRF in an end-to-end manner. During
training, the CRF inference works in the CNN feature space, which
is more likely to contain useful high-level features for segmenta-
tion compared to the original intensity values.

We demonstrate our method in three medical image analysis
applications. Our first application is the segmentation of the aorta
and pulmonary artery in non-contrast, non-ECG-gated chest CT
scans. In these images, the aorta and the pulmonary artery share
similar intensity values, which goes against the CRF assumption
that similar classes should share similar intensity (Sedghi Gamechi
et al,, 2018; Xie et al., 2014). The boundaries between the objects
are not recognizable by intensity alone, making a standard CRF less
effective (Fig. 2a). Our second application is the segmentation of
white-matter hyperintensities in brain MRI. These small objects are
sparsely distributed in the brain (see Fig. 2b) and may be removed
by the CRF, which optimizes for the spatial coherence of segmen-
tation. Our third application is the segmentation of ischemic stroke
lesions in brain MRI, which have very heterogeneous intensities
and shapes within the same lesion class (Fig. 2c).

Contributions

1. We present a new end-to-end trainable algorithm for image
segmentation called Posterior-CRF using learnable features in CRF
pairwise potentials. We explore how the proposed method affects
CNN learning during training.

2. We compare the performance of a fully-connected CRF in
several settings: post-processing, end-to-end training with prede-
fined features, and end-to-end training with learned features. Ab-
lation experiments are conducted to investigate the influence of
CRF parameters and which level of the CNN feature maps are more
likely to benefit the CRF inference. We found that the features in
the last CNN feature maps provide a more consistent improvement
than features in early CNN layers and predefined intensity features.

3. We evaluate our methods in three applications: aorta and
pulmonary artery segmentation in non-contrast CT, which can be
used to compute important biomarkers such as the pulmonary
artery to aorta diameter ratio (Sedghi Gamechi et al, 2018);
white matter hyperintensities segmentation in multi-sequence
MRI, which is of key importance in many neurological research
studies (Kuijf et al., 2019); and ischemic stroke lesion segmentation
in multi-sequence MRI, which can provide biomarkers for stroke
diagnosis (Maier et al., 2015). In the experiments, the proposed
Posterior-CRF outperforms CNN without CRF, post-processing CRF,
end-to-end intensity-based CRF, and end-to-end spatial-based CRF.

A preliminary version of this work, focused on a single applica-
tion and with less validation, appeared as an extended abstract in
(Chen and de Bruijne, 2018).

2. Related work
2.1. End-to-end training of CRF and CNN

CRF is widely used as an efficient post-processing method to
refine the output of CNN segmentation models (for example, Chen
et al,, 2017; Dou et al., 2017; Kamnitsas et al., 2017). However, ap-
plying a CRF as post-processing means that the CNN is not able
to adapt its output to the CRF. Zheng et al. (2015) proposed to
optimize CNN and CRF jointly by reformulating the CRF inference
as a recurrent neural network (RNN) operation, such that the CRF
weights can be learned together with the CNN. This approach
makes the unary potentials and the kernel weights in pairwise
potentials trainable, which saves the computational cost of grid
search for other approaches to tune these weights, although the
CREF still works in the predefined fixed feature space. In this paper,
we focus on a new CRF approach where the CRF inference works
in a learning-based CNN feature space.
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Fig. 1. Different CRF-based approaches For each graph: (a) Post-processing CRF
(Chen et al., 2017; Kamnitsas et al., 2017); (b) End-to-end training CRF with pre-
defined features (Zheng et al., 2015); (c) Proposed Posterior-CRF, which uses CNN
feature maps as CRF reference maps. Best viewed in color with zoom.

2.2. Locally-connected CRFs with learned potentials

While conventional CRFs use predefined Gaussian edge poten-
tials, the potentials can also be learned through a neural network.
Vemulapalli et al. (2016) learn the pairwise potentials of a Gaus-
sian CRF in a bipartite graph structure. This approach uses a sim-
pler continuous CRF model which provides better convergence of
mean-field inference than the conventional discrete CRF models.
In this paper, we focus on the most widely used discrete CRF
model which is a natural fit for the dense segmentation problem.
Lin et al. (2016); Li and Ping (2018) and Wang et al. (2018a) learn
pairwise CRF potentials to model patch-wise (or local) relation-
ships using free form functions learned by neural network rather
than a combination of predefined Gaussians to calculate the pair-
wise potentials. The patch-wise potentials provide a better abil-
ity to model the semantic compatibility between image regions
and have different effects compared to our approach, where we
do not consider patch-wise relationships. Our method uses tradi-
tional Gaussian edge potentials (Krdhenbiihl and Koltun, 2011) sim-
ilar to Zheng et al. (2015) which are easier to compute in a fully-
connected manner. Unlike Zheng et al., we derive the potentials
from the feature space learned by a CNN. This allows us to model
global interactions between voxel-wise variables using learning-
based features.

2.3. Other methods related to CRF

Next to CRF, there are several other approaches that aim to
model interactive relationships or add global information to neural
networks. Graph neural networks (GNN) (Scarselli et al., 2008; Sel-
van et al., 2018) model interactions between variables by applying
graph convolution filters, which allow them to learn global rela-
tionships between voxels. We further address GNN in the Discus-
sion. The recently proposed non-local CNN (Wang et al., 2020) uses
layer-wise self-attention (Vaswani et al., 2017; Wang et al., 2018b;
Yuan et al., 2019) to make each layer in the network focus on the
areas that encoded the most non-local information in the preced-
ing layer. While this allows non-local CNNs to model long-range
dependencies, they are unable to model the interactions that can
be learned by a CRF or GNN. In this paper, we focus on the fully-
connected CRF model which is an efficient approach of modeling
both interactive relationships and global information.

3. Methodology

Our method consists of two parts that are optimized jointly:
3D CNN and 3D CRF In Section 3.1, we describe the CNN model,
which provides unary potentials for the CRF inference as well as
features for the pairwise potentials for the proposed Posterior-CRF.
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(a)

Fig. 2. Difficult cases for conventional CRF inference in medical image segmentation. (a) Segmentation of arteries in CT: first row shows two axial slices of the CT scan
with red arrows indicating indistinguishable boundaries; second row shows the corresponding ground truth of the aorta (yellow) and pulmonary artery (green); (b) White
matter hyperintensities segmentation in MRI: four examples are shown with the ground truth of the lesions (green), red arrows indicate small isolated lesions that can be
easily removed by CRF; (c) Ischemic stroke lesions segmentation in MRI: first row shows the ground truth of the lesions (green) where large appearance difference between
lesions can be observed (red arrows); second row shows a close-up view of the lesions. Best viewed in color with zoom. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

Then we introduce the CRF in Section 3.2. We show two previously
proposed ways to perform CRF inference using predefined features:
post-processing (Section 3.3.1) and end-to-end training with pre-
defined features (Section 3.3.2). Our proposed end-to-end train-
ing with learned features is presented in Section 3.4, followed by
Section 3.4.1 about the back-propagation of the proposed learning-
based CRF. The mean-field inference algorithm used in the pro-
posed method is explained in Appendix Section 8.

3.1. CNN Model

Our CNN model is based on UNet (Ronneberger et al., 2015),
the most widely used network architecture for medical image seg-
mentation. It has a multi-scale design with skip-connections that
connect the encoding and decoding parts of the network, which
allow the decoding path to use the early, high resolution feature
maps without losing information through pooling. We use 3D UNet
as the basic CNN architecture to provide the unary potentials for
CRF inference as well as features for the pairwise potentials for
the proposed Posterior-CRF. Details of the network layout used in
our experiments are given in Fig. 3.

3.2. Conditional random fields

In this section, we describe the CRF as proposed in
(Krdhenbiihl and Koltun, 2011). In image segmentation, a CRF mod-
els voxel-wise variable x; taking values in {1,...,C} as a set of ran-
dom variables X = {x;,...,xy}, where C is the number of classes
and N is the number of voxels in the image. During training, x;
is converted into a soft classification vector of length C, indicat-
ing for each class the probability that the ith voxel belongs to that
class, with the Ly norm |x| = 1. x; obey a Markov property condi-
tioned on a global observation, the image I consisting of variables
T ={I,...,Iy}. In this paper, I is the observed 3D CT/MRI scans,
with its length given by the number of imaging modality channels
M times the number of voxels per channel N.

Consider a fully-connected pairwise CRF model (X, I) character-
ized by a prior Gibbs distribution:

L exp(— Y ge(Xel) (1)

PXID = 5 i)
ceCy

where ¢ = (V,€) is an undirected graph describing the random
field X. Each clique ¢ in a complete set of unary and pairwise

cliques C, in ¢, and ¢ is the potential for each clique. We seek
a maximum a posteriori probability (MAP) estimation x that mini-
mizes the corresponding Gibbs energy E(X = x|I):

EX=x1) =) ou(x[D + Y ¢px;, x;]1) )
i i<j
MAP(P(X|I)) : x* = argminE (X = x|I) (3)

where i and j range from 1 to N. The first term ¢, (;) in Eq. (2) is
the unary potential, which in our case is the current C length vec-
tor of voxel i representing the class probabilities in the CNN pos-
terior probability maps. The second term @p(x;, x;) is the pairwise
potential:

K
(pp(xi’xj) :M(Xisxj)zwmkm (4)
m=1

where p(x;,x;) is the label compatibility function that describes
the interactive influences between different pairs of classes, wp, is
the linear combination weight of different pre-defined kernels kp,
and K is the total number of kernels. Each k;; is a modified Gaus-
sian kernel with specific feature vector f:

5 1
k(6. £)) = [Texp (5 0~ TAGE - 1)) (5)
s=1

The feature vector f is defined from S arbitrary feature spaces. A
is a symmetric positive-definite precision matrix that defines the
shape of each kernel. In semantic segmentation, typically a com-
bination of intensity (I) and position features (p) has been used
(Krdhenbiihl and Koltun, 2011; Zheng et al., 2015; Kamnitsas et al.,
2017):

lpi —pil> L= 1I?

Op(xi. X)) = (x;. X)) | rexp| — 1 — =
262 29/3 (6)
|pi — pj |2
+a)2exp(—w)
where the first kernel controlled by w; is called appearance kernel
and the second kernel controlled by w; is called smoothness kernel.
The parameters 6, 65 and ), control the influence of the corre-
sponding feature spaces. The appearance kernel is inspired by the
observation that nearby voxels with similar intensity are likely to
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Fig. 3. Proposed feature-learning-based CRF using early/later CNN feature maps. The backbone architecture is based on 3D UNet. The skip-connections concatenate the
feature maps from the encoder path with the upsampled ones from the decoder path. The CRF module is placed on top of the CNN and infers the most likely posterior
class probability conditioned on the CRF features. M is the number of input imaging modalities. C is the number of output classes. Two proposed CRF variants are shown
in this figure: 1. Posterior-CRF (red rectangle and arrows), which uses the last CNN layer as CRF reference maps; 2. FL-CRF-e-1 (blue rectangles and arrows), which uses the
first level CNN layer as CRF reference maps. Best viewed in color with zoom. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

be in the same class, while voxels that are either further away or
have larger intensity difference are less likely to be in the same
class. The smoothness kernel can remove isolated regions and pro-
duce smooth segmentation results (Krdhenbiihl and Koltun, 2011;
Kamnitsas et al., 2017). Note that the position feature appears in
both appearance kernel and smoothness kernel, where spatial in-
formation has different contributions to each of the two kernels,
depending on the spatial standard deviations 8, and 6,.

3.3. CRF with predefined features

Conventional CRFs use predefined features, such as the image
intensity and spatial position shown in Eq. (6). These features are
commonly used in CRFs to encourage intensity and spatial coher-
ence, based on the assumption that voxels that have a similar in-
tensity or are close together are likely to belong to the same class.

We evaluate two state-of-the-art approaches to combine CRFs
with predefined features with a CNN: 1. Apply the CRF as post-
processing to refine the CNN outputs (Section 3.3.1); 2. Implement
the CRF as a neural network layer that can be trained together with
the CNN in an end-to-end manner (Section 3.3.2).

3.3.1. CRF as post-processing

After we train a CNN model and get its predictions, we can
apply CRF as a post-processing method to refine the results
(Chen et al, 2017). We refer to this method as Postproc-CRF
(Fig. 1a).

3.3.2. End-to-end training CRF

The CNN and CRF can be combined more elegantly by optimiz-
ing them together in an end-to-end manner (Zheng et al., 2015)
(Fig. 1b), which allows the CRF to influence the CNN optimiza-
tion. The end-to-end CRF uses the same pairwise potentials as that
in the post-processing CRF (Eq. (6)). We refer to this variant as
Intensity-CRF.

To investigate the spatial term in the end-to-end CRF, we can
also use only the position features as the CRF feature space, which
means that the CRF layer will only encourage nearby voxels to have
the same class. We implement this CRF by setting the weight of
the appearance kernel w; to zero and make it not trainable. We
refer to this method as Spatial-CRF.

3.4. Proposed CRF with learning-based features

Our proposed CRF uses a learning-based feature space. We re-
place the intensity feature vector I in the CRF kernel (Eq. (6)) with
the new feature vector F(I) from the CNN feature maps. The in-
formation in these CNN feature maps differs per level: in the first
level of UNet the feature maps contain information close to the in-
tensity, while in the last level of the UNet they contain more con-
text for each voxel and potentially more class-discriminative infor-
mation.

We refer to the CRF that uses features learned by CNN as
feature-learning-based CRF (see Fig. 1c) and refer to the specific
form of CRF using the features in the last CNN softmax layer as
Posterior-CRF (see Fig. 3).

Unlike the CRFs with predefined features, our CRF takes CNN
feature maps as the reference maps and updates the random field
X based on F(I) instead of on I directly. Compared to the original
CRF pairwise potential in Eq. (6), the feature I is replaced with F(I)
and the new pairwise potential becomes:

. _p.l2
Op(Xi, X)) =1L (X;, X;) |:601CXP<“7129§J|

(7)
[E(M - KM lpi —pjl?
_2%) * wﬁxp(—w

3.4.1. Back-propagation of the learning-based CRF

The back-propagation of the proposed end-to-end feature-
learning-based CRF is shown in Fig. 4. There are five steps within
one optimization iteration. Steps 1~3 are the forward process that
generates the output of the CNN. In the 4th step, CRF weights will
adapt to the outputs calculated by the reference maps and unary
maps, both given by CNN feature maps before back-propagation.
In the 5th step, CNN weights are updated to provide new unary
maps and reference maps for CRF for the next iteration. When the
optimization converges, both CNN and CRF weights become stable
close to their optimal values. Note that the mean-field inference
in CRF happens in the forward process (after step 2 and before
step 3) and thus contributes to the gradient updates of both CNN
and CRF weights. The derivation of the mean-field inference gradi-
ent is omitted due to the length of the paper and can be found in
Section 4.2 of the paper by Zheng et al. (2015).



S. Chen, Z. Sedghi Gamechi, . Dubost et al.

H @ CNN features

as reference maps

CNN @ ------------- -~ Forward without trainable weights
———  Forward with trainable weights
®[ @ - Backward with gradient
CRF ®~® Step of optimization in one iteration
CNN features
as unary maps @ I @

Output

Fig. 4. One end-to-end optimization iteration of the proposed CRF method. Best
viewed in color with zoom.

Table 1
Post-processing CRF parameters for each dataset. Search range
indicates the range of parameter values explored during grid

search.
Datasets CT Arteries  WMH  ISLES  Search range
wq 6.39 3.85 9.75 (0.1, 10)
Ou 4.09 4.46 8.74 (0.1, 10)
g for CT 1.10 - - (0.1, 10)
0 for T1 - 7.01 9.26 (0.1, 10)
0 for T2 - - 9.73 (0.1, 10)
0 for FLAIR - 2.64 2.36 (0.1, 10)
0g for DWI - - 6.85 (0.1, 10)
W, 3.40 1.41 2.34 (0.1, 10)
0, 4.83 0.11 1.35 (0.1, 10)
Iterations 3 1 2 (1, 5)

Table 2
Initial end-to-end CRF parameters for each dataset.
Methods w1 O 0O wy 0y Iterations
CT Arteries
Spatial-CRF - - - 340 483 3
Others 639 409 110 340 483 3
WMH
Spatial-CRF - - - 141 011 1
Others 3.85 4.46 4.83 1.41 0.11 1
ISLES
Spatial-CRF - - - 234 135 2
Others 975 874 705 234 135 2

4. Experiments

In this section, we present experiments to evaluate the pro-
posed method and compare it to the baseline methods: 3D UNet,
Post-processing CRF, Intensity-CRF, and Spatial-CRF. Implementa-
tion details are discussed in Section 4.1, followed by the experi-
mental settings (Section 4.2), the description of the datasets and
pre-processing (Section 4.3), data augmentation and training de-
tails (Section 4.4) and evaluation metrics (Section 4.5).

4.1. Implementation

4.1.1. CNN Implementation

We implement all the algorithms in the TensorFlow framework.
The detailed CNN architecture for the experiments is shown in
Fig. 3. All convolution layers use ReLU as the activation function
except for the last output layer, which uses softmax to produce
the final probability maps. For a fair comparison, the 3D UNet ar-
chitecture that is tuned for the CNN baseline method is applied to
all the CRF methods in Table 3. The 5-layer depth of UNet (tuned
from 3 to 6) and 32 base feature maps (tuned from 8 to 64) are
tuned based on all three datasets.

Medical Image Analysis 76 (2022) 102311

All segmentation models are optimized by minimizing the Dice

loss (Isensee et al., 2020):

2 i USUS
Loo = — el TiTi (8)
‘ IC| ; Dier U+ D ier V§

where vf is the predicted probability that voxel i belongs to the cth

class. u{ is the true label. The loss is minimized using the Adam
optimizer (Kingma and Ba, 2014).

4.1.2. CRF Implementation

In CRF, mean-field approximation can be used to calculate
the maximum a posteriori probability (MAP) of the inference.
We use an efficient approximation algorithm for mean-field infer-
ence (Krdhenbiihl and Koltun, 2011; Monteiro et al., 2018) built
on a fast high-dimensional filtering using the permutohedral lat-
tice (Adams et al., 2010) that allows voxel-wise fully-connected
CRF to be iteratively computed in linear time. For a fair com-
parison, all the CRF methods in this paper are implemented
in 3D fully-connected manner. The codes are publicly available:
https://github.com/ShuaiChenBIGR/Posterior-CRF.

4.2. CRF Settings

4.2.1. Post-processing CRF

For Postproc-CRF, we fix the label compatibility @ in Eq. (6) to
the identity matrix, which means that the CRF does not model
label-specific interaction. In the case of multi-modal input, each
imaging modality has a specific 64 to control the strength of the
intensity term.

4.2.2. End-to-end CRF with predefined features

We consider two forms of end-to-end CRFs with predefined fea-
tures: Intensity-CRF uses intensity of the input image I and po-
sition information as its feature space. Spatial-CRF uses only the
position information (the smoothness term in Eq. (6)). The label
compatibility is a C x C parameter matrix which is optimized dur-
ing training to allow the CRF to learn the label compatibility au-
tomatically. The weights w; of the appearance kernel for Intensity-
CRF and w, of the spatial kernel for Spatial-CRF are C x C matrices,
which we restrict to diagonal matrices because the relationship be-
tween classes is already covered by the label compatibility matrix.
Inner product is calculated by multiplying the matrices. For sim-
plicity, only one 65 is applied for all modalities.

4.2.3. End-to-end CRF with learned features

The proposed Posterior-CRF uses the last softmax layer of the
CNN as its reference map. The hyperparameters are the same as
end-to-end CRF with predefined features. Note that Posterior-CRF
is a special case of the feature-learning-based CRF. We can also use
early CNN feature maps as CRF reference maps. An ablation study
investigating other CRF variants can be seen in Section 5.4.

4.2.4. CRF Parameters

Parameters in the post-processing CRF for each dataset were
obtained by grid search on the validation set and are shown in
Table 1. We computed results with 500 different configurations of
Postproc-CRF on each dataset for grid-search. Parameters in the
end-to-end CRFs (Intensity-CRF, Spatial-CRF, Posterior-CRF) are ini-
tialized with the same values as were used in post-processing CRF.
Although the end-to-end CRF approaches have the ability to learn
CRF weights automatically during training, we initialize all CRF ap-
proaches in the same way to facilitate visualization of the evolu-
tion of CRF parameters during training (see Fig. 5). We study the
sensitivity to different CRF parameter initializations in Section 5.3.

The initial label compatibility matrix is set to an identity matrix
and can be optimized during training. In the multi-modality case,
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Table 3
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Results. Mean (standard deviation). The best results are marked in bold. Each experiment is repeated 5 times with different random
data split. The last two colomns are lesion-wise metrics. *: significantly better than CNN baseline (p < 0.05). °: significantly worse than
Posterior-CRF (p < 0.05). P-values are calculated by two-sided paired t-test. All CRF methods are implemented in 3D fully-connected
manner and share the same CNN architecture and hyperparameters.

Methods DSC H95(mm) AVD(%) Recall Recall(lesion) F1(lesion)
CT Arteries: Aorta
CNN baseline  0.9291(0.02)° 5.5560(1.96)° 6.8780(4.17)° 0.8993(0.03)° N/A N/A
Postproc-CRF  0.9264(0.02)° 5.1591(1.59)° 8.5326(4.81)° 0.8878(0.04)° N/A N/A
Intensity-CRF ~ 0.9457(0.01) **  3.2802(0.77) *° 3.1967(2.58) 0.9548(0.02) * N/A N/A
Spatial-CRF 0.9188(0.02)° 7.6562(3.98)° 6.1013(5.13)° 0.8939(0.05)° N/A N/A
Posterior-CRF ~ 0.9538(0.01) * 2.8699(0.86) * 2.3688(2.29) * 0.9555(0.02) * N/A N/A
CT Arteries: Pulmonary Artery
CNN baseline  0.8510(0.05)° 10.3000(4.87)° 16.7687(12.60)° 0.8867(0.09) N/A N/A
Postproc-CRF ~ 0.8561(0.05) 10.0052(5.22)° 13.7071(10.26)° 0.8698(0.09)° N/A N/A
Intensity-CRF ~ 0.8773(0.04) * 8.9208(3.09) * 11.8671(8.66) * 0.9079(0.06) N/A N/A
Spatial-CRF 0.8558(0.06)° 10.5672(5.19)° 13.7399(13.47) 0.8603(0.09)° N/A N/A
Posterior-CRF ~ 0.8935(0.04) * 7.6635(3.92) * 8.9245(7.07) * 0.8979(0.07) N/A N/A
WMH
CNN baseline  0.7557(0.13)° 6.5015(9.87)° 28.3351(45.64)° 0.7977(0.14) 0.6476(0.14) 0.6648(0.11)°
Postproc-CRF  0.6970(0.17)° 8.8659(7.79)° 35.0786(22.69)° 0.5947(0.20)° 0.3476(0.16)° 0.4831(0.16)°
Intensity-CRF ~ 0.7706(0.10)° 4.9403(4.58) 15.6263(16.44) * 0.7751(0.12) 0.6803(0.15) *  0.6705(0.10)°
Spatial-CRF 0.7602(0.11)° 5.8469(5.82)° 23.5154(25.76)° 0.7831(0.13) 0.6876(0.14) *  0.6569(0.11)°
Posterior-CRF ~ 0.7887(0.09) * 4.2972(3.87) * 14.8427(12.66) *  0.7707(0.12) 0.6670(0.14) 0.6952(0.10) *
ISLES
CNN baseline  0.5795(0.28) 27.6725(25.58) 72.3048(121.12) 0.6590(0.31) 0.7586(0.33) 0.4941(0.35)
Postproc-CRF ~ 0.5621(0.31) 19.5302(20.72) 59.1030(85.99) 0.6132(0.34) 0.6518(0.39) 0.5545(0.36)
Intensity-CRF ~ 0.5758(0.26) 46.6002(32.17)°  65.9278(68.98) 0.6397(0.30) 0.7350(0.33) 0.4094(0.31)°
Spatial-CRF 0.5898(0.26) 31.1519(29.50) 93.1006(171.83) 0.6794(0.28) 0.7848(0.31) 0.4945(0.34)
Posterior-CRF  0.6075(0.24) 25.1834(23.27) 47.5171(38.34) 0.6501(0.29) 0.7443(0.31) 0.5625(0.32)

= Intensity-CRF
Spatial-CRF
= Posterior-CRF

FTTTTTT gpatial weights

Fig. 5. CRF parameters during training in WMH dataset. The initial values of the CRF parameters can be found in Table 2. Best viewed in color with zoom.

the initial value of 65 is averaged over all modalities. The initial
values for each dataset are shown in Table 2.

4.2.5. Computation costs of CRF

The training and testing time of the proposed CRF method is
the same as Intensity-CRF but a bit slower than Spatial-CRF, since
there is no bilateral term in Spatial-CRF. Although the proposed
CRF uses CNNs features to compute the pairwise potential, the gra-
dients only flow through the unary map path but not the refer-
ence map path which is the same as that in traditional Intensity-
CRF. Therefore, there is no additional time and memory cost of
the proposed method compared to traditional end-to-end CRF ap-
proaches with fixed feature space. Post-processing CRF is after the
CNN training and takes more time for inference compared to the
end-to-end CRFs, since the inference is done by CPU but not GPU.

4.3. Datasets and preprocessing
We evaluate the proposed method on three segmentation prob-

lems: CT arteries, MRI white matter hyperintensities, and MRI is-
chemic stroke lesions. We chose these problems to study the gen-

eralizability of the method as these applications differ a lot in ob-
ject shapes and appearances, imaging modalities, and suffer from
different problems (see Fig. 2).

4.3.1. CT Arteries dataset

We use 25 non-contrast lung CT scans from 25 different sub-
jects enrolled in the Danish Lung Cancer Screening Trial (DLCST)
(Pedersen et al., 2009). The selection of the 25 subjects was com-
pletely random and it was done before the development of this
algorithm for an unrelated study. The aorta and pulmonary artery
were manually segmented by a trained observer (ZS). Images have
an anisotropic voxel resolution of 0.78mm x 0.78mm x 1.00mm
and are of size 512x512 with on average 336 slices (range 271-
394). The 25 scans are split into three parts of 10, 5, and 10 scans
for training, validation, and testing respectively. Due to the limi-
tation of GPU memory, we first crop the original CT images and
only keep the axial central part of 256 x 256 voxels for all slices.
Then, 3D patches of the size 256 x 256 x 16 are extracted from the
cropped images. All training patches have 80% overlap in z-axis
between neighboring patches to mitigate border effects. In total,
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there are 840 3D patches for training. We use the original CT in-
tensities without normalization.

4.3.2. MRI White matter hyperintensities (WMH) dataset

The White Matter Hyperintensities (WMH) Segmentation Chal-
lenge (Kuijf et al., 2019) provided images from 60 subjects (T1 and
FLAIR) acquired from three hospitals and manually segmented for
background and white matter hyperintensities. We randomly split
these in 36 subjects for training, 12 for validation, and 12 for test-
ing. For each subject, we cropped/padded MRI images into a con-
stant size 200 x 200 x Z, where Z is the number of slices in the
image. We use Gaussian normalization to normalize the intensities
inside the brain mask in each image to zero mean and unit stan-
dard deviation. We extract training patches of size 200 x 200 x 16
with 80% overlap in z-axis between patches. In total, there are 528
3D patches for training.

4.3.3. MRI Ischemic stroke lesions (ISLES) dataset

The ISLES 2015 Challenge (Maier et al., 2017) is a public dataset
of diverse ischemic stroke cases. There are 4 MRI sequences avail-
able for each patient (T1, T2, FLAIR, and DWI). We use the sub-
acute ischemic stroke lesion segmentation (SISS) dataset (28 sub-
jects) with the lesion labels for experiments and randomly split
them as 14 for training, 7 for validation and 7 for testing. The im-
ages are cropped/padded to the size 200 x 200 x Z. Gaussian nor-
malization is applied for normalizing the intensities in each image.
Training patches of the size 200 x 200 x 16 with 80% overlap in z-
axis are extracted. In total, there are 560 3D patches for training.

4.4. Data augmentation and training details

The network is trained on all mini-batches (each mini-

batch contains one 3D patch). For each 3D patch in
the current mini-batch we apply 3D random rotation
sampled from ([-5,5],[-5,5],[-10,10]) degrees, shifting

([—24,24],[-24,24],[-7,7]) voxels, as well as random hori-
zontal (left and right) flipping. We stopped training when the
validation loss is not decreasing anymore and chose the model
that achieved the best validation performance. The experiments
are run on an Nvidia GeForce GTX1080 GPU. The average training
time is 5~10 h for one CNN baseline model and 1~2 h more when
the CRF layer is added.

4.5. Evaluation metrics

We use four voxel-wise metrics of segmentation quality: Dice
similarity coefficient (DSC), indicating the relative overlap with the
ground truth (larger is better); 95th percentile Hausdorff distance
(H95), showing the extremes in contour distance from ground
truth to the prediction (smaller is better); Average volume dif-
ference (AVD) as a percentage of the difference between ground
truth volume and segmentation volume over ground truth volume
(smaller is better), and Recall score (larger is better). For the lesion
segmentations (WMH and ISLES), we additionally assess accuracy
of lesion detection by computing the lesion-wise Recall and lesion-
wise F1 score (larger is better). The lesion-wise metrics use the 3D
connected components, while the voxel-wise metrics do not use
3D connected components. The correct detection of a lesion is de-
termined by the overlap (at least one voxel) of the 3D components.
F1 score is equivalent to lesion-wise Dice score and is calculated by
2*(precision*recall)/(precision+recall), where precision is calculated
by true positives/(true positives+false positives).

Medical Image Analysis 76 (2022) 102311
5. Results
5.1. Segmentation results

Table 3 shows the segmentation results for all three datasets.
In most metrics, Posterior-CRF had the best performance in all
datasets. For all datasets, CNN without CRF provides good baseline
results, which indicates that 3D UNet is an efficient architecture
to extract useful features for segmentation in these applications.
Intensity-CRF performed worse on DSC than Posterior-CRF (statis-
tically significant in aorta segmentation and WMH segmentation),
which reveals the limitation of intensity features. Among all end-
to-end CRF methods, Spatial-CRF performs worst for all datasets
except ISLES. From these results, we conclude that spatial coher-
ence alone is not sufficient and often detrimental to segmentation
accuracy, and that the CNN features in the last layer are more in-
formative for CRF than the intensity features in the original images.

CRFs that depend strongly on intensity-based features have dif-
ficulties detecting objects that are similar in intensity. Examples of
this problem can be observed in the segmentations for the CT ar-
teries and ISLES datasets (Fig. 6). In CT arteries segmentation, the
aorta and pulmonary artery have very similar intensities, which
causes most of the methods in our experiments to sometimes mis-
classify part of the aorta as pulmonary artery. This is especially
true for Post-processing CRF but also for Intensity-CRF.

Posterior-CRF achieves a DSC segmentation overlap of 95.4% and
an H95 lower than 2.87mm in aorta segmentation, which is sig-
nificantly better than all other methods on this dataset. We argue
that this is because the features from the last CNN feature maps
are more informative than the intensity-based features, which al-
lows the CRF inference to focus on refining the object boundary
without expanding into neighboring class voxels with similar in-
tensities. The Posterior-CRF also gives a performance improvement
in the segmentation of the pulmonary artery, but this is not always
statistically significant. One reason is that the blurred boundary
between the aorta and pulmonary artery often results in the over-
segmentation of pulmonary artery, the errors in pulmonary artery
are emphasized because the overall pulmonary artery volume is
lower. Another reason could be the curved shape of the pulmonary
artery, which makes the results vary a lot between patients.

We see similar behavior on the ISLES dataset. The intensity
boundaries of the large ischemic stroke lesions are ambiguous and
their appearance varies a lot between lesions. Most of the methods
fail to segment the boundaries accurately (see Fig. 6 ISLES). Post-
processing CRF hardly solves the problem and performs slightly
worse than CNN. Posterior-CRF achieves better (while less signif-
icant due to the large prediction variance between samples) seg-
mentation performance on DSC, AVD, lesion-wise F1.

A properly tuned spatial component of the post-processing CRF
can benefits CT arteries and ischemic stroke lesion segmentation
(Appendix Section 9, Fig. 2(a) and (c)). However, it can cause prob-
lems to white matter hyperintensities no matter how we try to
tune it (Appendix Section 9, Fig. 2(b)), where we can see a posi-
tive w, always leads to a decreased performance since the spatial
smoothing contributes to remove both isolated true positives and
false positives if they are small enough. The complete SHAP analy-
sis will be discussed in Appendix Section 9.

The negative effect of the spatial smoothing results in the
low average lesion-wise recall score in WMH segmentation for
Postproc-CRF (34.8%) and can be observed in the WMH segmenta-
tion results (see Fig. 6). In this case, Postproc-CRF is always worse
than vanilla CNN (within our grid-search range). This is because
the scenario where post-processing CRF has no influence (with
both w; and w, set to zero) was not included in the grid search
range (0.1,10). Intensity-CRF has a higher lesion-wise average recall
than CNN baseline (68% to 64.8%) but a lower (not significantly)
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Fig. 6. Example segmentation results. From left for each row: (1) Original image (2) Manual annotation (3) CNN baseline (4) Postproc-CRF (5) Intensity-CRF (6) Spatial-CRF
(7) Posterior-CRF. Aorta is colored with yellow and the pulmonary artery is green, white matter hyperintensities and ischemic stroke lesions in yellow. Red/blue rectangles
indicate areas with over/under segmented voxels and the orange rectangle indicates another branch of pulmonary artery whose annotation starts in the next few slices and
merged with the main branch gradually. In the WMH example (second row), only detections that do not overlap with any ground truth voxel (false positive lesions) or
ground truth lesions for which no voxel is detected (false negative lesions) are highlighted, and in the zoomed patches red and blue voxels indicate false positive and false
negative lesions respectively. Better viewed in color with zoom. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

voxel-wise recall (77.5% to 79.8%): although it detects more correct
lesions than CNN due to the intensity features, its use of spatial
features causes it to undersegment individual lesions (see Fig. 6).
Spatial-CRF also suffers from this problem, with a high lesion-wise
recall of 68.8% but low lesion-wise F1 of 65.7%.

For CT arteries, the proposed method performs better than
the state-of-the-art (Sedghi Gamechi et al., 2018) in aorta seg-
mentation (0.95 vs. 0.94) and worse in pulmonary segmentation
(0.89 vs. 0.92). Note that five-fold cross-validation is applied in
(Sedghi Gamechi et al., 2018) and in this paper we apply five
random data splits, which may lead to different test data. Unlike
in (Sedghi Gamechi et al., 2018), we do not cut the pulmonary
artery prediction from the bottom level. In some cases, our method
produces segments that extend beyond the manual annotations,
which leads to a lower Dice performance. For WMH, the proposed
method performs slightly worse than the best performance in the
leaderboard using 5 2D UNet ensembles (0.78 vs. 0.81) using the
same test data. The top 3 methods in the leaderboard are all 2D
UNet ensembles (0.81 vs. 0.80 vs. 0.80), which shows a well-tuned
UNet can provide strong baseline performance for WMH segmen-
tation. The best non-ensemble approach is brain atlas guided at-
tention UNet which is more comparable to the proposed method
(0.79 vs. 0.78). For ISLES, note that the test sets used in this paper
are different from the ones that are used to calculate the leader-

board performance. The performance of the proposed method us-
ing 14 training images is quite comparable to the best performance
in the leaderboard (0.61 vs. 0.59), which is the only CNN-based
method (Kamnitsas et al., 2017) among the top-3 methods in Dice
metrics (0.59 vs. 0.55 vs. 0.47).

5.2. Optimization of the end-to-end CRF

We show the evolution of the trainable CRF parameters in one
data split of WMH dataset in Fig. 5. For the four parameters in
the 2 x 2 compatibility matrix n and the two diagonal spatial ker-
nel weights w,, Spatial-CRF falls into different local optimal val-
ues compared to other CRF methods, probably because different
parameter scaling due to the lack of the appearance kernel. In
contrast, Intensity-CRF and Posterior-CRF converged to similar op-
timal values for p and w,. For the two diagonal bilateral ker-
nel weights in w; that control the appearance kernel, Intensity-
CRF and Posterior-CRF converged to two different optimal values.
This suggests that different CRF feature spaces contribute mostly
through the appearance kernel and less through the compatibil-
ity matrix or the spatial kernel. Interestingly, for the second diago-
nal bilateral weight wgz). there is a different trend of Posterior-CRF
compared to Intensity-CRF, which may indicate that at the early
training stage Posterior-CRF uses similar feature space like that in
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Fig. 7. Dice performance of varying 6for CRF methods on WMH dataset. CNN
result is shown as the black dash line. Purple crosses indicate the values used in
Table 4. Best viewed in color with zoom. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Performance (Dice score) across 5 different initializations of CRF
weights on WMH dataset.

Methods Intensity-CRF Spatial-CRF Posterior-CRF

Mean (std)  0.7570 (0.008)  0.7507 (0.02)  0.7833 (0.003)

Intensity-CRF, but at the later stage it finds and learns another set
of features that may help categorize the lesion class better, which
are more reliable than the original intensity features.

5.3. Influence of CRF hyperparameters

We conduct experiments to investigate the influence of CRF hy-
perparameters on both end-to-end CRF with predefined features
and the proposed CRF with learned features.

Trainable CRF parameters. The CRF weights u, wq, and w, in
the end-to-end CRF learning can be automatically updated together
with CNN weights. We run Intensity-CRF and Posterior-CRF using
WMH datasets with five different initializations of CRF weights
randomly sampled from the search scale with all other parameters
the same as in Table 2. The CNN initializations are the same for all
experiments. The results in Table 4 show that Intensity-CRF and
Posterior-CRF converge to similar optimal points across different
initializations. Spatial-CRF shows higher variances across experi-
ments and is less stable to the change of initializations. Posterior-
CRF is more robust to changes in initialization, achieving higher
average performance and smaller standard deviations compared to
Intensity-CRF and Spatial-CRF.

Empirically tuned parameters. The CRF standard deviation pa-
rameters 6 and 6,, controlling the spatial terms, and 64 control-
ling the appearance term, were tuned empirically to give the best
results for post-processing CRF. We here test, for WMH segmenta-
tion, five different values of 6, Gﬁ, and 6, for Intensity-CRF and
Posterior-CRF and five different values of 6, for Spatial-CRF within
the search scale. All other parameters are the same as in Table 2.
The results are shown in Fig. 7. We can see that Posterior-CRF
is more robust to 6, and 6g and has consistently better perfor-
mance than Intensity-CRF within the search scale, suggesting that
Posterior-CRF parameters are more easy to tune. All CRF methods
degenerate performance when 6, becomes larger and show the
best performance when using a similar value as that in the grid
search for post-processing CRF. Spatial-CRF is more robust to 6,
compared to other CRF methods and has similar performance as
CNN baseline with larger 6). This indicates that large ), reduces
the CRF effect and the spatial term may introduce more incorrect
segmentation when there is also an appearance term in the end-
to-end CRF like Intenity-CRF and Posterior-CRF.

5.4. Influence of hierarchical CNN features as CRF reference maps

We conduct experiments to investigate which level of fea-
tures - earlier or deeper in the network - are more useful for
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Fig. 8. Dice performance of end-to-end CRFs using different CNN feature maps in
an independent run on WMH dataset. Different blocks indicate different level of
CNN feature maps used as CRF reference maps. Best viewed in color with zoom.

the feature-learning-based CRF. We implement nine variants of
feature-learning-based CRF with different levels of CNN feature
maps as reference maps in the same 3D UNet architecture. For ex-
ample, the method FL-CRF-e-1 indicates the feature-learning-based
CRF using the level 1 feature maps in the UNet encoder path as
CRF reference maps. The implementation detail of FL-CRF-e-1 is
shown in Fig. 3. To reduce the computational cost and keep the
same layer capacity as Posterior-CRF, the 32-channel (or more in
deeper layers) feature maps are encoded into C-channel feature
maps and go through a softmax layer as the CRF reference maps.
Since there is no gradient flowing back through the reference map
path, we optimize the softmax layer with the segmentation loss
directly in order to preserve as much semantic information as pos-
sible. Note that for CRF methods that use deeper CNN layers as ref-
erence maps, such as FL-CRF-e-2 to FL-CRF-d-2, we upsample the
reference maps to the original image scale using nearest neighbor
interpolation and optimize them with the segmentation loss, simi-
lar to FL-CRF-e-1.

The results are shown in Fig. 8. Note that if we use the CNN
input as CRF reference maps, it turns into Intensity-CRF; if we use
the last CNN layer as CRF reference maps, it turns into Posterior-
CRF. In the figure, we can see that all feature-learning-based CRF
approaches (including Posterior-CRF) outperform Intensity-CRF and
the overall Dice performance in the decoder path is better than
that in the encoder path, indicating that CNN learned features are
more useful to the CRF inference than intensity is and later CNN
features are more useful than early features. The performance de-
generates towards the middle part of the UNet (from FL-CRF-e-1
to FL-CRF-e-5 and FL-CRF-d-1 to FL-CRF-d-4) but fluctuates at the
2nd/3rd level. We argue that this may be due to the pooling ef-
fect which enables CNN to extract higher-level features but loses
the spatial information at the same time. Posterior-CRF achieves
the best performance among all variants and we argue that this is
because the last CNN layer are more likely to contain more useful
information for CRF inference and it still keeps the same spatial
scale as the original image.

5.5. Evolution of CNN and CRF outputs

The concurrent optimization of CNN and CRF in our end-to-end
models allows the CNN and CRF to interact during training. We ob-
served that this has a strong effect on what the CNN learns in the
early training epochs. Fig. 9 shows the evolution of CNN and CRF
outputs for three typical examples. The baseline CNN without CRF
converges quickly and focuses on the large lesions, already pro-
ducing a fairly sparse output after the first epoch. The end-to-end
models converge more slowly, and in this case the output of the
CNN is influenced by the choice of CRF mostly in the early stage
of training. For example, the CNN in the Intensity-CRF model ini-
tially tends to highlight voxels with similar intensity as the fore-
ground (1 to 20 epoch), while the CNN in the Spatial-CRF model
preserves the spatial coherence between voxels and outputs many
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Fig. 9. Evolution of CNN and CRF outputs during training. The CNN output maps and CRF results for WMH segmentation in 3 different MRI images (columns) are shown
at, from top row to bottom row, epoch 1, 5, 20, and the best epoch. The best epoch is chosen when the model shows the best validation performance till the end of training
(usually at 50~80 epoch). FLAIR: the input FLAIR image of the current training sample. GT: ground truth. CNN baseline: the last layer (softmax output) of CNN. Intensity-CRF,
Spatial-CRF, Posterior-CRF: the probability maps before/after the CRF layer at different epochs during training. Best viewed with zoom.

small groups of voxels (5 epoch). The CNN in the Posterior-CRF
model first focuses on the coarse area that might contain the target
lesions (1 to 5 epoch) and then refine the prediction gradually to
the ground truth (5 to 20 epoch). Eventually, all models converge
to a result close to the ground truth.

6. Discussion

In this paper, we explored efficient methods to combine the
global inference capabilities of a CRF with the feature extraction
from a CNN. Our end-to-end approach optimizes the CRF and CNN
at the same time, and allows the two components of the ap-
proach to cooperate in learning effective feature representations.
This gives our method an advantage over traditional CRFs that
only use the original image intensities and position information.
Intensity-based features can be suboptimal for problems where the
intensity does not provide sufficient information to find the object
boundaries, for example because the contrast between objects is
too small.

Unlike other CRF methods, our Posterior-CRF uses adaptive
learning-based features that are learned by the CNN and can com-
bine spatial and appearance information in a way that suits the
CRF. The results show our method can achieve stable, good per-
formance across a range of segmentation applications and imag-
ing modalities. FL-CRF variants that use early CNN features in
Section 5.4 achieve in-between performance between Intensity-CRF
and Posterior-CRF, using learning-based features that range from
more similar to intensity to more similar to posterior probability
maps. Finally, we found that integrating learned features into the
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CRF model reduces the need to fine-tune CRF parameters, making
the method easier to apply than CRF methods with predefined fea-
tures.

6.1. Interaction between CRF and CNN

Fig. 9 leads to the counter-intuitive observation that, at least
initially, the CNNs in end-to-end models seem to imitate the CRF
instead of complementing it. For example, the CNN output in
Intensity-CRF highlights the ground truth, but also finds areas with
similar intensities, producing something that looks very similar to
the original image (20 epoch). The CNN output in Spatial-CRF se-
lects the ground truth but also includes clusters of voxels in other
areas (5 epoch).

This effect can be explained by the way the CNN and CRF inter-
act during training. In Intensity-CRF and Spatial-CRF, the only inter-
action between CRF and CNN takes place through the unary map
(Fig. 4, step 5, green arrow). For example, consider how this works
in the Intensity-CRF. In WMH segmentation, the ground truth is
usually high-intensity area. However, for the voxels with high in-
tensities but not the target lesions, it is difficult to get both low
pairwise CRF potentials and low segmentation loss, since labeling
them as non-lesion goes against the CRF assumption that voxels
with similar high-intensities are more likely to be the lesion class.
For convenience, we call these voxels as hard voxels, indicating the
voxels that do not fit the CRF assumption. In order to keep the
correctly segmented lesions and reduce the CRF effect on the hard
voxels at the same time, the CNN tends to provide unary maps that
1) highlight the ground truth area for lower segmentation loss, and
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2) look similar to the CRF reference maps on the hard voxels for
lower pairwise CRF potentials. In the later stage of training, CNN
is encouraged to push the confidence of its outputs even further
to minimize unary potentials and thus prevent CRF from undo-
ing segmentation improvement on the hard voxels. From Fig. 9,
we can see that there are many hard voxels in Intensity-CRF (1
to 20 epoch, areas that look like the original image) and Spatial-
CRF (5 epoch, clusters of voxels that do not belong to the ground
truth) which may harm the segmentation. This indicates that the
predefined features may not be the optimal feature space for the
end-to-end CRF.

In the Posterior-CRF model, the CRF inference happens within
the CNN feature space, which can improve the interaction between
CNN and CRF. First, the features learned by CNN during train-
ing may contain information that is more useful for segmenta-
tion than that in the predefined features, which makes CRF ben-
efit most from the CNN features. Second, using the learning-based
features as CRF reference maps avoids the CRF assumption of the
predefined features which may introduce many hard voxels, e.g.,
Intensity-CRF and Spatial-CRF, as discussed in the previous para-
graph. With fewer hard voxels, the CNN in Posterior-CRF may pro-
vide better unary maps for the CRF inference.

6.2. Posterior-CRF vs. mean-field network

The mean-field approximation (MFA) in Posterior-CRF is some-
what similar to that in Mean-field networks (MFN) (Li and
Zemel, 2014), since both methods use it to get the posterior prob-
abilities of the variables. Therefore, MFN could be a promising al-
ternative to the MFA process in our method. MEN has the advan-
tage that it utilizes each layer of the network as an iteration of
MFA, which has the advantage of allowing more relaxation on pa-
rameters and provides some efficiency improvements. This makes
the idea of formulating Posterior-CRF as a feed-forward network
like MEN very attractive. There are, however, a few limitations that
would need to be solved.

The first limitation is in training. MFN is designed to provide
a faster and more flexible way to obtain the prediction of MFA,
by fitting a powerful function that predicts the real MFA result.
To train an MEN, we first need to acquire the ground truth calcu-
lated by conventional mean-field iterations, which takes time dur-
ing training but saves time during inference. On the other hand,
Posterior-CRF provides a flexible and adaptive feature space for the
conventional MFA, speeding up the procedure by applying Gaus-
sian convolution in the message passing updates. As a result, the
thing Posterior-CRF does is difficult to replicate with a MFN be-
cause the feature space of a Posterior-CRF changes during training,
while MFN requires a predefined feature space to get the ground
truth.

The second limitation is the tradeoff between dense inference
and computation cost in the MFN. In its feed-forward network im-
plementation, the computation cost increases exponentially when
more neighbor nodes and number of layers are included, which
limits its ability to model dense prediction problems such as seg-
mentation tasks.

6.3. Posterior-CRF vs. graph neural networks

The proposed Posterior-CRF shares some similarities with graph
neural networks (GNN) (Scarselli et al., 2008; Selvan et al., 2018):
both approaches aim to model interactions between variables
within a graph model. The difference is that Posterior-CRF pre-
defines the global relationship between variables through the
mean-field assumptions and solves the maximum a posteriori
problem, whereas GNN learns the global variable relationship by
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applying graph convolution filters and mapping the input graph to
the output graph (Selvan et al., 2018).

It could be interesting to combine the global view of the
Posterior-CRF and the more local view of the GNN. The Posterior-
CRF might benefit from using a GNN to replace its CNN component
for feature extraction. The graph-based network may extract better
features for Posterior-CRF than a CNN, which is not designed to ex-
tract unary and pairwise features for a graphical model. Similarly,
the GNN may benefit from the efficient message passing of the
Posterior-CRF, which would allow it to use the local graph-based
features as CRF features for global interactive modeling in a com-
putationally efficient way.

6.4. Limitations

In this paper, we show that the proposed Posterior-CRF method
has benefits in the three medical imaging applications. Consider-
ing the medical imaging datasets are usually small largely because
the manual annotations are very expensive to make, difference be-
tween Posterior-CRF and UNet may be smaller in larger training
sets. But we know from literature that Intensity-CRF helps in some
computer vision applications with large training sets (e.g., 10k 2D
images or even more), it would be promising to test our method
on these datasets. This is considered as our future work.

In Section 5.3, we show that Posterior-CRF is robust to differ-
ent CRF initializations and hyperparameters. However, the standard
deviation parameters still require careful tuning, especially for 6,
in the spatial term. 6, is sensitive to the image scale of different
datasets and the size of the target object in different applications.
Nevertheless, we recommend the researchers to use the default (or
optimal if it is available) setting of post-processing CRF as a ref-
erence for tuning Posterior-CRF rather than random initialization.
Posterior-CRF is more robust to 6y and 6g compared to Intensity-
CRF, which facilitates exhaustive tuning of these parameters.

The computational expense of the CRF also restricts the choice
of applications. Compared to UNet (~5 mins for 1 epoch in WMH
experiment), there is around 20% training time increased on aver-
age when applying a CRF layer on top of the network (~6 mins for
1 epoch). All end-to-end CRFs share similar computational costs.
Given that Posterior-CRF uses posterior probability maps as its ref-
erence maps, it can become computationally expensive in multi-
class segmentation problems. For a similar reason, Intensity-CRF
and Postproc-CRF can become expensive when there are too many
imaging modalities in the input channels M.

In the experiments, we use a plain 3D UNet as the backbone
network for all methods. The training pipeline and hyperparame-
ters are determined empirically and kept the same for all datasets,
which could be suboptimal compared to elaborate automatic con-
figuration strategies like nnU-Net (Isensee et al., 2020). On the
WMH dataset we therefore checked the performance of nnU-Net
(3D version without ensembling). Average Dice score of nnU-net
(0.77) was slightly higher than our CNN baseline (0.76, difference
not statistically significant) but lower than the proposed poste-
rior CRF using the CNN baseline as a backbone (0.79), which per-
formed significantly better than the CNN baseline (see Table 3).
Though our experiments have been limited to a standard 3D U-
net architecture, We expect that posterior CRF can improve results
of other segmentation architectures and other hyperparameter set-
tings (such as nnU-net) as well.

7. Conclusions

In conclusion, we present a novel end-to-end segmenta-
tion method called Posterior-CRF that uses learning-based, class-
informative CNN features for CRF inference. The proposed method
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is evaluated in three medical image segmentation tasks, includ-
ing different MRI/CT imaging modalities and covering a range of
object sizes, appearances and anatomical classes. In the quanti-
tative evaluation, our method outperforms end-to-end CRF with
early CNN features, end-to-end CRF approaches with predefined
features, post-processing CRF, as well as a baseline CNN with sim-
ilar architecture. In two of the three applications, our method sig-
nificantly improves the segmentation performance. The qualitative
comparison demonstrates that our method has good performance
on segmenting blurred boundaries and very small objects.
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