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Remarks on Risk-sensitive Control Problems
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Detroit, Michigan 48202, USA (e-mail: maurice.robin@polytechnique.fr)

(e-mail: jlm@math.wayne.edu)

Abstract

The main purpose of this paper is to investigate the asymptotic
behavior of the discounted risk-sensitive control problem for periodic
diffusion processes when the discount factor a goes to zero. If u, (6, x)
denotes the optimal cost function, # being the risk factor, then it is
shown that lim,—0 cus (6, ) = £(0) where £(0) is the average on ]0,0]
of the optimal cost of the (usual) infinite horizon risk-sensitive control
problem.

1 Introduction
Let us consider a simple stochastic control model given by the following It6 equation
dz; = b(xy, vy)dt + V2dB,, Ty =, (1.1)

where x is the state of the system in R? and v is the control in R™. For a parameter
0 # 0, the functional cost is

_ 1 > —at
I,(0,z,v) = 7 In (E{ exp [9/0 e “o(xy, vt)dt] }), (1.2)
and the value function is, for 6 > 0,
uo (0, ) = inf 1,(6, x,v), (1.3)

and we exchange inf with the sup for # < 0. However, in the sequel, we consider only
0 > 0 for the sake of simplicity.

The aim of this paper is to investigate the asymptotic behavior of au, when o goes
to zero.

Nagai [[] studied the asymptotic behavior of the finite horizon risk-sensitive control
problem, namely,

J(T,x,v) = %ln (E{ exp [(9 /OT go(xt,vt)dt} }) (1.4)
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and shows that if 6 is fixed and
ur(t,x) =inf J(T —t,z,v) (1.5)
then

1
lim —ur(T,z) = x, (constant),
T—o0

and

lim [ur(T, z) — ur(0,z)] = z(z), (function),

T—o00

where the couple (x, z) satisfies the equation
X=Az+0|Dz]>+inf {o+b-Vz}. (1.6)

Clearly, (x, z) may depends on 6.
We will see in Section 2, that the HJB equation for (I=3) is

—oz(ua + Qaau;) + Aug + 0|Vuy | + inf {gp +b- Vua} =0. (1.7)
Comparing (@) and (4), we can anticipate that

o(uq + 9%) — x(0), as a—0. (1.8)
In other words, assume that there exists £(6) (independent of ) such that

aue (0, ) — £(0) and ozaau; 0,2) — %(;),
as a — 0, we would have, by (IR),

_ dg) _ d
and
1 /0
£0) = 5/ x(r)dr = lim au, (6, x). (1.9)
0 6

Notice that when 6 = 0, the equation (Z4) corresponds to the usual discounted control,
e.g., see Bensoussan [M]. Condition () is precisely the result we will obtain here for
the case of periodic diffusion (or reflected diffusions on a bounded region of R?).

The risk-sensitive control problem for diffusion processes (in various cases) has been
studied by several authors, particularly in connection with robust control and differen-
tial games, for instance, we refer to Jacobson [@], Bensoussan and Van Schuppen [d],
Whittle [[2], Fleming and McEneaney [B], McEneaney [B], Nagai [8, [d], Runolfsson [[].

In Section 2, we obtain formally the HJB-equation for (I33), and a verification
theorem. In Section 3, we study the discounted risk-sensitive problem, and in Section
4, we consider the asymptotic behavior when the discount factor goes to zero.
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2 Formal Derivation of the HJB Equation

We start with

wo(0, ) = inf exp [01,(6, z,v)].

(2.1)

Formally, for any 7" > 0 and for any Markov control v; = v(z;), we argue as follows

T
wa (0, ) = inf]Ez{ exp [9/ e o ((z4, ve)dt +
v 0

+0 /OO e_atgo((xt,vt)dt]} =

T

= irvlf]El,{ exp [9/ at(p((SBt,Ut)dt] X

T
o
0
XE,ET{ exp [Qe_aT i e ((ay, Ut)dti| }}

Therefore (formally)

T

o —at —aT
wa (0, ) = v/l[rol,fT] Em{ exp [9 i e @(xt,vt)dt} W, (Oe ,:IZ‘T)}.

aoT

Using Itd’s formula for w,(fe=*", z7), and taking 7' > 0 small, we obtain

ow,,

—alb 50

+ Aw, + inf {9<pwa +0b- Vwa} =0,
and clearly w,(0,z) = 1.
Next, we set w, = exp(Qu,) to deduce

Oug,
00

Remark that one should take

ua(0,z) = ianEgC{/ e_atgp(xt,vt)dt},
v 0

—a(ua—i—ﬁ )—i—Aua—|—9|Vua|2+inf{g0—|—b~Vua}:O.

since, when 6 is small in (I2) we have
I(0,7,v) = E,® + 0E,®* + O(6?),

where

q):/ e~ o(xy, vy)dt.
0

(2.2)

(2.3)

(2.4)
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Theorem 2.1 (implicit assumptions). Let us assume that there exists a smooth function

W (0, z) such that

_aeaa_vev + AW +inf {0pW +b- VW } =0, (2.5)

and W(0,x) — 1 as 8 — 0, locally uniform in x. Also assume that there exists an
optimal control v*. Then

W(0,z) = w,(0, ). (2.6)
Proof. To see this, introduce 6; defined by

dé,

o = ol G=0

and

T
wT = exXp { / etgo(xh Ut)dt}a
0
for an arbitrary control v,. By means of Feynman-Kac formula we get
Eo{¢rW (07, 20)} = W(0,2) +
4 oW
+EI{/O ¢t[— A=+ AW + oWV 4 b vw]dt}.

From the equation for W the last term is nonnegative, and therefore

Wb, z) < EI{W(HT, x7) exp [0 /OT e~ o(x, vt)dt] }

Hence, because 7 — 0 as T'— oo and W (07, z7) — 1 (locally uniform in z7) as 6 — 0
we deduce

Wb, z) < Ez{ exp [9 /000 e_atSD(xtyvt)dt} }a

Le, W(0,z) < w.(0,z).
Similarly, using the optimal control v* we obtain the equality. O]

Clearly, as a Corollary, using U defined by W = exp(QU) we obtain U = u,.

3 Discounted Risk-sensitive Problem

Let (Q,F, P) be a probability space with a filtration (F; : ¢ > 0) and a standard
d-dimensional F;-Brownian motion process (B; : t > 0). We are given V a compact
metric space, X = [(R?) mod (1)] ~0, 1]¢

b: X xV = RY, 0: X xV =R, (3.1)
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where b(z,v) and ¢(x,v) are periodic in z with period 1 in each coordinate (as functions
defined on R%), b is continuous in X x V and Lipschitz continuous in z, namely,

b(z,v) — bz, v)| < M|z —2'|, Va,2' € X, (3.2)

© is continuous and nonnegative.
The state equation is given by

dzy = b(zy,v,)dt +V2dB,, t >0,
ro=x € X,

where (v, : t > 0) is any progressively measurable process with values in V.
As above, the cost is given by

I1,(0,z,v) = %ln Em{ exp (9 /OO e_o‘tgo(xt,vt)dt> }, (3.4)
0

where « > 0 is the discount factor and 6 is a real parameter. For the sake of simplicity,
we will consider only the case 6 > 0. The optimal cost function is
uq (0, ) =inf 1,(0, x,v). (3.5)

Remark 3.1. One could avoid the assumption (B32) that b is Lipschitz continuous and
then define the state equation using the Girsanov transformation (e.g., see Bensous-

san [0, Chapter 6]). O
As seen in Section B, the HJB-equation for (B3) is
Agug, + au, = H(0, 2, Duy,), (3.6)

with u, periodic in z,

Agu := afdgu — Au — 0| Dul?,

H(f,x,p) = ir;f {gp(x,v) + b(x,v) -p},
and

e (0, 7) = ud(x), (3.7)
with

Al = H(0,z, Dub), (3.8)

and v periodic. Note that Du, Au and dpu denote the gradient in x, the Laplacian in
x, and the partial derivative in 6, respectively.

It is well known (e.g., see Bensoussan and Lions [B, B]) that (BX) has a unique
solution in W*P(X), 2 < p < oo. Without any lost of generality, we consider (BE) with
6 in )0, 1].

First we study an auxiliary equation in w, namely,

afOyw — Aw = inf {Ggow +0b- Dw}, (3.9)

with w periodic in x and w(0,z) = 1.
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Proposition 3.2. Assuming (B) and (B3), there is a unique solution w of (B9) in
H(]0,1[x X)) such that w and dgw belong to L>=(]0,1[x X).

Proof. We begin with the following equation for ¢ in ]0, 1]

afdpw® — Aw® = inf {94,0@05 +b- Dwa}, 0 €le, 1],

(3.10)
w(e,x) = he(x), x€X,
with w® periodic in x and
he(z) = ealel, (3.11)

where
o]l == sup |p(z, v)],

and clearly h. — 1 as € — 0.

Since 6 belongs to ]e, 1], equation (BI0) can be seen as a standard Cauchy problem
and there is a unique solution w® in me(]e, 1[xX), 2 < p < oo. Therefore, we can
interpret w®(0, x) as the following optimal cost

we(0,x) = irq}f Ex{hg exp (9 /OTS e (x4, vt)dt> }, (3.12)

by applying It6 formula to Yrw (07, x7) with

T
0, := e, )r = exp (/ etSO(xtvvt)dt)’
0

and where we have taken
In(?)

T.=inf{t>0:6,=¢}, ie T.= -

Then we deduce
0 < w(0,x) < eal?l, (3.13)
for every ¢ > 0.

To show that dyw*® is uniformly (in € > 0) bounded in L*(]e, 1[xX) for a fixed
a > 0, we consider the expression

I['E;E{hE exp <(9 +0) /OTf e (x4, vt)dt) }_

T:
— Ex{hs exp ((9/ e’o‘t@(:z:t,vt)dt)}’ <L+ I,
0
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with
+0)e T =¢, ie T°= 1“(176)
and
I - Ex{hg exp ((9 1) /OTS e~oto(z,, vt)dt> }_
“m e (o[ e ptronon) )|
I = Ex{hs exp (9 /0 " e’o‘t@(xt,vt)dt) }_

_ ]E:,;{hE exp ((9 /OTE e_atgp(gjt, Ut)dt) }’,

for 6 > 0 and any arbitrary control. Now

T8

I, < |h5|Ex{ exp (9 /OT§ e_o‘tgo(mt,vt)dt> ) exp (5/0 ) e_o‘tcp(:pt,vt)dt> — 1)} <
< |h€|5|%“exp <(0 +i)||90||>’

while

2

I, < |h5{E${ exp (9 /TE e_"‘tgo(xt,vt)dt> ‘ exp (0/ e (x4, vt)dt> — 1‘} <
0 T
< |h€| exp (QH;DH) [exp <9||;0|| (efaTs B efan)) _ 1]’

but fe— T = ¢ so that

1)

Pe—oTe _ P oT? — so—oT? —
0+06

and

I, < |h5| exp <%) [exp <%) — 1}

Similarly for 6 < 0, and we deduce a bound of the type
w50+ 6,2) — wf (6,2)] < Clhfei 1€l 5
a

and so Jpw*® is uniformly (in € > 0) bounded for a fixed o > 0.

Now we show that for any 6 in |e, 1| the function z +— w®(,z) is bounded in
W?2P(X), uniformly with respect to € and 6. Indeed, for A > 0 sufficiently large, we
write the equation in w® as

—Aw® 4+ Aw® = inf {¢°(-,v) + b(-,v) - Dwr},
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with ¥° = fpw® + Mw® — afdywe. Since w® and Jyw® are bounded uniformly in ¢ and
0, classic results show that

[w* (0, )lwarx) < C,

where the constant C' depends only on the bounds of ¢*, b and the constant .
Define @° on ]0, 1[x X as

. ~Jwt(0,2), 0> ¢,
we(6,x) = {hs(ag), h<e’

which satisfies the same estimates (uniformly in ) as w®, i.e., @w° > 0, bounded and
continuous in ]0, 1[x X, with dyw® bounded in L>(]0,1[xX) and @w*(f,-) bounded in
W?2P(X), uniformly in . Thus, by extracting a subsequence, we have in particular,

w° —w in L*(0,1; H*(X)) weakly,
and
Op0® — Opw in  L*(]0, 1[x X) weakly.

These estimates allow to pass to the limit as ¢ — 0 in
1 1
/ af(0pw®, z)dd + / (Dw*, Dz)df—
0 0

1 5
— / <inf {9(,071)5 +b(-,v) - DQIJE}, z>d0 = / <inf {nghe}, z>d9
0 v 0 v
to obtain (B). O

We are ready to state

Theorem 3.3. Assume (BI)—~(B3), then there exits a unique solution u to the equation
(B@), (B2) such that u and Oyu belong to L>(]0, 1[x X)), the functions x — u(0, x) belong
to W*P(X) and u = uy(0,x) given by (B3A).

Proof. By means of the Ito formula, first with an arbitrary control and next with ©
defined as the minimizer

& = argmin {0 (-, v)w + b(-,v) - Dw},

we obtain
we (0, 2) = inf Ez{ exp (9 /OO e (x4, Ut)dt> }
v 0

Now define u as

e =w,, 6>0,
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to get

a(u 4 00pu) — Au — 0| Du|* = irvlf{go(-,v) +b(-,v) - Du}.
For 6 = 0, we define u(0, x) = @ as the solution of

at — Au = irvlf{gp(-,v) +b(-,v) - Du}y, @€ WP,

which is known to exist (see Bensoussan and Lions [B]).
From the definition of u we obtain

u(f,x) =inf I,(0,z,v),

which conclude the proof, in view of the regularity of w,,. O

4 Asymptotics

The first step is to obtain estimates on u, independent of «.
eEstimate of au,:

As seen before, for § > 0 and ¢ > 0, we have

1 <wy <eo
and therefore
0<u,< M,
o
SO
0 < au(x) <|l¢l, Va>o0. (4.1)

eEstimate of a(u, + 00pu,) = ady(Ouy,):
Define

D, ::/ e (x4, v,)dt,
0

U, :=InE,{e’®} = ln/ f® @) P (dw).
Q

Clearly
U, (z,v,0 +9) = V,(x,0,0) + 60pVo(z,v,0 + nd),
for some 7 in (0, 1). Since

E,{® e’
89\11(1 = { - }a
]Ex{eefba}
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if K = ||¢|| then we have

KE (") K
< U, < ——= = —
050l s aE, {e?®} o’
and
K
(Wa(z,0,0 +0) = Wa(z,0,0)] < [0]—.
oY
Therefore
K
|(0 + 0)ua (04 0, 2) — Ouy (6, 2)] < |5|%
S0
K
00 (Bual0,2))| < (42)

i.e., ady(Ou,) is bounded uniformly in a.
eEstimate of |Du,|r2:

The equation in u, can be written as
—Autg — by - Dug = 0| Dug |* + g — atig, (4.3)
with

bo = b(x,v,), Vo = p(x,04) — AB0pu,,
Vo(z) = argmin {p(-,v) + b(-,v) - Dug(z)}.

Let m, be the density invariant probability measure corresponding to the operator
—A — b, - D (e.g., see Bensoussan [0]), which satisfies

O<50§ma§51.

Multiplying (E=3) by m, and using the equation for m,, we deduce

0= 9/ | Dug [*madz + / (@/Ja - aua)madm. (4.4)
X X

Since 9§y and 0; depend only on the L* norm of b, they are independent of o and 6.
Therefore (E4) gives

0|Dug|72x) < C,  Va, 0, (4.5)

i.e., a bound on |Dug|z2(x) uniformly in o > 0 and @ in [e, 1], for every € > 0.
eEstimate of u, — U,:
Let us define

i (0) ::/Xua(e,x)dx and A (0,2) = (0, 2) — i (6).
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The equation for A, is
—AN, = —adp(0ua) + 0| DAG|* + inf {p(-,v) + b(-,v) - DA} (4.6)
and by Poincaré inequality we have
[ Aalz2x) < C|Dug|r2(x)-
Considering 0 as a parameter in (E0) and since adp(au,) is bounded, we have
VO|Aalr2x) < C,

moreover, we can mimic the arguments in Lemmas 4.7 and 4.8 of Bensoussan and
Frehse [B] to obtain

\/§|Ao¢|L°°(X) <C, (4.7)

for some constant C' > 0, uniformly in « and #. Furthermore, considering z,(0,z) =
0A.(0,a), which satisfies

—Azy = —ab0p(Ouy) + |Dzo|* + i%f {6p(-,v) + b(-,v) - Dza(6,-) },
so that one can apply Theorem 3.7 of Bensoussan and Frehse [H] to deduce
[2allosxy < C,
ie.,
0| Aales(x) < C, (4.8)

for some constant C' > 0, uniformly in « and 6.
ePassage to the limit a o — 0:

(a) First we look at au, (0, x). In view of (Edl), (E22) and (E3), taking a sub-sequence
we have

Qg — &, (4.9)

uniformly on every compact subset of @ =]0, 1[x X. Let us show that £ does not depend
on z. Indeed, since

\/aAa = \/é[ua(eax) - aa(eﬂ
is bounded, we have av/#A, — 0 and therefore

lim afu, (6, 2) —un(0)] =0, Vre X, 6>0.

a—0

On the other hand, since u,(0,z) = u®(z) we know that au’(x) must converge to a
constant too.
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Now, since 00 (au,) is bounded, we deduce that

00y (vug,) — 9%

weakly-star in L,

(b) Then we pass to the limit in the equation of A,, for each 6 > 0 fixed. By means of
the equation (E@) and the previous bounds on u,, in particular (222), (E3) and (E3),
we can find a subsequence such that

Ay —u  in HY(X) weakly and L>®(X) strongly

as a — 0. Therefore
/ AA, (A, —u)dz — 0,
X
since AA, is bounded in L!'(X). This is,
/ DA, - DA,dz — / DA, - Dudz.
X X
However, due to the weak convergence in H'(X) we have
/ DA, - Dudx — / Du - Dudz,
e X
which yields
/ |DA,, — Dul*dx — 0,
X

i.e., A, — u(f,-) strongly in H'(X).
Hence, if we call x(#) the limit of ady(Ou,) we see that the couple (x,u) satisfies

X — Au = 0| Dul* + inf {o(,v) +b(,v) - Du(")}, we HY(X),

(4.10)
/ u(f,z)de =0, V0> 0.
X

But form Nagai [[] (who treats a more difficult case in R? and unbounded ¢, and
therefore the result applies a fortiori to our simple case) there exists a unique pair
(x,u) satisfying (B10) and

(0 = 1im L)

T—o0 T ’

with u(T, ) given by (IC3). Therefore we conclude that

d(0£(0))
— 7 =x(),
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which gives

1 /0
€)= 5 [ xoyar
0
ie.,
1 /0
lim au, (6, x) = —/ x(r)dr.
a—0 9 0

We have shown the desired result summarized as
Theorem 4.1. Under the assumptions of Section B we have

iiir(l) adp (auq (0, x)) = x(8),
i [ (60,2) — /X ol )] = (6, ),

a—

where (x,u) is the unique solution of (M),

T—o00 [

x(0) = lim inf % inf E In Em{ exp (0 /T oy, Ut)dt> }} ,
0

and (BI) holds.

13

(4.11)

]

To conclude, let us mention that certainly, the above result remain true for reflected
diffusion processes in a bounded region of R?. The case in the whole space R? or diffusion
with jumps requires a more elaborated technique, and it may be the subject of future

research.
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