10-1-2005

Remarks on Risk-Sensitive Control Problems

José Luis Menaldi
Wayne State University, menaldi@wayne.edu
Maurice Robin
Ecole Polytechnique

Recommended Citation

Menaldi, JL. \& Robin, M. Appl Math Optim (2005) 52: 297. doi: 10.1007/s00245-005-0829-y
Available at: http://digitalcommons.wayne.edu/mathfrp/55

Remarks on Risk-sensitive Control Problems

José-Luis Menaldi

Wayne State University
Department of Mathematics
Detroit, Michigan 48202, USA
(e-mail: jlm@math.wayne.edu)

Maurice Robin
Ecole Polytechnique
91128 Palaiseau, France
(e-mail: maurice.robin@polytechnique.fr)

Abstract

The main purpose of this paper is to investigate the asymptotic behavior of the discounted risk-sensitive control problem for periodic diffusion processes when the discount factor α goes to zero. If $u_{\alpha}(\theta, x)$ denotes the optimal cost function, θ being the risk factor, then it is shown that $\lim _{\alpha \rightarrow 0} \alpha u_{\alpha}(\theta, x)=\xi(\theta)$ where $\xi(\theta)$ is the average on $] 0, \theta[$ of the optimal cost of the (usual) infinite horizon risk-sensitive control problem.

1 Introduction

Let us consider a simple stochastic control model given by the following Itô equation

$$
\begin{equation*}
\mathrm{d} x_{t}=b\left(x_{t}, v_{t}\right) \mathrm{d} t+\sqrt{2} \mathrm{~d} B_{t}, \quad x_{0}=x, \tag{1.1}
\end{equation*}
$$

where x is the state of the system in \mathbb{R}^{d} and v is the control in \mathbb{R}^{m}. For a parameter $\theta \neq 0$, the functional cost is

$$
\begin{equation*}
I_{\alpha}(\theta, x, v)=\frac{1}{\theta} \ln \left(\mathbb{E}\left\{\exp \left[\theta \int_{0}^{\infty} e^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right]\right\}\right) \tag{1.2}
\end{equation*}
$$

and the value function is, for $\theta>0$,

$$
\begin{equation*}
u_{\alpha}(\theta, x)=\inf _{v} I_{\alpha}(\theta, x, v), \tag{1.3}
\end{equation*}
$$

and we exchange inf with the sup for $\theta<0$. However, in the sequel, we consider only $\theta>0$ for the sake of simplicity.

The aim of this paper is to investigate the asymptotic behavior of αu_{α} when α goes to zero.

Nagai [][]] studied the asymptotic behavior of the finite horizon risk-sensitive control problem, namely,

$$
\begin{equation*}
J(T, x, v)=\frac{1}{\theta} \ln \left(\mathbb{E}\left\{\exp \left[\theta \int_{0}^{T} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right]\right\}\right) \tag{1.4}
\end{equation*}
$$

and shows that if θ is fixed and

$$
\begin{equation*}
u_{T}(t, x)=\inf _{v} J(T-t, x, v) \tag{1.5}
\end{equation*}
$$

then

$$
\lim _{T \rightarrow \infty} \frac{1}{T} u_{T}(T, x)=\chi, \text { (constant) }
$$

and

$$
\lim _{T \rightarrow \infty}\left[u_{T}(T, x)-u_{T}(0, x)\right]=z(x), \text { (function) },
$$

where the couple (χ, z) satisfies the equation

$$
\begin{equation*}
\chi=\Delta z+\theta|D z|^{2}+\inf _{v}\{\varphi+b \cdot \nabla z\} . \tag{1.6}
\end{equation*}
$$

Clearly, (χ, z) may depends on θ.
We will see in Section 2, that the HJB equation for ($\mathbb{L} 3)$ is

$$
\begin{equation*}
-\alpha\left(u_{\alpha}+\theta \frac{\partial u_{\alpha}}{\partial \theta}\right)+\Delta u_{\alpha}+\theta\left|\nabla u_{\alpha}\right|^{2}+\inf _{v}\left\{\varphi+b \cdot \nabla u_{\alpha}\right\}=0 . \tag{1.7}
\end{equation*}
$$

Comparing ([.6) and (ㄴ.7), we can anticipate that

$$
\begin{equation*}
\alpha\left(u_{\alpha}+\theta \frac{\partial u_{\alpha}}{\partial \theta}\right) \rightarrow \chi(\theta), \text { as } \alpha \rightarrow 0 . \tag{1.8}
\end{equation*}
$$

In other words, assume that there exists $\xi(\theta)$ (independent of x) such that

$$
\alpha u_{\alpha}(\theta, x) \rightarrow \xi(\theta) \text { and } \alpha \frac{\partial u_{\alpha}}{\partial \theta}(\theta, x) \rightarrow \frac{\mathrm{d} \xi(\theta)}{\mathrm{d} \theta},
$$

as $\alpha \rightarrow 0$, we would have, by (\mathbb{L})),

$$
\chi(\theta)=\xi(\theta)+\theta \frac{\mathrm{d} \xi(\theta)}{\mathrm{d} \theta}=\frac{\mathrm{d}}{\mathrm{~d} \theta}[\theta \xi(\theta)]
$$

and

$$
\begin{equation*}
\xi(\theta)=\frac{1}{\theta} \int_{0}^{\theta} \chi(r) \mathrm{d} r=\lim _{\alpha} \alpha u_{\alpha}(\theta, x) . \tag{1.9}
\end{equation*}
$$

Notice that when $\theta=0$, the equation ($\mathbb{L}-\mathbf{z})$ corresponds to the usual discounted control, e.g., see Bensoussan [[] . Condition ($\mathbb{L T}$) is precisely the result we will obtain here for the case of periodic diffusion (or reflected diffusions on a bounded region of \mathbb{R}^{d}).

The risk-sensitive control problem for diffusion processes (in various cases) has been studied by several authors, particularly in connection with robust control and differential games, for instance, we refer to Jacobson [[] , Bensoussan and Van Schuppen [$[$],

In Section 2, we obtain formally the HJB-equation for ($\mathbb{L} \mathbf{Z})$, and a verification theorem. In Section 3, we study the discounted risk-sensitive problem, and in Section 4, we consider the asymptotic behavior when the discount factor goes to zero.

2 Formal Derivation of the HJB Equation

We start with

$$
\begin{equation*}
w_{\alpha}(\theta, x)=\inf _{v} \exp \left[\theta I_{\alpha}(\theta, x, v)\right] . \tag{2.1}
\end{equation*}
$$

Formally, for any $T>0$ and for any Markov control $v_{t}=v\left(x_{t}\right)$, we argue as follows

$$
\begin{aligned}
w_{\alpha}(\theta, x)= & \inf _{v} \mathbb{E}_{x}\left\{\operatorname { e x p } \left[\theta \int _ { 0 } ^ { T } e ^ { - \alpha t } \varphi \left(\left(x_{t}, v_{t}\right) \mathrm{d} t+\right.\right.\right. \\
& \left.+\theta \int_{T}^{\infty} e^{-\alpha t} \varphi\left(\left(x_{t}, v_{t}\right) \mathrm{d} t\right]\right\}= \\
= & \inf _{v} \mathbb{E}_{x}\left\{\operatorname { e x p } \left[\theta \int_{0}^{T} e^{-\alpha t} \varphi\left(\left(x_{t}, v_{t}\right) \mathrm{d} t\right] \times\right.\right. \\
& \times \mathbb{E}_{x_{T}}\left\{\exp \left[\theta e^{-\alpha T} \int_{0}^{\infty} e^{-\alpha t} \varphi\left(\left(x_{t}, v_{t}\right) \mathrm{d} t\right]\right\}\right\} .
\end{aligned}
$$

Therefore (formally)

$$
w_{\alpha}(\theta, x)=\inf _{v /[0, T]} \mathbb{E}_{x}\left\{\exp \left[\theta \int_{0}^{T} e^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right] w_{\alpha}\left(\theta e^{-\alpha T}, x_{T}\right)\right\} .
$$

Using Itô's formula for $w_{\alpha}\left(\theta e^{-\alpha T}, x_{T}\right)$, and taking $T>0$ small, we obtain

$$
\begin{equation*}
-\alpha \theta \frac{\partial w_{\alpha}}{\partial \theta}+\Delta w_{\alpha}+\inf _{v}\left\{\theta \varphi w_{\alpha}+b \cdot \nabla w_{\alpha}\right\}=0 \tag{2.2}
\end{equation*}
$$

and clearly $w_{\alpha}(0, x)=1$.
Next, we set $w_{\alpha}=\exp \left(\theta u_{\alpha}\right)$ to deduce

$$
\begin{equation*}
-\alpha\left(u_{\alpha}+\theta \frac{\partial u_{\alpha}}{\partial \theta}\right)+\Delta u_{\alpha}+\theta\left|\nabla u_{\alpha}\right|^{2}+\inf _{v}\left\{\varphi+b \cdot \nabla u_{\alpha}\right\}=0 . \tag{2.3}
\end{equation*}
$$

Remark that one should take

$$
\begin{equation*}
u_{\alpha}(0, x)=\inf _{v} \mathbb{E}_{x}\left\{\int_{0}^{\infty} e^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right\}, \tag{2.4}
\end{equation*}
$$

since, when θ is small in ([.2) we have

$$
I_{\alpha}(\theta, x, v)=\mathbb{E}_{x} \Phi+\theta \mathbb{E}_{x} \Phi^{2}+O\left(\theta^{2}\right),
$$

where

$$
\Phi=\int_{0}^{\infty} e^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t
$$

Theorem 2.1 (implicit assumptions). Let us assume that there exists a smooth function $W(\theta, x)$ such that

$$
\begin{equation*}
-\alpha \theta \frac{\partial W}{\partial \theta}+\Delta W+\inf _{v}\{\theta \varphi W+b \cdot \nabla W\}=0 \tag{2.5}
\end{equation*}
$$

and $W(\theta, x) \rightarrow 1$ as $\theta \rightarrow 0$, locally uniform in x. Also assume that there exists an optimal control v^{*}. Then

$$
\begin{equation*}
W(\theta, x)=w_{\alpha}(\theta, x) . \tag{2.6}
\end{equation*}
$$

Proof. To see this, introduce θ_{t} defined by

$$
\frac{\mathrm{d} \theta_{t}}{\mathrm{~d} t}=-\alpha \theta_{t}, \quad \theta_{0}=\theta
$$

and

$$
\psi_{T}=\exp \left\{\int_{0}^{T} \theta_{t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right\},
$$

for an arbitrary control v_{s}. By means of Feynman-Kac formula we get

$$
\begin{aligned}
& \mathbb{E}_{x}\left\{\psi_{T} W\left(\theta_{T}, x_{T}\right)\right\}=W(\theta, x)+ \\
& \quad+\mathbb{E}_{x}\left\{\int_{0}^{T} \psi_{t}\left[-\alpha \theta \frac{\partial W}{\partial \theta}+\Delta W+\theta \varphi W+b \cdot \nabla W\right] \mathrm{d} t\right\} .
\end{aligned}
$$

From the equation for W the last term is nonnegative, and therefore

$$
W(\theta, x) \leq \mathbb{E}_{x}\left\{W\left(\theta_{T}, x_{T}\right) \exp \left[\theta \int_{0}^{T} e^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right]\right\} .
$$

Hence, because $\theta_{T} \rightarrow 0$ as $T \rightarrow \infty$ and $W\left(\theta_{T}, x_{T}\right) \rightarrow 1$ (locally uniform in x_{T}) as $\theta \rightarrow 0$ we deduce

$$
W(\theta, x) \leq \mathbb{E}_{x}\left\{\exp \left[\theta \int_{0}^{\infty} e^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right]\right\}
$$

i.e., $W(\theta, x) \leq w_{\alpha}(\theta, x)$.

Similarly, using the optimal control v^{*} we obtain the equality.
Clearly, as a Corollary, using U defined by $W=\exp (\theta U)$ we obtain $U=u_{\alpha}$.

3 Discounted Risk-sensitive Problem

Let (Ω, \mathcal{F}, P) be a probability space with a filtration $\left(\mathcal{F}_{t}: t \geq 0\right)$ and a standard d-dimensional \mathcal{F}_{t}-Brownian motion process $\left(B_{t}: t \geq 0\right)$. We are given V a compact metric space, $\left.\left.X=\left[\left(\mathbb{R}^{d}\right) \bmod (1)\right] \simeq\right] 0,1\right]^{d}$

$$
\begin{equation*}
b: X \times V \rightarrow \mathbb{R}^{d}, \quad \varphi: X \times V \rightarrow \mathbb{R} \tag{3.1}
\end{equation*}
$$

where $b(x, v)$ and $\varphi(x, v)$ are periodic in x with period 1 in each coordinate (as functions defined on \mathbb{R}^{d}), b is continuous in $X \times V$ and Lipschitz continuous in x, namely,

$$
\begin{equation*}
\left|b(x, v)-b\left(x^{\prime}, v\right)\right| \leq M\left|x-x^{\prime}\right|, \quad \forall x, x^{\prime} \in X, \tag{3.2}
\end{equation*}
$$

φ is continuous and nonnegative.
The state equation is given by

$$
\left\{\begin{array}{l}
\mathrm{d} x_{t}=b\left(x_{t}, v_{t}\right) \mathrm{d} t+\sqrt{2} \mathrm{~d} B_{t}, \quad t>0, \tag{3.3}\\
x_{0}=x \in X,
\end{array}\right.
$$

where $\left(v_{t}: t \geq 0\right)$ is any progressively measurable process with values in V.
As above, the cost is given by

$$
\begin{equation*}
I_{\alpha}(\theta, x, v)=\frac{1}{\theta} \ln \mathbb{E}_{x}\left\{\exp \left(\theta \int_{0}^{\infty} \mathrm{e}^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right)\right\} \tag{3.4}
\end{equation*}
$$

where $\alpha>0$ is the discount factor and θ is a real parameter. For the sake of simplicity, we will consider only the case $\theta>0$. The optimal cost function is

$$
\begin{equation*}
u_{\alpha}(\theta, x)=\inf _{v} I_{\alpha}(\theta, x, v) . \tag{3.5}
\end{equation*}
$$

Remark 3.1. One could avoid the assumption (B 2) that b is Lipschitz continuous and then define the state equation using the Girsanov transformation (e.g., see Bensoussan [畂, Chapter 6]).

As seen in Section [】, the HJB-equation for (\$.5) is

$$
\begin{equation*}
A_{\theta} u_{\alpha}+\alpha u_{\alpha}=H\left(\theta, x, D u_{\alpha}\right), \tag{3.6}
\end{equation*}
$$

with u_{α} periodic in x,

$$
\begin{aligned}
& A_{\theta} u:=\alpha \theta \partial_{\theta} u-\Delta u-\theta|D u|^{2}, \\
& H(\theta, x, p):=\inf _{v}\{\varphi(x, v)+b(x, v) \cdot p\},
\end{aligned}
$$

and

$$
\begin{equation*}
u_{\alpha}(0, x)=u_{\alpha}^{0}(x), \tag{3.7}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{0} u_{\alpha}^{0}=H\left(0, x, D u_{\alpha}^{0}\right), \tag{3.8}
\end{equation*}
$$

and u_{α}^{0} periodic. Note that $D u, \Delta u$ and $\partial_{\theta} u$ denote the gradient in x, the Laplacian in x, and the partial derivative in θ, respectively.

It is well known (e.g., see Bensoussan and Lions [[] , []) that ([.8) has a unique solution in $W^{2, p}(X), 2 \leq p<\infty$. Without any lost of generality, we consider ([3.6) with θ in $] 0,1[$.

First we study an auxiliary equation in w, namely,

$$
\begin{equation*}
\alpha \theta \partial_{\theta} w-\Delta w=\inf _{v}\{\theta \varphi w+b \cdot D w\} \tag{3.9}
\end{equation*}
$$

with w periodic in x and $w(0, x)=1$.

Proposition 3.2. Assuming (5.]) and (B.3), there is a unique solution w of (B (2]) in $H^{1}(] 0,1[\times X)$ such that w and $\partial_{\theta} w$ belong to $L^{\infty}(] 0,1[\times X)$.

Proof. We begin with the following equation for ε in $] 0,1[$,

$$
\begin{align*}
& \left.\alpha \theta \partial_{\theta} w^{\varepsilon}-\Delta w^{\varepsilon}=\inf _{v}\left\{\theta \varphi w^{\varepsilon}+b \cdot D w^{\varepsilon}\right\}, \quad \theta \in\right] \varepsilon, 1[, \tag{3.10}\\
& w^{\varepsilon}(\varepsilon, x)=h_{\varepsilon}(x), \quad x \in X,
\end{align*}
$$

with w^{ε} periodic in x and

$$
\begin{equation*}
h^{\varepsilon}(x)=\mathrm{e}^{\frac{\varepsilon}{\alpha}\|\varphi\|}, \tag{3.11}
\end{equation*}
$$

where

$$
\|\varphi\|:=\sup _{x, v}|\varphi(x, v)|,
$$

and clearly $h_{\varepsilon} \rightarrow 1$ as $\varepsilon \rightarrow 0$.
Since θ belongs to $] \varepsilon, 1[$, equation ($\mathbf{[J T l}$) can be seen as a standard Cauchy problem and there is a unique solution w^{ε} in $W_{p}^{1,2}(] \varepsilon, 1[\times X), 2 \leq p<\infty$. Therefore, we can interpret $w^{\varepsilon}(\theta, x)$ as the following optimal cost

$$
\begin{equation*}
w^{\varepsilon}(\theta, x)=\inf _{v} \mathbb{E}_{x}\left\{h_{\varepsilon} \exp \left(\theta \int_{0}^{T_{\varepsilon}} \mathrm{e}^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right)\right\} \tag{3.12}
\end{equation*}
$$

by applying Itô formula to $\psi_{T} w\left(\theta_{T}, x_{T}\right)$ with

$$
\theta_{t}:=\theta \mathrm{e}^{-\alpha t}, \quad \psi_{T}=\exp \left(\int_{0}^{T} \theta_{t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right)
$$

and where we have taken

$$
T_{\varepsilon}=\inf \left\{t \geq 0: \theta_{t}=\varepsilon\right\}, \quad \text { i.e. } T_{\varepsilon}=\frac{\ln \left(\frac{\theta}{\varepsilon}\right)}{\alpha}
$$

Then we deduce

$$
\begin{equation*}
0 \leq w^{\varepsilon}(\theta, x) \leq \mathrm{e}^{\frac{\theta}{\alpha}\|\varphi\|}, \tag{3.13}
\end{equation*}
$$

for every $\varepsilon>0$.
To show that $\partial_{\theta} w^{\varepsilon}$ is uniformly (in $\varepsilon>0$) bounded in $L^{\infty}(] \varepsilon, 1[\times X)$ for a fixed $\alpha>0$, we consider the expression

$$
\begin{aligned}
& \mid \mathbb{E}_{x}\left\{h_{\varepsilon} \exp \left((\theta+\delta) \int_{0}^{T_{\varepsilon}^{\delta}} \mathrm{e}^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right)\right\}- \\
& -\mathbb{E}_{x}\left\{h_{\varepsilon} \exp \left(\theta \int_{0}^{T_{\varepsilon}} \mathrm{e}^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right)\right\} \mid \leq I_{1}+I_{2}
\end{aligned}
$$

with

$$
(\theta+\delta) \mathrm{e}^{-\alpha T_{\varepsilon}^{\delta}}=\varepsilon, \quad \text { i.e. } T_{\varepsilon}^{\delta}=\frac{\ln \left(\frac{\theta+\delta}{\varepsilon}\right)}{\alpha}
$$

and

$$
\begin{aligned}
& I_{1}=\mid \mathbb{E}_{x}\left\{h_{\varepsilon} \exp \left((\theta+\delta) \int_{0}^{T_{\varepsilon}^{\delta}} \mathrm{e}^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right)\right\}- \\
&-\mathbb{E}_{x}\left\{h_{\varepsilon} \exp \left(\theta \int_{0}^{T_{\varepsilon}^{\delta}} \mathrm{e}^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right)\right\} \mid, \\
& I_{2}=\mid \mathbb{E}_{x}\left\{h_{\varepsilon} \exp \left(\theta \int_{0}^{T_{\varepsilon}^{\delta}} \mathrm{e}^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right)\right\}- \\
&-\mathbb{E}_{x}\left\{h_{\varepsilon} \exp \left(\theta \int_{0}^{T_{\varepsilon}} \mathrm{e}^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right)\right\} \mid,
\end{aligned}
$$

for $\delta>0$ and any arbitrary control. Now

$$
\begin{aligned}
& I_{1} \leq\left|h_{\varepsilon}\right| \mathbb{E}_{x}\left\{\exp \left(\theta \int_{0}^{T_{\varepsilon}^{\delta}} \mathrm{e}^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right)\left|\exp \left(\delta \int_{0}^{T_{\varepsilon}^{\delta}} \mathrm{e}^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right)-1\right|\right\} \leq \\
& \leq\left|h_{\varepsilon}\right| \delta \frac{\|\varphi\|}{\alpha} \exp \left(\frac{(\theta+\delta)\|\varphi\|}{\alpha}\right),
\end{aligned}
$$

while

$$
\begin{gathered}
I_{2} \leq\left|h_{\varepsilon}\right| \mathbb{E}_{x}\left\{\exp \left(\theta \int_{0}^{T_{\varepsilon}} \mathrm{e}^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right)\left|\exp \left(\theta \int_{T_{\varepsilon}}^{T_{\varepsilon}^{\delta}} \mathrm{e}^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right)-1\right|\right\} \leq \\
\leq\left|h_{\varepsilon}\right| \exp \left(\frac{\theta\|\varphi\|}{\alpha}\right)\left[\exp \left(\frac{\theta\|\varphi\|}{\alpha}\left(\mathrm{e}^{-\alpha T_{\varepsilon}}-\mathrm{e}^{-\alpha T_{\varepsilon}^{\delta}}\right)\right)-1\right],
\end{gathered}
$$

but $\theta \mathrm{e}^{-\alpha T_{\varepsilon}}=\varepsilon$ so that

$$
\theta \mathrm{e}^{-\alpha T_{\varepsilon}}-\theta \mathrm{e}^{-\alpha T_{\varepsilon}^{\delta}}=\delta \mathrm{e}^{-\alpha T_{\varepsilon}^{\delta}}=\frac{\varepsilon \delta}{\theta+\delta}
$$

and

$$
I_{2} \leq\left|h_{\varepsilon}\right| \exp \left(\frac{\theta\|\varphi\|}{\alpha}\right)\left[\exp \left(\frac{\varepsilon \delta\|\varphi\|}{\alpha(\theta+\delta)}\right)-1\right] .
$$

Similarly for $\delta<0$, and we deduce a bound of the type

$$
\left|w^{\varepsilon}(\theta+\delta, x)-w^{\varepsilon}(\theta, x)\right| \leq C\left|h_{\varepsilon}\right| \mathrm{e}^{\frac{\theta}{\alpha}\|\varphi\|} \frac{\|\varphi\|}{\alpha}|\delta|,
$$

and so $\partial_{\theta} w^{\varepsilon}$ is uniformly (in $\varepsilon>0$) bounded for a fixed $\alpha>0$.
Now we show that for any θ in $] \varepsilon, 1\left[\right.$ the function $x \mapsto w^{\varepsilon}(\theta, x)$ is bounded in $W^{2, p}(X)$, uniformly with respect to ε and θ. Indeed, for $\lambda>0$ sufficiently large, we write the equation in w^{ε} as

$$
-\Delta w^{\varepsilon}+\lambda w^{\varepsilon}=\inf _{v}\left\{\psi^{\varepsilon}(\cdot, v)+b(\cdot, v) \cdot D w^{\varepsilon}\right\},
$$

with $\psi^{\varepsilon}=\theta \varphi w^{\varepsilon}+\lambda w^{\varepsilon}-\alpha \theta \partial_{\theta} w^{\varepsilon}$. Since w^{ε} and $\partial_{\theta} w^{\varepsilon}$ are bounded uniformly in ε and θ, classic results show that

$$
\left\|w^{\varepsilon}(\theta, \cdot)\right\|_{W^{2, p}(X)} \leq C
$$

where the constant C depends only on the bounds of ψ^{ε}, b and the constant λ.
Define \tilde{w}^{ε} on $] 0,1[\times X$ as

$$
\tilde{w}^{\varepsilon}(\theta, x)= \begin{cases}w^{\varepsilon}(\theta, x), & \theta>\varepsilon \\ h_{\varepsilon}(x), & \theta \leq \varepsilon,\end{cases}
$$

which satisfies the same estimates (uniformly in ε) as w^{ε}, i.e., $\tilde{w}^{\varepsilon} \geq 0$, bounded and continuous in $] 0,1\left[\times X\right.$, with $\partial_{\theta} \tilde{w}^{\varepsilon}$ bounded in $L^{\infty}(] 0,1[\times X)$ and $\tilde{w}^{\varepsilon}(\theta, \cdot)$ bounded in $W^{2, p}(X)$, uniformly in θ. Thus, by extracting a subsequence, we have in particular,

$$
\tilde{w}^{\varepsilon} \rightarrow w \quad \text { in } \quad L^{2}\left(0,1 ; H^{2}(X)\right) \text { weakly }
$$

and

$$
\partial_{\theta} \tilde{w}^{\varepsilon} \rightarrow \partial_{\theta} w \quad \text { in } \quad L^{2}(] 0,1[\times X) \text { weakly. }
$$

These estimates allow to pass to the limit as $\varepsilon \rightarrow 0$ in

$$
\begin{aligned}
& \int_{0}^{1} \alpha \theta\left\langle\partial_{\theta} \tilde{w}^{\varepsilon}, z\right\rangle \mathrm{d} \theta+\int_{0}^{1}\left\langle D \tilde{w}^{\varepsilon}, D z\right\rangle \mathrm{d} \theta- \\
& \quad-\int_{0}^{1}\left\langle\inf _{v}\left\{\theta \varphi \tilde{w}^{\varepsilon}+b(\cdot, v) \cdot D \tilde{w}^{\varepsilon}\right\}, z\right\rangle \mathrm{d} \theta=\int_{0}^{\varepsilon}\left\langle\inf _{v}\left\{\theta \varphi h_{\varepsilon}\right\}, z\right\rangle \mathrm{d} \theta
\end{aligned}
$$

to obtain (5. Cl).
We are ready to state
Theorem 3.3. Assume ([.]) -($\mathrm{B} \cdot \mathrm{3}$), then there exits a unique solution u to the equation ([.6), (B.7) such that u and $\partial_{\theta} u$ belong to $L^{\infty}(] 0,1[\times X)$, the functions $x \mapsto u(\theta, x)$ belong to $W^{2, p}(X)$ and $u=u_{\alpha}(\theta, x)$ given by (3.5).

Proof. By means of the Itô formula, first with an arbitrary control and next with \hat{v} defined as the minimizer

$$
\hat{v}=\operatorname{argmin}\{\theta \varphi(\cdot, v) w+b(\cdot, v) \cdot D w\},
$$

we obtain

$$
w_{\alpha}(\theta, x)=\inf _{v} \mathbb{E}_{x}\left\{\exp \left(\theta \int_{0}^{\infty} \mathrm{e}^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right)\right\} .
$$

Now define u as

$$
\mathrm{e}^{\theta u}=w_{\alpha}, \quad \theta>0,
$$

to get

$$
\alpha\left(u+\theta \partial_{\theta} u\right)-\Delta u-\theta|D u|^{2}=\inf _{v}\{\varphi(\cdot, v)+b(\cdot, v) \cdot D u\} .
$$

For $\theta=0$, we define $u(0, x)=\bar{u}$ as the solution of

$$
\alpha \bar{u}-\Delta \bar{u}=\inf _{v}\{\varphi(\cdot, v)+b(\cdot, v) \cdot D \bar{u}\}, \quad \bar{u} \in W^{2, p}
$$

which is known to exist (see Bensoussan and Lions [[]]).
From the definition of u we obtain

$$
u(\theta, x)=\inf _{v} I_{\alpha}(\theta, x, v),
$$

which conclude the proof, in view of the regularity of w_{α}.

4 Asymptotics

The first step is to obtain estimates on u_{α} independent of α.
-Estimate of αu_{α} :
As seen before, for $\theta>0$ and $\varphi \geq 0$, we have

$$
1 \leq w_{\alpha} \leq \mathrm{e}^{\frac{\theta\|\varphi\|}{\alpha}},
$$

and therefore

$$
0 \leq u_{\alpha} \leq \frac{\|\varphi\|}{\alpha}
$$

so

$$
\begin{equation*}
0 \leq \alpha u_{\alpha}(x) \leq\|\varphi\|, \quad \forall \alpha>0 . \tag{4.1}
\end{equation*}
$$

- Estimate of $\alpha\left(u_{\alpha}+\theta \partial_{\theta} u_{\alpha}\right)=\alpha \partial_{\theta}\left(\theta u_{\alpha}\right):$

Define

$$
\begin{aligned}
& \Phi_{\alpha}:=\int_{0}^{\infty} \mathrm{e}^{-\alpha t} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t \\
& \Psi_{\alpha}:=\ln \mathbb{E}_{x}\left\{\mathrm{e}^{\theta \Phi_{\alpha}}\right\}=\ln \int_{\Omega} \mathrm{e}^{\theta \Phi_{\alpha}(\omega)} P_{x}(\mathrm{~d} \omega) .
\end{aligned}
$$

Clearly

$$
\Psi_{\alpha}(x, v, \theta+\delta)=\Psi_{\alpha}(x, v, \theta)+\delta \partial_{\theta} \Psi_{\alpha}(x, v, \theta+\eta \delta)
$$

for some η in $(0,1)$. Since

$$
\partial_{\theta} \Psi_{\alpha}=\frac{\mathbb{E}_{x}\left\{\Phi_{\alpha} \mathrm{e}^{\theta \Phi_{\alpha}}\right\}}{\mathbb{E}_{x}\left\{\mathrm{e}^{\theta \Phi_{\alpha}}\right\}}
$$

if $K=\|\varphi\|$ then we have

$$
0 \leq \partial_{\theta} \Psi_{\alpha} \leq \frac{K \mathbb{E}_{x}\left\{\mathrm{e}^{\theta \Phi}\right\}}{\alpha \mathbb{E}_{x}\left\{\mathrm{e}^{\theta \Phi}\right\}}=\frac{K}{\alpha},
$$

and

$$
\left|\Psi_{\alpha}(x, v, \theta+\delta)-\Psi_{\alpha}(x, v, \theta)\right| \leq|\delta| \frac{K}{\alpha} .
$$

Therefore

$$
\left|(\theta+\delta) u_{\alpha}(\theta+\delta, x)-\theta u_{\alpha}(\theta, x)\right| \leq|\delta| \frac{\theta K}{\alpha}
$$

so

$$
\begin{equation*}
\left|\partial_{\theta}\left(\theta u_{\alpha}(\theta, x)\right)\right| \leq \frac{\theta K}{\alpha} \tag{4.2}
\end{equation*}
$$

i.e., $\alpha \partial_{\theta}\left(\theta u_{\alpha}\right)$ is bounded uniformly in α.

- Estimate of $\left|D u_{\alpha}\right|_{L^{2}}$:

The equation in u_{α} can be written as

$$
\begin{equation*}
-\Delta u_{\alpha}-b_{\alpha} \cdot D u_{\alpha}=\theta\left|D u_{\alpha}\right|^{2}+\psi_{\alpha}-\alpha u_{\alpha}, \tag{4.3}
\end{equation*}
$$

with

$$
\begin{gathered}
b_{\alpha}=b\left(x, v_{\alpha}\right), \quad \psi_{\alpha}=\varphi\left(x, v_{\alpha}\right)-\alpha \theta \partial_{\theta} u_{\alpha}, \\
v_{\alpha}(x)=\operatorname{argmin}\left\{\varphi(\cdot, v)+b(\cdot, v) \cdot D u_{\alpha}(x)\right\} .
\end{gathered}
$$

Let m_{α} be the density invariant probability measure corresponding to the operator $-\Delta-b_{\alpha} \cdot D$ (e.g., see Bensoussan [[]), which satisfies

$$
0<\delta_{0} \leq m_{\alpha} \leq \delta_{1} .
$$

Multiplying (6.3) by m_{α} and using the equation for m_{α}, we deduce

$$
\begin{equation*}
0=\theta \int_{X}\left|D u_{\alpha}\right|^{2} m_{\alpha} \mathrm{d} x+\int_{X}\left(\psi_{\alpha}-\alpha u_{\alpha}\right) m_{\alpha} \mathrm{d} x . \tag{4.4}
\end{equation*}
$$

Since δ_{0} and δ_{1} depend only on the L^{∞} norm of b, they are independent of α and θ. Therefore (4.4) gives

$$
\begin{equation*}
\theta\left|D u_{\alpha}\right|_{L^{2}(X)}^{2} \leq C, \quad \forall \alpha, \theta, \tag{4.5}
\end{equation*}
$$

i.e., a bound on $\left|D u_{\alpha}\right|_{L^{2}(X)}$ uniformly in $\alpha>0$ and θ in $[\varepsilon, 1]$, for every $\varepsilon>0$.
-Estimate of $u_{\alpha}-\bar{u}_{\alpha}$:
Let us define

$$
\bar{u}_{\alpha}(\theta):=\int_{X} u_{\alpha}(\theta, x) \mathrm{d} x \quad \text { and } \quad \Lambda_{\alpha}(\theta, x):=u_{\alpha}(\theta, x)-\bar{u}_{\alpha}(\theta) .
$$

The equation for Λ_{α} is

$$
\begin{equation*}
-\Delta \Lambda_{\alpha}=-\alpha \partial_{\theta}\left(\theta u_{\alpha}\right)+\theta\left|D \Lambda_{\alpha}\right|^{2}+\inf _{v}\left\{\varphi(\cdot, v)+b(\cdot, v) \cdot D \Lambda_{\alpha}\right\} . \tag{4.6}
\end{equation*}
$$

and by Poincaré inequality we have

$$
\left|\Lambda_{\alpha}\right|_{L^{2}(X)} \leq C\left|D u_{\alpha}\right|_{L^{2}(X)} .
$$

Considering θ as a parameter in (1..61) and since $\alpha \partial_{\theta}\left(\alpha u_{\alpha}\right)$ is bounded, we have

$$
\sqrt{\theta}\left|\Lambda_{\alpha}\right|_{L^{2}(X)} \leq C,
$$

moreover, we can mimic the arguments in Lemmas 4.7 and 4.8 of Bensoussan and Frehse [5] to obtain

$$
\begin{equation*}
\sqrt{\theta}\left|\Lambda_{\alpha}\right|_{L^{\infty}(X)} \leq C, \tag{4.7}
\end{equation*}
$$

for some constant $C>0$, uniformly in α and θ. Furthermore, considering $z_{\alpha}(\theta, x)=$ $\theta \Lambda_{\alpha}(\theta, a)$, which satisfies

$$
-\Delta z_{\alpha}=-\alpha \theta \partial_{\theta}\left(\theta u_{\alpha}\right)+\left|D z_{\alpha}\right|^{2}+\inf _{v}\left\{\theta \varphi(\cdot, v)+b(\cdot, v) \cdot D z_{\alpha}(\theta, \cdot)\right\},
$$

so that one can apply Theorem 3.7 of Bensoussan and Frehse [$\left[\begin{array}{l}\text {] }] \text { to deduce }\end{array}\right.$

$$
\left\|z_{\alpha}\right\|_{C^{\delta}(X)} \leq C,
$$

i.e.,

$$
\begin{equation*}
\theta\left|\Lambda_{\alpha}\right|_{C^{\delta}(X)} \leq C, \tag{4.8}
\end{equation*}
$$

for some constant $C>0$, uniformly in α and θ.
-Passage to the limit a $\alpha \rightarrow 0$:
(a) First we look at $\alpha u_{\alpha}(\theta, x)$. In view of (4.1), (4.2) and (4.8), taking a sub-sequence we have

$$
\begin{equation*}
\alpha u_{\alpha} \rightarrow \xi \tag{4.9}
\end{equation*}
$$

uniformly on every compact subset of $Q=] 0,1[\times X$. Let us show that ξ does not depend on x. Indeed, since

$$
\sqrt{\theta} \Lambda_{\alpha}=\sqrt{\theta}\left[u_{\alpha}(\theta, x)-\bar{u}_{\alpha}(\theta)\right]
$$

is bounded, we have $\alpha \sqrt{\theta} \Lambda_{\alpha} \rightarrow 0$ and therefore

$$
\lim _{\alpha \rightarrow 0} \alpha\left[u_{\alpha}(\theta, x)-\bar{u}_{\alpha}(\theta)\right]=0, \quad \forall x \in X, \theta>0 .
$$

On the other hand, since $u_{\alpha}(0, x)=u_{\alpha}^{0}(x)$ we know that $\alpha u_{\alpha}^{0}(x)$ must converge to a constant too.

Now, since $\theta \partial_{\theta}\left(\alpha u_{\alpha}\right)$ is bounded, we deduce that

$$
\theta \partial_{\theta}\left(\alpha u_{\alpha}\right) \rightarrow \theta \frac{d \xi}{d \theta}
$$

weakly-star in L^{∞},
(b) Then we pass to the limit in the equation of Λ_{α}, for each $\theta>0$ fixed. By means of the equation (4.61) and the previous bounds on u_{α}, in particular (4.2), (4.5) and (4.8), we can find a subsequence such that

$$
\Lambda_{\alpha} \rightarrow u \quad \text { in } H^{1}(X) \text { weakly and } L^{\infty}(X) \text { strongly }
$$

as $\alpha \rightarrow 0$. Therefore

$$
\int_{X} \Delta \Lambda_{\alpha}\left(\Lambda_{\alpha}-u\right) \mathrm{d} x \rightarrow 0
$$

since $\Delta \Lambda_{\alpha}$ is bounded in $L^{1}(X)$. This is,

$$
\int_{X} D \Lambda_{\alpha} \cdot D \Lambda_{\alpha} \mathrm{d} x \rightarrow \int_{X} D \Lambda_{\alpha} \cdot D u \mathrm{~d} x
$$

However, due to the weak convergence in $H^{1}(X)$ we have

$$
\int_{X} D \Lambda_{\alpha} \cdot D u \mathrm{~d} x \rightarrow \int_{X} D u \cdot D u \mathrm{~d} x
$$

which yields

$$
\int_{X}\left|D \Lambda_{\alpha}-D u\right|^{2} \mathrm{~d} x \rightarrow 0
$$

i.e., $\Lambda_{\alpha} \rightarrow u(\theta, \cdot)$ strongly in $H^{1}(X)$.

Hence, if we call $\chi(\theta)$ the limit of $\alpha \partial_{\theta}\left(\theta u_{\alpha}\right)$ we see that the couple ($\left.\chi, u\right)$ satisfies

$$
\left\{\begin{array}{l}
\chi-\Delta u=\theta|D u|^{2}+\inf _{v}\{\varphi(\cdot, v)+b(\cdot, v) \cdot D u(\cdot)\}, \quad u \in H^{1}(X), \tag{4.10}\\
\int_{X} u(\theta, x) \mathrm{d} x=0, \quad \forall \theta>0 .
\end{array}\right.
$$

But form Nagai [四] (who treats a more difficult case in \mathbb{R}^{d} and unbounded φ, and therefore the result applies a fortiori to our simple case) there exists a unique pair (χ, u) satisfying (4.10) and

$$
\chi(\theta)=\lim _{T \rightarrow \infty} \frac{u(T, x)}{T}
$$

with $u(T, x)$ given by ($\amalg .5)$. Therefore we conclude that

$$
\frac{\mathrm{d}(\theta \xi(\theta))}{\mathrm{d} \theta}=\chi(\theta),
$$

which gives

$$
\xi(\theta)=\frac{1}{\theta} \int_{0}^{\theta} \chi(r) \mathrm{d} r,
$$

i．e．，

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} \alpha u_{\alpha}(\theta, x)=\frac{1}{\theta} \int_{0}^{\theta} \chi(r) \mathrm{d} r . \tag{4.11}
\end{equation*}
$$

We have shown the desired result summarized as
Theorem 4．1．Under the assumptions of Section we have

$$
\begin{aligned}
& \lim _{\alpha \rightarrow 0} \alpha \partial_{\theta}\left(\alpha u_{\alpha}(\theta, x)\right)=\chi(\theta), \\
& \lim _{\alpha \rightarrow 0}\left[u_{\alpha}(\theta, x)-\int_{X} u_{\alpha}(\cdot, x) \mathrm{d} x\right]=u(\theta, x),
\end{aligned}
$$

where (χ, u) is the unique solution of（4．I⿴囗十），

$$
\chi(\theta)=\liminf _{T \rightarrow \infty} \frac{1}{T} \inf _{v}\left[\frac{1}{\theta} \ln \mathbb{E}_{x}\left\{\exp \left(\theta \int_{0}^{T} \varphi\left(x_{t}, v_{t}\right) \mathrm{d} t\right)\right\}\right],
$$

and（4．T］）holds．
To conclude，let us mention that certainly，the above result remain true for reflected diffusion processes in a bounded region of \mathbb{R}^{d} ．The case in the whole space \mathbb{R}^{d} or diffusion with jumps requires a more elaborated technique，and it may be the subject of future research．

References

［1］A．Bensoussan，Perturbation methods in optimal control，Wiley，New York， 1988.
［2］A．Bensoussan and J．L．Lions，Applications des inéquations variationnelles en contrôle stochastique，Dunod，Paris 1978.
［3］A．Bensoussan and J．L．Lions，Contrôle impulsionnel et inéquations quasi varia－ tionnelles，Dunod，Paris 1982.
［4］A．Bensoussan and J．H．Van Schuppen，Optimal control of partially observable stochastic systems with an exponential of integral performance index，SIAM J． Control Optim．， 23 （1985），599－613．
［5］A．Bensoussan and J．Frehse，Regularity results for nonlinear elliptic systems and applications，Springer－Verlag，New－York， 2002.
［6］W．H．Fleming and W．M．McEneaney，Risk－sensitive control on an infinite time horizon，SIAM J．Control Optim．， 33 （1995），1881－1915．
[7] D.H. Jacobson, Optimal stochastic linear systems with exponential performance criteria and relation to detewninistic differential games, IEEE Trans. Automat. Control, AC-18 (1973), 124-131.
[8] W.M. McEneaney, Connections between risk-sensitive stochastic control, differential games and H^{∞}-control: the non linear case, Brown University, PhD Thesis, 1993.
[9] H. Nagai, Ergodic control problems on the whole Euclidean space and convergence of symmetric diffusions, Forum Math., 4 (1992), 159-173.
[10] H. Nagai, Bellman equations of risk-sensitive control, SIAM J. Control Optim. 34 (1996), 74-101.
[11] T. Runolfsson, Stationary risk-sensitive LQG control and its relation to LQG and H-infinity control, Proc. 29th CDC Conference, Honolulu, HI, 1990, 1018-1023.
[12] P. Whittle, Risk-sensitive Optimal Control, Wiley, New-York, 1990.

