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Almost sure asymptotic stabilization of differential

equations with time-varying delay by Lévy noise∗
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Abstract

This paper aims to determine that the Lévy noise can stabilize the given differential equa-
tions with time-varying delay,which has generalized the Brownian motion case. An analysis is
developed and sufficient conditions on the stabilization for stochastic differential equations with
time-varying delay are presented.Our stabilization criteria is in terms of linear matrix inequali-
ties (LMIs), whence the feedback controls can be designed more easily in practice.

Keywords: stabilization; Lévy noise; almost surely asymptotically stable; stochastic differential
equations; LMIs.
2000 Mathematics Subject Classification: 60H10, 93D15, 37H10.

1 Introduction

In the past decades, the problems of stabilization synthesis for stochastic systems have received
significant attentions, and many results have been reported (see, e.g., Appleby et al.[3], Deng et
al.[9], Hu&Mao[10], Hu et al.[11], Huang[12], Li&De Souza[15], Shen et al.[23], Xie et al.[25] and
Yue&Han[29]). Generally, the stabilization problems can be solved in the moment sense (see, e.g.,
Liu et al.[17] and Wei et al.[24]), however, in the recent years, the moment sense has not met the
need of control theory, the almost sure sense of stabilization problems for stochastic systems have
been focused on (see, e.g., Bercu et al.[8], Huang&Mao[13], Liu et al.[17], Mao[18] and Mao et
al.[20]).

In the above stabilization problems, it is well known that an unstable deterministic dynamical
system can be stabilized when it is perturbed by noise. There have been a number of studies of
the topic using different types of noise and the following paper list is far from exhaustive (see, e.g.,

∗This work was partially supported by PNSF of Anhui (1208085QG131,KJ2013Z008), SRFDP of China
(20133219110040), NNSF of China (11301001), HSSF for the Ministry of Education(10YJC630143), EYSF of Anhui
Province of China (2013SQRL030ZD).

†Corresponding author, E-mail address: mathliudz@163.com (D.Liu).
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Arnold&Crauel[4], Bellman et al.[7], Khasminski[14] and Mao[19]), in these sources of noise, the
mutli-dimensional Brownian motion has be recognized as the general theory of stochastic stabi-
lization by Mao[19]. Furthermore,the Lévy process as the source of noise has been employed to
stabilize the unstable dynamical system, which is the more general theory and builds extensively on
Mao’s results in the Brownian motion case, and less studies seem to be timely as there has recently
been extensive activity from the point of view of both theoretical development and applications of
Lévy processes (see, e.g., Applebaum&Siakalli[2], Bao and Yuan[5]).

On the other hand, time delays are frequently encountered in a variety of dynamic systems,
such as nuclear reactors, chemical engineering systems, biological systems, and population dynam-
ics models (see, e.g., Bao and Yuan[6], Hu et al.[11], Huang&Mao[13], Yang et al.[27]). They are
often a class of source of instability and poor performance of systems. So the problems of stabi-
lization synthesis of differential equations with time-varying delay have become more important
and interesting, the exist efforts can be classified into two aspects, the moment sense criteria (see,
e.g., Liu et al.[16], Mao et al.[21], Zohrabi et al.[30]) and the almost sure sense criteria (see, e.g.,
Huang&Mao[13], Yang et al.[27] and Yuan&Mao[28]).

However, to the authors’ best knowledge, when the stabilization of differential equations with
time-varying delays are considered, the almost surely asymptotically stable analysis of differential
equations with time-varying delay by Lévy noise have not been adequately addressed and remain
to be an interesting and challenging research topic, which are dealt with in this paper, and the
purpose of stabilization is to develop conditions such that the underlying systems are almost surely
asymptotically stable. Following the same idea as in dealing with the stabilization problem, linear
state feedback controllers are designed such that the nonlinear closed-loop systems are almost surely
asymptotically stable. In order to design easily in practice, the explicit expressions for the desired
state feedback controllers are given with LMIs. Therefore, the main contribution of this paper are
mainly twofold: (1)The source of noise for almost sure asymptotic stabilization is Lévy process;
(2)The explicit expressions for the desired state feedback controllers are clear with LMIs, which is
easy to be designed.

The rest of the paper is organized as follows. In section 2, we present some basic preliminaries
and the form of differential equations with time-varying delay and Lévy process. In section 3,
the useful lemma of global solution analysis and the definition are presented, and the sufficient
conditions for stabilization of differential equations with time-varying delay by Lévy noise have
been given, a simple example is also presented. In section 4, the desired state feedback controllers
are designed with LMIs under the useful lemma. In section 5, the related discussion on the main
results have been presented.

2 Preliminaries

Let {Ω,F , {Ft}t≥0,P} be a complete probability space with a filtration satisfying the usual
conditions, i.e., the filtration is continuous on the right and F0 contains all P-zero sets. Let
D([−τ, 0];Rn) denote the family of functions φ from [−τ, 0] to Rn that are right-continuous and have
limits on the left. D([−τ, 0];Rn) is equipped with the norm ∥φ∥ = sup

−τ≤s≤0
|φ(s)| and |x| =

√
xTx

for any x ∈ Rn. If A is a vector or matrix, its trace norm is denoted by |A| =
√

trace(ATA) , while
its operator norm is denoted by ∥A∥ = sup{|Ax| : |x| = 1}.Denote by Db

F0
([−τ, 0];Rn) the family

of all bounded, F0measurable, D([−τ, 0];Rn)-valued random variables. We denote by L1(R+;R+)
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the family of all functions λ(t) such that
∫∞
0 λ(t)dt < ∞, and denote by K(R+;R+) the family of

all functions γ(x), if it is continuous, strictly increasing and γ(0) = 0. It is said to belong to the
family K∞, if γ ∈ K and γ(x) → ∞ as x → ∞.

Let us begin with the discussion the stabilization of the differential equation with time-varying
delay by the Lévy process

ẋ(t) = f(t, x(t), x(t− τ(t))) (2.1)

where τ and dτ are positive constants and τ(t) is nonnegative differential function which denotes
the time-varying delay and satisfies

0 ≤ τ(t) ≤ τ, τ̇(t) ≤ dτ < 1.

Consider the following stabilized differential equations with time-varying by Lévy process

dx(t) = f(t, x(t−), x(t− − τ(t−)))dt+ u(x(t−))dY (t) (2.2)

with initial value x0 = {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ Db
F0
([−τ, 0];Rn), where (Y (t), t ≥ 0) is a Lévy

process taking values in Rm, u(x(t)) is the feedback control, and we consider the feedback control
is linear and the form is as follows,

u(x(t)) = (K1x(t),K2x(t), ...,Kmx(t)),

where (Ki, i = 1, 2, ..,m) are controller parameters to be designed, then the system (2.2) becomes

dx(t) = f(t, x(t−), x(t− − τ(t−)))dt+

m∑
i=1

Kix(t
−)dYi(t). (2.3)

In order to give the Lévy-Itô decomposition of (Y (t), t ≥ 0), we present the following assumption
I, which holds in the rest paper:
Assumption I ∫

Rm\{0}
(|y|2 ∧ 1)π(dy) < ∞.

So the Lévy process (Y (t), t ≥ 0) has the following decomposition

Yi(t) = bit+BA
i (t) +

∫
|y|<1

yiÑ(t, dy) +

∫
|y|≥1

yiN(t, dy) (2.4)

whereBA(t) is an m-dimensional Brownian motion with covariance matrix A,andBA
i (t) =

∑p
j=1 σijBj(t),

B1, B2, .., Bp are standard Brownian motion, and σA = (σij)m×p is a real-valued matrix for which
σAσ

T
A = A, N is an independent Ft-adapted Poisson random measure defined on R+ × Rm\{0}

with compensator Ñ of the form Ñ(dt, dy) = N(dt, dy) − π(dy)dt, where π is a Lévy measure.
Note that if for some p ≥ 1, E|Y (t)|p < ∞ for all t ≥ 0, then

∫
|y|≥1 |y|

pπ(dy) < ∞ and hence Lévy

process (Y (t), t ≥ 0) admits the following decomposition

Yi(t) = b̃it+BA
i (t) +

∫
Rm\{0}

yiÑ(t, dy). (2.5)
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Therefore, (2.3) can be rewritten as

dx(t) =

(
f(t, x(t−), x(t− − τ(t−))) +

m∑
i=1

Kix(t
−)b̃i

)
dt+

p∑
j=1

K∗
j x(t

−)dBj(t)

+
m∑
i=1

∫
Rm\{0}

Kix(t
−)yiÑ(dt, dy)

(2.6)

where K∗
j =

∑m
i=1Kiσij and f : R+ ×Rn ×Rn → Rn satisfies the local Lipschitz condition:

Assumption II Local Lipschitz condition For any k = 0, 1, 2, ..., there exists Lk > 0, such that

|f(t, x1, x2)− f(t, x̄1, x̄2)| ≤ Lk(|x1 − x̄1|+ |x2 − x̄2|)

where t ∈ R+, x1, x2, x̄1, x̄2 ∈ Rn, and |x1| ∨ |x2| ∨ |x̄1| ∨ |x̄2| ≤ k, which guarantee the uniqueness
and existence of the local solution for system (2.6). We also assume that f(t, 0, 0) = 0, then the
system (2.6) has a trivial solution x(t) ≡ 0 for all t ≥ 0 with initial condition x0 = ξ = 0, the nosie
perturbation preserves the equilibrium of the system (2.6).

Furthermore, we will give the sufficient conditions, which guarantee the system (2.6) has a
global solution under the Assumption III in the next section.
Assumption III Assume that V ∈ C1,2(R+ × Rn;R+), λ1 ∈ L1(R+;R+), and µ1, µ2 : Rn → R+

are continuous and nonnegative, for any (t, x, x̄) ∈ R+ ×Rn ×Rn,

LV (t, x, x̄) ≤ λ1(t)− µ1(x) + µ2(x̄), µ1(0) = µ2(0) = 0, µ(x) = µ1(x)− µ2(x) > 0,∀x ̸= 0, (2.7)

where L is the differential operator, which is associated with equation (2.6) and acts on the V
function, then

LV (t, x, x̄)

=Vt(t, x) + Vx(t, x)

[
f(t, x, x̄) +

m∑
i=1

Kixb̃i

]
+

1

2

p∑
j=1

[
(K∗

j x)
TVxx(t, x)(K

∗
j x)
]

+
m∑
i=1

∫
Rm\{0}

[V (t, x+Kixyi)− V (t, x)− Vx(t, x)Kixyi]π(dy)

where

Vt(t, x) =
∂V (t, x)

∂t
, Vx(t, x) =

(
∂V (t, x)

∂x1
, ...,

∂V (t, x)

∂xn

)
Vxx(t, x) =

(
∂2V (t, x)

∂xi∂xj

)
n×n

.
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3 Global solution analysis and almost sure asymptotic stabiliza-
tion by Lévy noise

In this section, at first, we consider the global topic of the solution to system (2.6), by virtue
of the local Lipschitz condition, we know that there exists a unique adapted process x such that

x(t ∧ ρk) = ξ +

∫ t∧ρk

0

(
f(s, x(s−), x(s− − τ(s−))) +

m∑
i=1

Kix(s
−)b̃i

)
ds

+

p∑
j=1

∫ t∧ρk

0
K∗

j x(s
−)dBj(s) +

m∑
i=1

∫ t∧ρk

0

∫
Rm\{0}

Kix(s
−)yiÑ(ds, dy), t ≥ 0, a.s.

where ρk = inf{t > 0 : |x(t; ξ)| ≥ k, ξ ̸= 0}, and set inf ∅ = ∞ as usual. If the explosion time ρe
satisfies ρe = ∞ a.s., then the system (2.6) has a global solution, where ρe defined as follow,

ρe = lim
k→∞

ρk = inf{t > 0 : |x(t; ξ)| /∈ [0,∞)},

with local solution theory, let us present the following lemma for global solution and the definition
of the almost sure asymptotic stability for the system (2.6).

Lemma 3.1. Under the Assumption II and III, and V (t, x) is decrescent radially unbounded, i.e.

lim
|x|→∞

inf
0≤t<∞

V (t, x) = ∞. (3.1)

Then for any initial value {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ Db
F0
([−τ, 0];Rn), the system (2.6) has a

unique global solution.

Proof. Using the Itô formula for the system (2.6), we obtain, for any t ≥ 0

V (t, x(t)) =V (0, ξ) +

∫ t

0
LV (s, x(s−), x(s− − τ(s−)))ds+

p∑
j=1

∫ t

0
Vx(s, x(s

−))K∗
j x(s

−)dBj(s)

+

m∑
i=1

∫ t

0

∫
Rm\{0}

[
V (s, x(s−) +Kix(s

−)yi)− V (s, x(s−))
]
Ñ(ds, dy).

Due to the optional sampling theorem and (2.7), we get

EV (t ∧ ρk, x(t ∧ ρk))

= V (0, ξ) + E

∫ t∧ρk

0
LV (s, x(s−), x(s− − τ(s−)))ds

≤ V (0, ξ) +

∫ t

0
λ1(s)ds+ E

∫ t∧ρk

0

[
µ2(x(s

− − τ(s−)))− µ1(x(s
−))
]
ds

≤ V (0, ξ) +

∫ t

0
λ1(s)ds+ E

∫ 0

−τ
µ2(x(θ))dθ + E

∫ t∧ρk

0

[
µ2(x(s

−)− µ1(x(s
−))
]
ds

≤ V (0, ξ) +

∫ t

0
λ1(s)ds+ E

∫ 0

−τ
µ2(x(θ))dθ
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Moreover, we have

P (ρk ≤ t) ≤
V (0, ξ) +

∫ t
0 λ1(s)ds+ E

∫ 0
−τ µ2(x(θ))dθ

inf
|x|≥k,t≥0

V (t, x(t))

It’s clear that P (ρe ≤ t) = 0 with letting k → ∞ and (3.1), due to the arbitrary of t, so we obtain
ρe = ∞, a.s..

Definition 3.1. The system (2.6) is said to be almost surely asymptotically stable if for any x0 =
ξ ∈ Rn, lim

t→∞
x(t, ξ) = 0, a.s..

In the rest of this section, the main results have been presented, let us give the following
theorem,

Theorem 3.1. Let Assumption II and III hold, and moreover, suppose that the function V ∈
C1,2(R+ ×Rn;R+) in assumption III satisfies, for all x ∈ Rn, t ≥ 0,

α1(t, |x|) ≤ V (t, x) ≤ α2(t, |x|). (3.2)

where α1(t, x), α2(t, x) belong to K∞ with respect to x. Then for any initial data ξ, the global
solution x(t; ξ) of system (2.6) is almost surely asymptotically stable, i.e.

lim
t→∞

x(t; ξ) = 0, a.s..

Proof. Due to the conditions of Lemma 3.1 hold, for any ξ ∈ Rn, the system (2.6) admits a global
solution x(t, ξ), for the simplicity, we will write the x(t) instead of x(t, ξ). It is clear that this
theorem holds because of the solution x(t) ≡ 0 a.s. for ξ = 0. So for ξ ̸= 0, we have the following
proof. Due of the complexity of proof, so we divide the proof into three steps as follows.

Step 1: In this step, we will show that the system (2.6) is stable in probability and the sample
space is divided, applying the Itô formula to V (t, x), and then using the Assumption III, for any
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t > 0, we have

V (t, x(t)) =V (0, ξ) +

∫ t

0
LV (s, x(s−), x(s− − τ(s−)))ds+

p∑
j=1

∫ t

0
Vx(s, x(s

−))K∗
j x(s

−)dBj(s)

+

m∑
i=1

∫ t

0

∫
Rm\{0}

[
V (s, x(s−) +Kix(s

−)yi)− V (s, x(s−))
]
Ñ(ds, dy)

≤V (0, ξ) +

∫ t

0
λ(s)ds+

∫ t

0
(µ2(x(s

− − τ(s−)))− µ1(x(s
−)))ds

+

p∑
j=1

∫ t

0
Vx(s, x(s

−))K∗
j x(s

−)dBj(s)

+

m∑
i=1

∫ t

0

∫
Rm\{0}

[
V (s, x(s−) +Kix(s

−)yi)− V (s, x(s−))
]
Ñ(ds, dy)

≤V (0, ξ) +

∫ t

0
λ(s)ds+

∫ 0

−τ
µ2(x(θ))dθ +

p∑
j=1

∫ t

0
Vx(s, x(s

−))K∗
j x(s

−)dBj(s)

+
m∑
i=1

∫ t

0

∫
Rm\{0}

[
V (s, x(s−) +Kix(s

−)yi)− V (s, x(s−))
]
Ñ(ds, dy)

.
=Vt(ξ) +M(t)

where Vt(ξ) = V (0, ξ)+
∫ t
0 λ(s)ds+

∫ 0
−τ µ2(x(θ))dθ is bounded, because of ξ ∈ Db

F0
([−τ, 0];Rn) and∫∞

0 λ(t)dt < ∞, M(t) represents the rest part of above the equation, which yields that V (t, x(t)), t ≥
0 is a supermartingale with respect to the filtration {Ft}t≥0 generated by B(·) and Ñ(·, ·). Using the
supermartingale inequality (Rogers&Williams[22],p154,(54.5)), for any function δ(·) ∈ K∞, yield

P{ sup
0≤s≤t

V (s, x(s)) ≥ δ(Vt(ξ))} ≤ 21Vt(ξ)

δ(Vt(ξ))
, t ≥ 0,

in other word,

P{ sup
0≤s≤t

V (s, x(s)) < δ(Vt(ξ))} ≥ 1− 21Vt(ξ)

δ(Vt(ξ))
, t ≥ 0. (3.3)

Note that sup0≤s≤t V (s, x(s)) < δ(Vt(ξ)) implies sup0≤s≤t |x| < υt(Vt(ξ)), where υt = α−1
1 ◦ δ, and

α−1
1 is the inverse function of α1 with respect to x. For (3.3) and given ϵ > 0, we can obtain the

21Vt(ξ)
δ(Vt(ξ))

≤ ϵ with choosing appropriate δ(·), then for t > 0,

P{ sup
0≤s≤t

|x(s)| < υt(Vt(ξ))} ≥ 1− ϵ, t ≥ 0. (3.4)

This yields
P{|x(s)| < υt(Vt(ξ))} ≥ 1− ϵ, t ≥ 0. (3.5)

Let us decompose the sample space

Ω1 = {ω : lim sup
t→∞

µ(x(t, ω)) = 0}

Ω2 = {ω : lim inf
t→∞

µ(x(t, ω)) > 0}
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Ω3 = {ω : lim inf
t→∞

µ(x(t, ω)) = 0 and lim sup
t→∞

µ(x(t, ω)) > 0},

in order to obtain the results, we will show that P (Ω2) = P (Ω3) = 0, which imply that P (Ω1) = 1.

Step 2: In this step, we will show that P (Ω2) = 0, using the Itô formula and Assumption III,
we have

EV (t, x(t)) =V (0, ξ) + E{
∫ t

0
LV (s, x(s−), x(s− − τ(s−)))ds}

≤Vt(ξ)− E{
∫ t

0
µ(x(s))ds}

(3.6)

Since V (t, x) ≥ 0, this yields E{
∫ t
0 µ(x(s))ds} ≤ Vt(ξ), letting t → ∞, and using the fatou’s lemma,

then E{
∫∞
0 µ(x(s))ds} ≤ CVt , where CVt is the upper bounded of Vt(ξ), and due to the nonnegative

function µ, hence
∫∞
0 µ(x(s))ds ≤ CVt , which implies that P (Ω2) = 0.

Step 3: In this step, we will show that P (Ω3) = 0, and proceed by contradiction, if it is not
true, then there exist ϵ0 > 0 and ϵ1 > 0, such that

P{µ(x(·)) cross from below ϵ1 to above 2ϵ1 and back infinitely many times} ≥ ϵ0. (3.7)

Now recalling the definition of ρk and the boundedness of the initial data, combining the Assumption
II, there exists a constant Ck > 0 such that supt≥0 |f(t ∧ ρk, x(t ∧ ρk), x(t ∧ ρk − τ(t ∧ ρk)))| ≤ Ck.
Computing

E{ sup
0≤s≤t

|x(t ∧ ρk)− ξ|2}

=E{ sup
0≤s≤t

|
∫ s∧ρk

0

(
f(h, x(h−), x(h− − τ(h−))) +

m∑
i=1

Kix(h
−)b̃i

)
dh

+

p∑
j=1

∫ s∧ρk

0
K∗

j x(h
−)dBj(h) +

m∑
i=1

∫ s∧ρk

0

∫
Rm\{0}

Kix(h
−)yiÑ(dh, dy)|2}

≤3E{ sup
0≤s≤t

|
∫ s∧ρk

0

(
f(h, x(h−), x(h− − τ(h−))) +

m∑
i=1

Kix(h
−)b̃i

)
dh|2}

+ 3E{ sup
0≤s≤t

|
p∑

j=1

∫ s∧ρk

0
K∗

j x(h
−)dBj(h)|2}

+ 3E{ sup
0≤s≤t

|
m∑
i=1

∫ s∧ρk

0

∫
Rm\{0}

Kix(h
−)yiÑ(dh, dy)|2}

≤3C2
k,Ki,b̃i

t2 + 3E{ sup
0≤s≤t

|
p∑

j=1

∫ s∧ρk

0
K∗

j x(h
−)dBj(h)|2}

+ 3E{ sup
0≤s≤t

|
m∑
i=1

∫ s∧ρk

0

∫
Rm\{0}

Kix(h
−)yiÑ(dh, dy)|2}

(3.8)

Combining the Burkholder’s inequality (Applebaum[1],Chap 4,Theorem 4.4.21) and (Applebaum[1],Chap
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4,Theorem 4.4.22), Doob’s martingale inquality, we obtain

E{ sup
0≤s≤t

|
p∑

j=1

∫ s∧ρk

0
K∗

j x(h
−)dBj(h)|2}

≤4E{
p∑

j=1

∫ t∧ρk

0
|K∗

j x(h
−)|2dh}

≤4C2
k,K∗

j
t

(3.9)

Applying the Kunitas first inequality inequality (Applebaum[1],Chap 4,Theorem 4.4.23), we get

E{ sup
0≤s≤t

|
m∑
i=1

∫ s∧ρk

0

∫
Rm\{0}

Kix(h
−)yiÑ(dh, dy)|2}

≤CE{
m∑
i=1

∫ t∧ρk

0

∫
Rm\{0}

|Kix(h
−)yi|2π(dy)dh}

≤C2
k,Ki

t

(3.10)

Substituting (3.9) and (3.10) into (3.8), this yields

E{ sup
0≤s≤t

|x(s ∧ ρk)− ξ|2} ≤ 3C2
k,Ki,b̃i

t2 + 12C2
k,K∗

j
t+ 3C2

k,Ki
t (3.11)

and by the chebyshev’s inequality, for any ϑ > 0,

P{ sup
0≤s≤t

|x(s ∧ ρk)− ξ| > ϑ}

≤
E{ sup

0≤s≤t
|x(s ∧ ρk)− ξ|2}

ϑ2

≤
3C2

k,Ki,b̃i
t2 + 12C2

k,K∗
j
t+ 3C2

k,Ki
t

ϑ2

(3.12)

Since µ(·) is continuous, it must be uniformly continuous in the closed ball O := {x ∈ Rn : |x| ≤
υt(k)}, where υt = α−1

1 ◦ δ. For given u > 0, a function γ ∈ K have been chosen, which such that
for any x, y ∈ O, |x− y| ≤ γ(u), implies |µ(x)− µ(y)| ≤ u. Then, for |ξ| ≤ k and ϵ2 > 0,

P{ sup
0≤s≤t

|µ(x(s))− µ(ξ)| > ϵ2}

≤P{ sup
0≤s≤t

|x(s)− ξ| > γ(ϵ2) and sup
0≤s≤t

|x(s)| < υt(k)}+ P{ sup
0≤s≤t

|x(s)| ≥ υt(k)}

≤P{ sup
0≤s≤t

|x(s ∧ ρv(t,k))− ξ| > γ(ϵ2)}+ P{ sup
0≤s≤t

|x(s)| ≥ υt(k)}

≤
3C2

k,Ki,b̃i
t2 + 12C2

k,K∗
j
t+ 3C2

k,Ki
t

γ(ϵ2)2
+ ϵ

(3.13)

Setting ϵ = 1
2 , for any ϵ2 > 0, there exists t∗ = t∗(k, ϵ2) such that

P{ sup
0≤s≤t

|µ(x(s))− µ(ξ)| ≤ ϵ2} ≥ 1

4
, ∀t ∈ (0, t∗]. (3.14)
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Step 3: Let us define a sequence of stopping times,

T1 := inf{t ≥ 0 : µ(x(t)) < ϵ1},

T2n := inf{t ≥ T2n−1 : µ(x(t)) > 2ϵ1}, n = 1, 2, ...,

T2n+1 := inf{t ≥ T2n : µ(x(t)) < ϵ1}, n = 1, 2, ...,

and we set inf ∅ = ∞. By (3.6), it is easy to get

∞ >E

∫ ∞

0
µ(x(s))ds

≥
∞∑
n=1

E[I{T2n < ρk}
∫ T2n+1

T2n
µ(x(s))ds]

≥ϵ1

∞∑
n=1

E[I{T2n < ρk}(T2n+1 − T2n)]

=ϵ1

∞∑
n=1

E[I{T2n < ρk}E(T2n+1 − T2n|FT2n)]

(3.15)

By the strong Markov property of solution x(t) that on {T2n < ρk}, and setting ϵ1 = 2ϵ2, we obtain

E(T2n+1 − T2n|FT2n)

≥E[(T2n+1 − T2n)I{ sup
0≤s≤t∗

|µ(x̃(s))− µ(ξ̃)| ≤ ϵ1
2
}|FT2n ]

≥t∗P{ sup
0≤s≤t∗

|µ(x̃(s))− µ(ξ̃)| ≤ ϵ1
2
|FT2n}

≥ t∗

4

(3.16)

where t∗ = t∗(k, ϵ1/2) and x̃ = x(·+ T2n), we substitute (3.16) into (3.15), and have

t∗ϵ1
4

∞∑
n=1

P{T2n < ρk} < ∞,

applying the Borel-Cantelli lemma, this yields

P{T2n < ρk for infinitely many n} = 0.

Since

{T2n < ρk for infinitely many n} ={T2n < ρk for infinitely many n and ρk = ∞}∪
{T2n < ρk for infinitely many n and ρk < ∞},

(3.17)

then
P{T2n < ∞ for infinitely many n and ρk = ∞} = 0. (3.18)

By the (3.2), for any k > 0,

P{ρk = ∞} ≥P{sup
t≥0

|x(t)| < k} ≥ P{sup
t≥0

|V (t, (x(t))| < α1(t, k)}

≥1− V (0, ξ)

α1(t, k)

(3.19)
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and then letting k → ∞, we obtain P{ρk = ∞} → 1, combining with (3.18), this yields

P{T2n < ∞ for infinitely many n} = 0, (3.20)

which is the contradiction with (3.7), hence P (Ω3) = 0, we can implies that lim
t→∞

µ(x(t)) = 0 a.s.,

together with the property of the function µ(0) = 0, yields lim
t→∞

x(t) = 0 a.s., the proof is completed.

Before the end of this section, we present the following example, which is one-dimension case
and illustrates Theorem 3.1.

Example 3.1. Consider the scalar stochastic differential equations with jumps in the form

dx(t) = [Kb̃− x2(t−)]x(t−)dt+ σKx(t−)dB(t) +

∫ ∞

0
Kx(t−)yÑ(dt, dy), t > 0

x(0) = x0,

(3.21)

where K, b̃, σ ∈ R are constants, B(t) is a scalar standard Brownian motion, and Ñ(·, ·) is a
compensated Poisson random measure.

Let V (t, x) = x2 for any x ∈ R, we obtain

LV (t, x) ≤ (2Kb̃+ σ2K2 + 2K2

∫ 1

0
y2π(dy) + 2K

∫ ∞

1
yπ(dy))x2,

then, by Theorem 3.1, the solution of system (3.21) is almost surely asymptotically stable with choos-

ing the appropriate constant K in the open interval
(
−(b̃+

∫∞
1 yπ(dy))/(σ2/2 +

∫ 1
0 y2π(dy)), 0

)
as

the feedback control part, such that

2Kb̃+ σ2K2 + 2K2

∫ 1

0
y2π(dy) + 2K

∫ ∞

1
yπ(dy) < 0.

4 LMIs approach analysis

Now, let us discuss the design of controller u(x(t)) = (K1x(t),K2x(t), ...,Kmx(t)), the follow-
ing theorem describes a method to find the matrix Ki by solving a set of linear matrix inequal-
ities(LMIs). In order to obtain the following theorem, we present the necessary assumption and
lemma.
Assumption IVAssume that

|f(t, x, x̄)|2 ≤ xTF1x+ x̄F2x̄,

where F1, F2 ∈ Rn×n are positive definite matrices.

Applying the Assumption I, for any positive definite matrix P = P T > 0, we have

m∑
i=1

∫
Rm\{0}

[
(Kixyi)

TP (Kixyi) + (Kixyi)
TPx− xTPKixyi

]
π(dy)

≤ Cr

m∑
i=1

[(Kix)
TP (Kix) + (Kix)

TPx− xTPKix],

where Cr is constant, which depend on the Assumption I.
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Lemma 4.1. (Xu[26])For any constant matrix M ∈ Rn×m, inequality

2uTMv ≤ εuTMGMTu+
1

ε
vTG−1v, u ∈ Rn, v ∈ Rm

holds for any pair of symmetric positive definite matrix G ∈ Rm×m and number ε > 0.

Theorem 4.1. Let Assumption IV holds, and if there exist the constants ε > 0, δ > 0, and positive
definite matrix P = P T > 0, matrices Yi(i = 1, 2, ...,m),such that the following LMIs

Ξ =


Φ1 Φ2 Φ4 Φ6

∗ −Φ3 0 0
∗ ∗ −Φ5 0
∗ ∗ ∗ −Φ7

 < 0 (4.1)

hold, where

Φ1 = εI +

m∑
i=1

b̃iYi +

m∑
i=1

b̃iY
T
i −

m∑
i=1

CrYi +

m∑
i=1

CrY
T
i ,

Φ2 = diag(εF−1
1 , (1− dτ )εF

−1
2 ),

Φ3 = (X,X),

Φ4 =

√√√√ p∑
j=1

σ2
1jY1,

√√√√ p∑
j=1

σ2
2jY2, ...,

√√√√ p∑
j=1

σ2
mjYm

 ,

Φ5 = diag

(
(δ(m− 1) + 1)X,

(
δ(m− 2) +

1

δ
+ 1

)
X, ...,

(
m− 1

δ
+ 1

)
X

)
,

Φ6 = (Y1, Y2, ..., Ym),

Φ7 = diag(
1

Cr
X,

1

Cr
X, ...,

1

Cr
X).

Then the controlled system (2.6) is almost surely asymptotically stable, and the feedback controller
is designed as follows,

u(x(t)) = (K1x(t),K2x(t), ...,Kmx(t)),Ki = YiX
−1, i = 1, 2, ...,m. (4.2)

Proof. Let P = X−1 and V (x) = xT (t)Px(t) +
∫ t
t−τ(t) x

T (s)Qx(s)ds, using the Assumption IV
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and lemma 4.1, we obtain

LV (t, x, x̄) =xTQx− (1− ˙τ(t))x̄TQx̄+ 2xTP

[
f(t, x, x̄) +

m∑
i=1

Kixb̃i

]
+

p∑
j=1

[
(K∗

j x)
TP (K∗

j x)
]

+

m∑
i=1

∫
Rm\{0}

[
(x+Kixyi)

TP (x+Kixyi)− xTPx− 2xTPKixyi
]
π(dy)

≤xT {Q+ εP 2 +
1

ε
F1 +

m∑
i=1

PKib̃i +

m∑
i=1

(Kib̃i)
TP

+

m∑
i=1

(δ(m− i) +
i− 1

δ
+ 1

)
(

p∑
j=1

σ2
ij)K

T
i PKi

+ Cr[

m∑
i=1

KT
i PKi]

− Cr

m∑
i=1

PKi + Cr

m∑
i=1

KT
i P}x+ x̄T [

1

ε
F2 − (1− dτ )Q]x̄

.
=− xTΘ1x+ (1− dτ )x̄

TΘ2x̄,

(4.3)

where

Θ1 = −Q− εP 2 − 1

ε
F1 −

m∑
i=1

PKib̃i −
m∑
i=1

(Kib̃i)
TP −

m∑
i=1

(δ(m− i) +
i− 1

δ
+ 1

)
(

p∑
j=1

σ2
ij)K

T
i PKi


− Cr[

m∑
i=1

KT
i PKi] + CrPKi − CrK

T
i P,

Θ2 =
1

ε(1− dτ )
F2 −Q.

Viewing that P = X−1 and Ki = YiX
−1, we pre-multiply and post-multiply (4.1) by the matrix

diag(P, P, ..., P ), then we can have the following inequality with using Schur complements lemma,

εP 2 +
1

ε
F1 +

m∑
i=1

PKib̃i +

m∑
i=1

(Kib̃i)
TP +

m∑
i=1

(δ(m− i) +
i− 1

δ
+ 1

)
(

p∑
j=1

σ2
ij)K

T
i PKi


+ Cr[

m∑
i=1

KT
i PKi]− CrPKi + CrK

T
i P +

1

ε(1− dτ )
F2 < 0

yield −Θ1 + Θ2 < 0, which implies Θ1 > Θ2, and let µ1(x) = xTΘ1x, µ2(x) = (1 − dτ )x
TΘ2x,

the conditions of Theorem 3.1 have been satisfied, so the controlled system (2.6) is almost surely
asymptotically stable, and the proof is completed.

5 Discussion of main resuts

The Lévy process is employed to stabilize the system, which generalize the Brownian motion
as the noise. In the main results of this paper, we employ more stopping time theory to obtain the
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almost sure asymptotic sense stabilization with usual conditions of stability, comparing with some
references, almost sure asymptotic sense is more general and more stochastic techniques appear in
the rigorous proof. Meanwhile, the delay mode-dependent case and functional equation case can
be studied with the similar technique. The diffusion part of system (2.2) is a bit simple, in the
subsequent research, we will present the complex design, which proposes the new challenge after
Lévy-Itô decomposition of Lévy process, especially the design of the cotroller with LMIs approach.
On the other hand, as the opposite aspect, destabilization arises our interest, the more important
application is the biological systems, the animals population always change from the stable status
to unstable one, then go to another stable one, which is variation for adapting to the environment,
so the unstable status is also important, which will be also in the subsequent research.
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