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On the LQG theory with bounded control

D.V. Iourtchenko, J.L. Menaldi and A.S. Bratus

Abstract. We consider a stochastic optimal control problem in the whole
space, where the corresponding HJB equation is degenerate, with a quadratic
running cost and coefficients with linear growth. In this paper we provide a
full mathematical details on the key estimate relating the asymptotic behavior
of the solution as the space variable goes to infinite.

Mathematics Subject Classification (2000). Primary 93E20; Secondary 49J15.

Keywords. Optimal control,Stochastic control, Hamilton-Jacobi-Bellman equa-
tion, asymptotic behavior.

In the previous papers [2] a problem of stochastic optimal control of a dy-
namic system was considered. Such problems arise in different fields of engineering,
namely mechanical, electrical, thermal and others. An equation of motion of this
type of systems usually is governed by a stochastic differential equation (SDE) of
second or higher order. Written in a state-space form this SDE is transformed into
a set of first order SDEs, with noise entering only some of them. As a result the
covariance matrix will be degenerate, which may serve as a characteristic feature
of this type of systems.

The dynamic programming approach (DPA) may be used to study the prob-
lem of optimal control [4, 5]. It converts the problem of finding an optimal control
policy to a problem of finding a solution to degenerate, multidimensional para-
bolic PDE - Hamilton-Jacobi-Bellman (HJB) equation. The major difficulty here
is that the stated Cauchy problem for the HJB equation should be solved in the
entire state-space, whereas it cannot be solved numerically, since the asymptotic
behavior of the Bellman function is unknown. There is also no general approach
to find an . analytical solution to the nonlinear, multidimensional, degenerate par-
abolic equation. To overcome this complication the hybrid solution method has
been proposed. This method suggests finding an analytical function, which satis-
fies the HJB equation and the initial conditions within a certain “outer” domain.
This function can be used as a boundary condition for numerical simulation of the
corresponding HJB equation, thereby solving the HJB equation within the entire
state-space domain. On the other hand, because no boundary conditions are used
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on the “outer” domain, this degenerated parabolic PDE cannot have a unique so-
lution. However, if we prove that the constructed function provides an asymptotic
behavior of the Bellman function, then it can be used as a boundary condition for
numerical simulation of the HJB equation. This approach with tedious proof has
been given in [2]. In this paper we propose a much shorter proof, which can easily
be extended to a dynamic system with multiple-degrees-of-freedom, to dynamic
systems under Poisson noise, nonautonomous systems and even deterministic sys-
tem.

1. Problem statement

Consider a dynamical system governed by the following set of SDE:



ẋ1(s) = x2(s)

ẋ2(s) = −2αx2(s)− β2x1(s) + v(s) + σḂ(s), t < s ≤ T,

x(t) = x0, ẋ(t) = ẋ0

(1.1)

Here α, β, σ are positive constants, B = B(s) is a Wiener process, derivative
of which should be understood formally and the control v = v(s) is an adapted
random process satisfying |v(s)| ≤ R, for a fixed constant R > 0. The control goal
is to minimize the quadratic cost function:

Jx1,x2,t(v) = E





a

2
[β2x2

1(T ) + x2
2(T )] +

T∫

t

b

2
[β2x2

1(s) + x2
2(s)]ds



 (1.2)

where T is given constant. A special case of a = 1/2 or b = 1/2 corresponds to the
minimization of the mean total system response energy. Following the dynamic
programming approach to solve the problem (1.1),(1.2) we introduce the Bellman
function

u(x1, x2, t) = inf {Jx1,x2,t(v) : |v(·)| ≤ R} , (1.3)
which satisfies the following Hamilton-Jacobi-Bellman equation

∂u

∂t
+ Lu + inf

|v|≤R

{
v

∂u

∂x2

}
+ F = 0,

F (x1, x2) = b/2(β2x2
1 + x2

2),

Lu = x2
∂u

∂x1
− (2αx2 + β2x1)

∂u

∂x2
+

σ2

2
∂2u

∂x2
2

.

(1.4)

Equation (1.4) is degenerate parabolic equation, to be solved in the entire state-
space with the terminal condition

u(x1, x2, T ) =
a

2
(β2x2

1 + x2
2). (1.5)

Note that inf |v|≤R

{
v ∂u

∂x2

}
= −R

∣∣ ∂u
∂x2

∣∣.
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2. Construction of a “solution” and the first order estimate

It is possible to construct a function, which would satisfy HJB equation (1.4) and
initial condition (1.5) within a certain “outer” domain. Since this function does not
satisfies the HJB equation in the entire state-space, we cannot call it the solution.
To express the following arguments as clear as possible consider, for the time being,
the case of α = 0 (more general case can be treated with minor modifications).

To construct the solution within the “outer” domain assume the existence of
a domain Γ(x1, x2, t), which does not contain a switching line (∂u/∂x2 = 0) for
any x1, x2 and t > 0, see [2] for details. Thus, within this domain z = sign(∂u/∂x2)
is a constant. Then looking for a solution in the form fij(t)xixj (x0 = 1) results
in a set of ODEs for fij(t) with appropriate initial conditions. Solving analytically
these ODEs one derives the “solution” to HJB equation (1.4) (with b = 0 for
simplicity) as

ũ(x1, x2, τ) =
a

2

([
x2 − Rz

β
sin(β[T − t])

]2

+

+
[
βx1 +

Rz

β
(1− cos(β[T − t]))

]2)
+

σ2(T − t)
2

a.

(2.1)

Note that the last term in the equation comes from integrating the noise intensity
with respect to time, so if σ = σ(τ) then the last term would be 1/2

∫ τ

0
σ2(s)ds.

This function ũ satisfies the HJB equation (1.4) and initial conditions (1.5) within
the following “outer” domain

|x2| ≥ R

β
| sin β(T − t)|. (2.2)

A substitution shows that ũ defined by (2.1) satisfies the HJB equation (1.4) within
the “outer” domain given by the condition (2.2). Once the analytical “solution”
is known, it can be used as a boundary condition to solve the HJB equation
numerically within the remaining “inner” domain, thereby finding a solution to
the corresponding HJB equation in the entire state-space. It is worth mentioning
that, since the system (1.1) does not depend on time explicitly, a “solution” for
the case of b 6= 0, can be obtained by integrating (2.1) with respect to explicit
time τ .

In order to derive the first approximation, let’s consider the quadratic part
of the function (2.1) and its integral only (a ≥ 0, b ≥ 0 are constants)

Ψ(x1, x2, t) =
1
2
(β2x2

1 + x2
2)[a + b(T − t)], (2.3)

which satisfies LΨ = σ2

2 [a+b(T−t)]. Define w(x1, x2, t) = u(x1, x2, t)−Ψ(x1, x2, t),
where u(x1, x2, t) is the solution of HJB equation (1.4) with α = 0. Then in the
paper [2] the authors have obtained the following estimate

lim
|x1|+|x2|→∞

|u(x1, x2, t)−Ψ(x1, x2, t)|
|x1|2 + |x2|2 = 0, (2.4)
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Note, that the inequality (2.4) holds in the case of poisson noise and the system
with linear friction (α 6= 0).

3. Complete estimate

A priori, the expression (2.1) defining the function ũ is only valid on the “outer”
domain, so that we need a suitable extension to the “inner” domain. to accomplish
this task, we keep almost the same expression, but we replace the function z = sign
with a suitable smooth and bounded function z̃ = z̃(x, t) such that:

z̃(x1, x2, t) = sign(x2) if |x2| ≥ R0, (3.1)

with R0 satisfying R0 ≥ R/β, and some other conditions to be determined below.
Recall that R and β are the initial constants of the model, and R/β represents the
size of the “outer” domain.

For the sake of simplicity, in this section we use the local notation x = (x1, x2)
and a = 1, b = 0. If u is the optimal cost and w = u − ψ, where ψ is given by
(2.1), then we obtain the following nonlinear equation (τ = T − t)

∂τw = Lw + inf
|v|≤R

{
v
[
ϕ2 + ∂2w

]}
+ ϕ, (3.2)

where ϕ2 =
(
x2 − R

β z̃ sin βτ
)(

1 − R
β ∂2z̃ sin βτ

)
, ϕ =

(
x2Rz̃ + R2

β z̃2 sin βτ
)

+ ϕ1,

and

ϕ1 =
[(

x1x2R + 2x2
R2

β2
z̃
)
(1− cosβτ)− x2

2

R

β
sin βτ

]
∂1z̃ +

+
[(

x1x2β − σ2

β

)
R sin βτ + Rx1(x1β

2 + 2z̃R)(cos βτ − 1)
]
∂2z̃ +

+
(
σ2 R2

β2

)
(1− cosβτ)

[
(∂2z̃)2 + z̃∂2

2 z̃
]
+

+
(
σ2 R

2β

)[
x1β(1− cos βτ)− x2 sinβτ

](
∂2
2 z̃

)
.

Recall that we could have z̃ = z̃(x, t), but only the dependency in x2 is relevant.
In view of (3.1), on the region where |x2| ≥ R0 we have z̃(x, t) = sign(x2) and
therefore ∂1z̃ = ∂2z̃ = 0 and ϕ1 = 0. Moreover, if there are constants C1, k > 0
such that

|∂1z̃|+ |∂2z̃|+ σ2|∂2
2 z̃| ≤ C1(1 + |x1|)−k−1, ∀x1, x2, t, (3.3)

then for another constant C > 0 we have |ϕ1| ≤ C(1+ |x1|+ |x2|)−k, for every x1,
x2, and t. Note that if σ = 0 then the second derivative ∂2

2 z̃ does not intervene,
and calculations are simpler.

The expression (3.2) is the Hamilton-Jacobi-Bellman equation corresponding
to the following optimal control problem:

J̃x,t(v) = E
{ ∫ T

t

[
v(s)ϕ2(x(s), s) + ϕ(x(s), s)

]
ds

}
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and

w(x, t) = inf
|v(·)|≤R

{
J̃x,t(v)

}
. (3.4)

This optimal cost w, which is equals to u − ψ, has to be estimated in the “outer
domain” to deduce the desired result.

The running cost `(x, t, v) = vϕ2(x, t) + ϕ(x, t) can be written as `(x, t, v) =
`1(x, t, v) + `0(x, t, v)) + ϕ1(x, t) with

`1(x, t, v) =
[
v
(
1− R

β
∂2z̃(x, t) sin βτ

)
+ Rz̃(x, t)

]
x2 +

+ v
R2

β2
z̃(x, t)∂2z̃(x, t) sin2 βτ,

`0(x, t, v) =
(R

β
z̃(x, t) sin βτ

)(− v −Rz̃(x, t)
)
.

Notice that if z̃ = sign(x2) then `1 = (v + R)x2 and `0 = −R
β sinβτ(v + R), so

x2 − R
β sin βτ determines the sign of ` = `1 + `0, since ϕ1 = 0. Thus, if z̃ and

∂2z̃ are bounded then `0 is a bounded function, and moreover, within the region
|x2| ≤ R0 we can bound the function `1, i.e., |`1| ≤ C(1 + |x1|)−k for any x, t and
some constant C. Similarly, for |x2| ≥ R0, we have two possibilities: (1) x2 > 0
which implies z̃ = 1 and ∂2z̃ = 0, and we deduce `1 = (v + R)x2 ≥ 0, for every
|v| ≤ R; and (2) x2 < 0 which implies z̃ = −1 and ∂2z̃ = 0, and we deduce
`1 = (v−R)x2 ≥ 0, for every |v| ≤ R. This proves that under the conditions (3.1)
and (3.3) there exists constants C1, C0 > 0 such that

`1(x, t, v) ≥ 0, ∀x, t, v, with |x2| ≥ R0,

`1(x, t, v) ≥ −C1

(
1 + |x1|+ |x2|

)−k
, ∀x, t, v,

`0(x, t, v) ≥ −C0, ∀x, t, v,

Thus, we deduce the estimate

J̃x,t(v) ≥ −C
(
1 + |x2|

)−k(T − t), ∀x, t, (3.5)

for some suitable constant C > 0 depending only on the data (e.g., R). Actually,
since for every m > 0 there exists a constant Cm > 0 such that `1(x, t, v) ≥
−Cm

(
1 + |x1| + |x2|m

)−k
, for every x, t, v, we deduce that (3.5) holds with |x2|

replaced with |x2|m. Moreover, if we assume that for v∗(x) = −Rsign(x2) we have

`(x, t, v∗(x)) ≥ −C(1 + |x1|)−k, ∀x, t, v, (3.6)

then for every m > 0 there exists a constant Cm > 0 such that

J̃x,t(v∗) ≥ −Cm

(
1 + |x1|+ |x2|m

)−k(T − t), ∀x, t, (3.7)

where v∗(t) = v∗(x(t)) is assumed to be an optimal feedback for the initial
control problem. Note that if |x2| ≥ R0 then z̃(x, t) = sign(x2) and therefore
`0(x, t, v∗(x)) = 0, which means that condition (3.6) is only required when |x2| <
R0. For instance, if we assume that |z̃| ≤ 1, sign(z̃) = sign(x2) and sin βτ ≥ 0 then
we deduce `0(x, t, v∗(x)) ≥ 0.
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On the other hand, to get a bound from above, we use the smooth function
z̃ to define the feedback v0(t) = −Rz̃(x(t), t), which produce a running cost

`(x, t, v0) = x2
R2

β
z̃(x, t)∂2z̃(x, t) sin βτ −

− R3

β2
z̃2(x, t)∂2z̃(x, t) sin2 βτ + ϕ1(x, t),

which has the property that |`0(x, t, v0(t))| ≤ C(1 + |x1|)−k, for every x, t and
some suitable constant C > 0, and also, `(x, t, v0) = 0 if |x2| ≥ R0. This shows
that for every m > 0 there exists a constant Cm > 0, which depend on the data
and m, such that

J̃x,t(v0) ≤ Cm

(
1 + |x1|+ |x2|m

)−k(T − t), ∀x, t. (3.8)

We have proven the following

Theorem 3.1. Let u be the optimal cost of our initial control problem. Then for
every m > 0 there exists a constant Cm > 0 depending only on the data such that

u(x, t)− ψ(x, t) ≤ Cm

(
1 + |x1|+ |x2|m

)−k(T − t), ∀x, t,

where ψ is defined by (2.1) with some smooth and bounded function z̃ satisfying
(3.1) and (3.3). Moreover, if we accept that v∗(x) = −Rsign(x2) is an optimal
feedback for the initial control problem then

u(x, t)− ψ(x, t) ≥ −Cm

(
1 + |x1|+ |x2|m

)−k(T − t), ∀x, t,

provided (3.6) is satisfied. Otherwise, we only have

u(x, t)− ψ(x, t) ≥ −Cm

(
1 + |x2|

)−m(T − t), ∀x, t,

for some suitable constant Cm. ¤

Notice that we use that fact that a solution (with the regularities of u) of the
HJB equation (3.2) is indeed the optimal cost (3.4). For instance, we know that
u is the maximum sub-solution (or the unique continuous viscosity solution) [1, 3]
of the corresponding HJB equation, and because ψ is smooth, w = u − ψ is the
maximum sub-solution of the HJB equation (3.2), and therefore, the optimal cost.

To actually see that v∗ = −R sign(x2) is an optimal feedback for the con-
trol problem we need to establish the existence of week solution of non-degenerate
stochastic differential equations with measurable coefficients, in our case the mea-
surable coefficient is due to the discontinuous feedback. This can be accomplished
by modifying Krylov’s arguments [6] or with an explicit probabilistic construction
similar to the solution of the typical one dimensional example dx = sign(x)dw(t).
Even, an argument with ε-optimal controls could be sufficient.

Finally, to construct a function z̃ satisfying the above condition, we may take
the function sign(x2) for |x2| ≥ R0 and make an odd C2 extension for |x2| ≤ R0,
satisfying |z̃| ≤ 1 and sign(z̃) = sign(x2).
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4. Conclusions

Given mathematical proof resulted in the Theorem 3.1 shows that a specially
constructed solution provides asymptotic behavior of the Bellman function as the
space variable goes to infinite. Consequently, this solution may be used as boundary
conditions to solve the HJB equation numerically. That means that the proposed
earlier hybrid solution method of finding the solution to the stochastic LQ problem
of optimal control is a completely formulated and valid new technique. It is im-
portant to stress that Theorem 1 applies also for for deterministic optimal control
LQ problem with bounded control.
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[2] Bratus A.S, Iourtchenko D.V., Menaldi J.-L. Local solutions to the Hamilton-Jacobi-
Bellman equation in stochastic problems of optimal control. Doklady Mathematics.,
74(1), (2006), 610–613.

[3] Crandall M.G., Lions P.L. Viscosity solutions of Hamilton-Jacobi equations. Trans.
A. M. S. 277, (1984), 1–42.

[4] Dreyfus S.E. Dynamic Programming and Calculus of Variations. Academic Press,
1965.

[5] Fleming W.H., Soner H.M. Controlled Markov Processes and Viscosity Solutions.
Springer-Verlag, 1992.

[6] Krylov N.V. Controlled diffusion processes. Springer-Verlag, 1980.

Acknowledgment

The first author was support by the Council of the Russian Federation President
(MD-6147.2008.1) for young scientists. This support is most highly appreciated.

D.V. Iourtchenko
Saint-Petersburg State Polytechnic University,
Department of Mathematical Sciences,
Saint-Petersburg, 195251, Russia.
e-mail: daniil@phmf.spbstu.edu

J.L. Menaldi
Wayne State University, Department of Mathematics,
Detroit, MI 48202, USA.
e-mail: menaldi@wayne.edu

A.S. Bratus
MIIT, Department of Mathematics,
Moscow, 127994, Russia
e-mail: bratus@miit.ru


	Wayne State University
	10-1-2010
	On the LQG Theory with Bounded Control
	D. V. Iourtchenko
	J. L. Menaldi
	A. S. Bratus
	Recommended Citation


	tmp.1480368522.pdf.LUYJE

