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Abstract

Our purpose is to study an ergodic linear equation associated to diffusion pro-
cesses with jumps in the whole space. This integro-differential equation plays a
fundamental role in ergodic control problems of second order Markov processes. The
key result is to prove the existence and uniqueness of an invariant density function
for a jump diffusion, whose lower order coefficients are only Borel measurable. Based
on this invariant probability, existence and uniqueness (up to an additive constant)
of solutions to the ergodic linear equation are established.
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Introduction

Ergodic properties of diffusion processes and its relation with partial differential equations
are well know in the classic literature. However, similar questions for diffusion processes
with jumps are not so popular, only recently was some attention given, cf. [18], Garroni
and Menaldi [8] and reference therein.

Due to applications in stochastic control (in particular the action of a feedback func-
tion), we have to be able to treat diffusions with jumps with only Borel measurable lower
order coefficients (where the control is applied). This gives particular complications, even
in the purely diffusion case, cf. Bensoussan [1]. Moreover, since we are interested in the
whole space, an assumption relative to the existence of a Liapunov function is needed. This
produce a drift of linear growth at infinity and the existence and regularity of the Green
function or transition density function (even in the purely partial differential equations
case) as proved by Garroni and Menaldi [8] does not apply.

Most of the arguments are based on the so-called Doeblin condition, which in turn is
based in the strict positivity of the Green functions deduced from the strong maximum
principle. We refer to the books of Borkar [4] and Ethier and Kurtz [6] for a related
discussion.

Now, we describe, without all the technical assumptions, the ergodic problem we want
to be able to consider. Let k(x) be a Borel measurable function from IRd into V (i.e.,
a measurable feedback). The dynamic of the system (for a given feedback) follows a
diffusion with jumps in IRd, i.e. a (strong) Markov process (Ω, P,Xt, t ≥ 0) with semigroup
(Φk(t), t ≥ 0) and infinitesimal generator Ak, as discussed in the next section. A long run
average cost is associated to the controlled system by

J(k) =
∫
IRd
f(x, k(x))µk(dx), (0.1)

where f is the running cost and µk is the invariant probability measure associated with
the system. Usually the purpose is to give a characterization of the optimal cost

λ = inf{J(k) : k(·)} (0.2)

and to construct an optimal feedback control k̂.
A formal application of the dynamic principle (e.g. Fleming and Soner [7]) yields the

following Hamilton-Jacobi-Bellman equation

inf
k
{Aku(x)} = λ in IRd, (0.3)

where the infimum is calculated for each fixed x, and k = v in V . An optimal feedback
control is obtained as the minimizer k̂(x) in (0.3).

In order to study the Hamilton-Jacobi-Bellman equation (0.3) we need some previous
discussion. This research is dedicated to the linear problem. A subsequent paper [22] will
deal with the about stated problem. In Section 1, we give some details on the construction
of the diffusion with jumps in the whole space IRd, under convenient assumptions. Next,
most of the effort is dedicated to the construction of the invariant probability measure
µk, for any measurable feedback k. This will extends classic results, e.g. Bensoussan [1],
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Khasminskii [12]. Thus, in Section 2, we study some preliminary properties on the integro-
differential operator needed later. In Section 3, we give a detailed summary of the (linear)
interior Dirichlet problem for the integro-differential operator Ak, which is mainly based
Bensoussan and Lions [3], Garroni and Menaldi [8], Gimbert and Lions [11]. In Section 4,
we consider the (linear) exterior Dirichlet problem. This will give some conditions under
which the diffusion with jumps is (positive) recurrent. Finally, in Section 5, we construct
the invariant probability measure.

1. Diffusions with Jumps

Consider an integro-differential operator of the form

I0φ(x) =
∫
IRd

x

[φ(x+ z)− φ(x)− z · ∇φ(x)]M0(x, dz), (1.1)

where the Levy kernel M0(x, dz) is a Radon measure on IRd
x = IRd \ {0} for any fixed x,

and satisfies∫
|z|<1

|z|2M0(x, dz) +
∫
|z|≥1

|z|M0(x, dz) <∞, ∀x ∈ IRd. (1.2)

It is clear that this operator is associated with a jump process.
Similarly, let L0 be a second order uniformly elliptic operator associated with a diffusion

process in the whole space, i.e.

L0 =
d∑

i,j=1

aij(x)∂ij +
d∑

i=1

bi(x)∂i, (1.3)

where the coefficients (aij) are bounded and Lipschitz continuous, i.e. for some c0,M > 0
and 0 < α < 1,

c0|ξ|2 ≤
d∑

i,j=1

aij(x)ξiξj ≤ c−1
0 |ξ|2, ∀x, ξ ∈ IRd,

|aij(x)− aij(x
′)| ≤M |x− x′|, ∀x, x′ ∈ IRd,

(1.4)

aij = aji, and the first order coefficients (bi) are Lipschitz continuous, i.e. for some M > 0,{
|bi(x)− bi(x

′)| ≤M |x− x′|, ∀x, x′ ∈ IRd

bi(0) = 0, i = 1, . . . , d.
(1.5)

The fact that b = (bi) vanishes on the origin and on assumption of the type

−
d∑

i=1

bi(x)xi ≥ c1|x|2, ∀x ∈ IRd, |x| ≥ r1, (1.6)

for some constants c1, r1 > 0, will allow us to show some “stability” on the system (cf.
Section 4)
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The Levy kernel M0(x, dz) is assumed to have a particular structure, namely

M0(x,A) =
∫
{ζ:j(x,ζ)∈A}

m0(x, ζ)π(dζ), (1.7)

where π(·) is a σ-finite measure on the measurable space (F,F), the functions j(x, ζ) and
m0(x, ζ) are measurable for (x, ζ) in IRd × F , and there exist a measurable and positive
function j0(ζ) and constants C0 > 0, 1 ≤ γ ≤ 2 [γ is the order of I] such that for every
x, ζ we have |j(x, ζ)| ≤ j0(ζ), 0 ≤ m0(x, ζ) ≤ 1,∫

F
|j0(ζ)|p(1 + j0(ζ))

−1π(dζ) ≤ C0, ∀p ∈ [γ, 2],
(1.8)

the function j(x, ζ) is continuously differentiable in x for any fixed ζ and there exists a
constant c0 > 0 such that for any (x, ζ) we have

c0 ≤ det(1+ θ∇j(x, ζ)) ≤ c−1
0 , ∀θ ∈ [0, 1], (1.9)

where 1 denotes the identity matrix in IRd,∇ is the gradient operator in x, and det(·)
denotes the determinant of a matrix.

Depending on the assumptions on the coefficients of the operators L0, I0 and on the
domain O of IRd, we can construct the corresponding Markov-Feller process. The reader
is referred to the books by Bensoussan and Lions [3], Gikhman and Skorokhod [9] (among
others) and references therein. Usually, more regularity on the coefficients j(x, ζ) and
m0(x, ζ) is needed, e.g.{

|m0(x, ζ)−m0(x
′, ζ)| ≤M |x− x′|, ∀x, x′ ∈ IRd,

|j(x, ζ)− j(x′, ζ)| ≤ j0(ζ)|x− x′|, ∀x, x′ ∈ IRd,
(1.10)

for some constant M > 0 and the same function j0(ζ) as in assumption (1.8). Thus the
integro-differential operator I0 has the form

I0φ(x) =
∫
F
[φ(x+ j(x, ζ))− φ(x)− j(x, ζ) · ∇φ(x)]m0(x, ζ)π(dζ). (1.11)

It is possible to show that the Markov-Feller process associated with the infinitesimal
generator L0 + I0 (which is referred to as the “diffusion with jumps”) has a transition
probability density function G0(x, t, y), which is smooth in some sense (cf. Garroni and
Menaldi [8]).

Since our purpose is to treat control problems, we remark that (in general) the op-
timal feedback is not smooth. This forces us to consider some coefficients (e.g. of first
order) which are only measurable. To that effect, we will use the so-called Girsanov’s
transformation.

Let Ω = D([0,+∞), IRd) be the canonical space of right continuous functions with
left-hand limits ω from [0,+∞) into IRd endowed with the Skorokhod topology. Denote
by either Xt or X(t) the canonical process and by Ft the filtration generate by {Xs :
s ≤ t} (universally completed and right-continuous). Now let (Ω, P 0, Ft, Xt, t ≥ 0) be the
(homogeneous) Markov-Feller process with transition density functionG0(x, t, y) associated
with the integro-differential operator L0 + I0, i.e. the density w.r.t. the Lebesgue measure
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of P 0{X(t) ∈ dy | X(s) = x} is equal to G0(x, t− s, x). For the sake of simplicity, we refer
to (P 0

x , X(t), t ≥ 0) as the above Markov-Feller process, where P 0
x denote the conditional

probability w.r.t. {X(0) = x}.
Hence, for any smooth function φ(x) the process

Yφ(t) = φ(X(t))−
∫ t

0
(L0 + I0)φ(X(s))ds (1.12)

is a Px-martingale. This follow immediately from the representation
Ex{φ(X(t))} =

∫
IRd
G0(x, t, y)φ(y)dy+

+
∫ t

0
ds
∫
IRd
G0(x, t− s, y)(L0 + I0)φ(y)dy,

(1.13)

and the Markov property. Moreover, it is also possible to express the process Xt as follows

dX(t) = a1/2(X(t))dw(t) +
∫
IRd

⋆

zµX(dt, dz) + b(X(t))dt, (1.14)

where (w(t), t ≥ 0) is a standard Wiener process in IRd, a1/2(x) is the positive square root
of the matrix (aij(x)) and b(x) is the vector (bi(x)). The process µX is the martingale
measure associated with the process (X(t), t ≥ 0), i.e. if ηX(t, A) denotes the integer
random measure defined as the number of jumps of the process X(·) on (0, t] with values
in A ⊂ IRd

⋆ then

µX(dt, A) + πX(dt, A) = ηX(dt, A), (1.15)

where µX(t, A) is a square integral (local) martingale quasi-left continuous and πX(t, A) is
a predictable increasing process obtained via the Doob-Meyer decomposition, and

πX(dt, dz) =M0(X(t−), dz)dt, (1.16)

where M0(x, dz) is the Levy kernel used to define the integro-differential operator I0 given
by (1.1).

Let g(x) = (g1(x), . . . , gd(x)) and c(x, z) be functions defined for x in IRd, z ∈ IRd
⋆ such

that {
gi, c are bounded, measurable and,
0 ≤ c(x, z) ≤ C0(1 ∧ |z|), ∀x, z, (1.17)

where C0 is a constant.
Consider the exponential martingale (e(t), t ≥ 0) as the solution of the stochastic

differential equation de(t) = e(t)[rX(t)dw(t) +
∫
IRd

⋆

γX(t, z)µX(dt, dz)],

e(0) = 1,
(1.18)

where{
rX(t) = a−1/2(X(t))g(X(t)),
γX(t, z) = zc(X(t), z),

(1.19)
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i.e., 
e(t) = exp{

∫ t

0
rX(s)dw(s) +

∫ t

0

∫
IRd

⋆

γX(s, z)µX(ds, dz)−

−
∫ t

0
|rX(s)|2ds−

∫ t

0

∫
IRd

⋆

[γX(s, z)− ln(1 + γX(s, z))]πX(ds, dz)}.
(1.20)

If we denote by

L = L0 +
d∑

i=1

gi(x)∂i (1.21)

and

Iφ(x) = I0φ(x) +
∫
IRd

⋆

[φ(x+ z)− φ(x)]c(x, z)M0(x, dz), (1.22)

then, by means of Itô’s formula one can prove that for any smooth function φ, the process

Zφ(t) = φ(X(t))−
∫ t

0
(L+ I)φ(X(s))ds (1.23)

is a Px-martingale, where the new probability measure is defined as

dPx = e(t)dP 0
x on Ft. (1.24)

Notice that the probability measures P 0
x and Px are absolutely continuous, one with

respect to the other. Also, a representation of the form (1.14) is valid under the new
probability measure Px, i.e.

dX(t) = a1/2(X(t))dw(t) + [b(X(t)) + g(X(t), v(t))]dt+
∫
IRd

⋆

zµv(dt, dz), (1.25)

where (w(t), t ≥ 0) is again a standard Wiener process and µv is the martingale measure
associated with the (canonical) process X(t) under the new measure Px.

Remark 1.1 Due to the linear growth of the coefficients bi(x), i = 1, . . . , d, we can not use
directly the construction in Garroni and Menaldi [8] of the Green function (or transition
density). 2

2. Preliminary Properties

Before considering the interior and exterior Dirichlet problem for the linear operator L+I,
we need to point-out some essential properties of the integro-differential operator used in
our discussion later on. As mentioned in the previous section, we assume

{
gi, c are bounded, measurable and,
0 ≤ c(x, z) ≤ C0(1 ∧ |z|), ∀x, z, (2.1)
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and define the first order operators

L1 =
d∑

i=1

gi(x))∂i, (2.2)

I1φ(x) =
∫
IRd

⋆

[φ(x+ z)− φ(x)]c(x, z)M0(x, dz). (2.3)

Thus, the infinitesimal generator A associated with the diffusion with jumps has the form

(L0 + L1) + (I0 + I1), (2.4)

where L0 and I0 are the principal part given by (1.3) and (1.1), respectively.
The main assumptions for L0 are (1.4) and (1.5), i.e., uniformly elliptic second or-

der differential operator with Lipschitz coefficients, bounded second order coefficients and
without a zero order coefficient. Condition (1.6) is used to construct a Liapunov function,
which will be discussed later. For the integro-differential operator I0 we assume (1.2),
which briefly states that I0 is the sum of an almost local second order term and a bounded
(zero-order) non-local operator. Conditions (1.7), . . . , (1.10) specify the x-dependency of
the kernel (measure, singular at zero but smooth at infinity) M0(x, dz) in (1.1), so that a
representation (1.11) is valid. On the other hand, L1 is a first order differential operator
with (Borel) measurable and bounded coefficients and without a zero order coefficient. The
Levy kernel

M1(x, dz) = c(x, z)M0(x, dz) (2.5)

associated with the integro-differential operator I1 is of first order [cf. assumption (1.12)
on c(x, z)], but the density m1(x, z) is only (Borel) measurable and bounded instead of
Lipschitz continuous and bounded as in (1.10).

Denote by Cα = Cα(O), O closure of an open subset O of IRd, the space of Hölder
continuous (with exponent α) and bounded function on O, 0 ≤ α ≤ 1, for α = 0 the space
of continuous and bounded functions and for α = 1 the space of Lipschitz continuous and
bounded functions. On the other hand, Lp = Lp(O), 1 ≤ p ≤ ∞ denotes the Lebesgue
space of p-integrable (essentially bounded for p = ∞) functions. If O is an open subset of
IRd and ε > 0, then Oε = O + εB1 where B1 is the open ball centered at the origin with
radius 1.

Proposition 2.1 (ε-estimates) Let O be an open subset of IRd and let the assumptions
(1.7), . . . , (1.9) hold. Then for any given ε > 0 there exists Cε > 0 such that for any smooth
function φ we have

∥I0φ∥Lp(O) ≤ ε∥∇2φ∥Lp(Oε) + Cε[∥∇φ∥Lp(O) + ∥φ∥Lp(IRd)], (2.6)

where ∇2φ is the Hessian of φ (i.e., the matrix of all second order partial derivatives) and
∇φ the gradient of φ. Similarly, if assumption (1.17) relative to c(x, z) holds then

∥I1φ∥Lp(O) ≤ ε∥∇φ∥Lp(Oε) + Cε∥φ∥Lp(IRd). (2.7)

Moreover, if assumption (1.10) holds then

∥I0φ∥Cα(O) ≤ ε∥∇2φ∥Cα(Oε)
+ Cε[∥∇φ∥Cα(O) + ∥φ∥Cα(IRd)]. (2.8)
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Proof. We refer to Garroni and Menaldi [8, pp. 52–57] for the main argument. For
instance, let us take

I1φ(x) =
∫
F
[φ(x+ j(x, ζ))− φ(x)]m1(x, ζ)π(dζ),

with

m1(x, ζ) = c(x, j(x, ζ))m0(x, ζ).

By means of (1.8) and (1.12) we obtain

0 ≤ m1(x, ζ) ≤ C0(1 ∧ j0(ζ)).

Since

φ(x+ j(x, ζ))− φ(x) =
∫ 1

0
∇φ(x+ θj(x, ζ)) · j(x, ζ)dθ

we may define

I1,ηφ(x) =
∫ 1

0
dθ
∫
Fη

∇φ(x+ θj(x, ζ)) · j(x, ζ)m1(x, ζ)π(dζ),

with Fη = {ζ ∈ F : 0 < j0(ζ) < η}, η > 0

to get

∥I1,ηφ∥L∞(O) ≤ C(η)∥∇φ∥L∞(Oη) (2.9)

and

∥I1,ηφ∥L1(O) ≤ c−1
0 C(η)∥∇φ∥L1(Oη), (2.10)

where

C(η) = C0

∫
Fη

|j0(ζ)|2(1 + j0(ζ))
−1π(dζ),

and c0 the constant in assumption (1.9). Notice that x 7−→ x + j(x, ζ) is a continuously
differentiable 1–1 map, so that is preserves zero-measure sets [justifying (2.9)] and it allows
a change of variables to establish (2.10). Because Oη is monotone in η and C(η) → 0 as
η → 0, we deduce from (2.9) and (2.10) the first term of (2.7) for p = ∞ and p = 1.

On the other hand,

I1φ(x)− I1,ηφ(x) =
∫
F ′
η

[φ(x+ j(x, ζ))− φ(x)]m1(x, ζ)π(dζ)

where

F
′

ζ = {ζ ∈ F : j0(ζ) ≥ η}.

Because

η(1 + η)−1
∫
F 1
η

m1(x, ζ)π(dζ) ≤ C,

where C depends only on the constants c0 in assumptions (1.8) and (1.12), we obtain the
estimate (2.7) with Cε = Cη−1(1 + η) for p = ∞ and Cε = c−1

0 Cη−1(1 + η) for p = 1. It is
clear that η > 0 is selected so small that η < ε and C(η) < ε.

Similar arguments are used for 1 < p <∞ and the other estimates (2.6) and (2.8). 2
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Remark 2.2 The estimates in Proposition 2.1 can be used with O = IRd, so that in this
case Oε = IRd too. For instance, in the sense of estimate (2.7) we say that the integro-
differential operator I1 is the sum of an “almost local first-order” term (i.e. I1,η) and a
bounded operator. 2

Remark 2.3 It is possible to normalize the second constant (Cε) instead of the first con-
stant (ε) in the estimates of Proposition 2.1. For instance, we have

∥I0φ∥Lp(O) ≤ α(ε)∥∇2φ∥Lp(Oε) + C0[ε
−1∥∇φ∥Lp(O) + ε−2∥φ∥Lp(IRd)], (2.11)

and

∥I1φ∥Lp(O) ≤ α(ε)∥∇φ∥Lp(Oε) + C0ε
−1∥φ∥Lp(IRd), (2.12)

where α(ε) → 0 as ε → 0 and C0 > 0 is a constant independent of ε and φ. Moreover,
if O is bounded then we can replace ∥φ∥Lp(IRd) in estimates (2.6), (2.7), (2.11), (212) for

[diam(O)]1/p∥φ∥L∞(IRd). Furthermore, if I0 is at most of order γ [cf. condition (1.8) on γ]

then we can estimate α(ε) as Cε2−γ and improve the exponent of ε−1 and ε−2 as ε1−γ and
ε−γ. 2

A direct application of Proposition 2.1 is the “almost local estimates” for the integro-
differential operator. For instance we have

Proposition 2.4 (almost local estimates) Let O′ ⊂ O be bounded open subsets of IRd

with dist(∂O′, ∂O) ≥ δ > 0. Suppose u in W 2,p
loc (O) ∩ L∞(IRd), 1 < p <∞, is a solution of

the equation

L0u+ I0u = f in O, (2.13)

where the coefficients satisfy (1.4), (1.5), (1.7), (1.8) and (1.9). Then there exists a con-
stant c, depending only on d, p, δ, diam(O) and the bounds imposed through the assumptions,
such that

∥u∥W 2,p(O′) ≤ C
[
∥f∥Lp(O) + ∥u∥L∞(IRd)

]
. (2.14)

Proof. We proceed as in Gilbarg and Trudinger [10, Theorem 9.11, p. 236]. For σ in
(0, 1), we denote by η a cutoff function in C2

0(BR) satisfying 0 ≤ η ≤ 1, η = 1 in BσR,
η = 0 for |x| ≥ σ′R, σ′ = (1 + σ)/2, |∇η| ≤ 4/(1− σ)R, |∇2η| ≤ 16/(1− σ)2R2. Then, for
v = ηu we have

∥
∑
i,j

aijσijv∥LP (BR) ≤ ∥η
∑
i,j

aij∂iju+ 2
∑
i,j

aij∂iη∂ju+ u
∑
i,j

aij∂ijη∥Lp(BR) ≤

≤ C
[
∥ηf∥Lp(BR) + ∥ηI0u∥Lp(BR) +

+
1

(1− σ)R
∥∇u∥Lp(Bσ′R) +

1

(1− σ)2R2
∥u∥Lp(BR)

]
.

Now

η(x)I0u(x) = I0v(x)− u(x)I0η(x)− φ(x),
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where

φ(x) =
∫
IRd

⋆

[u(x+ z)− u(x)][η(x+ z)− η(x)]M0(x, dz).

To estimate φ we start with

φ(x) =
∫
|z|<ε

M0(x, dz)
∫ 1

0
z · ∇u(x+ θz)∞

∫ 1

0
z · ∇η(x+ θ′z)dθ′ +

+
∫
|z|≥ε

[u(x+ z)− u(x)][η(x+ z)− η(x)]M0(x, dz),

for ε = (σ′′ − σ′)R, σ′′ = (1 + σ′)/2, σ′′ − σ′ = (1− σ′)/2, we get

∥φ∥Lp(Bσ1R) ≤ C
[ 1

(1− σ)R
∥∇u∥LP (Bσ′′R) +

+
1

(1− σ′)2R2
∥u∥L∞(IRd)

]
.

Since the matrix aij is positive and R small, a variation of (2.6) shows that

∥I0v∥Lp(Bσ′R) ≤ ε∥
∑
i,j

aij∂ijv∥Lp(Bσ′R+Bε) +

+Cε

[
∥∇v∥Lp(Bσ′R) + ∥v∥Lp(IRd)

]
.

Because v has support in Bσ′R we may replace Bσ1R +Bε by Bσ1R to obtain

∥I0v∥Lp(Bσ′R) ≤ ε∥
∑
i,j

aijσijv∥Lp(Bσ′R) +

+Cε

[
∥∇v∥Lp(Bσ′R) +

1

(1− σ)R
∥u∥Lp(Bσ′R)

]
.

It is clear that

∥I0η∥Lp(Bσ1R) ≤ C
1

(1− σ)2R2
.

Collecting all pieces we deduce

∥
∑
i,j

aijσijv∥Lp(Bσ′R) ≤ C
[
∥f∥Lp(Bσ′R) + (Cε +

1

(1− σ)R
)∥∇u∥Lp(Bσ′′R) +

+(Cε +
1

1− σ)R
)(

1

(1− σ)R
)∥u∥Lp(BR) +

+
1

(1− σ′)2R2
∥u∥L∞(IRd) + ε∥

∑
i,j

aij∂ijv∥Lp(Bσ′R)

]
,

for some constant C > 0. Using the fact that (1 − σ)/2 = (1 − σ′) and taking ε so small
that Cε ≤ 1/2, we have

(1− σ)2R2∥
∑
i,j

aij∂ijv∥Lp(Bσ′R) ≤ C
[
R2∥f∥Lp(BR) +

+(1 +R)(1− σ′)R∥∇u∥Lp(Bσ′R) +

+(1 +R)(1− σ′)2R2∥u∥Lp(Bσ′R)
+ ∥u∥L∞(IRd)

]
,
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for some constant C > 0. By means of the weighted seminorms

Φk = sup
0<σ<1

{(1− σ)kRk∥Dku∥Lp(BσR)}, k = 0, 1, 2

we obtain Φ2 ≤ C
[
R2∥f∥Lp(BR) + ∥u∥L∞(IRd)+

+(1 +R)Φ1 + (1 +R)Φ0

]
.

(2.15)

Hence, the interpolation inequality

Φ1 ≤ εΦ2 +
C(η)

ε
Φ0 (2.16)

provides the desired estimate (2.14), after taking σ = 1
2
and covering O′ with a finite

number of ball of radius R/2. 2

Remark 2.5 In the estimate (2.14) we may replace the term ∥u∥L∞(IRd) by the following
norm ∥u∥Lp(O) plus a term of the form

sup
z

{(
∫
O
|u(x+ j(x, z))|pdx)1/p}, (2.17)

where j(x, z) is the function defining I0. This is to use the norm in Lp

unif(IR
d)1 instead of

in L∞(IRd). 2

Remark 2.6 The continuity of the first order coefficients bi(x) is not used in the proof of
Proposition 2.4, only the fact that (bi(x)) are bounded on each bounded subset O of IRd is
needed. Thus, the estimate (2.14) remains true when L0 + L1 and I0 + I1 replace L0 and
I0 in (2.13). 2

Let us turn our attention to the operators L0, L1, I0, I1 acting on the Sobolev spaces
W 1,p

0 (O), 1 ≤ p ≤ ∞, for a bounded open subset O of IRd.
It is clear that because the second order coefficients [cf. (1.4)] are Lipschitz and the

first order coefficient bounded in O [cf. (1.5)] we have

L0 : W
1,p
0 (O) →W−1,p(O) (2.18)

where W−1,p(O) denotes the dual of W 1,q
0 (O), 1/p+ 1/q = 1. We also have

L1 : W
1,p
0 (O) → Lp(O). (2.19)

On the other hand, for the non-local operators I0, I1 we need to have a function defined in
the whole space IRd. For the space W 1,p

0 (O) the natural extension to IRd is by zero. So,
unless explicitly stated the contrary, we implicitly assume that any functions in W 1,p

0 (O)
has been extended by zero outside of O, prior the application of the operator I0 or I1.

1i.e., the norm
(
supx{

∫
{y : |x+y|<1} |u(y)|

pdy}
)1/p

.
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Thus, we regard W 1,p
0 (O) as W 1,p

O (IRd), functions in W 1,p(IRd) with support in O. Since I1
is a first order operator, we have

I1 : W
1,p
0 (O) → Lp(O). (2.20)

However, to prove that

I0 : W
1,p
0 (O) → W−1,p(O), (2.21)

we need some work. Here we make use of assumption (1.10). Indeed, the critical part is
the “almost local” operator

I0,ηφ(x) =
∫
|z|<η

[φ(x+ z)− φ(x)− z · ∇φ(x)]M0(x, dz), (2.22)

for η > 0. First, we re-write (2.22) as

I0,ηφ(x) =
∫ 1

0
(1− θ)dθ

∫
|z|<η

z∇2φ(x+ θz) · zM0(x, dz),

and we consider

⟨I0,ηφ, ψ⟩ =
∫
O
I0,ηφ(x)ψ(x)dx

for smooth (test) functions. Using the explicitly x-dependency of the Levy kernelM0(x, dz)
we have to consider an expression of the form∑

i,k

∫
O
ji(x, ζ)∂ikφ(x+ θj(x, ζ))jk(x, ζ)m0(x, ζ)ψ(x)dx. (2.23)

Denote by T (x) the inverse diffeomorphism x 7−→ x+ θj(x, ζ) for a fixed (θ, ζ). Therefore
∂i(∂kφ(x+ θj(x, ζ))) = ∂ℓ[∂kφ(x+ θj(x, ζ))]∂iTℓ(x). Setting

σkℓ(x, ζ, θ) =
∑
i

ji(x, ζ)jk(x, ζ)m0(x, ζ)∂iTℓ(x) (2.24)

we can integrate by parts (2.23) to get

−
∑
k,ℓ

∫
O
∂kφ(x+ θj(x, ζ))∂ℓ[σkℓ(x, ζ, θ)ψ(x)]dx.

Therefore, in order to establish (2.21) we need to assume that j(x, ζ) has a bounded second
derivative in x, i.e. there exist δ > 0 such that

∥∇2
xj(·, ζ)∥L∞(IRd) ≤ C, ∀ζ ∈ Fδ (2.25)

for some constant C > 0, and Fδ = {ζ ∈ F : j0(ζ) < δ}.
We will state the property (2.21) for further reference.
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Proposition 2.7 Let the assumptions (1.7), . . . , (1.10) and (2.25) hold. Then for any
given ε > 0 there exists Cε > 0 such that for any φ in W 1,p(IRd), 1 ≤ p ≤ ∞, ψ in
W 1,q

0 (O), 1/p+ 1/q = 1, with ∥ψ∥W 1,q
0 (O) ≤ 1 we have

|
∫
O
ψ(x)I0φ(x)dx| ≤ ε∥∇φ∥Lp(Oε) + Cε∥φ∥Lp(IRd), (2.26)

where Oε = O+ εB1, O is an smooth domain2. In particular (2.21) is satisfied. Moreover,
we can replace the Lp(IRd)-norm by the L∞(IRd)-norm in (2.26) if O is bounded. 2

With the same principle of integration by parts and in view of the equality

2φ(x)I0φ(x) = (I0φ
2)(x)−

∫
IRd

⋆

[φ(x+ z)− φ(x)]2M0(x, dz) (2.27)

we can prove the following estimate

Proposition 2.8 Under the assumptions (1.7), . . . , (1.9) and (2.25), for any given ε > 0
there exists a constant Cε > 0 such that

⟨I0φ, φ⟩ ≤ ε∥φ∥|φ|+ Cε|φ|2, ∀φ ∈ H1
0 (O), (2.28)

where ⟨·, ·⟩ is the duality pairing in H1
0 (O) and H−1(O), O smooth domain in IRd, and ∥ ·∥

and | · | denotes the norms in H1
0 (O) and L2(O), respectively. 2

Remark 2.9 Another key-property used in Bensoussan and Lions [2] is the following

⟨I0φ, φ+⟩ ≤ C∥φ+∥|φ+|, ∀φ ∈ H1
0 (O), (2.29)

for some constant C > 0. This can be proved similarly to (2.28). 2

Since the first order coefficients of the differential operator L0 have a linear growth, we
are forced to use spaces with some weight at infinity. Denote by L2

r = L2
r(IR

d) the Lebesgue
space with the norm

∥φ∥L2
r
=
( ∫

IRd
|φ(x)|2(1 + |x|2)−rdx

)1/2
, (2.30)

and by H1
r = H1

r (IR
d) the (first order) Sobolev space with the norm

∥φ∥H1
r
= (∥φ∥2L2

r
+ ∥∇φ∥2L2

r
)1/2, (2.31)

for any r ≥ 0. It is clear that L2
r and H1

r are Hilbert spaces, and if s ≤ r then

L2
s ⊂ L2

r, ∥φ∥L2
r
≤ ∥φ∥L2

s
. (2.32)

The same technique used in Proposition 2.7 yields

2O is sufficiently smooth so that W 1,p
0 (O) = W 1,p

O
(IRd), i.e. the extension by zero of functions in

W 1,p
0 (O) belongs to W 1,p(IRd).
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Proposition 2.10 Under the assumptions (1.7), . . . , (1.10) and (2.25) for any ε > 0 there
exists Cε > 0 such that for any φ, ψ in H1

r , with ∥ψ∥H1
r
≤ 1 we have

|
∫
IRd
ψ(x)I0φ(x)(1 + |x|2)−rdx| ≤ ε∥∇φ∥L2

r
+ Cε∥φ∥L2

r
2 (2.33)

Thus, the non-local operator I0 maps H1
r into its dual, denoted by H−1

−r . However this
is not true for the differential operator L0, since bi(x) may (and should) growth linearly in
x. For smooth functions φ, ψ we can bound the expression∫

IRd
ψ(x)b(x) · ∇φ(x)(1 + |x|2)−rdx ≤

(
sup
x

2|b(x)|
1 + |x|

)
∥∇φ∥L2

r−1
∥ψ∥L2

r
. (2.34)

Therefore, L0 maps only H1
r−1 into the dual space H−1

−r . All this gives some complications
when looking at the bilinear form

a0(φ, ψ) = −
∫
IRd
ψ(x)[L0 + I0]φ(x)(1 + |x|2)−rdx. (2.35)

Any way, we can prove the following result.

Proposition 2.11 Let the assumptions (1.4), (1.5), (1.7), . . . , (1.10) and (2.5) hold. Then
the bilinear form (2.35) is not continuous in H1

r , but we have

|a0(φ, ψ)| ≤ C0(∥∇φ∥L2
r−1

+ ∥φ∥L2
r
)∥ψ∥H1

r
, (2.36)

for any φ, ψ and some constant C0. Moreover a0(·, ·) is coercive in H1
r , i.e., there exist

c0, λ0 > 0 such that

a0(φ, φ) + λ0|φ|2L2
r
≥ c0∥φ∥2H1

r
(2.37)

for any φ. The constants C0, c0 and λ0 depends only on the dimension d and the bounds
imposed through the hypotheses. 2

Therefore, the Lax-Milgram theory did not apply directly and some “regularization” is
needed.

3. Interior Dirichlet Problem

Let L and I be the second order differential operator (1.21) and the integro-differential
operator (1.22) as before. For a given bounded and smooth domain O, we consider first
the interior Dirichlet problem{

−(L+ I)u+ a0u = f in O,
u = h in IRd \ O, (3.1)

and next exterior Dirichlet problem{
−(L+ I)u+ a0u = f in IRd \ O,

u = h in O, (3.2)
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where a0, f, h are given measurable and bounded functions, a0(x) ≥ 0.
Notice the non-local character of the integro-differential operator I. So that for the

interior problem (3.1) [exterior problem (3.2)] we need the solution u to be defined in a
neighborhood of the closure O[IRd \O, respectively]. Thus, we seek the solution as defined
in the whole space IRd.

A natural way to handle the non-homogeneous boundary conditions is the following
two-steps problems. First we do suitable extension of the boundary (or exterior) data h to
the whole space, for instance if h is defined in IRd \ O then we extend h to the whole IRd

preserving its regularity properties. Next, we solve an homogeneous problem (like (3.1)
with h = 0) for u− h, where we use the zero-extension to define the non-local operator I.
With this in mind, we can re-consider the interior Dirichlet problem (3.1) [or the exterior
Dirichlet problem (3.2)] as{

−(L+ I)u+ a0u = f in O,
u = h in ∂O. (3.3)

Actually, we means u = v + w where v solves a non-homogeneous Dirichlet boundary
conditions second-order differential equation{

−Lv + a0v = 0 in O,
u = h in ∂O, (3.4)

and w solves an homogeneous (interior) Dirichlet problem{
−(L+ I)w + a0w = f + Iv in O,

w = 0 in IRd \ O, (3.5)

for the whole integro-differential operator L + I. Sufficient conditions to solve the PDE
(3.4) are well known (cf. Gilbarg and Trudinger [10], Ladyzhenskaya and Uraltseva [14]) so
we will state results concerning the existence, uniqueness and regularity for the solutions
of the homogeneous interior Dirichlet problem (3.5) with an integro-differential operator
of the form (1.1) and (1.3).

Therefore, the primary purpose of this section is to state several results relative to the
homogeneous Dirichlet problems (3.3) [with h = 0]. This is re-statement of results from
Bensoussan and Lions [3], Gimbert and Lions [11] with some natural extensions based on
Garroni and Menaldi [8]. For the sake of the reader convenience, we will give some details
on key points of the proofs. Thus recall that I = I0 + I1, I0 given by (1.11) and

I1φ(x) =
∫
F
[φ(x+ j(x, ζ))− φ(x)]m1(x, ζ)π(dζ), (3.6)

where m1(x, ζ) is a measurable density satisfying

0 ≤ m1(x, ζ) ≤ C0j0(ζ), ∀x, ζ (3.7)

for some constant C0 > 0 and the same j0(ζ) as in (1.8). The differential operator L takes
the form

L =
d∑

i,j=1

aij(x)∂ij +
d∑

i=1

(ai(x) + bi(x))∂i (3.8)
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where (aij) and (bi) satisfy (1.4) and (1.5), and (ai) are measurable and bounded functions

|ai(x)| ≤ C1, ∀x. (3.9)

The (homogeneous) interior Dirichlet problem is{
−(L+ I)u = f in O,

u = 0 in IRd \ O, (3.10)

for a given function f . The assumptions on the coefficients are (1.4), (1.5), (3.9), (1.8),
(1.9), (1.10), (2.25) and (3.7). Before starting the discussion let us mention that because (1)
the higher order coefficients possess bounded derivatives [there are Lipschitz continuous,
cf. (1.4), (1.10)] instead of being only Hölder continuous and (2) the jump-modulation
function is smooth [cf. (2.25)], the whole integro-differential operator L+ I can be put in
“divergence form”. This was not possible under the assumption in Garroni and Menaldi [8].

As it was pointed-out in Bensoussan and Lions [3] and discussed with great detail in
Gimbert and Lions [11], a key difficulty is the fact we do not have (in general) the property
of mapping W 2,p(O) ∩W 1,p

0 (O) into Lp(O) for the whole operator L + I. The problem
is due to the non-local operator I0 which requires a zero-extension. The non-variational
formulation of (3.10) would need a solution u in W 2,p

loc (O) plus a meaning for the boundary
condition, e.g. u in W 1,p

0 (O) or in C(O). To have such a strong solution some restrictions
on I0 are needed, for instance

|j(x, ζ)|m0(x, ζ) ≤ j1(ζ) ∀x, ζ such that
x ∈ Oε, x+ j(x, ζ) ̸∈ O, with∫

F
[j1(ζ)]

1+pπ(dζ) ≤ C1, ∀p ∈ [γ1, 1]
(3.11)

where C1, γ1 > 0. The constant γ1 (actually 1 + γ1) may be referred to as the “order” of
I0 on the boundary ∂O.

Theorem 3.1 (Strong Solution) Let us assume3 (1.4), (1.5), (1.8), (1.9), (1.10), (3.7),
(3.9) and (3.11) with 0 ≤ γ1 < 1/d. Then for any f in Lp(O), d < p < 1/γ1, there exists
unique solution of (3.10) in W 2,p(O). Moreover, if u denotes the solution of the non-
homogeneous interior Dirichlet problem (3.1) [with h sufficiently smooth to be able to solve
the PDE (3.4)] then we have the following stochastic representation

u(x) = Ex{
∫ τ

0
f(X(t)) exp(−

∫ t

0
a0(X(s))ds)dt+

+h(X(τ)) exp(−
∫ τ

0
a0(X(t))dt)},

(3.12)

where τ is the first exit time of the process X(t) from the closed set O, i.e.

τ = inf{t ≥ 0 : X(t) ̸∈ O}, (3.13)

Ex{·} is the mathematical expectation w.r.t. the measure Px, (Px, X(t), t ≥ 0) is the
diffusion with jumps corresponding to L+ I. 2

3In (1.4) and (1.10) we may replace Lipschitz by Hölder continuity for the higher order coefficients.
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Only some indications of the proof is given, since this is a variation [extension in some
sense] of results established in Bensoussan and Lions [3], Gimbert and Lions [11].

Remark 3.2 By taking a0 = 0 in the above theorem, we have established the existence and
the uniqueness of the interior Dirichlet problem{

−(L+ I)u = f in O,
u = h in IRd \ O, (3.14)

in W 2,p(O). Notice that u belongs to W 1,∞(IRd), but u does not necessarily belongs to
W 2,p(IRd). The gradient ∇u may have a jump across the boundary ∂O. 2

Another important point is the Maximum principle in Sobolev spaces, e.g. Krylov [13],
Lions [15]. There are several formulations of this principle. A practical one is the following,
as proved in Gimbert and Lions [11].

Proposition 3.3 (Maximum Principle) Assume (1.4), (1.5), (1.8), (1.9), (1.10), (3.7)
and (3.9). Suppose that a bounded and continuous function u in IRd attains its global max-
imum at point x̄ in O, and that u belongs to W 2,d

loc (O). Then lim
ε→0

ess inf|x−x̄|<ε{Lu(x)} ≤ 0,

lim
ε→0

ess inf|x−x̄|<ε{Iu(x)} ≤ 0. 2
(3.15)

Notice that a local version of the ϵ-estimates, namely (here γ = 1)

∥Iφ∥Lp(D) ≤ ε∥∇φ∥Lp(Dε) + Cε∥φ∥L∞(IRd) (3.16)

where D is bounded and Dε = {x ∈ D : dist(x,D) ≤ δε} allows the definition of Iφ for
φ in W 2,d

loc (O) ∩ L∞(IRd), cf. Proposition 2.1 for details.
Now, returning to the proof of Theorem 3.1, let u be a solution of (3.1) in W 2,p(O).

By means of the (weak) maximum principle (Proposition 3.3) applied to the function
λu − (u − k), with λβ > ∥(f + Lh + Ih)+∥L∞(O), λβ > ∥h−∥L∞(O) and u, β as in (2.12),
(2.16), we deduce (by contradiction) that λu− (u− h) ≥ 0. This provides the estimate{

u ≤ h+ λu, in O,
λβ = max {∥h−∥L∞(O), ∥(f + Lh+ Ih)+∥L∞(O)},

(3.17)

which implies

∥u∥
L∞(IRd)

≤ C(∥h∥W 2,∞(IRd) + ∥f∥L∞(O)), (3.18)

for some constant C depending (essentially) on ∥u∥L∞(O). Hence, the global Lp-estimate
for the differential elliptic equation and (3.18) yield the a priori estimate

∥u∥W 2,p(O) + ∥u∥W 1,∞(IRd) ≤ Cp(∥h∥W 2,∞(IRd) + ∥f∥L∞(O)). (3.19)

By means of the estimate (3.17), the existence of a solution is proved under the extra
assumption a0(x) ≥ α, with α sufficiently large. Finally, by a fixed-point argument the
extra condition on a0(·) is removed. 2

Another interesting strong version of the maximum principle is the following:
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Proposition 3.4 (Strong Maximum Principle) Let (1.4), (1.5), (1.8), (1.9), (1.10),
(3.7) and (3.9) hold. Suppose that a bounded and continuous function u in IRd attains its
global maximum at a point x in O. If O is connected, u belongs to W 2,d

loc (O) and

(L+ I)u ≥ 0 in O, (3.20)

then u is constant in O. 2

The proof is a direct consequence of the weak maximum principle (Proposition 3.3)
and a barrier function. Indeed, as in the classic case (e.g. Protter and Weinberger[19]), if
we assume that u is not a constant then there is a point x0 at which u attains its (global)
maximum value M , and two balls (inside O) B1 and B2 such that x0 is the center of B2

and belongs to the boundary ∂B1, and for some δ > 0

u ≤M − δ on B1 \B2. (3.21)

Hence, the contradiction follows after applying Proposition 3.3 to the function w
.
= u+ εū,

with 0 < ε < δ/max{ū(x) : x ∈ B1 \B2}. The function u is a barrier function satisfying.{
ū > 0 in B1, ū < 0 outside B1

(L+ I)ū > 0 in B2
(3.22)

To construct such a barrier function, we call x̄ and r̄ the center and the radius of the ball
B1. Define

ū(x) = exp(−λ|x− x̄|2)− exp(−λr̄2), (3.23)

for a constant λ > 0 to be determined below. It is clear that the first two conditions of
(3.22) are satisfied. Computations show that

Lū(x) =
[
4λ2

∑
i,j

aij(x)(xi − x̄i)(xj − x̄j)− 2λ
∑
i

aii(x)−

−2λ
∑
i

(ai(x) + bi(x))(xi − x̄i)
][
exp(−λ|x− x̄|2)

]
and

Iū(x) = −2λ
[ ∫

IRd
⋆

(x− x̄) · zM(x, dz)
][
exp(−λ|x− x̄|2)

]
+

+
∫ 1

0
(1− θ)dθ

∫
IRd

⋆

z · ∇2ū(x+ θz)zM(x, dz).

Since ū is concave, we have (L+ I)ū(x) ≥ 2λ
[
exp(−λ|x− x̄|2)

]
×

×
[
λc0|x− x̄|2 − dc−1

0 − (c1 +M |x|)|x− x̄|
]
,

(3.24)

where c0 is the constant in (1.4), M is the constant in (1.5) and

c1 = sup
x

{
(
∑
i

|ai(x)|2)1/2 +
∫
IRd

⋆

|z|M(x, dz)
}
. (3.25)
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Thus, for any 0 < r < R we can choose λ ≥ λ(c0, c1, r, R) such that

(L+ I)ū(x) ≥ β > 0 if r ≤ |x− x̄| ≤ R. (3.26)

In particular (3.22) holds. 2
When the integro-differential operator I is almost of order γ = 1, one can prove the

following local Lp-estimates.

Proposition 3.5 (Local Lp-estimates) Let the assumptions (1.4), (1.5), (1.8) with γ =
1, (1.10), (3.7) and (3.9) hold. Suppose u is a function in W 1,p(O) ∩ L∞(IRd) satisfying

−(Lu+ Iu) = f in O. (3.27)

Then for any bounded domain B with closure in O we can find a constant C such that

∥u∥W 2,p(B) ≤ C[∥f∥Lp(O) + ∥u∥L∞(IRd)]. (3.28)

Proof. By means of a smooth cutoff function β, with compact support in O and β = 1
on B, as in Gilbarg and Trudinger [10, Theorem 9.11, p. 236].{

−(L+ I)(uβ) = fβ + g in O,
uβ = 0 in IRd \ O, (3.29)

where g = g1 + g2,

g1 = βLu− L(uβ), g2 = βIu− I(uβ).

The contribution of g1 is a first order differential operator in u, which can be handled in
the usual way. The nonlocal expression takes the form

g2(x) = −
∫
IRd

[β(x+ z)− β(x)]u(x+ z)M(x, dz)

which yields

∥g2∥L2(O) ≤ Cβ∥u∥L∞(IRd),

for a constant Cβ depending on β and the constant C0 in (1.8). Hence, by means of (3.29)

∥u∥W 2,p(B) ≤ Cp∥fβ + g∥Lp(O).

Therefore, introducing weighted seminorms and using an interpolation inequality we deduce
(3.28). 2

Remark 3.6 Estimate (3.28) in Proposition 3.5 holds for integro-differential operators of
order γ = 2, but the proof is a little more complicated, cf. Proposition 2.4. 2

Let us turn our attention to the variational formulation of the (homogeneous) interior
Dirichlet problem (3.10), i.e. a solution inW 1,p

0 (O). The key point here is to establish that
L + I maps W 1,p

0 (O) into W 1,p(O) as discussed in Section 2. Assumptions (1.10), (2.25)
are used in Proposition 2.7 to make sense of I0φ for φ in W 1,p

0 (O). Next, estimate (2.28)
is necessary to show that the bilinear form

a(φ, ψ) = −⟨Lφ, ψ⟩ − ⟨Iφ, ψ⟩ (3.30)

is continuous and coercive in H1
0 (O). We state the main results in this direction.
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Theorem 3.7 (Weak Solution) Let the assumptions (1.4), (1.5), (1.8), (1.9), (1.10),
(2.25), (3.7) and (3.9) hold. Then for any f in W−1,p(O), 1 < p < ∞, there exists a
unique solution u of the (homogeneous) interior Dirichlet problem

−(L+ I)u = f in W 1,p(O), (3.31)

in W 1,p
0 (O). Moreover, if f belongs to Lp

loc(O) then u belongs to W 2,p
loc (O). Furthermore,

for f in Lp(O), p > d, stochastic representation (3.12) is valid. 2

The above results for j(x, ζ) = j(ζ), independent of x, have been proved in Bensoussan
and Lions [3] with p ≥ 2 and the general case (1 < p <∞) in Gimbert and Lions [11]. We
give only some detail of the proof.

First, the fact that the bilinear form (3.30) is continuous and coercive yields the ex-
istence and uniqueness of the solution in H1

0 (O). Next the almost local estimates (cf.
Proposition 2.4) proves the regularity result. Finally, approximating I by a zero-order
integro-differential operator Iε (cf. arguments in Proposition 2.1) we are able to approxi-
mate “weak solutions” by “strong solution”, which establish the stochastic representation
(3.12). A crucial point is a weak version of the maximum principle, which follows from
estimate (2.29).

Proposition 3.8 (Weak Maximum Principle) Let us assume (1.4), (1.5), (1.8), (1.9),
(1.10), (2.25), (3.7) and (3.9). Suppose a function u in W 1,p(O), d ≤ p <∞, satisfies{

(L+ I)u ≥ 0 in W 1,p(O),
u ≥ 0 on ∂O, (3.32)

then u ≥ 0 a.e. in O. 2

4. Exterior Dirichlet Problem

We are going to study two cases of the exterior Dirichlet problem. First the case related
to the recurrence of the jump-diffusion process, namely{

(L+ I)u = 0 in IRd \ O
u = h in O. (4.1)

Next, we will consider the case associated with the positive recurrence of the jump-diffusion
process, i.e.{

−(L+ I)u = f in IRd \ O
u = 0 in O. (4.2)

To prove the existence and uniqueness of solutions for the above exterior Dirichlet problems
(4.1) and (4.2), we will make use of Liapunov functions. Assume that there exists a function
ψ such that

ψ > 0, ψ ∈ W 2,p
loc (IR

d),
ψ(x) → +∞ as |x| → ∞,
(L+ I)ψ ≤ 0 in IRd \ O,

(4.3)
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for some p ≥ d. The above condition (4.3) hides a growth assumption for ψ so that Iψ
makes sense. As we will see later, a typical example for a Liapunov function ψ has logarithm
growth. Since I accepts functions with a linear growth, Iψ is well defined. In general, we
need to assume that the jumps are bounded (in this case any growth is acceptable) or to
suppose that ψ is uniformly integrable w.r.t. to the Levy measure of I.

Our first interest is to look for bounded solutions of (4.1) and (4.2). Then, we turn
to the probabilistic interpretation of (4.1) and (4.2). Denote by (Ω, P, Ft, Xt, t ≥ 0) a
canonical realization of the diffusion with jumps (Markov-Feller) process whose infinites-
imal generator coincides with L + I on smooth functions. Let τ be the first exit time of
the process X(t)

.
= Xt from the closed set IRd \ O, i.e.

τ = inf{t ≥ 0 : X(t) ∈ O}, (4.4)

where τ = ∞ if X(t) ∈ IRd \O, ∀t ≥ 0. A probabilistic solution of (4.1) is a function u(x)
satisfying:{

u(X(t))1(t<τ) + h(X(τ))1(t≥τ)

is a Ft − (local) martingale.
(4.5)

Similarly, a probabilistic solution of (4.2) is a function (u(x) satisfying: u(X(t))1(t<τ) +
∫ τ∧t

0
f(X(s))ds

is a Ft − (local) martingale.
(4.6)

Remarking that the processX(t) is continuous from the right, we see that P (τ = 0 | X(0) =
x) = 0 for any x in the open set IRd \ O. Thus, if we assume “recurrence” for the process
X(t), i.e.

P (τ <∞ | X(0) = x) = 1 ∀x ∈ IRd \ O, (4.7)

then any bounded solution u of (4.5) must satisfy

u(x) = E{h(X(τ)) | X(0) = x} ∀x ∈ IRd \ O, (4.8)

so that the bounded probabilistic solutions of (4.1) are unique. Similarly, if we suppose
“positive recurrence” for the process X(t), i.e.

E{τ | X(0) = x} <∞ ∀x ∈ IRd \ O (4.9)

then any bounded solution u of (4.6) must satisfy

u(x) = E{
∫ τ

0
f(X(t))dt | X(0) = x} ∀x ∈ IRd \ O, (4.10)

again, bounded probabilistic solutions of (4.2) are unique.
The probabilistic formulations included both conditions in (4.1) [or (4.2)] simultane-

ously. In particular, the boundary condition in (4.1) is satisfied in the following sense

lim
t→∞

u(X(τ ∧ t)) = h(X(τ)) a.s., (4.11)

i.e. a pathway limits holds. Notice that for (4.5) and (4.6) we are implicitly assuming
that the data h and f are Borel measurable. Actually, because the semigroup associated
to the diffusion process preserves negligible sets, we may work with Lebesgue measurable
functions instead of Borel measurable functions.
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Theorem 4.1 (Recurrence) Suppose h is a Borel measurable and bounded function O.
Under the assumptions (1.4), (1.5), (1.8), (1.9), (1.10), (3.7), (3.9) and (4.3), the non-
homogeneous exterior Dirichlet problem (4.1) has a unique probability solution [i.e., (4.5)
holds] u belonging to L∞(IRd) ∩W 2,p

loc (IR
d \ O) for any p <∞. Moreover

(L+ I)u = 0 a.e. in IRd \ O (4.12)

and the stochastic representation (4.8) is valid.

Proof First, replacing h by h + ∥h∥L∞ we can assume h ≥ 0 without any loss of
generality. Existence is shown as in Bensoussan [1], i.e., for n > 0 sufficiently large so that
the ball Bn (centered at the origin) with radius n contains O, we consider the solution of
the Dirichlet problem (in a bounded region)

(L+ I)un = 0 in Bn \ O,
un = h in O,
un = 0 in IRd \Bn.

(4.13)

Notice that a priori, we need h to be defined in O. However, the most relevant part is its
definition on ∂O as expected.

Now, the weak maximum principle (cf. Proposition 3.9) implies that un ≥ 0. Thus,
again the weak maximum principle applied to the difference un − um, with m < n, shows
that un ≥ um. Therefore, we have an increasing sequence satisfying

0 ≤ um ≤ un ≤ ∥h∥L∞ . (4.14)

Hence, the almost local estimate (cf. Proposition 2.4) proves that {un} is uniformly
bounded in W 2,p

loc (IR
d \ O), for any p < ∞, and that (4.12) holds for the limiting func-

tion u.
To prove (4.5) and (4.7), we proceed us in Khasminskii [12]. Denote by τn the first exit

time from Bn. By means of Itô is formula and (4.3) we have

E{ψ(X(τ ∧ τn)) | X(0) = x} ≤ ψ(x)

which yields

E{ψ(X(τn))1(τ>τn)} ≤ ψ(x).

Thus, if

αn = inf{ψ(x) : |x| ≥ n}

we deduce

P (τ > τn) ≥ ψ(x)

αn

which implies (4.7), so the recurrence properly holds.
On the bounded domain Bn \ O we have{

un(X(t))1(t<τn∧τ) + h(X(τ))1(t≥τ=τn)

is a Ft −martingale.
(4.15)

Since un(X(t))1(t<τn∧τ) increases to u(X(t))1(t<τ) and 1(τ<τn) decreases to zero, we obtain
(4.5). 2
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Remark 4.2 Without the assumption (2.25) we need to suppose that the boundary function
data h is smooth enough and that condition (3.11) holds in order to look for strong solution
on the bounded domain Bn \O, cf. Theorem 3.1. Actually, un is the probability solution of
(4.13). This argument is well known for degenerate diffusion processes, e.g. Stroock and
Varadhan [21], Menaldi [16], Robin [20]. An alternative approach is to use the so-called
viscosity solutions (cf. Crandall et al. [5]), which is better adapted to nonlinear problem.
2

Remark 4.3 As mentioned before, if we want to prescribe the data function h only on the
boundary ∂O, then a canonical “zero-extension” is assumed, i.e. the two-steps (3.4), (3.5)
is used to solve (3.3). In our case, a simple Borel measurable and bounded data function h
on ∂O is not good enough to give a W 1,p(Bn\O) meaning to (4.13), the boundary condition
can be regarded in a sense similar to (4.11). 2

In order to study the homogeneous exterior Dirichlet problem (4.2) we need to add the
condition

(L+ I)ψ ≤ −1 in IRd \ O (4.16)

to the function ψ satisfying (4.3).

Theorem 4.4 (Positive Recurrence) Let the assumptions (1.4), (1.5), (1.8), (1.9),
(1.10), (3.7), (3.9), (4.3), (4.16) and

f ∈ L∞(IRd \ O) (4.17)

hold. Then the homogeneous exterior Dirichlet problem (4.2) has a unique probability
solution [i.e. (4.6) is satisfied] u such that u/ψ is bounded. Moreover, u belongs to
W 2,p

loc (IR
d \ O), for any p <∞,

−(L+ I)u = f a.e. in IRd \ O (4.18)

and the stochastic representation (4.10) is valid.

Proof First, by linearity, we may consider the problem for f+ and f− independently.
This allows us to assume f ≥ 0, without any loss of generality.

Again we proceed as in Bensoussan [1] to prove the existence and as in Khasminskii [12]
to obtain the uniqueness, similar to Theorem 4.1.

On the bounded domain Bn \ O we consider the (homogeneous) Dirichlet problem{
−(L+ I)un = f in Bn \ O,

un = 0 in O ∪ (IRd \Bn).
(4.19)

The weak maximum principle (cf. Proposition 3.9) implies un ≥ 0 and un ≥ um, for n > m.
Similarly, the weak maximum principle applied to the function un − cψ, with c ≥ ∥f∥L∞ ,
yields an uniform bound for the increasing sequence un, i.e.

0 ≤ um ≤ un ≤ ψ∥f∥L∞ , ∀m < n. (4.20)
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Thus, the almost local estimate (cf. Proposition 2.4) proves that the sequence {un} is
uniformly bounded in W 2,p

loc (IR
d \ O), for any p <∞ and that (4.18) holds for the limiting

function u.
To show the validity of the positive recurrence property, we start with

E{ψ(X(t ∧ τ ∧ τn)) | X(0) = 0} = ψ(x) +

+E{
∫ t∧τ∧τn

0
(L+ I)ψ(X(s))ds | X(0) = x},

and in view of (4.16), as t→ ∞ we get

E{τ ∧ τn | X(0) = x} ≤ ψ(x), ∀x ∈ IRd \ O,

where τn is the first exit time from Bn. This proves (4.9).
Now, as in (4.15), on the bounded domain Bn \ O we have un(X(t))1(t<τn∧τ) +

∫ τn∧τ∧t

0
f(X(s))ds

is a Ft −martingale.

Since un(X(t))1(t<τn∧τ) increases to u(X(t))1(t<τ) we obtain (4.6), even if un is unbounded.
2

Remark 4.5 If we add the assumption (3.11) with 0 ≤ γ1 < 1/d, d < p < 1/γ1, then the
arguments of the strong solution (cf. Theorem 3.1) apply for the exterior Dirichlet problem
(4.1) [if h belongs to W 2,p(O)] and (4.2), i.e. the solutions of (4.13) and (4.19) un are
in W 2,p(Bn \ O) and the limiting function u belongs to W 2,p(B \ O), for any ball B ⊂ O.
For instance, we may use an almost local estimate of the type (2.14) up the boundary ∂O.
However, it is not developed here. 2

Usually we seek a Liapunov function ψ as the logarithm of a positive definite quadratic
form, e.g.

ψ(x) = ln(|x|2 + 1). (4.21)

Calculations show that

(L+ I)ψ(x) ≥ −c, ∀x, |x| ≥ r1 (4.22)

which provides a Liapunov function for any domain outside of the ball of center 0 and
radius r1.

Other types of Liapunov functions are the one considered in [17], namely

ψq(x) = (2 + |x|2)q/2, q > 0. (4.23)

We have proved that if the constants r1 or c1 in (1.6) are sufficiently large, then the function
ψq given by (4.23) satisfies

Lψq(x) + Iψq(x) ≤ −αqψq(x), ∀x, |x| ≥ r1 (4.24)
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for a positive constant αq depending only on the various bounds imposed by the assump-
tions (1.4), (1.6) and the extra condition

sup
x

∫
|z|≥1

|z|qM(x, dz) <∞. (4.25)

It is clear that also we have

|Lψq(x)|+ |Iψq(x)| ≤ cqψq(x), ∀x, |x| ≥ r1 (4.26)

for some constant cq. At this point, most of the results valid for the operator −(L+ I)+λ
can be extended to the case λ = 0. In particular a variational formulation of (4.2) is studied
and the estimate

∥uψ−q∥L∞ ≤ 1

αq

∥fψ−q∥L∞ (4.27)

holds.

5. Invariant Measure

First, we recall a classic result on ergodicity of Doob (cf. Bensoussan [1]).
Let (X,F) be compact metric space endowed with the Borel σ-algebra. Suppose that

P is a linear operator from B(X) into itself (the Banach space of bounded and Borel
measurable functions from X into IR) such that{

∥Pφ∥ ≤ ∥φ∥, ∀φ ∈ B(X),
Pφ = φ if φ = 1,

(5.1)

where ∥ · ∥ denotes the supremum norm in X. Define

λ(x, y, F ) = P1F (x)− P1F (y), (5.2)

for any x, y in X and any Borel subset F of X, where 1F is the characteristic function of
the set B.

Theorem 5.1 (Doob’s Ergodicity) Under the assumptions (5.1) and

∃δ > 0 / λ(x, y, F ) ≤ 1− δ, ∀x, y ∈ X, ∀F ∈ F , (5.3)

there exists a unique probability measure on (X,F) denoted by µ such that

|P nφ(x)−
∫
X
φdµ| ≤ Ke−ρn∥φ∥, (5.4)

where ρ = −ℓn(1 − δ), K = 2/(1 − δ). The measure µ is the unique invariant probability
on (X,F), i.e. the unique probability on X such that∫

X
φdµ =

∫
X
Pφdµ, ∀φ ∈ B(X).2 (5.5)
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Usually, this result is applied after verifying the Doeblin condition (5.3), which is based
on the strict positivity of the transition density function of the underlying Markov process.
This strict positivity of the Green function is a natural consequence of the parabolic strong
maximum principle.

Let O be a sufficiently large smooth and bounded domain (e.g. a ball) so that the
non-homogeneous exterior Dirichlet problem{

(L+ I)u = 0 in IRd \ O,
u = φ in O, (5.6)

can be solved inW 2,p
loc (IR

d\O)∩W 1,p
loc (IR

d)∩L∞(IRd) for non-negative φ inW 1,p(O)∩L∞(IRd).
Now, consider the non-homogeneous interior Dirichlet problem in a larger domain (ball)
B ⊃ O,

{
(L+ I)v = 0 in B,

v = u in IRd \B, (5.7)

which can be solved in W 2,p
loc (B)∩W 1,p(B)∩L∞(IRd), for any v in W 1,p

loc (IR
d \O)∩L∞(IRd).

Therefore we can define the linear operator{
P : W 1,p(O) ∩ L∞(IRd) →W 1,p(O) ∩ L∞(IRd),
Pφ = v,

(5.8)

where the solution u of (5.7) has been restricted to the domain O. The point is to prove
that P is an ergodic operator, i.e. defining λ by (5.2) we have (5.3) for X = O.

By means of the weak maximum principle, we can prove that

φ ≥ 0 implies Pφ ≥ 0. (5.9)

Since Pφ = 1 for φ = 1, the operator P can be identified with a probability measure on
(X,F), so that P : B(O) → B(O),

Pφ(x) =
∫
X
φ(y)P (x, dy).

(5.10)

Proposition 5.2 Under the assumptions (1.4), (1.5), (1.6), (1.8), (1.9) (1.10), (2.25),
(3.7) and (3.9) we have (5.3) for X = O.

Proof Similarly to Bensoussan [1], an argument by contradiction based on the strong
maximum principle yields the result as follows.

Assuming that (5.3) is not true, we can find sequences {xk, yk, Fk} such that

uk(xk) → 1, uk(yk) → 0, (5.11)

where xk, yk belong to O and vk = P1Fk
. Actually, we may replace 1Fk

by a smooth
function φk, 0 ≤ φk ≤ 1, without any loss of generality. Thus, P is defined by (5.6) and
(5.7). By means of the almost local Lp-estimates (cf. Proposition 2.4) we see that uk is
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bounded in W 2,p
loc (B \ O) ∩ L∞(IRd). Therefore, uk is also bounded in W 2,p

loc (B) ∩ L∞(IRd).
Hence, a subsequence of {uk} converges to u0, uniformly in B and weakly in W 2,p

loc (B),
where u0 is a solution of

(L+ I)u0 = 0 in B. (5.12)

Since {xk} and {yk} are in O, we can find two limit point x0 and y0 such that

u0(x0) = 1, u0(y0) = 0, x0, y0 ∈ O, (5.13)

after using (4.8). Thus x0 is an interior point in B where u0 attains its global maximum
value. Applying the strong maximum principle (cf. Proposition 3.4) on B for (5.12) we
deduce that u0 must be a constant. Thus gives a contradiction with (5.10). 2

We can associate to the operator P a Markov’s chain {Yn} with states in O as follows:

Yn = X(τn), (5.14)

where τn is the exit time from B after attending the set IRd \ ⊗, i.e. by induction with
τ0 = 0 we have{

τ
′
n = inf{t ≥ τn−1 : X(t) ∈ O},
τn = inf{t ≥ τ

′
n : X(t) ∈ IRd \B}, (5.15)

for n = 1, 2, . . .. It is clear that the representation formula in the previous sections shows
that

Pφ(x) = Exφ(Yn) = Exφ(Y1) (5.16)

for any x in O.
By means of Theorem 5.1 and Proposition 5.2 we can find a unique invariant probability

measure for the operator P (i.e. the Markov’s chain {Yn}), denoted by µ̃. Then we define
a measure ν̃ on IRd (unnormalized) by∫

IRd
f(x)ν̃(dx) =

∫
O
µ̃(dx)Ex{

∫ τ1

0
f(X(t))dt}. (5.17)

Notice that if

u(x) =
∫ τ1

0
f(X(t))dt (5.18)

then u = u′′, where
u′(x) =

∫ τ ′1
f(X(t))dt,

u′′(x) =
∫ τ1

τ ′1

f(X(t))dt+ u′(X(τ ′1)),
(5.19)

and {
−(L+ I)u′ = f in IRd \ O,

u′ = 0 in O, (5.20)
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{
−(L+ I)u′′ = f in B,

u′′ = u′ in IRd \B. (5.21)

Therefore, going back to the definition of the operator P and the convergence (5.4) we
have {

(L+ I)vn = 0 in IRd \ O,
vn = un in O. (5.22)

{
(L+ I)un = 0 in B,

un = vn−1 in IRd \B, (5.23)

with v0 = u. Hence∫
IRd
f(x)ν̃(dx) = lim

n
un =

∫
⊗
P nv0(x)µ(dx), (5.24)

which is a constant in x. If we take f = 1, the maximum principle applied to (5.20) and
(5.21) implies{

inf{Ex(τ
′
1) : x ∈ O} ≥ c0 > 0,

sup{Ex(τ1) : x ∈ O} ≤ C0 <∞.
(5.25)

In particular, ν̃(IRd) <∞.
Define the probability measure ν by

ν(F ) =
ν̃(F )

ν̃(IRd)
, ∀F ∈ B(IRd), (5.26)

with ν̃ given by (5.17). We have

Theorem 5.3 (Invariant Measure) Let the assumptions (1.4), (1.5), (1.6), (1.8), (1.9),
(1.10), (2.25), (3.7) and (3.9) hold. Then ν, given by (5.26), is an invariant probability
measure for the diffusion with jumps in IRd, i.e.∫

IRd
Ex{f(X(t))}ν(dx) =

∫
IRd
f(x)ν(dx), (5.27)

for any bounded and Borel measurable function f .

Proof Clearly, it suffices to prove (5.27) with ν̃ instead of ν and for smooth functions
f , say continuous with compact support.

From the definition of ν̃ we get∫
IRd
Ex{f(X(t))}ν̃(dx) =

∫
O
µ̃(dx)Ex{

∫ τ1

0
g(X(s))ds},

where

g(x) = Ex{f(X(t))}.
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By the Markov’s property we have

Ex{
∫ τ1

0
g(X(s))ds} = Ex{

∫ τ1

0
f(X(t+ s))ds},

and therefore∫
IRd
Ex{f(X(t))}ν̃(dx) =

∫
O
µ̃(dx)Ex{

∫ t+τ1

t
f(X(s))ds}. (5.28)

If we write the integral in the variable s on the region [t, t + τ1] into three pieces, on
[0, τ1], on [τ1, τ1 + t] and on [0, t], we obtain

Ex{
∫ τ1+t

τ1
f(X(s))ds} = Ex{EX1 [

∫ t

0
f(X(s))ds]} = Exg(Y1),

where {Yn} is the Markov’s chain associated with the operator P , by (5.14). Since µ̃ is an
invariant probability measure for the Markov’s chain, we have∫

O
µ̃(dx)Ex{

∫ τ1+t

τ1
f(X(s))ds} =

∫
O
µ̃(dx)Ex{

∫ t

0
f(X(s))ds}.

Thus, the integral in s over [τ1, τ1 + t] cancels with the integral over [0, t] and we deduce
from (5.28)∫

IRd
Ex{f(X(t))}ν̃(dx) =

∫
O
µ̃(dx)Ex{

∫ τ1

0
f(X(s))ds},

which is indeed the required invariant condition. 2
As in Khasminskii [12, pp. 121–124] (Theorem 5.1 and its Corollaries), we can prove

the following results.

Corollary 5.4 Under the assumptions of Theorem 5.3 the invariant probability measure
ν is unique and we have

lim
T→∞

1

T

∫ T

0
Ex{f(X(t))}dt =

∫
IRd
f(x)ν(dx), (5.29)

for any bounded and Borel measurable function f . 2

Remark 5.5 In view of the definition (5.17). . . , (5.24) of the invariant measure and the
results in previous sections, we see that f = 0 a.e. implies ν(f) = 0. Thus the measure ν
is absolutely continuous w.r.t the Lebesgue measure. We can write∫

IRd
f(x)ν(dx) =

∫
IRd
f(x)m(x)dx, (5.30)

where the invariant density m(x) satisfies

m ≥ 0,
∫
IRd
m(x)dx = 1. (5.31)

Moreover, if Φ⋆(t) denotes the dual semigroup then Φ⋆(t)m = m, ∀t ≥ 0. 2
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Now, we want to consider the linear integro-differential equation in the whole space,
i.e.

−(L+ I)u+ a0u = f in IRd (5.32)

and

−(L+ I)u = f in IRd (5.33)

where a0, f are given (bounded) functions, a0(x) ≥ α0 > 0.
Except for the fact that the coefficients bi(x) have linear growth, the treatment of (5.32)

is rather standard. We state the results with only some indication of the arguments used
to prove them.

Consider the function

ψq,λ(x) = (λ+ |x|2)q/2, q > 0, λ ≥ 1. (5.34)

As in Section 4, we get

Lψq,λ(x) = q
[
(q − 2)(λ+ |x|2)−2

∑
i,j

aij(x)xixj +

+(λ+ |x|2)−1
∑
i

(aii(x) + ai(x)xi) +

+(λ+ |x|2)−1
∑
i

bi(x)xi
]
ψq,λ(x).

Define α1(q, λ) = supx∈IRd

{
(q − 2)(λ+ |x|2)−2∑

i,j aij(x)xixj+

+(λ+ |x|2)−1∑
i(aii(x) + ai(x)xi)

}
,

(5.35)

α2(q, λ) = sup
x∈IRd

{
(λ+ |x|2)−1

∑
i

bi(x)xi
}
. (5.36)

By means of the assumptions (1.4) and (3.9) we have

α1(q, λ) ≤ sup
x

{qc−1
0 |x|2(λ+ |x|2)−2 +

+(dc−1
0 + c1|x|)(λ+ |x|2)−1} ≤ C√

λ
,

for a constant C independent of λ ≥ 1. Similarly, the assumption (1.6) [even with c1 = 0]
implies

α2(q, λ) ≤ sup
|x|≤r1

{(λ+ |x|2)−1
∑
i

bi(x)xi} ≤ C

λ

for some constant C depending only on r1 and the bound of bi(x) for |x| ≤ r1. On the
other hand, since

|∇ψq,λ(x+ z)| ≤ q(2 + |z|2)
q−1
2 (λ+ |x|2)

q−1
2 ,

|∇2ψq,λ(x+ z)| ≤ q(q − 1)(2 + |z|2)q/2−1(λ+ |x|2)q/2−1,
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we obtain

|Iψq,λ(x)| ≤ qα3(q, λ)ψq,λ(x),

where

α3(q, λ) = sup
x

{
λ−

1
2

∫
|z|≥1

|z|(2 + |z|2)
q−1
2 M(x, dz) + (5.37)

+λ−13q/2−1
∫
|z|<1

|z|2M(x, dz)
}
.

Collecting all, we deduce

(L+ I)ψq,λ ≤ α(q, λ)ψq,λ in IRd (5.38)

and

|Lψq,λ|+ |Iψq,λ| ≤ Cq,λψq,λ in IRd, (5.39)

for some constant Cq,λ and α(q, λ) =
∑

i αi(q, λ),

α(q, λ) → 0 as λ→ ∞, (5.40)

for any fixed q > 0.

Proposition 5.6 (Positive Zero-Order Coefficient) Let the assumptions (1.4), (1.5),
(1.6) [even with c1 = 0], (1.8), (1.9), (1.10), (2.25), (3.7), (3.9), (4.48) and

fψ−q, a0 ∈ L∞(IRd), a0(x) ≥ α0 > 0 ∀x, (5.41)

hold. Then the integro-differential equation (5.32) possesses one and only one solution u
in W 2,p

loc (IR
d) such that uψ−q belongs to L∞(IRd). Moreover we have estimate

∥uψ−q,λ∥L∞(IRd) ≤
1

α0 − α(q, λ)
∥fψ−q,λ∥L∞(IRd), (5.42)

where α(q, λ) is given by (5.38), and the following stochastic representation is valid

u(x) = E{
∫ ∞

0
f(X(t)) exp(−

∫ t

0
a0(X(s))ds)dt}. (5.43)

Proof The arguments are very similar to those of Theorem 4.4. A key point is the
property (5.38) on the constant α(q, λ).

The weak maximum principle yields the a priori estimate (5.42). Next the regularization
technique applied to the variational form of (5.32) provides the desired result. 2

To study the linear equation without a zero-order coefficient (5.33) the arguments are
very different from the above.

We consider the space

L∞
q (IRd) = {φ : φψ−q ∈ L∞(IRd)}, (5.44)

for q > 0 and ψ−q(x) = (2 + |x|2)−q/2. The linear equation is then{
u ∈ W 2,p

loc (IR
d) ∩ L∞

q (IRd), p ≥ d, q > 0,

−(L+ I)u = f a.e. in IRd.
(5.45)
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Theorem 5.7 (Linear Equation) Let the assumptions (1.4) , . . . , (1.10), (2.25), (3.7),
(3.9), (4.48) and

f ∈ L∞
q (IRd), q > 0

hold. The linear integro-differential equation (5.45) has a solution u (unique up to an
additive constant) if and only f has a zero-mean, i.e.

ν(f)
.
=
∫
IRd
f(x)ν(dx) = 0, (5.46)

where ν(dx) is the unique invariant probability measure defined by (5.26).

Proof First we remark that the a priori estimate of the type (4.27) applied to the
exterior Dirichlet problem (5.21) lets us conclude that the property (5.29) on the invariant
probability measure ν remains valid for any Borel measurable function f such that fψ−q

is bounded.
To prove that the solution is unique up to an additive constant, we denote by u0 the

solution of the equation (5.45) for f = 0. We have

Ex{u0(X(t))} = u0(x),

i.e.

1

T

∫ T

0
Ex{u0(X(t))}dt = u0(x),

By means of Corollary 5.4, as T → ∞ we deduce

ν(u0) = u0(x), ∀x ∈ IRd

so that u0 is constant. Notice that it is possible to use an argument based on the strong
maximum principle to obtain the same result.

In order to construct a solution of (5.45) we proceed as in (5.20), . . . , (5.21). For given
f satisfying ν(f) = 0 we define u0 as the solution of an interior Dirichlet problem{

−(L+ I)u0 = f in B,
u0 = 0 in IRd \B,

and v0 as the solution of an exterior Dirichlet problem{
−(L+ I)v0 = f in IRd \ O,

v0 = u0 in O.

Since

∥u0∥L∞(B) ≤ C0∥f∥L∞(B)

we get

∥v0ψ−q∥L∞(IRd\O) ≤ Cq∥fψ−q∥L∞(IRd).
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Now, define the sequences {vn}∞n=1 and {un}∞n=1 by{
(L+ I)un = 0 in B,

un = vn−1 in IRd \B,
and {

(L+ I)vn = 0 in IRd \ O,
vn = un in O.

Hence, if we set ũn = u0 + u1 + · · ·+ un and ṽn = v0 + v1 + · · ·+ vn we obtain{
−(L+ I)ũn = f in B,

ũn = ṽn−1 in IRd \B, (5.47)

and {
−(L+ I)ṽn = f in IRd \ O,

ṽn = ũn in O. (5.48)

We have the estimates

∥ũnψ−q∥L∞(B) ≤ Cq(∥fψ−q∥L∞(B) + ∥ṽn−1ψ−q∥L∞(IRd\B)) (5.49)

and

∥ṽnψ−q∥L∞(IRd\O) ≤ Cq(∥fψ−q∥L∞(IRd\O) + ∥ũnψ−q∥L∞(O)). (5.50)

Since

0 = ν̃(f) = lim
n
un = µ(v0),

the ergodic estimates (5.4) of Theorem 5.1 proves that

∥un∥L∞(O) ≤ Kqe
−ρn∥fψ−q∥L∞(IRd),

which implies that ũn converges in L∞(O) and that

∥ũn∥L∞(O) ≤
Kq

1− e−ρ
∥fψ−q∥L∞(IRd). (5.51)

Therefore, ṽn and ũn converges in L∞
q (IRd) to ṽ and ũ, solutions of{

−(L+ I)ũ = f in B,
ũ = ṽ in IRd \B. (5.52)

and {
−(L+ I)ṽ = f in IRd \ O,

ṽ = ũ in O. (5.53)

Hence ũ = ṽ in B \ O, and the function

u(x) =

{
ũ(x) if x ∈ B,
ṽ(x) if x ∈ IRd \ O, (5.54)

satisfies (5.45), and we have the a priori estimate

∥uψ−q∥L∞(IRd) ≤ Cq∥fψ−q∥L∞(IRd), (5.55)

for some constant Cq > 0. 2
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