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Abstract

Our purpose is to study an ergodic linear equation associated to diffusion pro-
cesses with jumps in the whole space. This integro-differential equation plays a
fundamental role in ergodic control problems of second order Markov processes. The
key result is to prove the existence and uniqueness of an invariant density function
for a jump diffusion, whose lower order coefficients are only Borel measurable. Based
on this invariant probability, existence and uniqueness (up to an additive constant)
of solutions to the ergodic linear equation are established.
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Introduction

Ergodic properties of diffusion processes and its relation with partial differential equations
are well know in the classic literature. However, similar questions for diffusion processes
with jumps are not so popular, only recently was some attention given, cf. [18], Garroni
and Menaldi [8] and reference therein.

Due to applications in stochastic control (in particular the action of a feedback func-
tion), we have to be able to treat diffusions with jumps with only Borel measurable lower
order coefficients (where the control is applied). This gives particular complications, even
in the purely diffusion case, cf. Bensoussan [1]. Moreover, since we are interested in the
whole space, an assumption relative to the existence of a Liapunov function is needed. This
produce a drift of linear growth at infinity and the existence and regularity of the Green
function or transition density function (even in the purely partial differential equations
case) as proved by Garroni and Menaldi [8] does not apply.

Most of the arguments are based on the so-called Doeblin condition, which in turn is
based in the strict positivity of the Green functions deduced from the strong maximum
principle. We refer to the books of Borkar [4] and Ethier and Kurtz [6] for a related
discussion.

Now, we describe, without all the technical assumptions, the ergodic problem we want
to be able to consider. Let k(x) be a Borel measurable function from IR* into V (i.e.,
a measurable feedback). The dynamic of the system (for a given feedback) follows a
diffusion with jumps in IR?, i.e. a (strong) Markov process (Q, P, X;,t > 0) with semigroup
(Px(t),t > 0) and infinitesimal generator Ay, as discussed in the next section. A long run
average cost is associated to the controlled system by

J) = [l k@)pdr). (0.1)

where f is the running cost and gy is the invariant probability measure associated with
the system. Usually the purpose is to give a characterization of the optimal cost

A= inf{J(k) : k()} (0.2)

and to construct an optimal feedback control k.
A formal application of the dynamic principle (e.g. Fleming and Soner [7]) yields the
following Hamilton-Jacobi-Bellman equation

i%f{Aku(x)} =\ in RY, (0.3)

where the infimum is calculated for each fixed z, and kK = v in V. An optimal feedback
control is obtained as the minimizer k(z) in (0.3).

In order to study the Hamilton-Jacobi-Bellman equation (0.3) we need some previous
discussion. This research is dedicated to the linear problem. A subsequent paper [22] will
deal with the about stated problem. In Section 1, we give some details on the construction
of the diffusion with jumps in the whole space IR?, under convenient assumptions. Next,
most of the effort is dedicated to the construction of the invariant probability measure
i, for any measurable feedback k. This will extends classic results, e.g. Bensoussan [1],



Khasminskii [12]. Thus, in Section 2, we study some preliminary properties on the integro-
differential operator needed later. In Section 3, we give a detailed summary of the (linear)
interior Dirichlet problem for the integro-differential operator Ay, which is mainly based
Bensoussan and Lions [3], Garroni and Menaldi [8], Gimbert and Lions [11]. In Section 4,
we consider the (linear) exterior Dirichlet problem. This will give some conditions under
which the diffusion with jumps is (positive) recurrent. Finally, in Section 5, we construct
the invariant probability measure.

1. Diffusions with Jumps

Consider an integro-differential operator of the form

lopla) = [ ol +2) = ola) = = Vip(a)] Mol ), (11)

€T

where the Levy kernel My(z,dz) is a Radon measure on IR = IR*\ {0} for any fixed z,
and satisfies

/z|<1 |Z|2M0($7d2) + /|Z|>1 |Z|MQ($’dz) < 00, Vo € IR,d. (12)

It is clear that this operator is associated with a jump process.
Similarly, let Ly be a second order uniformly elliptic operator associated with a diffusion
process in the whole space, i.e.

d d

Lo = Z a;;(x)0;; + Zbi(a:)é?i (1.3)

ij=1 i=1

where the coefficients (a;;) are bounded and Lipschitz continuous, i.e. for some ¢y, M > 0
and 0 < a <1,

d
colél® < Z aij(2)&& < ¢, '€)?, Va,f€ RY,

ij=1
|aij(x) — ai;(2')] < M|z — 2|, V2’ € RY,

(1.4)

a;; = aj;, and the first order coefficients (b;) are Lipschitz continuous, i.e. for some M > 0,

bi(0) =0, i=1,....d. :
The fact that b = (b;) vanishes on the origin and on assumption of the type
d
- sz(l‘)xz 2 Cl|x|27 Vo € IRda |I’| Z 71, (16)
i=1

for some constants ¢q,7 > 0, will allow us to show some “stability” on the system (cf.
Section 4)



The Levy kernel My(x,dz) is assumed to have a particular structure, namely

MZU,A:/ mo(x, ()m(dC), 1.7
(e A)= [ ol Qm(do) (1)
where 7(-) is a o-finite measure on the measurable space (F, F), the functions j(z, () and
mo(z, ) are measurable for (z,¢) in IR x F, and there exist a measurable and positive
function jo(¢) and constants Cy > 0, 1 < v < 2 [y is the order of I] such that for every
x,( we have

{ |]($7C)‘ < ]O(C)a 0< m()(l',C) < 17

QP+ () a(d) < G, e .2 )

the function j(x,() is continuously differentiable in = for any fixed ¢ and there exists a
constant ¢g > 0 such that for any (z, () we have

co < det(1+0Vi(z, () <cyt, VOe€][0,1], (1.9)

where 1 denotes the identity matrix in IR%, V is the gradient operator in z, and det(-)
denotes the determinant of a matrix.

Depending on the assumptions on the coefficients of the operators Ly, Iy and on the
domain O of IR, we can construct the corresponding Markov-Feller process. The reader
is referred to the books by Bensoussan and Lions [3], Gikhman and Skorokhod [9] (among
others) and references therein. Usually, more regularity on the coefficients j(x,() and
mo(z, () is needed, e.g.

{ Imo(z,¢) — mo(a!, )| < M|z — 2’|, Va,z’ € R,
|j(flf,C) —j(ZE,,C)| S j0(<)|l’ - xl|’ VJ],ZE, € Rd?

for some constant M > 0 and the same function jy(¢) as in assumption (1.8). Thus the
integro-differential operator Iy has the form

Iop(a) = [ [o( +(2,0) = ela) = i(x.C) - Vp(a)ma(a. ) (dc). (111)

(1.10)

It is possible to show that the Markov-Feller process associated with the infinitesimal
generator Ly + Iy (which is referred to as the “diffusion with jumps”) has a transition
probability density function Go(z,t,y), which is smooth in some sense (cf. Garroni and
Menaldi [8]).

Since our purpose is to treat control problems, we remark that (in general) the op-
timal feedback is not smooth. This forces us to consider some coefficients (e.g. of first
order) which are only measurable. To that effect, we will use the so-called Girsanov’s
transformation.

Let Q = D(]0,4+00),IR%) be the canonical space of right continuous functions with
left-hand limits w from [0, +00) into IR? endowed with the Skorokhod topology. Denote
by either X; or X (t) the canonical process and by F; the filtration generate by {X; :
s <t} (universally completed and right-continuous). Now let (€2, P°, F}, X;,t > 0) be the
(homogeneous) Markov-Feller process with transition density function Gy(z, t, y) associated
with the integro-differential operator Ly + Iy, i.e. the density w.r.t. the Lebesgue measure
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of PY{X(t) € dy | X(s) = z} is equal to Go(z,t — s, x). For the sake of simplicity, we refer
to (P2, X (t),t > 0) as the above Markov-Feller process, where P2 denote the conditional
probability w.r.t. {X(0) = z}.

Hence, for any smooth function ¢(z) the process

t
Yo(t) = p(X(0) = [ (Lo +Io)e(X(s))ds (1.12)
is a P,-martingale. This follow immediately from the representation
EAp(X(®)} = [, Gola.t.y)e(y)dy+
t
—i—/o ds /Rd Go(x,t —s,9)(Lo + Lo)p(y)dy,

and the Markov property. Moreover, it is also possible to express the process X; as follows

(1.13)

dX () = a2(X (£))dw(t) + /}Rd s (dt, dz) + (X (1))dt, (1.14)

where (w(t),t > 0) is a standard Wiener process in IR%, a'/?(z) is the positive square root
of the matrix (a;;(x)) and b(x) is the vector (b;(x)). The process px is the martingale
measure associated with the process (X(t),t > 0), i.e. if nx(t, A) denotes the integer
random measure defined as the number of jumps of the process X(-) on (0, ] with values
in A C IRY then

,ux(dt, A) + Wx(dt, A) = nx(dt,A), (115)

where px(t, A) is a square integral (local) martingale quasi-left continuous and 7y (¢, A) is
a predictable increasing process obtained via the Doob-Meyer decomposition, and

mx(dt, dz) = My(X (t—), dz)dt, (1.16)

where My(z,dz) is the Levy kernel used to define the integro-differential operator I, given
by (1.1).

Let g(x) = (g1(2), ..., ga(z)) and ¢(z, 2) be functions defined for x in IR?, 2z € IR? such
that

{ gi, ¢ are bounded, measurable and, (1.17)

0<c(z,z) <Co(LAN]z]), Va,z,

where Cj is a constant.
Consider the exponential martingale (e(t),¢ > 0) as the solution of the stochastic
differential equation

{ de(t) = e(®)lrx(®duw(®) + [ x(t 2)px(dt,d2))
e(0) = 1, )

(1.18)

where

rx(t) = a (X (1)g(X (1)),
{ vx(t,2) = zc(X(t),,;q), (1.19)



ie.,

e(t) = exp{/otrx(s)dw(s) +/Ot /]Rf vx (s, 2)pux(ds, dz)—

t t (1.20)
—/0 |rX(s)|2ds—/0 /]Rd[’yx(s,z) “In(1 4 yx (s, 2))]mx(ds, d2)}.
If we denote by
and
Tp(x) = Ipp(x) + /]Rd [o(z + 2) — p(2)]c(z, 2) My(z, dz), (1.22)

then, by means of [t0’s formula one can prove that for any smooth function ¢, the process

t
Zy(t) = o(X(1)) —/0 (L + Dp(X(s))ds (1.23)
is a P,-martingale, where the new probability measure is defined as
dP, = e(t)dP? on F,. (1.24)

Notice that the probability measures P? and P, are absolutely continuous, one with
respect to the other. Also, a representation of the form (1.14) is valid under the new
probability measure P, i.e.

dX(t) = a2(X()dw(t) + X)) + g(X (1), v(t))]dt + /]Rdzuv(dt,dz), (1.25)

where (w(t),t > 0) is again a standard Wiener process and p, is the martingale measure
associated with the (canonical) process X (t) under the new measure P,.

Remark 1.1 Due to the linear growth of the coefficients b;(x),i = 1,...,d, we can not use
directly the construction in Garroni and Menaldi [8] of the Green function (or transition
density). O

2. Preliminary Properties
Before considering the interior and exterior Dirichlet problem for the linear operator L+ 1,

we need to point-out some essential properties of the integro-differential operator used in
our discussion later on. As mentioned in the previous section, we assume

gi, ¢ are bounded, measurable and,
0<c(z,z) <Co(lAN]z]), Va,z,



and define the first order operators

Lip(a) = [ ea+2) = o@)le(e, 2)Ma(a, dz). (23)

*

Thus, the infinitesimal generator A associated with the diffusion with jumps has the form
(Lo + L) + (lo + L), (2.4)

where Ly and I are the principal part given by (1.3) and (1.1), respectively.

The main assumptions for Ly are (1.4) and (1.5), i.e., uniformly elliptic second or-
der differential operator with Lipschitz coefficients, bounded second order coefficients and
without a zero order coefficient. Condition (1.6) is used to construct a Liapunov function,
which will be discussed later. For the integro-differential operator I, we assume (1.2),
which briefly states that I is the sum of an almost local second order term and a bounded
(zero-order) non-local operator. Conditions (1.7), ..., (1.10) specify the xz-dependency of
the kernel (measure, singular at zero but smooth at infinity) My(z,dz) in (1.1), so that a
representation (1.11) is valid. On the other hand, L; is a first order differential operator
with (Borel) measurable and bounded coefficients and without a zero order coefficient. The
Levy kernel

My (z,dz) = c(x, z) My(x,dz) (2.5)

associated with the integro-differential operator I; is of first order [cf. assumption (1.12)
on ¢(x, z)], but the density m;(z,z) is only (Borel) measurable and bounded instead of
Lipschitz continuous and bounded as in (1.10).

Denote by C* = C*(0), O closure of an open subset O of R, the space of Holder
continuous (with exponent a) and bounded function on O, 0 < a < 1, for a = 0 the space
of continuous and bounded functions and for o = 1 the space of Lipschitz continuous and
bounded functions. On the other hand, L? = LP(O), 1 < p < oo denotes the Lebesgue
space of p-integrable (essentially bounded for p = 0o) functions. If O is an open subset of
R¢ and € > 0, then O, = O + £B; where B is the open ball centered at the origin with
radius 1.

Proposition 2.1 (e-estimates) Let O be an open subset of R and let the assumptions
(1.7),...,(1.9) hold. Then for any given € > 0 there exists C. > 0 such that for any smooth
function ¢ we have

Mol o) < el VZ¢lloo.) + CellVeplleco) + N6l ome); (2.6)

where V2 is the Hessian of o (i.e., the matriz of all second order partial derivatives) and
Vi the gradient of p. Similarly, if assumption (1.17) relative to c(x, z) holds then

1116l Lr(0) < ellVelliro.) + Celloll rme)- (2.7)
Moreover, if assumption (1.10) holds then

Hoellco@) < el VP¢llce@.) + ClllVellca@) + lllowms)- (2.8)



Proof. We refer to Garroni and Menaldi [8, pp. 52-57] for the main argument. For
instance, let us take

hip(w) = [ [ip(a + (2, O)) = ela)ma (. ) (do),
with
ma(z,¢) = ez, j(x, ¢))mo(x, ().
By means of (1.8) and (1.12) we obtain
0 <mu(z,¢) < Co(LAJo(C))-
Since

oo+ §(5,0)) — o(a) = [ Vol +0j(2,Q)) - i, Ot

we may define

L) = [0 [ Vipla+0j(x.)) - j(a. (e, Om(dC).
with F,={CeF : 0<j()<n}, n>0

to get

[l oe0) < C)IVell (o, (2.9)
and

H1¢llzro) < g ' CIIVelio,), (2.10)
where

= Co [, 1o(QP(1 +30(Q)) (),

and ¢y the constant in assumption (1.9). Notice that © — = + j(z,() is a continuously
differentiable 1-1 map, so that is preserves zero-measure sets [justifying (2.9)] and it allows
a change of variables to establish (2.10). Because O, is monotone in n and C(n) — 0 as
n — 0, we deduce from (2.9) and (2.10) the first term of (2.7) for p = co and p = 1.

On the other hand,

hip(@) = hyp(@) = [ lp(e +j(@,0) = el@)ma (@, )m(d)

n

where

Fe={CeF : jol¢) =}
Because

a4+~ [ mie,Om(d) <

mn
where C' depends only on the constants ¢y in assumptions (1.8) and (1.12), we obtain the
estimate (2.7) with C. = Cn~™Y(1+1n) for p = oo and C. = c;'Cn~ (1 +1n) for p=1. It is
clear that n > 0 is selected so small that n < ¢ and C(n) < e.
Similar arguments are used for 1 < p < oo and the other estimates (2.6) and (2.8). O
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Remark 2.2 The estimates in Proposition 2.1 can be used with O = R?, so that in this
case O, = R? too. For instance, in the sense of estimate (2.7) we say that the integro-
differential operator Iy is the sum of an “almost local first-order” term (i.e. I,,) and a
bounded operator. O

Remark 2.3 It is possible to normalize the second constant (C.) instead of the first con-
stant (€) in the estimates of Proposition 2.1. For instance, we have

Hopll ooy < al)IV*¢llzro.) + Cole IVlloo) + €6l o may). (2.11)

and

il zro) < (@)IVellzrio.) + Coe™ Il Lome), (2.12)
where a(e) — 0 as € — 0 and Cy > 0 is a constant independent of € and p. Moreover,
if O is bounded then we can replace ||| oray in estimates (2.6), (2.7), (2.11), (212) for
[dz’am(@)]l/pHgoHLoo(Rd). Furthermore, if Iy is at most of order v [cf. condition (1.8) on v/
Uand 72

then we can estimate a(e) as Ce*™7 and improve the exponent of e~ as '™ and

e 7. d

A direct application of Proposition 2.1 is the “almost local estimates” for the integro-
differential operator. For instance we have

Proposition 2.4 (almost local estimates) Let O’ C O be bounded open subsets of IR?
with dist(00’,00) > & > 0. Suppose u in W.P(O)N L*®(RY),1 < p < oo, is a solution of
the equation

Lou+ Iou=f in O, (2.13)

where the coefficients satisfy (1.4), (1.5), (1.7), (1.8) and (1.9). Then there exists a con-
stant ¢, depending only on d, p, 6, diam(Q) and the bounds imposed through the assumptions,
such that

ullwrory < C [l fllzo0) + Nt oo (] - (2.14)

Proof. We proceed as in Gilbarg and Trudinger [10, Theorem 9.11, p. 236]. For o in
(0, 1), we denote by 7 a cutoff function in CZ(Bg) satisfying 0 < n < 1,7 = 1 in B,g,
n=0for x| > 'R, 0’ =(1+0)/2, |Vn| <4/(1—-0)R, |V?*y| <16/(1 — 0)*R?. Then, for
v = nu we have
1Y aioigollrme < 10 aydiju+2) agdindiu+uy aijdynl| sy <
4,3 4,3 4,3 2
< CllInfllzesn + Infoullrzq +

1
t el Vullee, ) +

1
(1-0)R (1_0.)2R2||u||LP(BR)]

Now
n(z)lou(r) = Iyv(x) — u(z)lon(z) — (),

9



p(r) = /mg [u(x + 2) = u(@)][n(x + 2) = n(x)|Mo(x, d2).
To estimate ¢ we start with

1 1
p(r) = Mo(x, dz) / z - Vu(zr + Qz)oo/ z-Vn(x+60'z)do" +
0 0

l2l<e
+ /MZE[U(.I + 2) —u(z)|[n(x + 2) — n(x)|Mo(x, dz),

fore = (0" -0 )R, 0" =(140")/2, 0" — o' = (1 —0')/2, we get

1
|’%0”LP(B01R) < C[(l_(j)RHVUHLP(BG,,R)ﬂL
1
+<1_(7,)2R2HUHL°°(]R‘1)]'

Since the matrix a;; is positive and R small, a variation of (2.6) shows that
Hovll e, < €l Z aij030||Le(B,, ptB.) +
2y}
+CE[||VUHLP(B[,/R) + HUHLP(IRd)]-
Because v has support in B, g we may replace B,ig + B: by B,1g to obtain
Hovllzr,m < el 2o aioivlles, ) +
irj 1

+C: [Vl r(s, ) + Aok Sl o)

It is clear that

1
Ion|| e <O
HonllLe(s,1,) < (1—0)2R?

Collecting all pieces we deduce

1
H Zaijo-iijLp(BglR) = C[“fHLp(Bo/R) + (CE + m)HVUHLP(BUHR) +
17-]
HO A )l +
€ u
1= o) R\ 1 = o)r/IMlrm
1

+mHUHLoo(]Rd) + 5” ZaijaijU”Lp(Ba,R)},

[2¥)

for some constant C' > 0. Using the fact that (1 —0)/2 = (1 — ¢’) and taking € so small
that C'e < 1/2, we have

(1= o) R - 00l oo, < C| R fll oz +
/L?J

+(1 + R)(l — U/)RHVUHLP(BJIR) +
+(1+ R)(1 — o) R?||ull o, ) + HUHLOO(]Rd)}a

10



for some constant C' > 0. By means of the weighted seminorms

@, = sup {(1-— a)kRkHDkuHLp(BUR)}, k=0,1,2

0<o<1
we obtain
< ORI S oo + ol eyt (2.15)
+(1+ R)®1 + (14 R)®o|.
Hence, the interpolation inequality
C
o, < ey + W, (2.16)
€
provides the desired estimate (2.14), after taking o = % and covering O with a finite

number of ball of radius R/2. O

Remark 2.5 In the estimate (2.14) we may replace the term ||ul|pgay by the following
norm ||ul| ey plus a term of the form

sup {( [ ulw +j(w, 2))[da) """}, (2.17)

where j(x, z) is the function defining Iy. This is to use the norm in [/;’Lm.f(]Rd)1 instead of
in L*(RY). O

Remark 2.6 The continuity of the first order coefficients b;(x) is not used in the proof of
Proposition 2.4, only the fact that (b;(z)) are bounded on each bounded subset O of R* is
needed. Thus, the estimate (2.14) remains true when Ly + Ly and Iy + Iy replace Ly and
Iy in (2.13). O

Let us turn our attention to the operators Lg, L1, Iy, I; acting on the Sobolev spaces
WyP(0), 1 < p < oo, for a bounded open subset O of RY.

It is clear that because the second order coefficients [cf. (1.4)] are Lipschitz and the
first order coefficient bounded in O [cf. (1.5)] we have

Lo : WyP(O) — WP(0) (2.18)
where W=17(O) denotes the dual of Wy9(0), 1/p+ 1/q = 1. We also have
Ly : WyP(O) = LP(O). (2.19)

On the other hand, for the non-local operators Iy, I; we need to have a function defined in
the whole space IRY. For the space Wy™* (O) the natural extension to IR is by zero. So,
unless explicitly stated the contrary, we implicitly assume that any functions in VVO1 (@)
has been extended by zero outside of O, prior the application of the operator Iy or I.

] 1
!i.e., the norm (Supx{f{y: ltyl<1} lu(y)|Pdy}) ",

11



Thus, we regard W, (O) as ng (IRY), functions in W?(IR?) with support in O. Since I
is a first order operator, we have

I - WyP(0) = LP(0). (2.20)
However, to prove that
Iy : Wy P(O) - WLP(0), (2.21)

we need some work. Here we make use of assumption (1.10). Indeed, the critical part is
the “almost local” operator

Lo () = / [o(x +2) = p(x) = 2- V()] Mo(z, d2), (2.22)

|2[<n

for n > 0. First, we re-write (2.22) as

1
Io () = /0 (1—6)do Zv2g0(l‘ +60z) - zMy(x,dz),

|z|<n

and we consider
(oap¥) = [ Toyp(@)(e)da

for smooth (test) functions. Using the explicitly z-dependency of the Levy kernel My(x, dz)
we have to consider an expression of the form

> [ i, 0w + 5w, ))in(, mo(a, )b (x)da. (223)
ik
Denote by T'(z) the inverse diffeomorphism x — = + 6j(z, () for a fixed (0, ). Therefore
0y (Orp(x +0j(x,C))) = 0ulOrsp(x + 05 (2, ()]0 Te(x). Setting
ore(,¢,0) = Zji(a:, Q)jr(x, Q)mo(z, )0 Ty () (2.24)

we can integrate by parts (2.23) to get

- /O Oz + 05(x, C))Oslowe(x, ¢, 0)(x)|dx.

Therefore, in order to establish (2.21) we need to assume that j(z, ¢) has a bounded second
derivative in z, i.e. there exist 6 > 0 such that

V25 Oll ey < €5 V¢ € Fy (2.25)

for some constant C' > 0, and Fy = {( € F : jo(() < d}.
We will state the property (2.21) for further reference.
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Proposition 2.7 Let the assumptions (1.7),...,(1.10) and (2.25) hold. Then for any
given € > 0 there exists C. > 0 such that for any ¢ in W'P(IRY), 1 < p < oo, ¢ in
Wy (0), 1/p+1/q =1, with ||¢HW01,q(O) <1 we have

\/(9¢(x)fo¢(w)dw| < eVl + Cellllome), (2.26)

where O. = O +eBy, O is an smooth domain®. In particular (2.21) is satisfied. Moreover,
we can replace the LP(IRY)-norm by the L>®(IRY)-norm in (2.26) if O is bounded. O

With the same principle of integration by parts and in view of the equality

2p(@)lop(x) = (I*) (@) = [ [olw+2) = p(@)]*Ma(a, d2) (227)

*

we can prove the following estimate

Proposition 2.8 Under the assumptions (1.7),...,(1.9) and (2.25), for any given € > 0
there exists a constant C. > 0 such that

(Tow, ¢) < ellelllel + Celef?, Vo € Hy(0), (2.28)

where (-,-) is the duality pairing in H}(O) and H=(O), O smooth domain in R, and | - ||
and | - | denotes the norms in Hj(O) and L*(O), respectively. O

Remark 2.9 Another key-property used in Bensoussan and Lions [2] is the following
(Top, 07) < Clle™ ], Yy € Hy(O), (2.29)
for some constant C > 0. This can be proved similarly to (2.28). O

Since the first order coefficients of the differential operator Ly have a linear growth, we
are forced to use spaces with some weight at infinity. Denote by L2 = L2(IR?) the Lebesgue
space with the norm

N2
lellz = ([ le@P+ faf?) ) ™, (2.30)
R
and by H! = H'(IRY) the (first order) Sobolev space with the norm
lell = (lellzz + 1Vellz2), (2.31)

for any r > 0. It is clear that L? and H! are Hilbert spaces, and if s < r then

L2C L2, e

22 < llellzz. (2.32)

The same technique used in Proposition 2.7 yields

20 is sufficiently smooth so that Wy?(0) = ng (IRY), i.e. the extension by zero of functions in
Wy *(0) belongs to WP (IRY).
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Proposition 2.10 Under the assumptions (1.7),...,(1.10) and (2.25) for any e > 0 there
exists C. > 0 such that for any ¢, in H}, with |[¢|m <1 we have

| [ ¥@ @)L+ |af?) " dz| < & Vellz: + Cllollzz D (2:33)

Thus, the non-local operator Iy maps H! into its dual, denoted by H~!. However this
is not true for the differential operator Ly, since b;(x) may (and should) growth linearly in
x. For smooth functions ¢, 1) we can bound the expression

o vtonte) - Tt 1 by < (5w 00 (9l ol 230

Therefore, Ly maps only H! | into the dual space H=}. All this gives some complications
when looking at the bilinear form

o _ _/ 2)[Lo + Iolp(z)(1 + |z]?) " da. (2.35)
Any way, we can prove the following result.

Proposition 2.11 Let the assumptions (1.4), (1.5), (1.7),...,(1.10) and (2.5) hold. Then
the bilinear form (2.35) is not continuous in H}, but we have

lao(p, V)| < Co(IVellzz_, 12)

for any @, and some constant Cy. Moreover ag(-,-) is coercive in H}, i.e., there exist
Co, Ao > 0 such that

(2.36)

ao(p, @) + Noleliz = collellin (2.37)

for any ¢. The constants Cy, ¢y and Ny depends only on the dimension d and the bounds
imposed through the hypotheses. O

Therefore, the Lax-Milgram theory did not apply directly and some “regularization” is
needed.

3. Interior Dirichlet Problem

Let L and I be the second order differential operator (1.21) and the integro-differential
operator (1.22) as before. For a given bounded and smooth domain O, we consider first
the interior Dirichlet problem

—(L+Du+au = f in O, (3.1)
u = h in R\ O, '
and next exterior Dirichlet problem
—(L+Du+apu = f in R\ O, (3.2)
v = h in O, '

14



where ag, f, h are given measurable and bounded functions, ag(z) > 0.

Notice the non-local character of the integro-differential operator I. So that for the
interior problem (3.1) [exterior problem (3.2)] we need the solution u to be defined in a
neighborhood of the closure O[IR®\ O, respectively]. Thus, we seck the solution as defined
in the whole space IR,

A natural way to handle the non-homogeneous boundary conditions is the following
two-steps problems. First we do suitable extension of the boundary (or exterior) data h to
the whole space, for instance if & is defined in IR? \ O then we extend h to the whole R¢
preserving its regularity properties. Next, we solve an homogeneous problem (like (3.1)
with A = 0) for u — h, where we use the zero-extension to define the non-local operator I.
With this in mind, we can re-consider the interior Dirichlet problem (3.1) [or the exterior
Dirichlet problem (3.2)] as

{—(L+[)u+a0u = f in O,

W = h i 90. (3.3)

Actually, we means u = v + w where v solves a non-homogeneous Dirichlet boundary
conditions second-order differential equation

—Lv+apw = 0 in O,
{ u = h in 00, (3.4)
and w solves an homogeneous (interior) Dirichlet problem
—(L+DNw+aw = f+1v in O, (3.5)
w = 0 in R\ O, ’

for the whole integro-differential operator L + I. Sufficient conditions to solve the PDE
(3.4) are well known (cf. Gilbarg and Trudinger [10], Ladyzhenskaya and Uraltseva [14]) so
we will state results concerning the existence, uniqueness and regularity for the solutions
of the homogeneous interior Dirichlet problem (3.5) with an integro-differential operator
of the form (1.1) and (1.3).

Therefore, the primary purpose of this section is to state several results relative to the
homogeneous Dirichlet problems (3.3) [with A = 0]. This is re-statement of results from
Bensoussan and Lions [3], Gimbert and Lions [11] with some natural extensions based on
Garroni and Menaldi [8]. For the sake of the reader convenience, we will give some details
on key points of the proofs. Thus recall that [ = Iy + Iy, Iy given by (1.11) and

hip(a) = [ le(e +i(2,0) = p@)lm (z, Om(dC). (36)
where my(x, () is a measurable density satisfying

0 < ml('xv C) < COjO(€)7 V:Evg (37>

for some constant Cy > 0 and the same jy(¢) as in (1.8). The differential operator L takes
the form

d

L= () + Xfarle) + i) (3.8)

=1
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where (a;;) and (b;) satisfy (1.4) and (1.5), and (a;) are measurable and bounded functions
la;(x)] < Cy, V. (3.9)
The (homogeneous) interior Dirichlet problem is

{—(L—l—[)u = f in O,

u = 0 in R%\ O, (3.10)

for a given function f. The assumptions on the coefficients are (1.4), (1.5), (3.9), (1.8),
(1.9), (1.10), (2.25) and (3.7). Before starting the discussion let us mention that because (1)
the higher order coefficients possess bounded derivatives [there are Lipschitz continuous,
cf. (1.4), (1.10)] instead of being only Hoélder continuous and (2) the jump-modulation
function is smooth [cf. (2.25)], the whole integro-differential operator L + I can be put in
“divergence form”. This was not possible under the assumption in Garroni and Menaldi [8].

As it was pointed-out in Bensoussan and Lions [3] and discussed with great detail in
Gimbert and Lions [11], a key difficulty is the fact we do not have (in general) the property
of mapping W2?(O) N Wy () into LP(O) for the whole operator L 4+ I. The problem
is due to the non-local operator I, which requires a zero-extension. The non-variational
formulation of (3.10) would need a solution u in W2”(©) plus a meaning for the boundary
condition, e.g. u in Wy (O) or in C(O). To have such a strong solution some restrictions
on I are needed, for instance

|7(z, Q)|mo(z,¢) < ji1(¢) Vx,( such that
v €0, v+jx) €0, with (3.11)

L ln@rr(ae) < ¢, vp e b, 1]

where C1,v; > 0. The constant 7, (actually 1 + ;) may be referred to as the “order” of
Iy on the boundary 00.

Theorem 3.1 (Strong Solution) Let us assume® (1.4), (1.5), (1.8), (1.9), (1.10), (3.7),
(3.9) and (3.11) with 0 < v, < 1/d. Then for any f in LP(O), d < p < 1/, there exists
unique solution of (3.10) in W*P(QO). Moreover, if u denotes the solution of the non-
homogeneous interior Dirichlet problem (3.1) [with h sufficiently smooth to be able to solve
the PDE (3.4)] then we have the following stochastic representation

B[ FX0) exp(— [ ag(X(5))ds)d
u(xz) = ) ex a s))ds)di+
P j, (3.12)
+h(X(r >>exp<— /0 an(X()dt)},
where T is the first exit time of the process X (t) from the closed set O, i.e.
r=inf{t >0 : X(t) € O}, (3.13)

E.{-} is the mathematical expectation w.r.t. the measure P, (P, X(t),t > 0) is the
diffusion with jumps corresponding to L + 1. O

3In (1.4) and (1.10) we may replace Lipschitz by Hélder continuity for the higher order coefficients.
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Only some indications of the proof is given, since this is a variation [extension in some
sense| of results established in Bensoussan and Lions [3], Gimbert and Lions [11].

Remark 3.2 By taking ag = 0 in the above theorem, we have established the existence and
the uniqueness of the interior Dirichlet problem

{—(L~|—[)u = f in O,

u = h in R\ O, (3.14)

in W?P(O). Notice that u belongs to W>(IR%), but u does not necessarily belongs to
W2’p(]Rd). The gradient Vu may have a jump across the boundary 00. O

Another important point is the Maximum principle in Sobolev spaces, e.g. Krylov [13],
Lions [15]. There are several formulations of this principle. A practical one is the following,
as proved in Gimbert and Lions [11].

Proposition 3.3 (Maximum Principle) Assume (1.4), (1.5), (1.8), (1.9), (1.10), (3.7)
and (3.9). Suppose that a bounded and continuous function u in R? attains its global maz-
imum at point T in O, and that u belongs to W2 (O). Then

loc

lim ess infi, . {Lu(z)} <0,
50 el (3.15)
hr% ess infi,_z{lu(z)} <0.0
E—
Notice that a local version of the e-estimates, namely (here v = 1)
ellepy < el Vol + Celloll Lo (ray (3.16)

where D is bounded and D, = {x € D : dist(x, D) < .} allows the definition of I¢ for
@ in W2 0) N L*(RY), of. Proposition 2.1 for details.

Now, returning to the proof of Theorem 3.1, let u be a solution of (3.1) in W2?(0).
By means of the (weak) maximum principle (Proposition 3.3) applied to the function
A — (u— k), with A8 > |[(f + Lh + Ih)¥|| 1), AB > ||h7||L~(0) and u, 8 as in (2.12),
(2.16), we deduce (by contradiction) that Au — (u — h) > 0. This provides the estimate

v < h+Au, in O, (3.17)
A8 = max{|[h7[[L=0), [(f + Lh + Ih)"[|L=(0)}, '
which implies
ull poe (ay < CUIRlw2oe ey + 1 fllz=(0)), (3.18)

for some constant C' depending (essentially) on |||/ =(0). Hence, the global LP-estimate
for the differential elliptic equation and (3.18) yield the a priori estimate

[ullwero) + llullwremrey < Colllhllwece ey + [l o)) (3.19)

By means of the estimate (3.17), the existence of a solution is proved under the extra
assumption ag(x) > a, with « sufficiently large. Finally, by a fixed-point argument the
extra condition on ag(-) is removed. O

Another interesting strong version of the maximum principle is the following:
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Proposition 3.4 (Strong Maximum Principle) Let (1.4), (1.5), (1.8), (1.9), (1.10),
(3.7) and (3.9) hold. Suppose that a bounded and continuous function u in R attains its
global mazximum at a point T in O. If O is connected, u belongs to I/Vfo(fl(O) and

(L+1)u>0 in O, (3.20)

then u s constant in @. O

The proof is a direct consequence of the weak maximum principle (Proposition 3.3)
and a barrier function. Indeed, as in the classic case (e.g. Protter and Weinberger[19)]), if
we assume that u is not a constant then there is a point zy at which u attains its (global)
maximum value M, and two balls (inside O) B; and Bs such that x( is the center of By
and belongs to the boundary 0By, and for some § > 0

u S M -4 on El \ BQ. (321)

Hence, the contradiction follows after applying Proposition 3.3 to the function w = u+ e,
with 0 < e < §/ max{u(x) : x € By \ B2}. The function % is a barrier function satisfying.

{ >0 in By, < 0 outside B (3.22)

(L+1)u>0 in By

To construct such a barrier function, we call £ and 7 the center and the radius of the ball
B;. Define

u(z) = exp(—Az — 7|*) — exp(—\i?), (3.23)

for a constant A > 0 to be determined below. It is clear that the first two conditions of
(3.22) are satisfied. Computations show that

Lu(w) = [4N*Y ay(@)(z; - T)(w; — 35) = 20 Y aa(x) -
—2A Y (ai(x) + b)) (21 — 72)] [ exp(=Ale — 7))

and

Tu(z) = —QA[/JRd(J: —I) - zM(x,dz)} [exp(—)\|x — J_U|2)} +

*

11 0)do Vu 02)2M(z. d
+/0<—> /Mz- a(x + 02)2M (x, dz).

Since u is concave, we have

{ (L+Da(z) > 2A[exp(—Alx — z[?)| x (3.24)

x [Aeolz — &[? — deg? = (er + Mla|)|z — 1],

where ¢ is the constant in (1.4), M is the constant in (1.5) and

er = sup {(3 lau(e))V2 + [ [eM (i, d2)} (3.25)
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Thus, for any 0 < r < R we can choose A > A(cg, ¢1,7, R) such that
(L+ Du(x) >p>0 if r<|z—2z| <R. (3.26)

In particular (3.22) holds. O
When the integro-differential operator [ is almost of order v = 1, one can prove the
following local LP-estimates.

Proposition 3.5 (Local LP-estimates) Let the assumptions (1.4), (1.5), (1.8) with v =
1, (1.10), (3.7) and (3.9) hold. Suppose u is a function in W'P(O) N L®(IRY) satisfying

—(Lu+Iu) = f in O. (3.27)
Then for any bounded domain B with closure in O we can find a constant C' such that
[ullw2em) < Clllfllzro) + Jull oo rey]- (3.28)

Proof. By means of a smooth cutoff function 3, with compact support in O and § =1
on B, as in Gilbarg and Trudinger [10, Theorem 9.11, p. 236].

—(L+Dup) = fB+g in O,
{ uf = 0 in R%\ O, (3.29)
where g = g1 + g2,
g1 = BLu — L(up), g2 = Blu— I(up).

The contribution of g; is a first order differential operator in u, which can be handled in
the usual way. The nonlocal expression takes the form

o) = — /}Rd Bz + 2) — B(@)ulz + 2)M(x, dz)
which yields

1921l 2(0) < Csllull Lo (ma),
for a constant Cs depending on 5 and the constant Cj in (1.8). Hence, by means of (3.29)

ullwzrz) < CpllfB + gllLr(o)-
Therefore, introducing weighted seminorms and using an interpolation inequality we deduce

(3.28). O

Remark 3.6 FEstimate (3.28) in Proposition 3.5 holds for integro-differential operators of
order v = 2, but the proof is a little more complicated, cf. Proposition 2.4. O

Let us turn our attention to the variational formulation of the (homogeneous) interior
Dirichlet problem (3.10), i.e. a solution in Wy (©). The key point here is to establish that
L + I maps W,?(O) into W'?(O) as discussed in Section 2. Assumptions (1.10), (2.25)
are used in Proposition 2.7 to make sense of Iy for ¢ in WyP(0). Next, estimate (2.28)
is necessary to show that the bilinear form

a(e, V) = — (Lo, ) — (Ip, 1) (3.30)

is continuous and coercive in H}(O). We state the main results in this direction.
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Theorem 3.7 (Weak Solution) Let the assumptions (1.4), (1.5), (1.8), (1.9), (1.10),
(2.25), (3.7) and (5.9) hold. Then for any f in W=1P(O), 1 < p < oo, there exists a

unique solution u of the (homogeneous) interior Dirichlet problem
—~(L+Du=f in W-(0), (3.31)
in WyP(O). Moreover, if f belongs to L, (O) then u belongs to W2F(O). Furthermore,

loc loc

for fin LP(O), p > d, stochastic representation (3.12) is valid. O

The above results for j(z, () = j({), independent of x, have been proved in Bensoussan
and Lions [3] with p > 2 and the general case (1 < p < 0co0) in Gimbert and Lions [11]. We
give only some detail of the proof.

First, the fact that the bilinear form (3.30) is continuous and coercive yields the ex-
istence and uniqueness of the solution in H}(O). Next the almost local estimates (cf.
Proposition 2.4) proves the regularity result. Finally, approximating I by a zero-order
integro-differential operator I. (cf. arguments in Proposition 2.1) we are able to approxi-
mate “weak solutions” by “strong solution”, which establish the stochastic representation
(3.12). A crucial point is a weak version of the maximum principle, which follows from
estimate (2.29).

Proposition 3.8 (Weak Maximum Principle) Let us assume (1.4), (1.5), (1.8), (1.9),
(1.10), (2.25), (3.7) and (3.9). Suppose a function u in W'?(O), d < p < oo, satisfies
{ (L+Du > 0 in WH(0O),

u > 0 on 00, (3.32)

then uw >0 a.e. in O. O

4. Exterior Dirichlet Problem

We are going to study two cases of the exterior Dirichlet problem. First the case related
to the recurrence of the jump-diffusion process, namely

{(L—f—[)u = 0 in ]ljd\@

u = h in O. (4.1)

Next, we will consider the case associated with the positive recurrence of the jump-diffusion
process, i.e.

—(L+Du = in R\ O

(Lt Du = f in RO (4.2)

v = 0 in O.

To prove the existence and uniqueness of solutions for the above exterior Dirichlet problems

(4.1) and (4.2), we will make use of Liapunov functions. Assume that there exists a function

1 such that
V>0, veWRI(RY),

oc

Y(x) = 400 as |z] — oo, (4.3)
(L+1)¢ <0 in R\ O,

20



for some p > d. The above condition (4.3) hides a growth assumption for ¢ so that It
makes sense. As we will see later, a typical example for a Liapunov function ) has logarithm
growth. Since I accepts functions with a linear growth, I is well defined. In general, we
need to assume that the jumps are bounded (in this case any growth is acceptable) or to
suppose that 1 is uniformly integrable w.r.t. to the Levy measure of [.

Our first interest is to look for bounded solutions of (4.1) and (4.2). Then, we turn
to the probabilistic interpretation of (4.1) and (4.2). Denote by (Q, P, F;, X;,t > 0) a
canonical realization of the diffusion with jumps (Markov-Feller) process whose infinites-
imal generator coincides with L + I on smooth functions. Let 7 be the first exit time of
the process X (t) = X, from the closed set IR? \ O, i.e.

r=inf{t > 0: X(¢t) € O}, (4.4)

where 7 = oo if X(t) € R?\ O, V¢ > 0. A probabilistic solution of (4.1) is a function u(z)
satisfying:

w(X(£))Le<r) + (X (7))L (r) (4.5)
is a F;, — (local) martingale. '

Similarly, a probabilistic solution of (4.2) is a function (u(z) satisfying:
TAE
u(X () Leer + [ FX(5))ds 46
is a F; — (local) martingale.

Remarking that the process X (¢) is continuous from the right, we see that P(7 =0 | X (0) =
x) = 0 for any z in the open set R4 \ O. Thus, if we assume “recurrence” for the process
X(t), ie.

P(r<oo| X(0)=x)=1 VxecR*\O, (4.7)
then any bounded solution u of (4.5) must satisfy
u(z) = E{h(X (7)) | X(0) =2} VzecR*\O, (4.8)

so that the bounded probabilistic solutions of (4.1) are unique. Similarly, if we suppose
“positive recurrence” for the process X (1), i.e.

E{r| X(0)=2} <o VzreR*\O (4.9)

then any bounded solution u of (4.6) must satisfy
u(w) = B{ [ f(X(H)dt | X(0) =2} Vo e R\, (4.10)
0

again, bounded probabilistic solutions of (4.2) are unique.
The probabilistic formulations included both conditions in (4.1) [or (4.2)] simultane-
ously. In particular, the boundary condition in (4.1) is satisfied in the following sense

tli)m u(X (T At)) =h(X(7)) as., (4.11)
i.e. a pathway limits holds. Notice that for (4.5) and (4.6) we are implicitly assuming
that the data h and f are Borel measurable. Actually, because the semigroup associated

to the diffusion process preserves negligible sets, we may work with Lebesgue measurable
functions instead of Borel measurable functions.
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Theorem 4.1 (Recurrence) Suppose h is a Borel measurable and bounded function O.
Under the assumptions (1.4), (1.5), (1.8), (1.9), (1.10), (3.7), (3.9) and (4.3), the non-
homogeneous exterior Dirichlet problem (4.1) has a unique probability solution [i.e., (4.5)
holds] u belonging to L>*(IRY) N W2P(R?\ O) for any p < co. Moreover

(L+DNu=0 ae in R\ O (4.12)
and the stochastic representation (4.8) is valid.

Proof First, replacing h by h + ||h||L~ we can assume h > 0 without any loss of
generality. Existence is shown as in Bensoussan [1], i.e., for n > 0 sufficiently large so that
the ball B,, (centered at the origin) with radius n contains O, we consider the solution of
the Dirichlet problem (in a bounded region)

(L+Du, = 0 in B,\O,
u, = h in O, (4.13)
u, = 0 in IR*\ B,.
Notice that a priori, we need h to be defined in O. However, the most relevant part is its
definition on 0O as expected.
Now, the weak maximum principle (cf. Proposition 3.9) implies that u,, > 0. Thus,

again the weak maximum principle applied to the difference u,, — u,,, with m < n, shows
that u, > u,,. Therefore, we have an increasing sequence satisfying

0 < U < up < ||B g (4.14)

Hence, the almost local estimate (cf. Proposition 2.4) proves that {u,} is uniformly
bounded in W2P(IR? \ O), for any p < oo, and that (4.12) holds for the limiting func-
tion w.

To prove (4.5) and (4.7), we proceed us in Khasminskii [12]. Denote by 7" the first exit
time from B,,. By means of It6 is formula and (4.3) we have

E{p(X(r A7) | X(0) = 2} < (x)
which yields

E{p(X(T") L rsrm ) < 9(2).
Thus, if

a, = inf{y(x) : |z| > n}

we deduce

U(x)

Qn

P(r>71") >
which implies (4.7), so the recurrence properly holds.

On the bounded domain B,, \ O we have

{ un(X(t>)1(t<T”/\T) + h(X(T))l(tZT=T")

is a F; — martingale. (4.15)

Since u, (X (t))1<rnnr increases to u(X(t))1(<r) and 1¢-<,n) decreases to zero, we obtain
(4.5). O
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Remark 4.2 Without the assumption (2.25) we need to suppose that the boundary function
data h is smooth enough and that condition (3.11) holds in order to look for strong solution
on the bounded domain B, \ O, cf. Theorem 3.1. Actually, u, is the probability solution of
(4.13). This argument is well known for degenerate diffusion processes, e.qg. Stroock and
Varadhan [21], Menaldi [16], Robin [20]. An alternative approach is to use the so-called
viscosity solutions (cf. Crandall et al. [5]), which is better adapted to nonlinear problem.
O

Remark 4.3 As mentioned before, if we want to prescribe the data function h only on the
boundary 00, then a canonical “zero-extension” is assumed, i.e. the two-steps (3.4), (3.5)
is used to solve (3.3). In our case, a simple Borel measurable and bounded data function h
on 00 is not good enough to give a WY?(B,\ O) meaning to (4.13), the boundary condition
can be regarded in a sense similar to (4.11). O

In order to study the homogeneous exterior Dirichlet problem (4.2) we need to add the
condition

(L+I)<—1 in R*\O (4.16)
to the function 1 satisfying (4.3).

Theorem 4.4 (Positive Recurrence) Let the assumptions (1.4), (1.5), (1.8), (1.9),
(1.10), (3.7), (3.9), (4.3), (4.16) and

feL*R\ 0) (4.17)

hold. Then the homogeneous exterior Dirichlet problem (4.2) has a unique probability
solution [i.e. (4.6) is satisfied] u such that w/v is bounded. Moreover, u belongs to
WEP(RY\ O), for any p < oo,

loc
—~(L+Du=f ae in R*\O (4.18)

and the stochastic representation (4.10) is valid.

Proof First, by linearity, we may consider the problem for f* and f~ independently.
This allows us to assume f > 0, without any loss of generality.

Again we proceed as in Bensoussan [1] to prove the existence and as in Khasminskii [12]
to obtain the uniqueness, similar to Theorem 4.1.

On the bounded domain B,, \ O we consider the (homogeneous) Dirichlet problem

{—(L+[)un = f in B,\O,

u, = 0 in OU(R?\ B,). (4.19)

The weak maximum principle (cf. Proposition 3.9) implies u,, > 0 and u,, > u,,, for n > m.
Similarly, the weak maximum principle applied to the function u, — ¢, with ¢ > || f|| 1,
yields an uniform bound for the increasing sequence u,, i.e.

0 <upy <uy, <Y fllpe, Ym<n. (4.20)
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Thus, the almost local estimate (cf. Proposition 2.4) proves that the sequence {u,} is
uniformly bounded in W2P(IR%\ O), for any p < oo and that (4.18) holds for the limiting
function wu.

To show the validity of the positive recurrence property, we start with

BLH(X(t AT AT") | X(0) = 0} = () +
e[ (L4 DX (s))ds | X(0) = 2,
and in view of (4.16), as t — 0o we get
E{r AT"| X(0) = 2} <(x), VeeR*\O,

where 7" is the first exit time from B,,. This proves (4.9).
Now, as in (4.15), on the bounded domain B, \ O we have

{ U (X (8)Lgpermnr) + /OTnAWf(X(S))dS

is a F; — martingale.

Since 1y, (X (t))1(t<rnpr) increases to u(X (t))1y<r) we obtain (4.6), even if u,, is unbounded.
O

Remark 4.5 If we add the assumption (3.11) with 0 < v < 1/d, d < p < 1/7, then the
arguments of the strong solution (cf. Theorem 3.1) apply for the exterior Dirichlet problem
(4.1) [if h belongs to W*P(O)] and (4.2), i.e. the solutions of (4.13) and (4.19) u, are
in W*P(B,, \ O) and the limiting function u belongs to W>P(B\ O), for any ball B C O.
For instance, we may use an almost local estimate of the type (2.14) up the boundary 0O.
However, it is not developed here. O

Usually we seek a Liapunov function v as the logarithm of a positive definite quadratic
form, e.g.

Y(z) = In(|z)? + 1). (4.21)
Calculations show that
(L+Dp(x) > —c, Va, o] >n (4.22)

which provides a Liapunov function for any domain outside of the ball of center 0 and
radius r;.
Other types of Liapunov functions are the one considered in [17], namely

Yg(r) = (24 |2[*)7%, ¢ >0. (4.23)

We have proved that if the constants 1 or ¢; in (1.6) are sufficiently large, then the function
Y, given by (4.23) satisfies

Lipy(z) + [y(z) < —ap,(x), Ve, |z| > (4.24)
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for a positive constant o, depending only on the various bounds imposed by the assump-
tions (1.4), (1.6) and the extra condition

sup/|| |2|"M (z,dz) < oc. (4.25)
x z|>1

It is clear that also we have
‘qu<l‘)’ + !hﬂq(%)\ < quq(x)a vz, ’QJ‘ > (4.26)

for some constant ¢,. At this point, most of the results valid for the operator —(L+ 1)+ A
can be extended to the case A = 0. In particular a variational formulation of (4.2) is studied
and the estimate

- allze < 7yl (4.27)

holds.

5. Invariant Measure

First, we recall a classic result on ergodicity of Doob (cf. Bensoussan [1]).

Let (X, F) be compact metric space endowed with the Borel o-algebra. Suppose that
P is a linear operator from B(X) into itself (the Banach space of bounded and Borel
measurable functions from X into R) such that

[Pell < [lell, Ve € B(X), (5.1)
Po=¢ if p=1, '

where || - || denotes the supremum norm in X. Define
Mz,y, F) = Plp(z) — Plgp(y), (5.2)

for any x,y in X and any Borel subset F' of X, where 1z is the characteristic function of
the set B.

Theorem 5.1 (Doob’s Ergodicity) Under the assumptions (5.1) and
36>0/ Nz,y, F) <1-9, Vx,ye X, VF € F, (5.3)
there exists a unique probability measure on (X, F) denoted by u such that

Pro(a) = [ pdul < K] (5.4)

where p = —In(1 —§), K =2/(1 — ). The measure p is the unique invariant probability
on (X, F), i.e. the unique probability on X such that

/ ody = / Podu, Ve € B(X).0 (5.5)
X X
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Usually, this result is applied after verifying the Doeblin condition (5.3), which is based
on the strict positivity of the transition density function of the underlying Markov process.
This strict positivity of the Green function is a natural consequence of the parabolic strong
maximum principle.

Let O be a sufficiently large smooth and bounded domain (e.g. a ball) so that the
non-homogeneous exterior Dirichlet problem

{(L—I—I)u = 0 in llid\é, (5.6)

u = ¢ in O,
can be solved in W27 (IRN\O)NW,.L? (RHNL® (IRY) for non-negative ¢ in W2 (O)NL>(IRY).

loc oc
Now, consider the non-homogeneous interior Dirichlet problem in a larger domain (ball)

B>O,

(5.7)

(L+I)v = 0 in B,
v = u in R\ B,

which can be solved in W27(B)NW(B)N L>(IRY), for any v in W,5P(IR?\ O) N L>(IRY).

loc
Therefore we can define the linear operator

{ P W(0) N L=(RY) — W (0) N Lo (IRY), (5.8)
Pp =, .

where the solution u of (5.7) has been restricted to the domain O. The point is to prove
that P is an ergodic operator, i.e. defining A by (5.2) we have (5.3) for X = O.
By means of the weak maximum principle, we can prove that

© >0 implies Py > 0. (5.9)

Since Py =1 for ¢ = 1, the operator P can be identified with a probability measure on
(X, F), so that

{ P: B(O) — B(O),

Py(r) = /X o(y)P(z, dy). (5.10)

Proposition 5.2 Under the assumptions (1.4), (1.5), (1.6), (1.8), (1.9) (1.10), (2.25),
(3.7) and (3.9) we have (5.3) for X = O.

Proof Similarly to Bensoussan [1], an argument by contradiction based on the strong
maximum principle yields the result as follows.
Assuming that (5.3) is not true, we can find sequences {x, yx, Fi} such that

where zy,yy belong to O and vy = Plp,. Actually, we may replace 1p by a smooth
function ¢, 0 < ¢ < 1, without any loss of generality. Thus, P is defined by (5.6) and
(5.7). By means of the almost local LP-estimates (cf. Proposition 2.4) we see that uy is
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bounded in W2P(B\ O) N L*°(IR?). Therefore, uy is also bounded in W2?(B) N L= (IR%).

loc ~ loc
Hence, a subsequence of {u;} converges to wug, uniformly in B and weakly in W2?(B),

where ug is a solution of "
(L+ =0 in B. (5.12)
Since {x1} and {yx} are in O, we can find two limit point zq and yo such that
up(wo) = 1, uo(yo) =0, o,90 € O, (5.13)

after using (4.8). Thus z, is an interior point in B where uq attains its global maximum
value. Applying the strong maximum principle (cf. Proposition 3.4) on B for (5.12) we
deduce that ug must be a constant. Thus gives a contradiction with (5.10). O

We can associate to the operator P a Markov’s chain {Y,,} with states in O as follows:

Y, = X (1), (5.14)

where 7, is the exit time from B after attending the set IR* \ ®, i.e. by induction with
7o = 0 we have

7= inf{t>71,.1 : X(t) € O}, (5.15)
. = inf{t>7 : X(t) € R\ B}, '
for n =1,2,.... It is clear that the representation formula in the previous sections shows
that
Po(z) = Exp(Yn) = Exp(Y1) (5.16)

for any x in O.

By means of Theorem 5.1 and Proposition 5.2 we can find a unique invariant probability
measure for the operator P (i.e. the Markov’s chain {Y,,}), denoted by fi. Then we define
a measure 7 on IR? (unnormalized) by

[ f@ptan) = [ [" o). (5.17)
Notice that if
u(z) = /0 "X ())dt (5.18)

then u = u”, where

u'(z) = FX(#))dt,
. (5.19)
W) = [ R @)+ (X)),
and
—(L+D)/ = f in R\ O,
{ Loany (5.20)
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—(L+1u" = f in B,
{ u’ = o in R\ B. (5.21)
Therefore, going back to the definition of the operator P and the convergence (5.4) we
have

(L+Iw* = 0 in R*\ O,
{ v = u" in O. (5.22)
(L+Du" = 0 in B,
{ u* = o™ ' in R\ B, (5.23)
with vg = u. Hence
/1Rd f(x)v(dr) = limu, = /@P”vo(x),u(dx), (5.24)

which is a constant in z. If we take f = 1, the maximum principle applied to (5.20) and
(5.21) implies

{ inf{E,(ry) : x €O} > ¢y >0, (5.25)

sup{F,(m) : © € O} <y < 0.

In particular, 7(IR?) < oco.
Define the probability measure v by

o (F)
(F> ﬁ(IRd)’

VF € B(RY), (5.26)

with 7 given by (5.17). We have

Theorem 5.3 (Invariant Measure) Let the assumptions (1.4), (1.5), (1.6), (1.8), (1.9),
(1.10), (2.25), (3.7) and (3.9) hold. Then v, given by (5.26), is an invariant probability

measure for the diffusion with jumps in R?, i.e.
| EASX @)} = [ | Fapv(da), (5.27)
R R
for any bounded and Borel measurable function f.

Proof Clearly, it suffices to prove (5.27) with 7 instead of v and for smooth functions
f, say continuous with compact support.
From the definition of 7 we get

| EAFX@)otde) = [ fildn)EA [ g(X (s)ds),
where

g9(x) = EA (X))}
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By the Markov’s property we have
EA [ o(X(9)ds} = B [ F(X(+9))ds},
and therefore
| B @) = [ [ f(X(s))ds). (528)

If we write the integral in the variable s on the region [t,¢ + 71] into three pieces, on
[0, 7], on [7, 71 +t] and on [0,t], we obtain

AL FX s} = Bl Bl | FX(9)ds]} = Bugl1),

where {Y,,} is the Markov’s chain associated with the operator P, by (5.14). Since fi is an
invariant probability measure for the Markov’s chain, we have

/ de{/ s))ds} = / de{/ s))ds}.

Thus, the integral in s over [ry, 7 + t] cancels with the integral over [0, ¢] and we deduce
from (5.28)

[ EAFX@)o(dn) = [ ilde) B [ FOX(5))ds),

which is indeed the required invariant condition. O
As in Khasminskii [12, pp. 121-124] (Theorem 5.1 and its Corollaries), we can prove
the following results.

Corollary 5.4 Under the assumptions of Theorem 5.3 the invariant probability measure
v is unique and we have

.1
jlgrolof/ E{f(X ()} dt = / flo (5.29)
for any bounded and Borel measurable function f. O

Remark 5.5 In view of the definition (5.17)..., (5.24) of the invariant measure and the
results in previous sections, we see that f =0 a.e. implies v(f) = 0. Thus the measure v
15 absolutely continuous w.r.t the Lebesque measure. We can write

/df(x)y(dx) = / f(@)m(z)dz, (5.30)
R R
where the invariant density m(z) satisfies

m >0, /IRd m(z)dr = 1. (5.31)

Moreover, if ®*(t) denotes the dual semigroup then ®*(t)m = m, Vt > 0. O
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Now, we want to consider the linear integro-differential equation in the whole space,
ie.

—(L+Du+au=f in IR? (5.32)
and
—~(L+DNu=f in R? (5.33)

where ag, f are given (bounded) functions, ag(x) > ag > 0.

Except for the fact that the coefficients b;(z) have linear growth, the treatment of (5.32)
is rather standard. We state the results with only some indication of the arguments used
to prove them.

Consider the function

Yga(@) = A+ |22, ¢>0, A> 1. (5.34)
As in Section 4, we get
Lipga(x) = q[(q—? A+ [2*)” Zaw )T +
+A+ |2*)” Z(%( )+az‘( )xi) +
+(A+ 23" Zb ()] g ().

Define
(g, ) = sup,epe {(a = 2O+ |22, @i (@)ziw;+
{ +(A+ [2*) 7 2, (aa () + ai(x)xi>}7 (5:35)
aa(g, ) = sup {(\+ [2[*)” Zb )i} (5.36)

zelRY

By means of the assumptions (1.4) and (3.9) we have
ai(g,A) < sup {geg |z (A + [2f*)

+Hdey " +alz)(A+ |2[*) 71} <

)

Sl

for a constant C' independent of A > 1. Similarly, the assumption (1.6) [even with ¢; = 0]
implies

V\Q

ax(q,A) < sup {(A+|2[*) Zb

|z|<r1

for some constant C' depending only on r; and the bound of b;(z) for |x| < r1. On the
other hand, since

[Vga(z + 2|
[V + 2))|

a2+ 2T A+ 2T

<
< qlg =12+ )7 1(AJr\fdQ)q/Q‘l,
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we obtain

|]¢q,>\(x)| < an(Qv A)¢Q,A(x)7

where
as(q,\) = sup{x%/l 1212 + |22 M, d2) + (5.37)
T z|>1
P ATLge/21 / |2[2M (2, d2)}.
|z|<1
Collecting all, we deduce
(L4 Dpgr < aq, \bgn in IR (5.38)
and
|Lpg ] + [T0gn] < Cyatbgn in RY, (5.39)

for some constant C, y and a(g, \) = >_; ai(gq, N),
alqg,\) > 0 as A — oo, (5.40)

for any fixed ¢ > 0.

Proposition 5.6 (Positive Zero-Order Coefficient) Let the assumptions (1.4), (1.5),
(1.6) [even with ¢y = 0], (1.8), (1.9), (1.10), (2.25), (3.7), (3.9), (4.48) and

g, ap € L®(IR%), ap(x) > ap >0 Vaz, (5.41)

hold. Then the integro-differential equation (5.32) possesses one and only one solution u
in W2P(IRY) such that wy_, belongs to L°(IR%). Moreover we have estimate
1

S YN I 5.42
o — (q, )\)wa q,AHL (R%) ( )

Huw—QJ\HLOO(]Rd) < o

where a(q, \) is given by (5.38), and the following stochastic representation is valid

u(r) = E{/OOO f(X (1)) exp(— /Ot ao(X (s))ds)dt}. (5.43)

Proof The arguments are very similar to those of Theorem 4.4. A key point is the
property (5.38) on the constant a(q, \).

The weak maximum principle yields the a priori estimate (5.42). Next the regularization
technique applied to the variational form of (5.32) provides the desired result. O

To study the linear equation without a zero-order coefficient (5.33) the arguments are
very different from the above.

We consider the space

LE(RY) = {p : oy € LZ(RY)}, (5.44)
for ¢ > 0 and ¥_,(7) = (2 + |2|?)~%2. The linear equation is then
{ ue WpP(RY) NLE(RY), p>d, q>0,

oc

—(L+Tu=f ae in R" (5.45)
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Theorem 5.7 (Linear Equation) Let the assumptions (1.4) ,..., (1.10), (2.25), (3.7),
(3.9), (4.48) and

feLXMRY), ¢>0

hold. The linear integro-differential equation (5.45) has a solution u (unique up to an
additive constant) if and only f has a zero-mean, i.e.

v(f) = [, Fadr) =0, (5.46)
where v(dx) is the unique invariant probability measure defined by (5.26).

Proof First we remark that the a priori estimate of the type (4.27) applied to the
exterior Dirichlet problem (5.21) lets us conclude that the property (5.29) on the invariant
probability measure v remains valid for any Borel measurable function f such that fi_,
is bounded.

To prove that the solution is unique up to an additive constant, we denote by ug the
solution of the equation (5.45) for f = 0. We have

Ep{uo(X (1))} = uo(x),

1.e.

1 /T
= [ Beluo(X(0) bt = uo(w),
0
By means of Corollary 5.4, as T" — oo we deduce
v(ug) = up(z), Ve R

so that ug is constant. Notice that it is possible to use an argument based on the strong
maximum principle to obtain the same result.

In order to construct a solution of (5.45) we proceed as in (5.20), ..., (5.21). For given
f satistying v(f) = 0 we define ug as the solution of an interior Dirichlet problem

—(L+1uy = f in B,
uy = 0 in R%\ B,

and vy as the solution of an exterior Dirichlet problem

{—(L+I)vo = f in R"\O,

vg = up in O.
Since
”UOHLOO(B) < COHJCHL”(B)
we get

1009 —gll Lo mer@) < Clall F—gl e ety
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Now, define the sequences {v, }°°; and {u,}>; by
(L+1u, = 0 in B,
{ U, = vp_; in IRY \ B,
and
{ (L+1)v, = 0 in R'\O,

v, = u, in O.

Hence, if we set u,, = ug + u1 + -+ u, and v, = vg+ vy +---

—(L+Da, = [ in B,
Uy, = Op_y in R?\ B,
and
—(L+ D)9, = f in R*\O,
o, = u, in O.
We have the estimates
@n—gllzoo(B) < Cqlll fb—qgllLoe) + [[Un-19—g|l Lo ra\ )

and

1009 —gll e rvg) < Colll FY—gll Lo reve) + 18t Lo )

Since
0=o(f) = limu, = p(vo),

the ergodic estimates (5.4) of Theorem 5.1 proves that
”UnHLoo(@) < quianfwfq”Loo(md),

which implies that 1, converges in L>(0) and that

HunHLw(O) =71_ wa QHL°° R4)-

+ v,, we obtain

Therefore, @, and @, converges in L°(IR?) to ¢ and @, solutions of

{—(L+I)a = f in B,

@ = o in R\ B.
and
—(L+Dv = f in R*\ O,
v = @ in O.

Hence @ = o in B\ O, and the function

| a(z) if ze B,
u(w) = o(r) if € R\ O,

satisfies (5.45), and we have the a priori estimate

Huw*qHLw(IRd) < Cq”fwquLoo(]Rd)a

for some constant C, > 0. O
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