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Using hyperosmolar stress to measure biologic and
stress-activated protein kinase responses in preimplantation
embryos
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and D.A.Rappolee1,2,3,4,5

1Department of Obstetrics and Gynecology and Reproductive Sciences, Wayne State University School of Medicine, Detroit, MI 48201,

USA; 2CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI

48201, USA; 3Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA; 4Institute

for Environmental Health and Safety, Wayne State University School of Medicine, Detroit, MI 48201, USA

5Correspondence address. Tel: 313-577-1228; Fax: 313-577-8554; E-mail: drappole@med.wayne.edu

We used hyperosmolar stress to test blastocysts for their biologic and enzymatic responses to culture stress. Embryos mount dose-

and time-dependent responses to hyperosmolar stress. Biological responses included slowed cavitation and cell accumulation and

increased apoptosis at increasing doses. These responses were preceded by stress-activated protein kinase (SAPK) phosphoryl-

ation and nuclear translocation consistent with its causal role. For cavitation and new cell cycle initiation, 200 mM sorbitol

caused stasis. Above 200 mM, sorbitol was ultimately lethal and below 200 mM, its embryos had milder effects. Phosphorylated

SAPK was induced rapidly in embryos at 0.5 h in a dose-dependent manner from 0 to 600 mM sorbitol. Higher hyperosmolarity

caused a biphasic peak of phosphorylated SAPK, but there was no return to baseline through 3 h. At 24 h, a dose-dependent

response persisted that was linear from 0 to 200 mM sorbitol. Hyperosmolar stress rapidly induced, within 0.5 h, phosphorylated,

nuclear c-Jun and decreased phosphorylated, nuclear c-Myc in a SAPK-dependent manner. The data suggest that SAPK is

induced and functions on down-stream effector molecules in a temporal and quantitative manner consistent with its function

in the embryonic homeostatic response to stress. The remarkable resistance of embryos to high concentrations of sorbitol suggests

that part of its homeostatic response is different from that of somatic cells.

Keywords: preimplantation embryo; SAPK (stress-activated protein kinase/c-Jun N-terminal protein kinase); stress; hyperosmolar

sorbitol; apoptosis

Introduction

Most human embryos (and many farm mammal species) are lost

before birth and most of the loss occurs around the time of implan-

tation (Cross et al., 1994; Roberts et al., 1996). Sublethal post-natal

effects arise during the preimplantation period in vivo from diet

(Kwong et al., 2000) and from embryo culture (Ecker et al., 2004;

Fernandez-Gonzalez et al., 2004). Although these studies do not

emulate exact human in vitro fertilization (IVF) protocols, they are

clinically important since transient embryonic stress may decrease

implantation rates or lead to post-natal effects in the nearly two

million offspring produced by IVF (Dawson et al., 2005), and

because most of the embryogenic period occurs before the female is

aware of pregnancy. It is important to understand how the early

embryo and placenta respond to stress in order to correlate duration

and magnitude of embryonic stress and stress enzyme activation

with mechanisms that lead to morbidity and mortality.

Stress enzymes such as stress-activated protein kinase/c-Jun kinase

(SAPK/JNK1/2, MAPK8/9, but SAPK throughout text) and p38

mitogen-activated protein kinase (MAPK14) are expressed in the

oocyte, early embryo and in placental stem cells of humans and

mice (Natale et al., 2004; Zhong et al., 2004). Elevated levels of

phosphorylation of SAPK and p38MAPK correlate negatively with

embryonic development rate in seven culture media (Wang et al.,

2005). In the most stressful of these media, both increases in apoptosis

(terminal deoxynucleotidyl transferase-mediated dUDP nick-end

labeling [TUNEL]) and decreases in DNA synthesis (Xie et al.,

2006a) contribute to slower cell accumulation and embryo develop-

ment. SAPK inhibitors severely decrease embryo development in

the most stressful media, but increase embryo development in the

least stressful media. Therefore, SAPK may not be required for

normal development, but play a role during responses to elevated

stress.

However, stress-inducing components of different media are

complex and may cause stress by many different mechanisms so a

consistent means to apply stress over wide dose ranges at different

stages of development (and in embryo-derived stem cell line

models) is needed. A standardized hyperosmolar stress is advan-

tageous as it can be used in oocytes and embryos at many stages of

development and in the embryonic and placental stem cells derived

from preimplantation embryos (Rappolee, 2007). In addition, stress

enzymes were cloned in yeast and mammals using hyperosmolar

stress and this continues to be the standard for stimulating and
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assaying stress effects in somatic cells. Sorbitol and raffinose have

been used to assess stress in oocytes and preimplantation embryos

(Steeves et al., 2003; LaRosa and Downs, 2006).

In somatic cells, p38MAPK, SAPK/JNK and MAPK/extracellular

receptor kinase (ERK)—three subfamilies of the MAPK

superfamily—respond to stress; MAPK/ERK also respond to mito-

genic signals (Ip and Davis, 1998; Roovers and Assoian, 2000; Rappo-

lee, 2003). SAPK/JNK and p38MAPK family members are activated

by a wide range of physiological, pathological and developmental

stimuli (Ip and Davis, 1998; Kyriakis and Avruch, 2001). SAPK/

JNK is activated by a cascade of kinases that result in the phosphoryl-

ation of SAPK/JNK at Thr183/Tyr185 (Kyriakis and Avruch, 1996;

Whitmarsh and Davis, 1999). This dual phosphorylation opens ATP

and substrate binding sites on SAPK/JNK, initiating its activity.

In embryos, like somatic cells, MAPK/ERK is phosphorylated but

does accumulate in the nucleus (Corson et al., 2003; Wang et al.,

2004), and MAPK remains phoshorylated in FGF-receptor-dependent

response fields for days rather than undergoing a rapid biphasic

response (Rappolee, 2007). The SAPK subfamily may also have

unique properties in embryos.

We report here that hyperosmolar stress causes dose-dependent

increases in apoptosis and decreases in cell accumulation and cavita-

tion in preimplantation embryos. The dose- and time-dependent

responses to stress, and nuclear translocation of phosphorylated

SAPK, are similar to those observed for somatic cells but embryos

tend to resist for more than a day levels of hyperosmolar stress that

would be lethal to somatic cells within a few hours.

Materials and Methods

Reagents

Ham’s F10 (þbovine serum albumin) and sorbitol were from Sigma Chemical

Co. (St Louis, MO, USA). KSOM and KSOMþ amino acids (KSOMaa) were

from Specialty Media (Phillipsburg, NJ, USA). The primary antibodies for total

SAPK/JNK and phosphorylated SAPK/JNK Thr183/Tyr185 (CS9251, CS9252

and CS4671), for total c-Jun and phosphorylated c-Jun Ser63 (CS9261 and

CS9262) and total c-Myc and phosphorylate c-Myc Thr58/Ser62 (CS9401,

SC8000R and SC788) have been described previously (Liu et al., 2004;

Wang et al., 2005; Xie et al., 2005b) and were from Cell Signaling (CS

product number prefixes) Technology (Beverly, MA, USA) and Santa Cruz

(SC product number prefixes) Biotechnology (Santa Cruz, CA, USA), respect-

ively. The SAPK/JNK inhibitor D-JNKI1 and the penetration control twin argi-

nine translocation (TAT)-fluorescein isothiocyanate (FITC) (Bonny et al.,

2001) were from Alexis (San Diego, CA, USA). D-JNKI1 is based on the

sequence of IB1/JIP1 that binds and inhibits SAPK/JNK (Bonny et al., 2001;

Thompson et al., 2001). Some studies were done with the chemical SAPK/

JNK inhibitor SP600125 (Bennett et al., 2001) from Calbiochem (San Diego,

CA, USA).

Collection and culture conditions for mouse embryos

Standard techniques were used for obtaining mouse embryos (Hogan, 2002).

Female MF-1 mice (4–5 weeks old, Harlan Sprague Dawley, Indianapolis,

IN, USA) were super-ovulated, and their embryos were obtained as described

previously (Wang et al., 2005; Xie et al., 2005b). Animal use protocols were

approved by the Wayne State University Animal Investigation Committee

(AIC). In all studies, embryos were equilibrated for at least 1 h in KSOMaa

or Ham’s F-10 and stressed with the reagent dose for the time period indicated.

Per manufacturer’s specifications, the embryo culture media had ranges of

271–299 mOsmol and 250–270 mOsmol for Ham’s F-10 and KSOMaa, respect-

ively. For inhibitor studies (except where indicated), the inhibitors were preincu-

bated with embryos 3 h before the stress and continued during the stress.

Cell lines and culture conditions

The changes in osmolality caused by sorbitol are in Table 1. Osmolality was

measured by crystallizing media samples and assaying them on a model

3W2 osmometer per manufacturer’s instructions (Advanced Instruments, Inc.

Needham Heights, MA, USA). In the text, the level of sorbitol (w/v) added

is used to produce the given molarity of sorbitol. For inhibitor studies, the

inhibitors were preincubated with embryos for 3 h before stress was added

and during stress.

Indirect immunocytochemistry and western blot analysis

Indirect immunocytochemistry was performed as described previously (Liu

et al., 2004; Wang et al., 2004; Xie et al., 2005b,c). Photomicrography was

done with a Leica DM IRE2 automated epifluorescence microscope

(Wetzlar, Germany) controlled electronically by SimplePCI AI software

(Compix Inc., Imaging Systems, Cranberry Township, PA, USA). Photo-

micrographs were formatted using Adobe Photoshop 6.0 (San Jose, CA,

USA). FITC intensity measurement and comparison were done with SimplePCI

DNN software. sodium dodecyl sulphate–polyacrylamide gel electrophoresis

(SDS–PAGE) and western blots were done as described previously (Wang

et al., 2005; Xie et al., 2005b).

Analysis of cell number, viability and embryo size

In studies of the dose- and time-dependent effects of sorbitol on cell numbers,

embryos were incubated with stress and the dose and time period were indi-

cated. The cell number was analysed by Hoechst-stained nuclei. In embryos,

cell numbers were counted in the z-axis after Hoechst staining. Blastocyst

expansion was measured as an increase in the radius of the blastocyst using

Image J (http://rsb.info.nih.bov/ij/) and applying it to phase micrographs of

embryos. We used several morphological measures for viability. In descending

order of severity, opacity/brownness/loss of translucence . withdrawal from

zona pellucida . chronic collapse (with no blastocoel), which we have over

time, associated with eventual death. The key criterion is whether the

embryos recover after replacing them in KSOMaa without sorbitol.

Analysis of apoptosis

Apoptosis was assayed using TUNEL (Promega Co., Madison, WI, USA) as

done previously (Xie et al., 2006a,b).

Statistical analysis

All experiments were repeated three times with similar results, except some

western blot analyses that were performed twice. Similar results mean that

the similar (proportional) stimulus response ratios were observed, although

absolute values for baseline and stimulated embryos varied between experi-

ments. One representative experiment is shown for each result. Data are

presented as mean+SD. Embryo cell number and immunofluorescence

intensity were analysed by one-way analysis of variance (ANOVA) when

there was one variable and more than two groups. If ANOVA showed signifi-

cant difference between groups, least significant difference post hoc tests were

used to analyse differences between paired groups that were normally

Table 1: Osmolality of media used in experiments with embryos, HTR and
TS cells

Media [sorbitol] KSOMaaa (SI)
mOsmol

Ham’s F-10b

mOsmol

None 257 (1) 254
10 mM 269 (1.05) NDc

25 mM 274 (1.07) ND
50 mM 305 (1.19) ND
100 mM 348 (1.35) ND
200 mM 437 (1.70) ND
400 mM 626 (2.44) ND
600 mM 826 (3.21) ND
1000 mM 1259 (4.90) ND

Stimulation index with sorbitol or without sorbitol media.
aSOM þ AA, no serum.
bHam’s F10, no serum.
cND, not done.

Xie et al.
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distributed. The x2-test was used to determine the amount of difference

between groups measured as a percentage. Linear regression was used to

define the linear relationship between SAPK/JNK phospho fluorescent

intensities and doses of sorbitol. The independent-samples t-test was used to

analyse the difference in cell numbers due to the SAPK inhibitor. Three

levels of significance were determined: P � 0.05 was insignificant, P , 0.05

was significant and p , 0.01 was highly significant. All statistical analysis

was performed using SPSS software v10.0 (SPSS Inc., Chicago, IL, USA).

Results

To understand the impact of stress and SAPK on early embryo

development, we did three types of experiments. We first tested for

the biological effects of hyperosmolar stress on embryo cavitation

and lethality (Fig. 1), apoptosis (Fig. 2) and the equivalence of the

least and most stressful media (as measured by cell number accumu-

lation) (Fig. 3). In the second series of experiments, we tested for

the dose- and time-dependent induction of phosphorylated SAPK by

sorbitol (Figs. 4 and 5), and in the third series of experiments, we

tested for the sorbitol stress-induced ( insert sorbitol stress induced)

up- and down-regulation of phosphorylated nuclear transcription

factors c-Jun and c-Myc (respectively, Figs. 6 and 7).

Embryos undergo slower growth, cell cycle arrest,
apoptosis and slower development in response
to hyperosmolar stress

We first sought to determine the homeostatic response to different

quantities and qualities of stress by embryos. For mouse preimplanta-

tion embryos, we used blastocyst expansion rates to test for

dose-dependent effects of stress. Sorbitol at 1000 mM (and 400–

600 mM) caused an immediate collapse of embryos by 1 min, but

blastocyst cavities were reforming by 5 min and by 30 min embryo

size was not significantly different than that in unstressed embryos

(Fig. 1A). After 48 h of 200 mM sorbitol, a state of zero embryo

expansion of E3.5 blastocysts was created (Fig. 1B) that was signifi-

cantly less than unstressed embryos (P , 0.01). At 50 mM, a signifi-

cant decrease in cavitation occurred (P , 0.05), but blastocyst cavity

size increased. At 600 and 1000 mM sorbitol, a significant decrease in

blastocyst size occurred (P , 0.05).

Figure 1: Dose- and time-dependent effects of sorbitol-induced hyperosmolar stress on embryo size and viability can be reversible (A) E3.5 embryos were cultured
individually in 5 ml microdrops of KSOMaa*** and 1000 mM sorbitol doses for 0–30 min and micrographed as indicated. Error flags show standard deviations.
Note that the x-axis is not linear for A, B and D. For (A, B, C) *significant (P , 0.05) or **highly significant (P , 0.01) shows comparisons between unstressed and
stressed. (B) E3.5 embryos were cultured as in (A) in 0–1000 mM sorbitol for 0–48 h, micrographed at the intervals indicated and measured for radius. (C) E3.5
preimplantation were cultured as in (A, B) with or without 400 mM sorbitol, and sorbitol-containing media was replaced with KSOMaa alone after 1, 4 or 12 h. All
embryos were cultured through 24 h, and micrographs were taken at time zero and final, at the time sorbitol-containing media were removed, and embryo radii were
determined. (D) E3.5 embryos were cultured as in (A–C) in 0–2000 mM sorbitol, micrographed at the times indicated and assayed for embryo death (combined
collapse and opacity)

SAPK responses in preimplantation embryos

475

 at A
rthur N

eef L
aw

 L
ibrary, W

ayne State U
niversity on O

ctober 21, 2016
http://m

olehr.oxfordjournals.org/
D

ow
nloaded from

 

http://molehr.oxfordjournals.org/


The time-dependent reversibility of hyperosmolar stress was also

tested by blastocyst cavitation rate. E3.5 embryos were cultured in

400 mM SAPK, which highly induces phosphorylated SAPK, but is

not as toxic as 600–1000 mM sorbitol (Xie and Zhong, data not

shown). Like 200 mM, 400 mM sorbitol produced nearly static size

over 24 h culture (Fig. 1C). After return to media alone after 1 h in

400 mM sorbitol, embryos recovered and embryos progressed simi-

larly to unstressed embryos (Fig. 1C). However, return to media

alone after 4 h resulted in significant decrease in embryo expansion

(P , 0.05), suggesting that between 1 and 4 h, embryos lost the

ability to recover. Interestingly, return to media alone after 12 h,

caused embryo collapse and significant size decrease (P , 0.01) that

was more profound than sorbitol-containing media throughout the

entire 24 h culture. These embryos returned to media alone after

12 h rapidly collapsed and died (lost translucence and became

brown and opaque, when tested these embryos never recover when

placed in KSOMaa alone). Finally, we found that embryos cultured

in 2000 mM sorbitol began dying as early as 3 h and all embryos

were dead by 24 h (Fig. 1D). In contrast, 1000 and 600 mM had

,50% dead at 24 h (37.5 and 25%, respectively). However, both

these groups had collapsed (compare with Fig. 1B), but they had not

become opaque by 24 h. No embryos at 50 or 200 mM sorbitol had

collapsed or become opaque. Comparing rapid, reversible collapse

at 1 min (Fig. 1A) with collapse after chronic exposure to doses

above 200 mM sorbitol shows that it is chronic collapse that is associ-

ated with the inability of embryos to recover. Loss of translucence,

opacity and browning are associated with inability to recover at any

time during culture at any stress level.

We sought to understand dose-dependent increases in apoptosis

caused by sorbitol in embryos. E3.5 embryos cultured overnight in

200 mM sorbital produced significant (P , 0.05), or in 400 mM sorbi-

tal highly significant (P , 0.01), increases in TUNEL intensity

(Fig. 2A). The lowest hyperosmolar stresses, 10–25 mM sorbitol, pro-

duced insignificant increases (P � 0.05) in TUNEL. Therefore,

optimal media are not significantly more stressful, with regards to

apoptosis, until a substantial amount of sorbitol is added. It should

be noted that although the relative increases in TUNEL were constant

from experiment to experiment (each experiment was repeated three

times), the absolute values were different. It is possible that this is

due to the confounding variable of stress induced on females and

their embryos in the vivarium before embryo isolation. Variation in

absolute TUNEL rates may also be a function of the variation in

basal KSOMaa of �20 m osmolality reported by the manufacturer.

In a previous report, we observed higher morbidity and mortality of

embryos in one experiment when compared with its replicates. In

that experiment, there was an increased number of granuoles of the

embryos noted during isolation, before culture (Xie et al., 2006a).

The increased number of granuoles would be associated with pro-

blems with embryo health before culture and might contribute to

higher morbidity during culture. But, in this experiment the relative

effects of culture media and SAPK inhibitors on the embryos had

similar relative proportions when compared with replicate experi-

ments that started with embryos with less granuoles.

There is a negative correlation between increased SAPK phos-

phorylation and embryo development for seven culture media.

KSOMaa and Ham’s F-10 induced phosphorylated SAPK the least

and most (Wang et al., 2005). Compared with KSOMaa alone, the

cell number in E3.5 mouse embryos cultured for 24 h was reduced

Figure 2: Sorbitol induces dose-dependent apoptosis in E3.5 embryos cultured
for 24 h (A) E3.5 preimplantation embryos were incubated in KSOMaa with
increasing sorbitol (0–400 mM), for 24 h and assayed for TUNEL. Micron
bar ¼ 50 mm. (B) Histogram shows *significant (P , 0.05) and **highly sig-
nificant (P , 0.01) increases of stressed embryos compared with unstressed
embryos cultured in KSOMaa alone (each histogram bar is mean+ standard
deviation error flag). Numbers in parentheses indicate number of embryos in
each group

Figure 3: Sorbitol at 200 mM is sufficient to make the least stressful media
into the most stressful media with regard to cell accumulation in cultured
embryos. E3.5 preimplantation embryos were incubated in KSOMaa with
increasing sorbitol (0–200 mM) or incubated in Ham’s F10 for 24 h and
assayed for cell number. *Significant (P , 0.05) and **highly significant
(P , 0.01) increases from control embryos cultured in KSOMaa alone (each
histogram bar is mean+ standard deviation error flag). Note that Ham’s F10
group was not significantly different than KSOMaa þ 200 mM sorbitol
group. Numbers in parentheses indicate number of embryos in each group

Xie et al.
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from 76.6+ 9.3 (unstressed) to 69.8+8.0 (25 mM sorbitol), 64.5+
7.8 (50 mM sorbitol), 55+ 9.3 (100 mM sorbitol) and 49.1+ 11.1

(200 mM sorbitol), respectively (Fig. 3). The cell number in

KSOMaa þ 200 mM sorbitol (49.1+11.1) was not significantly

different (P . 0.05) to that from the stressful Ham’s F-10 media

(50.8+8.4). The difference in cell number in embryos cultured

with KSOMaa was significant when compared with 50 mM (P ,

0.05) and highly significant at 100 or 200 mM sorbitol or Ham’s

F-10 (all P , 0.01). Sorbital at 100 or 200 mM made KSOMaa

media as stressful as Ham’s F-10 media such that it was insignificantly

different than Ham’s F-10 (P � 0.05). The number of cells of E3.5

mouse embryos at 0 h was 32.1+3.5 (data not shown), increasing

to 76.6+ 9.3 after 24 h of culture. Therefore embryos in all media

accumulated cells during culture, but embryos in Ham’s F10 or

KSOMaa þ 200 mM sorbitol had the smallest increases in cell

number.

Dose-dependent induction of SAPK phosphorylation by
sorbitol is consistent with roles in increased apoptosis and
decreased cell accumulation in E3.5 embryos

SAPK phospho induction was tested to determine its consistency with

roles in biologic outcomes in embryos. The same SAPK

phospho-specific antibodies were used as in western blot analysis

and embryos previously described (Wang et al., 2005; Xie et al.,

2006b). Phosphorylated SAPK phospho in E3.5 mouse embryos is

induced rapidly at 0.5 h (Fig. 4). E3.5 mouse embryos cultured in

1000 and 600 mM sorbitol showed higher fluorescent intensity than

those cultured in media alone (Fig. 4 Parts 1 and 2; 1000, 600, 200

and 0 mM had arbitrary units of 88.4+ 17.1, 83.2+ 21.1, 33.4+
15.6 and 10+9.1, respectively). Sorbitol doses of 1000 and

600 mM were insignificantly different from each other (P � 0.05),

but both were significantly higher compared with 200 or 0 mM (all

P , 0.01); 200 mM was also significantly higher than 0 mM (P ,

0.01). The response was linear between 0 and 1000 mM (Pearson’s

linear regression, R2 ¼ 0.904, P , 0.05) and similar to that observed

in western blots of placental HTR and TS cells (Zhong, data not

shown). Phosphorylated SAPK was also induced by 25 and 200 mM

sorbitol during 24 h of culture (Fig. 4, Parts 3 and 4), compared to

culture without sorbitol or ex vivo E3.5 embryos. The data suggest

that induction of phosphorylated SAPK by stress is similar in E3.5

embryos and placental cell lines and that a linear range of increase

exists for 0–50–200–600 mM sorbitol, as measured by immunofluor-

escence or western blot.

In somatic cells, phoshophorylated SAPK is induced in a biphasic

manner (Kyriakis and Avruch, 1996), so we next tested for time-

dependence in embryos. Phosphorylated SAPK was induced rapidly

by 15 min and significantly by 400 mM sorbitol (P , 0.01) (Fig. 5).

A peak occurred by 30 min before a decline and leveling off by

120–180 min. There was a biphasic component an early peak

Figure 4: Dose-dependent effects of sorbitol on SAPK phosphorylation in mouse preimplantation embryos (Part 1) E3.5 preimplantation embryos were cultured in
KSOMaa with the following doses of sorbitol for 0.5 h: 1000 mM (A, I), 600 mM (C), 200 mM (E) and 0 mM (G). After treatments, embryos were examined by
immunocytochemical techniques using SAPK phospho antibody (A, C, E and G) or no primary antibody (I). Hoechst staining nuclei (B, D, F, H, J) are coupled with
the detection of SAPK phosphorylation (A, C, E, G, I), respectively. In (A) micron bar ¼ 50 mm. (Part 2) Histogram shows SAPK phospho fluorescent intensity
(each histogram bar is mean+ standard deviation error flag). **P , 0.01 SAPK phospho fluorescent intensity incubated in KSOMaa alone versus 200, 600 and
1000 mM sorbitol. Numbers in parentheses indicate number of embryos in each group. (Part 3) E3.5 embryos were cultured in 0, 25 or 200 mM sorbitol for 24
h or isolated ex vivo. After treatments, equal numbers of embryos were examined by western blot analysis using SAPK phospho antibody and actin antibody as
indicated. (Part 4) Histogram shows SAPK phospho expression normalized to actin from the western blot in Part 3

SAPK responses in preimplantation embryos
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Figure 5: Time-dependent effects of sorbitol on SAPK phosphorylation in mouse preimplantation embryos (Part 1) E3.5 preimplantation embryos were cultured in
KSOMaa with 400 mM sorbitol 0–180 min: 0 min (A), 15 min (C), 30 min (E, K), 120 min (G) and 180 min (I). After treatments, embryos were examined by
immunocytochemical techniques using SAPK phospho antibody (A, C, E, G) or no primary antibody (K). Hoechst staining nuclei (B, D, F, H, J) are coupled
with the detection of SAPK phosphorylation (A, C, E, G, I), respectively. The no antibody control for 30 min sorbitol is (K, L). Note that SAPK phospho in the
figure refers to phosophorylated SAPK. In (A) micron bar ¼ 50 mm. (Part 2) Histogram shows SAPK phospho fluorescent intensity (each histogram bar is
mean+ standard deviation error flag). **P , 0.01 SAPK phospho fluorescent intensity incubated in KSOMaa at time zero versus 15–180 min. Numbers in par-
entheses indicate number of embryos in each group

Figure 6: c-Jun phospho in E3.5 embryos is activated by 0.5 h stress in embryos in a SAPK-dependent manner. (Part 1) A, C, E and G are embryos after 0.5 h of
1000 mM sorbitol stress. A, C and E were stained for c-Jun phospho (Jun phospho in figure). A and C were inhibited by SAPK inhibitors SP600125 and D-JNKI1,
respectively, E was not inhibited and G had no antibody. A control TAT, conjugated with FITC instead of JNK inhibitor (I, H), was used to show uptake by the
embryo. B, D, F, H and J are the Hoechst-stained replicates of the green-stained embryos to the left. In (A) micron bar ¼ 50 mm. (Part 2) Histogram shows c-Jun
phospho fluorescent intensity (each histogram bar is mean+ standard deviation error flag). **P , 0.01 c-Jun phospho fluorescent intensity of embryos incubated
with 400 mM sorbitol with SP600125, DJNKl1 or in KSOMaa alone for 30 min. Numbers in parentheses indicate number of embryos in each group
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occurred, but phosphorylated SAPK did not return to baseline and its

expression was significantly (P ¼ 0.01) above the level in unstressed

embryos at 120–180 min. At 200 mM sorbitol, phosphorylated SAPK

remained high through out 24 h (Fig. 4, Part 3).

Rapid responses to stress include a SAPK-dependent
increase in c-Jun phospho and a decrease in c-Myc phospho

SAPK induction leads to increased phosphorylation of c-Jun at Ser63

(Smeal et al., 1992; Maekawa et al., 2005), and SAPK inhibitors block

this increase. SP600125 (Bennett et al., 2001) and D-JNKI1 (Bonny

et al., 2001) are effective inhibitors of SAPK function, but not

SAPK phosphorylation. The blockage of stress-induced c-Jun

phospho is a test of the efficacy of SAPK inhibitors and demonstrates

that phosphorylated nuclear c-Jun is SAPK-dependent.

As expected, 0.5 h of 1000 mM sorbitol increased c-Jun phospho in

embryos (Fig. 6), but SAPK inhibitors blocked this increase. Phos-

phorylated c-Jun fluorescence intensity values in embryos treated

with sorbitol þ SP600125, sorbitol þ D-JNKI1 or sorbitol alone (no

antibody background) were 26.0+ 9.2, 11.7+ 7.3 and 130.9+ 38.6

arbitrary units, respectively. The inhibitory effects of SP600125 or

D-JNKI1 were highly significant (P , 0.01). D-JNKl1 was delivered

to the embryo by the covalently bound fusigenic delivery peptide from

the human immunodeficiency virus twin arginine translocation gene

(TAT). Embryos treated with TAT-FITC had a peak fluorescence-

penetration of 2 h (Fig. 4, data not shown); therefore, all embryos

were pre-loaded with inhibitor for 2 h before the addition of sorbitol.

Since cell accumulation is diminished by 200 mM sorbitol (and

.200 mM) (Fig. 3), we hypothesized a phosphorylated form of

c-Myc corresponding to G1-S commitment (Pulverer et al., 1994)

and cell accumulation would be suppressed. To test this hypothesis,

we used two antibodies to c-Myc phospho at Ser58/Thr62, a site of

activation of c-Myc that is highly correlated with S-phase commitment

and DNA synthesis and is expressed throughout preimplantation

development (Xie et al., 2005a). Embryos cultured in KSOMaa are

maximally growth-induced compared with other media (Wang

et al., 2005) and express high c-Myc phospho in the nucleus

(Fig. 7). After 0.5 h of stress, phosphorylated c-Myc fluorescence

intensity was decreased. However, this loss of phosphorylated

c-Myc was largely reversed by SAPK inhibitor D-JNKl1, suggesting

that the loss is SAPK-dependent.

Discussion

We found that hyperosmolar sorbitol caused dose- and time-dependent

decreases in three biological outcomes: embryo growth, cell number

accumulation and apoptosis. We previously found that the stress

caused by seven embryo media phosphorylated SAPK Thr183/

Tyr185 to levels that were inversely correlated with rates of embryo

development (Wang et al., 2005). The different complex formulations

of these media could have induced stress by different mechanisms.

Here we used hyperosmolar sorbitol as the single stressor and

studied only the two media that induce one of the most (Ham’s F10)

and one of the least (KSOMaa) powerful inductions of phosphorylated

SAPK (Wang et al., 2005). Since phosphorylated SAPK levels were

induced proportionally to the amount of sorbitol added, it suggests

that these levels are proportional to decreased cell accumulation and

embryo cavitation and increased apoptosis. Since both phosphoryla-

tion and nuclear translocation of SAPK preceded and was simul-

taneous with the three biological outcomes measured, this suggests

that SAPK has a causal role in these outcomes.

Figure 7: Sorbitol added for 0.5 h suppresses the c-Myc phospho in E3.5 embryos (Part 1) E3.5 preimplantation embryos were cultured in KSOMaa without (A, B)
or with (C, D) 1,000 mM sorbitol and with sorbitol and DJNKl1 (E, F) for 0.5 h, then fixed and stained for c-Myc phospho. In (G, H), embryos were probed without
first antibody. In (A) micron bar ¼ 50 mm. (Part 2) Histogram shows c-Myc phospho fluorescent intensity (each histogram bar is mean+ standard deviation error
flag). **P , 0.01, (a) media and sorbitol with DJNKl1, P ¼ 0.6. c-Myc phospho fluorescent intensity of embryos incubated with KSOMaa alone, with 1,000 mM
sorbitol or with 1,000 mM sorbitol DJNKl1 for 30 min. Numbers in parentheses indicate number of embryos in each group
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Consistent with a role for SAPK in induction of homeostatic

responses, stress-induction of phosphorylated, nuclear c-Jun Ser63 is

dependent on SAPK activity and is inhibited by two inhibitors of

SAPK. SAPK-dependent activation of homeostatic responses in

somatic cells is dependent on c-Jun phosphorylated at Ser63 (Smeal

et al., 1991; Shaulian and Karin, 2002; Morton et al., 2003). Consis-

tent with a role for SAPK in attenuating the pre-stress growth pheno-

type, stress-induced decrease of phosphorylated, nuclear c-Myc

Thr58/Ser62 is dependent on SAPK activity. c-Myc exemplified a

larger group of phosphoproteins, including Rb and b-Myc (also

three other proliferation-associated phosphoproteins, data not

shown), that are up-regulated in a MAPK-dependent manner during

stress-free culture and that undergo down-regulation in a

stress-induced, SAPK-dependent manner. Phosphorylated, nuclear

c-Myc is correlated with proliferation in somatic cells (Henriksson

et al., 1993; Lutterbach and Hann, 1994). Mitogenic phosphorylated

c-Myc is detected in the nucleus of cells in preimplantation embryos

from the 2-cell stage through to the blastocyst (Xie et al., 2005a).

Loss of all Myc isoforms’ function by knockout of its obligate hetero-

dimer partner, Max, results in embryo death at implantation due to

lack of proliferation (Shen-Li et al., 2000). Decreasing c-Myc

expression with anti-sense oligonucleotides blocks embryonic devel-

opment at the 8-cell stage (Paria et al., 1992). The data taken together

for stress-induced regulation of c-Jun and c-Myc at 0.5 h by SAPK is

consistent with its regulation of the biological responses to stress

at 24 h.

We found that the difference measured in cell accumulation,

between the most and least SAPK phosphorylation-inducing media

(Wang et al., 2005) is 200 mM sorbitol. This dose also causes

embryonic stasis with regard to expansion in size. In addition, this

level of stress creates stasis in regard to cell accumulation. Increasing

stress diminished the cell accumulation. With 200 mM sorbitol in

KSOMaa, embryos started culture with 32.1 cells and ended culture

24 h later with �49 cells. However, this is likely not to be due to

new proliferation. Typically, �45% of cells in the blastocyst are

brdU positive (Xie et al., 2006a); so, of the 32.1 cells in embryos at

the start of culture, �14.5 cells in S phase would complete division,

resulting in �47 cells, similar to the �49–51 cells observed in

embryos cultured in KSOMaa þ 200 mM sorbitol. Therefore, the

increase in cell number of embryos in KSOMaa þ 200 mM sorbitol

may be due only to completion of cell cycle of those cells already

in S/G2 þM phase at the time of sorbitol addition. The relatively

small number of cells in G2 or M phase that would complete cell divi-

sion would be equivalent to the cells induced to undergo apoptosis.

Interestingly, 200 mM sorbitol does cause cell number stasis for

72 h in human first trimester placental cell line HTR (Zhong, data

not shown). Therefore, for the E3.5 embryo, 200 mM sorbitol is a

threshold level of stress that maintains size and cell number, but

likely leaves insufficient energy for further growth.

We show here that time- and dose-dependent apoptotic and cell

cycle arrest responses in embryos are similar to somatic cells. The

induction and role of SAPK in mediating these responses is also

similar. MAPK has two molecular responses that are unique in

embryos and placental stem cells compared with somatic cells

(Corson et al., 2003; Wang et al., 2004; Wang et al., to be submitted).

SAPK is unlike related MAPK in one response and similar in another

response. Unlike MAPK, once cytoplasmic SAPK phosphorylation is

induced by stress, phosphorylated SAPK does accumulate in the

nucleus in embryos. But, like MAPK, phosphorylated SAPK has a

mild peak at 200 mM sorbitol, but does not return to baseline. The

functional significance of these molecular response differences

remains to be determined. The balance between MAPK and SAPK sig-

naling during normal and stress responses determines biological

choice of growth, cell cycle arrest or apoptosis (Bogoyevitch et al.,

1995; Xia et al., 1995; Kang et al., 2000). In the unstressed state,

this balance must favor nearly constant net cell increase in the

rapidly growing early embryo and placenta.

Stress-induced, SAPK-dependent, phosphorylation of c-Jun is

similar to somatic cell responses. The results show that both phos-

phorylated SAPK and phosphorylated c-Jun are in the nucleus,

suggesting that much of the regulation mediated by SAPK will be

of transcription and have longer term effects. Recent reports using

chromatin immunoprecipitation suggest that SAPK, p38MAPK and

MAPK enzymes occupy many promoters after stress-induction in

yeast and mammals [(Pokholok et al., 2006), and citations therein].

Changes in nuclear activity due to stress and mediated by stress

enzymes are a key area of future studies.

Surprisingly, blastocysts exposed to high stress survived and also

maintained blastocoels for .24 h. The blastocysts initially collapsed

but re-established blastocoels; and after 0.5 h their size was not signifi-

cantly different than unstressed blastocysts. Re-establishment and

maintenance of the blastocoel requires a high expenditure of energy.

For example �40–60% of ATP in the trophectoderm is used to

pump water and solutes into the blastocoel during blastocyst formation

(Houghton et al., 2003). Forming and maintaining a blastocoel is one

of the highest energy-requiring cellular events in the trophectoderm or

in somatic cells in the intestinal epithelium (Leese et al., 1993; Brison

and Leese, 1994). Embryos stressed by 400–1000 mM sorbitol are

irreversibly committed to death after 12 h (and do not recover if

placed in KSOMaa alone); however, they continue to maintain the

blastocoel after 12 h and many embryos have blastocoels after 24 h

of stress. Maintaining a blastocoel does not appear to be a function

that the preimplantation embryo is programmed to jettison in times

of high stress. It will be important to measure energy consumption

and test for the SAPK-dependence of the embryos ability to reform

the blastocoel during stress.

As shown previously (Wang et al., 2005), one of the least stressful

media (KSOMaa) induces more phosphorylated SAPK in embryos

after overnight culture, than in embryos isolated from the uterus.

This is significant in that the SAPK-dependent modulation of homeo-

static and growth programs, exemplified by c-Jun and c-Myc tran-

scription factors, is also likely to occur during culture. In addition to

growth and homeostasis, it is likely that pluripotency of stem cells

is influenced by stress and stress enzymes. SAPK controls polycombs

which in turn controls determination of imaginal wing discs in

Drosophila (Rappolee, 2007). Extraembryonic ectoderm deficient/

polycombs is also important in suppressing the differentiated state

in mouse and human embryonic stem cells. The modulation of

growth, homeostasis and pluripotency by stress enzymes during

embryo culture may provide epigenetic mechanisms leading to the

long-term, post-natal effects observed previously (Ecker et al., 2004).

Conclusions

The work reported here suggests that biological responses of embryos

can be induced by hyperosmolar stress and associated to the pro-

portional induction of phosphorylated SAPK. The causal roles of

SAPK in stress homeostasis, and its redundancy with other stress

enzymes, remain to be determined. An attractive advantage of the

embryo model is that it allows easy analysis of the kinetics and mag-

nitude of the stress response, and after controlled stress in IVF culture

the embryo can be reimplanted. Then the ramifications of stress and

stress enzyme function in preimplantation embryos can be understood

in terms of their effects on later placental, fetal and post-natal

development.

Xie et al.

480

 at A
rthur N

eef L
aw

 L
ibrary, W

ayne State U
niversity on O

ctober 21, 2016
http://m

olehr.oxfordjournals.org/
D

ow
nloaded from

 

http://molehr.oxfordjournals.org/


Acknowledgements

This research was supported by grants to DAR from the National Institute of
Child Health and Human Development, NIH (R01 HD40972A), and NASA
(NRA, NAG 2-150309).
We thank Mike Kruger for advice on statistical analysis, PrimaProof for edi-
torial assistance and Brian Kilburn and Randy Armant for help with measuring
osmolality of media. We are also indebted to Dr Diamond for helpful discus-
sion and criticism of the manuscript. This research was supported by grants
to DAR from the National Institute of Child Health and Human Development,
NIH (R01 HD40972A) and NASA (NRA, NAG 2-150309).

References

Bennett BL, Sasaki DT, Murray BW et al. SP600125, an anthrapyrazolone
inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA
2001;98:13681–13686.

Bogoyevitch MA, Ketterman AJ, Sugden PH. Cellular stresses differentially
activate c-Jun N-terminal protein kinases and extracellular signal-regulated
protein kinases in cultured ventricular myocytes. J Biol Chem
1995;270:29710–29717.

Bonny C, Oberson A, Negri S et al. Cell-permeable peptide inhibitors of JNK:
novel blockers of beta-cell death. Diabetes 2001;50:77–82.

Brison DR, Leese HJ. The role of exogenous energy substrates in blastocoele
fluid accumulation in the rat. Zygote 1994;2:69–77.

Corson LB, Yamanaka Y, Lai KM et al. Spatial and temporal patterns of
ERK signaling during mouse embryogenesis. Development 2003;130:
4527–4537.

Cross JC, Werb Z, Fisher SJ. Implantation and the placenta: key pieces of the
development puzzle. Science 1994;266:1508–1518.

Dawson AA, Diedrich K, Felberbaum RE. Why do couples refuse or
discontinue ART? Arch Gynecol Obstet 2005;273:3–11.

Ecker DJ, Stein P, Xu Z et al. Long-term effects of culture of
preimplantation mouse embryos on behavior. Proc Natl Acad Sci USA
2004;101:1595–1600.

Fernandez-Gonzalez R, Moreira P, Bilbao A et al. Long-term effect of in vitro
culture of mouse embryos with serum on mRNA expression of imprinting
genes, development, and behavior. Proc Natl Acad Sci USA
2004;101:5880–5885.

Henriksson M, Bakardjiev A, Klein G et al. Phosphorylation sites mapping in
the N-terminal domain of c-myc modulate its transforming potential.
Oncogene 1993;8:3199–3209.

Hogan B, Beddington R, Constantini F et al. Manipulating the Mouse Embryo:
a Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory,
2002.

Houghton FD, Humpherson PG, Hawkhead JA et al. Naþ, Kþ, ATPase
activity in the human and bovine preimplantation embryo. Dev Biol
2003;263:360–366.

Ip YT, Davis RJ. Signal transduction by the c-Jun N-terminal kinase
(JNK)—from inflammation to development. Curr Opin Cell Biol 1998;10:
205–219.

Kang CD, Yoo SD, Hwang BW et al. The inhibition of ERK/MAPK not the
activation of JNK/SAPK is primarily required to induce apoptosis in
chronic myelogenous leukemic K562 cells. Leuk Res 2000;24:527–534.

Kwong WY, Wild AE, Roberts P et al. Maternal undernutrition during the
preimplantation period of rat development causes blastocyst abnormalities
and programming of postnatal hypertension. Development
2000;127:4195–4202.

Kyriakis JM, Avruch J. Protein kinase cascades activated bystress
inflammatory cytokines. Bioessays 1996;18:567–577.

Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal
transduction pathways activated by stress inflammation Physiol Rev
2001;81:807–869.

LaRosa C, Downs SM. Stress stimulates AMP-activated protein kinase and
meiotic resumption in mouse oocytes. Biol Reprod 2006;74:585–592.

Leese HJ, Conaghan J, Martin KL et al. Early human embryo metabolism.
Bioessays 1993;15:259–264.

Liu J, Puscheck EE, Wang F et al. Serine-threonine kinases and transcription
factors active in signal transduction are detected at high levels of
phosphorylation during mitosis in preimplantation embryos and
trophoblast stem cells (TSC). Reproduction 2004;128:643–654.

Lutterbach B, Hann SR. Hierarchical phosphorylation at N-terminal
transformation-sensitive sites in c-Myc protein is regulated by mitogens
and in mitosis. Mol Cell Biol 1994;14:5510–5522.

Maekawa M, Yamamoto T, Tanoue T et al. Requirement of the MAP kinase
signaling pathways for mouse preimplantation development. Development
2005;132:1773–1783.

Morton S, Davis RJ, McLaren A et al. A reinvestigation of the multisite
phosphorylation of the transcription factor c-Jun. EMBO J 2003;22:3876–
3886.

Natale DR, Paliga AJ, Beier F et al. p38 MAPK signaling during murine
preimplantation development. Dev Biol 2004;268:76–88.

Paria BC, Dey SK, Andrews GK. Antisense c-myc effects on preimplantation
mouse embryo development. Proc Natl Acad Sci USA 1992;89:10051–
10055.

Pokholok DK, Zeitlinger J, Hannett NM et al. Activated signal transduction
kinases frequently occupy target genes. Science 2006;313:533–536.

Pulverer BJ, Fisher C, Vousden K et al. Site-specific modulation of c-Myc
cotransformation by residues phosphorylated in vivo. Oncogene
1994;9:59–70.

Rappolee DA. Signal transduction. In Krawetz S, Womble D (eds).
Introduction to Bioinformatics. A Theoretical and Practical Approach.
Totowa, New Jersey: Humana Press, 2003, pp. 55–71.

Rappolee D. Impact of transient stress and stress enzymes on development. Dev
Biol 2007;304:1–8.

Roberts RM, Xie S, Mathialagan N. Maternal recognition of pregnancy. Biol
Reprod 1996;54:294–302.

Roovers K, Assoian RK. Integrating the MAP kinase signal into the G1 phase
cell cycle machinery. Bioessays 2000;22:818–826.

Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol
2002;4:E131–E136.

Shen-Li H, O’Hagan RC, Hou H, Jr. et al. Essential role for Max in early
embryonic growth and development. Genes Dev 2000;14:17–22.

Smeal T, Binetruy B, Mercola DA et al. Oncogenic and transcriptional
cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63
and 73. Nature 1991;354:494–496.

Smeal T, Binetruy B, Mercola D et al. Oncoprotein-mediated signalling
cascade stimulates c-Jun activity by phosphorylation of serines 63 and 73.
Mol Cell Biol 1992;12:3507–3513.

Steeves CL, Hammer MA, Walker GB et al. The glycine neurotransmitter
transporter GLYT1 is an organic osmolyte transporter regulating cell
volume in cleavage-stage embryos. Proc Natl Acad Sci USA
2003;100:13982–13887.

Thompson NA, Haefliger JA, Senn A et al. Islet-brain1/JNK-interacting
protein-1 is required for early embryogenesis in mice. J Biol Chem
2001;276:27745–27748.

Wang Y, Wang F, Sun T et al. Entire mitogen activated protein kinase (MAPK)
pathway is present in preimplantation mouse embryos. Dev Dyn
2004;231:72–87.

Wang Y, Puscheck EE, Wygle DL et al. Increases in phosphorylation of SAPK/
JNK and p38MAPK correlate negatively with mouse embryo development
after culture in different media. Fertil Steril 2005;83:1144–1154.

Whitmarsh AJ, Davis RJ Signal transduction by MAP kinases: regulation by
phosphorylation-dependent switches. Sci STKE 1999; PE1.

Xia Z, Dickens M, Raingeaud J et al. Opposing effects of ERK and JNK-p38
MAP kinases on apoptosis. Science 1995;270:1326–1331.

Xie Y, Sun T, Wang QT, Wang Y et al. Acquisition of essential somatic cell
cycle regulatory protein expression and implied activity occurs at the
second to third cell division in mouse preimplantation embryos. FEBS Lett
2005a;579:398–408.

Xie Y, Wang Y, Sun T et al. Six post-implantation lethal knockouts of genes for
lipophilic MAPK pathway proteins are expressed in preimplantation mouse
embryos and trophoblast stem cells. Mol Reprod Dev 2005b;71:1–11.

Xie Y, Puscheck EE, Rappolee DA. Effects of SAPK/JNK inhibitors on
preimplantation mouse embryo development are influenced greatly by the
amount of stress induced by the media. Mol Hum Reprod 2006a;12:217–
224.

Xie Y, Wang F, Zhong W et al. Shear stress induces preimplantation embryo
death that is delayed by the zona pellucida and associated with
stress-activated protein kinase-mediated apoptosis. Biol Reprod
2006b;75:45–55.

Zhong W, Sun T, Wang QT et al. SAPKgamma/JNK1 and SAPKalpha/JNK2
mRNA transcripts are expressed in early gestation human placenta and
mouse eggs, preimplantation embryos, and trophoblast stem cells. Fertil
Steril 2004;82(Suppl 3):1140–1148.

Submitted on January 13, 2007; resubmitted on March 4, 2007; accepted on
March 12, 2007

SAPK responses in preimplantation embryos

481

 at A
rthur N

eef L
aw

 L
ibrary, W

ayne State U
niversity on O

ctober 21, 2016
http://m

olehr.oxfordjournals.org/
D

ow
nloaded from

 

http://molehr.oxfordjournals.org/

	Wayne State University
	5-3-2007
	Using hyperosmolar stress to measure biologic and stress-activated protein kinase responses in preimplantation embryos
	Yufen Xie
	W Zhong
	Y Wang
	A Trostinskaia
	F Wang
	See next page for additional authors
	Recommended Citation
	Authors


	untitled

