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Many eye tracking studies are designed to reveal the co-activation of representations in
interactive cognitive systems, such as lexical candidates in the human language system.
Such co-activation is presumed to occur within participants on a trial-level. However, tra-
ditional analyses mostly use the viewing tendency of participants over trials (e.g., average
fixation proportions to visual referents), rather than individual fixation patterns within tri-
als (e.g., consecutive fixations across visual referents). Instead, we argue that assessing
temporal dependencies of eye movements between relevant referents is better suited for
detecting co-activation in an interactive system, compared to other oft-used methods that
may falsely accept or reject interaction hypotheses. We demonstrate how to analyze eye
movement transitions with a multilevel markov modeling approach using a relevant exper-
imental example (bilingual co-activation in a visual world paradigm), and discuss the prac-
tical applications and theoretical implications when analyzing transitions in any type of
eye tracking data.

� 2013 Elsevier Inc. All rights reserved.
Introduction

To make sense of the world around us, we need to con-
stantly process the sensory information in our environ-
ment. By studying how we process this continuous input,
researchers attempt to understand the mechanisms that
are involved in human cognition. For example, studying
people’s eye movements while they process spoken lan-
guage, perceive visual scenes, and/or interact with their
environment, can reveal the underlying processes that
are called upon when performing these actions. For this
purpose, eye tracking is a popular and widely used method
in cognitive psychology. A wide variety of research do-
mains have adopted the eye tracking methodology to study
such topics as language acquisition and comprehension, vi-
suo-motor learning, memory, perception, visual cognition,
social interactions, cognitive development, and action. Sev-
eral methods for assessing people’s viewing behavior have
been used, all of which study eye movements to regions of
interest (pictures, words, or locations) in a visual scene.

The visual world paradigm (Cooper, 1974) is an exem-
plary method. This paradigm is based on the notion that
looking to real-world objects while simultaneously listen-
ing to spoken language might reveal cognitive mechanisms
involved in language processing (Tanenhaus, Spivey-
Knowlton, Eberhard, & Sedivy, 1995). Measuring the eye
fixations to a relevant visual scene while sentences incre-
mentally unfold provides a sensitive real-time index of
how language is being processed. By recording eye move-
ments to real-world referents (often pictures on a screen),
researchers aim to study which representations are acti-
vated during language processing, when they are activated,
and to what extent. Another well-known paradigm used

http://dx.doi.org/10.1016/j.jml.2013.05.006
mailto:l.vandeberg@uva.nl
mailto:bouwmeester@fsw.eur.nl
mailto:bouwmeester@fsw.eur.nl
mailto:b.r.bocanegra@fsw.leidenuniv.nl
mailto:zwaan@fsw.eur.nl
http://dx.doi.org/10.1016/j.jml.2013.05.006
http://www.sciencedirect.com/science/journal/0749596X
http://www.elsevier.com/locate/jml


3 We thank Florian T. Jaeger for pointing out related discussions at CUNY
conferences (Frank, Salverda, Jaeger, & Tanenhaus, 2009; Tanenhaus, Frank,
Jaeger, Masharov, & Salverda, 2008).

446 L. Vandeberg et al. / Journal of Memory and Language 69 (2013) 445–460
with eye tracking is visual search (Treisman & Gelade,
1980; Williams, 1966, as described by Findlay, 2004). Here,
participants are instructed to search for certain objects on
the screen. By manipulating aspects of the visual scene
(such as object features, or the number of distractors),
researchers can, for example, investigate how bottom up
stimulus features and top down volitional control influ-
ence visual search (e.g., Henderson & Ferreira, 2004; The-
euwes, 2010; Wolfe, 1994; also see Hartsuiker, Huettig, &
Olivers, 2011).

Cognitive interactions

Researchers have used eye movements to study
whether information processing in the human representa-
tional system occurs in an interactive or non-interactive
fashion (for a discussion see e.g., Stephen & Mirman,
2010). Cognitive systems in general are assumed to contain
several processing levels representing different levels of
abstraction, within which each level consists of various
representational units. In non-interactive systems the
information stream flows unidirectional through encapsu-
lated levels (with information from each level affecting the
next, i.e., bottom-up), whereas it is multidirectional in
interactive systems (i.e., simultaneously bottom-up,
top-down, and laterally within a level, cf. McClelland &
Rumelhart, 1981; Rumelhart & McClelland, 1982). Such a
multidirectional communication within and between adja-
cent representational levels is often implemented through
excitatory and inhibitory connections between representa-
tional units. This results in interactive activation of repre-
sentational units (McClelland & Rumelhart, 1981),
meaning that the (extent of) activation of one representa-
tional unit depends on the (extent of) activation of another
representational unit. As a result, one important property
of an interactive system is that it allows for co-activation
of multiple representational units, meaning that multiple
representations are activated, after which one representa-
tion can be selected through a combination of bottom-up,
top-down, and lateral (inhibitory) processing streams.

The detection of co-activation of representations has
important consequences for the interpretation of human
cognition and behavior. Successful performance on behav-
ioral or mental activities (such as producing or compre-
hending language) depends on the efficiency with which
mental representations can be retrieved from memory. In
a non-interactive processing system such representations
are activated independently, whereas in an interactive pro-
cessing system, activation occurs interdependently.

The idea of using eye movements to assess interactive
activation of representations is that it may influence where
observers fixate during the viewing of a scene, i.e., which
referents they attend to. Therefore, researchers who study
people’s eye movements in visual world paradigms are of-
ten interested in whether activation of one representation
co-occurs with activation of another representation, which
would suggest co-activation (and therefore interactive
activation) within the cognitive system that underlies
viewing behavior.

One way of investigating interactive activation is to as-
sess the distributional signature of latent cognitive
processes on viewing behavior. For example, Stephen and
Mirman (2010) have analyzed the distributions of gaze
steps (i.e., the Euclidian distance between consecutive gaze
positions) in visual search and visual world tasks and
found that these distributions showed evidence for inter-
acting processes that drive visual cognition (but also see
Bogartz & Staub, 2012, for a substantial criticism).
Although this distributional approach is able to test the
nature (either interactive or not) of the underlying cogni-
tive systems, it cannot reveal specific interactions between
hypothesized representational units.

The present paper is concerned with a more fine-
grained approach to assess whether the activation of spe-
cific representations are contingent upon each other or
not. With this purpose, researchers usually define several
regions of interest, using visual referents to elicit fixations
that are hypothesized to reveal activation of specific
underlying representations. Generally, they assess the fix-
ation durations or fixation frequencies to each region of
interest for several time intervals. Next, the average pro-
portion of fixations is calculated for each time interval
within participants or within trials and they are compared
for the visual referents of interest. We will argue that com-
paring the fixation proportions over trials between refer-
ents may lead to substantial problems, because they can
lead one to erroneously conclude the presence and absence
of co-activation of representations in a cognitive system.
As we will argue throughout this paper, the assessment
of co-activated representations ideally occurs within par-
ticipants and within trials.

Analyzing transitions between regions of interest cir-
cumvents the disadvantages of proportions because they
are calculated within trials. They can therefore provide
the information needed to detect co-activation within tri-
als. Transition analyses (i.e., assessing dependencies be-
tween different states) have been performed in different
eye tracking paradigms (e.g., Althoff & Cohen, 1999;
Henderson, Falk, Minut, Dyer, & Mahadevan, 2000; Simola,
Salojärvi, & Kojo, 2008) and are arguably preferable over
fixation proportions3 for answering different research ques-
tions. In this paper, we will argue that transitions are ideally
suited for assessing the presence or absence of dependencies
between the activation of representations.

A relevant framework to demonstrate this is that of co-
activated languages in a visual world paradigm. Because
this framework leads to relatively simple predictions about
first-order transitions, this example will be used through-
out the paper. However, the points we make generalize
to any type of eye tracking paradigm in which researchers
assess the activation of representations in interactive sys-
tems that influence eye movements to visual referents
within a single predefined event. First, we will outline
the theoretical framework from our example and some
conceptual and methodological issues that arise when con-
ceptualizing co-activated representations. Next, we will
illustrate the importance of assessing individual transition
patterns with two hypothetical situations.
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Theoretical framework

Several studies that have adopted the visual world par-
adigm concluded that auditory linguistic input can lead to
co-activated representations within different representa-
tional levels, for example in physical shapes (e.g., snake –
rope, Dahan & Tanenhaus, 2005), semantic associates
(e.g., piano – trumpet, Huettig & Altmann, 2005; Yee &
Sedivy, 2006), lexical candidates within a language (e.g.,
beaker – beetle, Allopenna, Magnuson, & Tanenhaus,
1998; e.g., candle – candy, Spivey-Knowlton, Tanenhaus,
Eberhard, & Sedivy, 1998, also see Huettig & McQueen,
2007), and across languages (e.g., marku – marker, Spivey
& Marian, 1999). Most of these conclusions were based
on fixation proportions that were averaged across partici-
pants, trials, and time (but also see Huettig & Altmann,
2005). For example, when fluent Russian-English bilinguals
were instructed in Russian to manipulate a target picture
of a ‘‘marku’’ (meaning stamp in English), a higher propor-
tion of fixations was directed at a competitor picture of a
marker than at distractor pictures with no phonetic overlap
in either language (Spivey & Marian, 1999).

Such differences in fixation proportions (see Marian,
Blumenfeld, & Boukrina, 2007; Marian & Spivey, 2003;
Marian, Spivey, & Hirsch, 2003 for similar findings) are taken
as support for co-activation of lexical representations from
different languages, or cross-language lexical access. This
is the leading view that when bilinguals are presented with
a word that has (semantic, orthographic, or phonological)
overlap across languages, lexical candidates from both lan-
guages are activated (e.g., Brysbaert, Van Dyck, & Van de
Poel, 1999; Caramazza & Brones, 1979; Grainger &
Beauvillain, 1987; Macnamara & Kushnir, 1971; Schulpen,
Dijkstra, Schriefers, & Hasper, 2003; Vandeberg, Guadalupe,
& Zwaan, 2011; von Studnitz & Green, 2002). This view is re-
flected in interactive models of speech recognition (cf. the
interactive activation model by McClelland & Rumelhart,
1981; Rumelhart & McClelland, 1982), such as the cohort
model (Marslen-Wilson, 1987; Marslen-Wilson & Welsh,
1978), the TRACE model (McClelland & Elman, 1986), and
the Bilingual Interactive Activation (BIA+) model (Dijkstra &
Van Heuven, 2002). Generally, these models describe one
integrated language system containing the lexical represen-
tations of multiple languages which can be co-activated.

These theoretical frameworks suggest that the activa-
tion of one representation depends on the activation of an-
other representation when processing language. When
using eye movements to measure such dependencies in
activation during the processing of a linguistic utterance,
we argue that one should ideally assess dependencies be-
tween critical fixations. Consider the following experimen-
tal example. If a Dutch-English bilingual hears the English
word ‘‘mice’’, the phonologically similar Dutch word form
‘‘mais’’ (meaning corn) may also be activated. Assuming
that eye movements to relevant objects indeed reveal lex-
ical activation, this co-activation of lexical candidates
should result in more looks to both the English depiction
(mice) as well as the Dutch depiction (corn) of the word,
relative to the irrelevant distractors (pictures of e.g., leaves
and apples). Importantly, the two representations should
not be activated at just any independent points during
the experiment, but their activation should be temporally
contingent (co-activated) within a trial. Such temporal
dependencies on a representational level (activation of
the English and Dutch representation) can be detected by
temporal dependencies in viewing behavior (fixations on
the English and Dutch depictions). Transitions (switches)
between the two critical pictures within a trial are ideally
suited to capture such dependencies. We therefore argue
that transitions are an ideal measure for co-activation.

In other words, if the English and Dutch word forms are
both activated upon hearing the word ‘‘mice’’ (see e.g.,
Dijkstra & Van Heuven, 2002), the word ‘‘mice’’ should
evoke fixations to both the English and the Dutch depic-
tion. Because it is impossible to fixate two pictures simul-
taneously given the visual angle at which the pictures are
presented, the way to tap into such temporal dependencies
in lexical activation is to assess whether critical fixations
occur alternately for the critical referent pictures. Such
alternations would provide a strong indication of co-acti-
vation on a representational level.

With this claim, it is not our intention to define co-acti-
vation within a specific architectural framework. Though
representations in an interactive system are by definition
co-activated, other frameworks may implement dependen-
cies in the activation of representations in other ways. As
such, different architectures might result in the same tem-
poral dependencies in overt viewing behavior. Most impor-
tantly however, researchers use visual world or visual
search paradigms to assess the theoretical claim that the
activation of a representation is dependent or independent
of the activation of another representation. In this paper
we propose a method for detecting such dependencies by
assessing whether fixating one picture is conditionally
dependent on fixating another picture.

Conceptual and methodological issues

Many eye tracking studies, such as those described in
the current theoretical framework, are analyzed by per-
forming t-tests (ANOVAs) on fixation durations, fixation
proportions, or fixation counts to each region of interest
within a certain time interval. However, several research-
ers have recently proposed alternative analyses, such as
modeling growth curves on fixation proportions (Magnuson,
Dixon, Tanenhaus, & Aslin, 2007; Mirman, Dixon, & Mag-
nuson, 2008) or performing binomial multilevel analyses
on log odds (Barr, 2008). The latter analyses are perfectly
suited for establishing activation of representations as an
aggregate property over events, e.g., within participants
but across trials. However, many theories-including that
of cross-lexical activation- specifically predict co-activa-
tion within participants and within trials. In other words,
a minimal prerequisite for claiming bilingual co-activation
is that both the English lexical candidate mice and the
Dutch lexical candidate mais are activated in the ‘‘mice’’
trial (rather than activating the English candidate in some
trials and the Dutch candidate in others, which may lead to
an aggregated number that would have suggested the acti-
vation of both languages). We therefore argue that hypoth-
eses based on such a momentary co-activation are ideally
addressed within trials, because the description level of
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the analysis is in concordance with that of the theoretical
claim.

An alternative solution to the problem of aggregated
fixations would be to compare fixation latencies to the Eng-
lish referent (‘‘mice’’) in the presence of the Dutch referent
(‘‘mais’’), compared to a control condition in which the
Dutch referent is not present in the display (cf. the design
explained by Barr, 2008, in the special issue of the Journal
of Memory and Language on emerging data analysis). A
delayed fixation to the English referent in the presence
(versus absence) of the Dutch referent should indicate
co-activation of lexical candidates. Although this approach
is capable of detecting co-activation, it does so at a coarser
level. First, delays have to be measured across trials. That
is, this method always compares a trial in which a referent
was present to a different trial in which it was absent. As a
result, assessing delays always occurs (a) across items, in
which a participant responds to different items in different
conditions, which does not allow the researcher to detect
momentary interactions within a certain participant on
any certain item, or (b) within items but across trials, in
which a participant responds to the same item in different
conditions; in this case, one item is presented multiple
times which is undesirable in, for example, language re-
search. Second, delays infer the activation of a representa-
tion based on absent behavior, i.e., the duration of not
looking at the target. As a result, there is not much specific
information about to what extent the other representation
is activated at which point in time. Thus, unlike delays,
transitions have the advantage of being able to measure
within trials and to explicitly uncover activation of a cer-
tain representation at a certain point in time. The advan-
tage of transitions therefore is that they can specifically
pinpoint which representations are activated and when this
occurs. Furthermore, the proposed transition analysis al-
lows the assessment of a multinomial dependent variable.
This allows us to assess the viewing behavior to all four re-
gions within a single model, which is a stronger fit to the
actual data than modeling the viewing behavior to the
one or two critical regions only. And, as we will argue in
the discussion, a transitional approach has the potential
to assess the relative strength of the connections between
representations, which can give insight into the structural
hierarchy of the representational system.

In the present paper we argue that assessing transitions
within participants and within trials to investigate co-acti-
vation can overcome many pitfalls of conventional ap-
proaches. To illustrate this, consider panels A and B from
Table 1. Both panels reflect the hypothetical fixation pat-
tern of a participant over time to four regions on a screen
in ten different trials. Region EN represents the referent
for the English representation (e.g., the picture of the Eng-
lish mice from our example), region DU refers to the refer-
ent for the Dutch representation (e.g., the picture of corn,
the Dutch mais), and regions d1 and d2 refer to distractor
pictures that do not represent a relevant representation
(e.g., apples and leaves). In trial 1 from panel A, for exam-
ple, the individual first fixated a distractor (d1), then made
a transition to the referent for the Dutch representation
(DU), kept fixating this referent, and finally fixated the
other distractor (d2).
Critically, Panel A shows a situation in which analyzing
the commonly used fixation proportions (or log odds) per
time frame would lead to the erroneous conclusion of co-
activated representations (or, in terms of our example, that
hearing the English word form mice activated the Dutch
word form mais, which corresponds to the picture of corn).
This conclusion would be based on a higher proportion of
fixations on critical regions EN and DU relative to distrac-
tor regions d1 and d2. However, the individual trials show
that there were only three out of ten trials in which our
hypothetical participant fixated both critical regions, and
importantly, that these critical fixations were never
sequential. In terms of our example this shows that there
were no trials in which the participant made a transition
between the English and Dutch referents upon hearing
the target word (e.g., ‘mice’). For this reason, these data
do not provide convincing evidence that both word mean-
ings were activated upon hearing the linguistic utterance.
However, analyzing fixation proportions by means of ANO-
VAs would have led to the erroneous conclusion that the
representations were co-activated. Approaches that do
not average across trials do not have this problem (also
see the points made by Barr (2008)).

On the other hand, Panel B shows a situation in which
analyses over aggregated data would erroneously conclude
that representations were not co-activated, given the equal
proportions of fixating the referent for the Dutch represen-
tation (region DU) and the distractors (regions d1 and d2):
Not only did participants fixate both critical pictures on se-
ven out of ten trials, they also did this in a consistent and
temporally contingent manner (switching from region EN
to DU and DU to EN). This would provide convincing evi-
dence for the momentary co-activation of the English and
Dutch representations, i.e., for cross-language activation.
Essentially, the temporal contingencies between target
and competitor fixations are indicative that both the Eng-
lish and Dutch lexical candidates are activated upon hear-
ing the word ‘‘mice’’.

These examples show that, because fixation patterns
vary considerably between individuals and over trials,
analyses based on fixation proportions can lead to errone-
ous conclusions concerning both the presence and absence
of co-activation. For this reason, we argue for a fine-
grained test for co-activation between representations
using fixation transitions between critical pictures relative
to distractor pictures within individual trials. As illustrated
by our hypothetical examples, it is not sufficient to con-
clude that the critical referents were fixated across trials
or across participants (i.e., over events). Rather, one should
ideally establish whether a fixation to one referent is tem-
porally dependent on a fixation to the other referent (i.e.,
within events, e.g., during the trial ‘‘mice’’). Of course, as
a result of visual search for the target, distractors will be
fixated at times and switches from and to these pictures
will occur. However, co-activation inherently implies a
temporal dependency between the activation of multiple
representations, which in general terms should also result
in a temporal dependency between the fixations to the vi-
sual referents.

An ideal way to assess individual transition patterns is
by means of markov modeling, because this technique



Table 1
Hypothetical viewing patterns.

New Timeframe (ms)

0–250 251–500 501–750 751–1000 Total

A. No temporal contingency between critical regions 1 and 2
Trials 1. d1 DU DU d2

2. DU DU d1 EN
3. EN d1 DU d1
4. EN EN EN EN
5. d1 EN EN EN
6. d2 DU DU DU
7. DU DU d2 EN
8. d1 EN EN EN
9. d2 d2 EN EN
10. EN EN EN EN

Proportions Region EN 0.3 0.4 0.5 0.7 0.48
Region DU 0.2 0.4 0.3 0.1 0.25
Region d1 0.3 0.1 0.1 0.1 0.15
Region d2 0.2 0.1 0.1 0.1 0.13

0–250 251–500 501–750 751–1000 Total

B. Temporal contingency between critical regions 1 and 2
Trials 1. DU EN d2 EN

2. EN DU d2 EN
3. d1 EN EN DU
4. DU EN d1 EN
5. d2 d2 DU EN
6. EN d2 EN EN
7. d1 EN DU d2
8. d1 DU EN EN
9. EN d1 EN d1
10. d2 d1 EN EN

Proportions Region EN 0.3 0.4 0.5 0.7 0.48
Region DU 0.2 0.2 0.2 0.1 0.18
Region d1 0.3 0.2 0.1 0.1 0.18
Region d2 0.2 0.2 0.2 0.1 0.18

Note. This table illustrates the hypothetical fixation pattern of one participant in ten trials after onset of the target word in case of temporal contingency
between critical fixations (panel B; transitions from region EN to DU and vice versa) or no temporal contingency (panel A; no transitions between regions
EN and DU within trials). The text within a cell represents fixations on respective regions of interest. Each column represents a time interval; each row
represents a trial (in the upper part of each panel) or averaged proportion of fixations across trials (in the lower part of each panel).
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assesses changes in fixations (states) over time, calculates
transition probabilities, and properly analyzes the data by
addressing the temporal dependencies of the switches
(see Cristino, Mathot, Theeuwes, & Gilchrist, 2010; Hwang,
Wang, & Pomplun, 2011; von der Malsburg & Vasishth,
2011 for different methods of assessing direct transitions
or sequences in eye movements). Also, multilevel markov
models are able to account for the multilevel structure of
the data (trials are nested within participants). The effects
that can be tested are either first-order transitions (assess-
ing direct transitions from fixating one region of interest to
the next, as we hypothesize for this study) or higher-order
transitions (reflecting a chain of two or more transitions to
different regions of interest, i.e., the sequence of fixations).
In the following section we will describe a study that is tai-
lored to the present discussion, in order to illustrate the
type of predictions that can be made in markov modeling
and demonstrate how this technique can be used in ana-
lyzing eye tracking data.

The present study will assess cross-language activation
in the operationalization that is explained throughout the
introduction. As discussed in Future development and
considerations, there are conceivable circumstances where
temporal dependencies between representations might
not necessarily result in direct (first-order) transitions,
but may affect indirect (higher-order) transitions. How-
ever, considering that we have no a priori-hypotheses
about such higher order transitions, we only assess first-
order transitions.
Application

Method

Participants
Forty-eight undergraduate students at the Erasmus

University Rotterdam participated in the experiment for
course credit or payment. The description of the Experi-
ment stated that native Dutch (L1) speakers with second
language English (L2) could sign up for an English exper-
iment testing the English proficiency in Dutch students.
Their proficiency in English was assessed by the Language
Experience and Proficiency Questionnaire (LEAP-Q:
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Marian, Blumenfeld, & Kaushanskaya, 2007). The mean
self-rated English skills were 7.0 (SD = 1.15) on a scale
from 1 to 10 (averaged over speaking skills, reading skills,
and understanding spoken language). The mean age at
which these unbalanced bilinguals acquired English was
9.4 (SD = 2.1). All had normal or corrected-to-normal
vision.

Stimuli and apparatus
The auditory stimulus materials were derived from a

pilot experiment that provided an empirical measure of
phonological overlap. They were recorded by a male na-
tive speaker of Dutch who had lived in the US for 15 years,
because the pilot experiment required the homophones to
be pronounced both in English and Dutch. A native speak-
er of American English assessed the stimuli to ensure that
they were pronounced correctly. We selected the data of
14 homophone-items from a pool of 43 English one- or
two-syllable homophones (e.g., mice) and 43 English
one- or two-syllable filler words (e.g., grapes). Each word
was preceded by the carrier phrase ‘‘Click on the. . .’’,
which lasted 1078 ms. The auditory stimuli were sampled
at 44.1 kHz.

The visual world, consisting of four quadrants on the 21
inch display of a remote Tobii 2150 eye tracker, was shown
during each auditorily presented sentence. The partici-
pants’ eye positions were continually registered at a sam-
pling rate of 50 Hz. Each quadrant in the visual world
contained one picture. In the homophone condition, the
target picture (e.g., mice) was accompanied by a competi-
tor reflecting the Dutch meaning of the homophone word
(e.g., corn) and two distractor pictures, with no phonolog-
ical overlap with the target (e.g., apples and leaves).4 Each
picture occurred in one visual display only, and each visual
display was presented once. The positioning of the pictures
from quadrants 1 to 4 was randomized across trials and
across participants. In addition, the order of trials was ran-
domized across participants.

Procedure and design
The experimental session consisted of three parts. First,

participants performed the visual world eye tracking task.
They were seated in front of the eye tracker. After calibra-
tion, they read the English instructions on the computer
4 Because the lexical properties of the word forms for each picture in a
trial might affect cross-language activation, we controlled for several of
such properties. First, we calculated the frequency per million for both the
English and Dutch word form belonging to each picture (assessed in
CLEARPOND, Marian, Bartolotti, Chabal, & Shook, 2012). A repeated
measures ANOVA on the frequencies per picture type (EN, DU, d1, d2)
showed no significant differences in both English (F < 1) and Dutch (F < 1)
word form frequencies. Next, we calculated a measure of semantic overlap
between the lexical candidates belonging to each possible picture pair in a
trial (EN-DU; EN-d1; EN-d2; DU-d1;DU-d2;d1-d2) by Latent Semantic
Analysis (http://lsa.colorado.edu/). A repeated measures ANOVA showed
that the semantic overlap between each picture pair within a trial was low
(M = 0.09, SD = 0.10) and similar across picture types (F(5,9) = 0.30, p = .90).
Finally, we assessed the English–Dutch cognate status of the distractors
(calculated with the formula used by Midgley, Holcomb, and Grainger
(2011)). Paired-samples t-tests showed that the orthographic (M = 0.28,
SD = 0.34) and phonological (M = 0.24, SD = 0.29) overlap between the
distractors’ translation equivalents was low and did not differ for the
different distractor categories (ts < 1.23, ps > .24, rs < .11).
screen. They were instructed to listen to the presented
sentences carefully and then click on the picture as in-
structed in the sentence. The participants performed five
practice trials that were similar to the experimental trials
but included different words and pictures. If there were
no further questions after the practice trials, the experi-
ment started. Before each trial, a fixation cross and the
mouse cursor were presented in the middle of the screen.
When the eye tracker recorded 500 ms of fixations to the
cross, the trial started. The fixation cross disappeared and
the visual world appeared on the screen simultaneously
with the onset of the sentence. Each trial was terminated
at the moment the participant clicked on a picture.
1000 ms after the trial had ended the fixation cross again
appeared on the screen and the mouse cursor returned to
its central position, leaving an equal distance between the
mouse cursor and each of the four pictures at the onset of
the trial.

Afterwards, participants filled out a Dutch translation
of the validated Language Experience And Proficiency –
Questionnaire (Marian, Blumenfeld, & Kaushanskaya,
2007) on the computer. This questionnaire was designed
to assess the participants’ language profile. At the end of
the experimental session, participants performed a vocab-
ulary test. During this test, they were auditorily presented
with the English homophone target items to translate into
Dutch. The trials in which the participants did not know
the correct translations would be removed from the eye
tracking data for further analyses, making the vocabulary
test a useful selection mechanism both at participant and
at item level. The entire experiment lasted approximately
45 min.

Exclusion criteria
Participants were excluded from the sample when they

did not report English as being their real L2 (N = 2), had ex-
tremely high error rates in the vocabulary test (above .50,
N = 9), or as a result of software malfunction (N = 2). Fur-
thermore, trials that were defined erroneously in the
vocabulary test or had extremely long response latencies
(over 3500 ms after target onset) were excluded from the
analysis.

Predictions

Importantly, the current hypothesis about cross-lan-
guage activation should be formulated in terms of transi-
tions towards targets, competitors, and distractors within
a person within a trial. For this purpose, markov modeling
provides an ideal approach. The results of a markov model
analysis can simply be summarized in a transition matrix
containing estimations of the transition probabilities to
each picture. Markov modeling allows us to test detailed
predictions regarding the content of transition matrices if
co-activation occurs versus if it does not occur. The transi-
tion matrix contains (1) the probability of staying fixated
on a certain picture (referred to as ‘‘staying probabilities’’,
resembling the fixation proportions that are used in tradi-
tional analyses) and (2) the probability of switching from
one picture to another (i.e., transitions between pictures, re-
ferred to as ‘‘switching probabilities’’). Given that we were

http://lsa.colorado.edu/


Table 2
Prediction matrix depicting the relative staying and switching probabilities for correct trials in the case of co-activation.

Time frame = t

English Dutch Distractor 1 Distractor 2

Time frame = t � 1 English A a b b
Dutch c B d d
Distractor 1 e f C f
Distractor 2 e f f C

Note. Identical letters represent equal (expected) proportions. The diagonal cells (containing capital letters) represent the staying predictions; the off-
diagonal cells (containing lowercase letters) represent the switching predictions. The critical hypothesized relationships are: a > b, c > d.

5 For an introduction into multilevel modeling techniques see Baayen,
Davidson, and Bates (2008). For categorical (multinomial) multilevel
modeling in specific, see Agresti (2002) or Jaeger (2008), for example.
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interested in the pattern of probabilities in our model rather
than their absolute sizes, we formulated all staying proba-
bilities relative to the other staying probabilities (using cap-
ital letters), and all switching probabilities relative to the
other switching probabilities (using lowercase letters).

Table 2 shows the hypothetical transition matrix,
depicting the relative staying and switching probabilities
in the case that languages are co-activated and the refer-
ents of both languages show temporal dependencies. The
predictions are formulated as the probability of switching
to a certain picture (at a certain time frame t, which is rep-
resented by the columns in the matrices) given a fixation
on a certain other picture (at the preceding time frame
t � 1, as represented by the rows in the matrices). In other
words, the hypotheses pertaining to co-activation are
based on the previously attended picture and comparisons
between switching probabilities are made on a row level in
the matrices. The diagonal cells in the matrix depict the
staying probabilities and the off-diagonal cells depict the
switching probabilities. This prediction matrix can be
mapped directly onto the actual transition matrix that re-
sults from the markov model analyses.

Previous studies (e.g., Dahan & Tanenhaus, 2005; Huettig
& Altmann, 2005; Spivey & Marian, 1999; Spivey-Knowlton
et al., 1998) have found that participants showed a higher
fixation proportion on the target than on the other pic-
tures, as a result of the task demands. Furthermore, they
found that participants showed a higher proportion of fix-
ations on the competitor than on the irrelevant distractor
pictures, but that this fixation proportion was smaller than
that on the target. This asymmetry is depicted in Table 2 on
the diagonal axis, showing the highest probability of a par-
ticipant fixating the English target and remaining fixated
on the English target in the successive time frame (A), a
lower probability of fixating the Dutch competitor and
staying fixated there in the successive time frame (A > B)
and the lowest probability of fixating one of the distractor
pictures and staying fixated (A > B > C).

Importantly, English target and Dutch competitor fixa-
tions should be temporally dependent if both lexical candi-
dates are co-activated, as reflected in the off-diagonal cells
of the upper two rows. If the English target is fixated by the
participant, the probability of switching to the Dutch com-
petitor should be larger than the probability of switching
to one of the distractor pictures (a > b). The probability of
switching from the Dutch competitor to the English target
should be larger than the probability of switching to a dis-
tractor (c > d). However, because the task instructed to
click on the English target, we expect that every switch
would be most likely made to the English target rather
than any other picture. If a participant fixated a distractor,
the probability of switching to the English target should
also be greater than the probability of switching to the
Dutch competitor or the other irrelevant distractor, be-
cause of the task demands (e > f). In terms of our critical
hypothesis, this shows that the probability of switching
from the Dutch competitor to the English target (relative
to switching to a distractor, c > d), is not the most informa-
tive measure of a temporal dependency between the Eng-
lish and Dutch depiction. For this reason, the most critical
comparison is that in row one of Table 2: Are people more
likely to switch from the English target to the Dutch com-
petitor than to a distractor (a > b)? This comparison is de-
picted in Fig. 1.
Equations of the multilevel markov model

The multilevel markov model can be described by two
multinomial regression equations which describe the dis-
tribution of the initial probabilities on the first time frame
and the transition probabilities from time t � 1 to time t.
The two sections below describe the two sets of multino-
mial regression equations that are involved in the current
first-order multilevel markov models.5 In our design, we
did not include a predictor. However, many experimental
designs are aimed at detecting differences in viewing behav-
ior based on an independent variable, such as age (continu-
ous), language group (nominal: e.g., monolingual/bilingual),
or time (either continuous or in intervals). We will therefore
demonstrate the inclusion of such a predictor in Validation
of the models, which is why the exposition of the equations
already includes a predictor. The equations will be familiar
regression functions like Y = a + bX + c, in which the depen-
dent variable Y is interpreted as the probability of fixating
one of four pictures (EN [1], DU [2], d1 [3], d2 [4]: multino-
mial), fixed intercept a is interpreted as the baseline proba-
bility of fixating a certain picture region, coefficient b is
interpreted as the additional probability of fixating that pic-
ture depending on the level of the predictor, X determines
the level of the predictor, and random intercept c is inter-
preted as the additional probability of fixating the picture



Fig. 1. Exemplary trial of the Visual World Paradigm, in which the critical switching probabilities are depicted by the arrows.
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for a certain participant (which is the multilevel component
of the equation).

The supplemental material (doi) contains an example of
the data structure (Section A), the syntax (Section B), and
the restrictions in the equations (Section C) we used for
markov modeling in Latent Gold 4.5 (Vermunt & Magidson,
2005; Vermunt & Magidson, 2008).

Initial probabilities
In the following equations, the letter i represents a par-

ticipant (i = 1,. . ., N), k represents a trial (k = 1, . . .,K), s rep-
resents a fixation on a particular picture [s = 1,2,3,4;P4

s¼1pðstÞ ¼ 1], and t represents a time frame of 100 ms6

(t = 1, . . .,T, in which T represents the last time frame of a
trial, i.e., the moment of the click response which may differ
across participants and trials). The log odds of the initial fix-
ation probabilities (t = 1) on a picture (s) by a participant (i)
on a trial is defined as: pis,t=1.

Because multiple trials are nested within participants,
the fixation patterns of trials are dependent on the partic-
ipant. To correct for this dependency, coefficient pis,t=1 is
modeled as a function of fixed and random effects:

pis;t¼1 ¼ as;t¼1 þ
XR

r¼1
cvjul � r þ gis;t¼1:
6 The data were aggregated to time frames of 100 ms, for reasons that
will be thoroughly discussed in the discussion (Future development and
considerations).
as,t=1 is the fixed intercept, reflecting the log odds of a
fixation on picture s at t = 1. asr,t=1 reflects the fixed effect
of a predictor r (r = 1, . . .,R) on a fixation on picture s at
t = 1, and allows initial fixations to be different for different
levels of the predictor (e.g., for monolinguals versus biling-
uals, or at different predefined time intervals within a
trial). Finally, we have included a random intercept gis,t=1

for individual participants.7 This effect of participants is as-
sumed to be normally distributed and centered around zero:
�N (0,r2).

Because the coefficients pis,t=1 sum to zero over s pic-
tures, we estimated s � 1 (=3) parameters for each effect
of as,t=1, asr,t=1 and gis,t=1. The estimated log odds pis,t=1 in
the equation can be transformed into an initial fixation
probability uis,t=1 which has a multinomial distribution:

/is;t¼1 ¼
expðpis;t¼1ÞPS
s¼1 expðpis;t¼1Þ

:

Transition probabilities
In the following equations, the letter u represents the

fixation on a picture s at timeframe t – 1 [u = 1, . . .,4;P4
u¼1pðuÞ ¼ 1], whereas v represents the fixation on a pic-

ture s at timeframe t, [v = 1, . . .,4;
P4

v¼1pðvÞ ¼ 1]. The log
odds that a participant i on a trial k fixated picture v at time
t, given that (s)he fixated picture u in the previous time
7 No random slopes were included because we assumed that the effect of
the predictors on the initial fixation was equal for participants.
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frame t � 1 is defined as pi,v|u. This coefficient is in turn
modeled as a function of fixed and random effects:

pi;v ju ¼ cvju0 þ
XR

r¼1
cvjul � r þ li;vju:

cv|u0 is the fixed intercept, representing the log odds of a
transition from picture u to picture v. cv|ul represents the
effect of a predictor r (r = 1, . . .,R) on a transition from pic-
ture u to picture v. Intercept li,v|u � N (0,r2) represents the
random effect of individual participants on transition
probabilities.

Because the coefficients cv|u0, cv|ul, and li,v|u sum to zero
over v, we estimated s � (s � 1) (=12) parameters for each
effect of cv|u0, cv|ul, and li,v|u. The estimated log odds pi,v|u

in the equation above can be transformed into a transition
probability ui,v|u which has a multinomial distribution:

/i;vju ¼
expðpi;vjuÞPU

u¼1 expðpi;vjuÞ
:

Results

The mean accuracy on the 14 homophone trials was
0.86 (SD = 0.14). The mean reaction time for the correct re-
sponses was 1913 ms (SD = 913) after target onset. Out of
the false responses (corresponding to 55 trials), 92.73%
was made to the Dutch competitor, whereas 1.82% was
made to a distractor picture and 5.45% was not made to
any picture at all (participants clicked next to a picture).
These false responses were excluded from further analyses.
The analyses were performed on the data after 200 ms
from the onset of the target up until the click response, be-
cause it takes approximately 200–300 ms to plan and fully
execute an eye movement8 (Hallet, 1986; Matin, Shao, &
Boff, 1993). As a result, the dataset contained the data of
35 participants on a total of 339 correct homophone trials,
resulting in 5199 data points (measurements in time frames
of 100 ms).

On average, participants mainly fixated the English tar-
get (proportion averaged over participants, trials, and time
M = 0.58, SE = 0.02), fixated the Dutch competitor not as
much (M = 0.19, SE = 0.01), and fixated each of the distractor
pictures even less (for both distractors M = 0.11, SE = 0.01).9

Fixation patterns were analyzed using the software package
Latent Gold 4.5 (Vermunt & Magidson, 2005; Vermunt &
8 Altmann (2011) has reported the earliest meaningful saccade launch
latencies (discriminating signal from noise) at about 100 ms. These launch
times refer to the shortest possible time it takes to plan and initiate a
saccade to the target picture, whereas we refer to the time it takes to plan
and fully execute a saccade up until the eyes first land on the target.

9 To draw an analogy to the more traditional analyses and for the sake of
illustration, we performed a repeated measures ANOVA on the fixation
proportions with picture type (EN, DU, d1, d2) as within-subjects factors.
T h e r e s u l ts s h o w e d a s ig n i fi c a n t e f f e c t o f p i c t u r e ty p e
(F(2.14, 72.65) = 316.48, p < .0001, with Greenhouse–Geisser corrected
degrees of freedom). Follow-up paired-samples t-tests showed significant
differences between each comparison (ts > 4.80, ps < .0001) except between
the two distractors (t = 0.10, p = .92). The significant difference between
competitor and distractor fixations would traditionally be taken as support-
for co-activation. However, as Table 1A demonstrates these results are not
conclusive. We therefore performed markov analyses on the fixation
patterns.
Magidson, 2008). The parameters of the models were ob-
tained by maximum-likelihood estimation. Because the mod-
els were nested, we could use the difference between two
models in log likelihood times �2 (�2LLdiff) to test the differ-
ence in fit of the two models using a chi square distribution, in
which the degrees of freedom are equal to the difference in
number of parameters of the two nested models.

Hypothesis testing

In order to test the cross-language activation hypothe-
sis we estimated a number of predetermined models
(based on the theory) and compared their fit to the data.
First, we performed a manipulation check to assess
whether some important preconditions were met. Next,
we built towards a model that performed the critical com-
parison for assessing co-activation between languages. Fi-
nally, we performed an additional test with a predictor
(time interval) to validate our findings.

Manipulation check
The manipulation check was performed to test the

assumption that both distractors were equally salient in
our setup. Equal saliency would confirm that (a) the ran-
dom positioning of the pictures was successful and (b)
the contents of both distractor pictures were treated equal
in this task. If this were not the case, any of the following
results might have been caused by a failed manipulation
rather than by cross-language activation.10

The check consisted of the comparison of two models. In
model 0, the distractor probabilities were based on freely
estimated parameters and therefore allowed to vary. In
model 1, the probabilities of the distractors in the transition
matrix were constrained to be equal. If the distractors were
equally salient in our setup we would expect that the fit of
model 0 with the free distractor parameters was not signif-
icantly better than the fit of model 1 with the constrained
distractor parameters. As expected, the fit of model 0 was
not statistically better than the fit of the constrained model
1 (�2LLdiff (16) = 23.12, p = .11). This shows that the switch-
ing and staying probabilities did not differ for both distrac-
tor pictures, suggesting equal saliency for both distractors.
For this reason, we took model 1 as the baseline multilevel
markov model against which to compare the critical models.

Critical tests
Next, we estimated several models to perform the crit-

ical tests for co-activation. These models assess whether
participants who were fixating the English target item
were more likely to transition to the Dutch competitor
than to either unrelated distractor item. A discussion of
these critical models is provided below, their fit to the data
is summarized in Table 3.
10 For example, temporal dependencies between target and competitor
pictures might have been caused by unbalanced positioning of the pictures
(e.g., target and competitor were always presented next to each other),
whereas no temporal dependencies between target and competitor
pictures might have been caused by a different saliency of the content of
distractor pictures (e.g., one distractor picture was so salient that it
artificially reduced competitor fixations).



Table 3
Fit statistics of the critical markov models.

Model LL #par Comp. �2LLdiff p

Model 1: Baseline markov model (d1 = d2) �3615.65 23
Model 2: Restriction dis = DU �3636.67 10 1–2 42.04 <.0001
Model 3: Restriction EN ? DU = EN ? dis �3620.73 19 1–3 10.16 <.05

Note. EN = English target; DU = Dutch competitor; dis = distractor pictures with equal probabilities. LL = log likelihood of the model; #par = number of
estimated parameters; Comp. = comparison of the models; �2LLdiff = difference between the current model and the reference model (see Comp.) in log
likelihood times �2; p = the p-value.
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In order to check the assumption that the viewing behav-
ior with respect to the Dutch competitor differs from the
viewing behavior to the distractor pictures (as should be
the case when both languages are co-activated) we created
model 2, in which the Dutch competitor probabilities were
constrained to be equal to the distractor probabilities. If view-
ing behavior to the competitor differs from that to the distrac-
tors, the fit of model 2 should be significantly worse than the
fit of model 1. The results indeed showed that the fit of model
2 was significantly worse than the fit of model 1 (�2LLdiff

(13) = 42.04, p < .001). This demonstrates that the staying
and switching probabilities of the Dutch competitor differed
significantly from the distractor probabilities.

In model 3, the probability of switching from the Eng-
lish target to the Dutch competitor was constrained to be
equal to the probability of switching from the English tar-
get to a distractor. The comparison of the fit of model 1 and
model 3 is critical for co-activation. Because co-activation
should be reflected in a temporal contingency between
critical fixations – resulting in a higher probability of
switching from the English target to the Dutch competitor
than from the English target to a distractor, we expected
model 3 to provide a significantly worse fit than model 1.
Indeed, the fit of model 3 was significantly worse than
the fit of model 1 (�2LLdiff (4) = 10.16, p < .05). This demon-
strates that the probability of switching from the English
target to the Dutch competitor was significantly different
from the probability of switching from the English target
to one of the distractor pictures.
Table 4
Estimated transition matrix of the staying probabilities and switching
probabilities.

Time frame = t

English Dutch Dis1 Dis2

Time frame = t � 1 English .908 .040 .026 .026
Dutch .137 .763 .050 .050
Dis1 .169 .079 .671 .080
Dis2 .169 .079 .080 .671

Note. The probabilities in each row add up to 1 (The presented proba-
bilities in the bottom rows of the matrix add up to .99 due to rounding to
3 decimals.). The probabilities of the eye gaze staying fixated upon a
certain picture are always greater than the probabilities of switching
between two pictures. This is a result of calculating the transition prob-
abilities per time frame of 100 ms. It is impossible to switch from one
picture to another every 100 ms, given that it takes 200–300 ms to plan
an eye movement. Therefore, the staying probabilities can only be
interpreted relative to the other staying probabilities, and switching
probabilities relative to the other switching probabilities within a row, as
pointed out previously in the prediction matrix.
Table 4 shows the transition matrix belonging to the
best fitting model, model 1.

Comparison of the transition matrix from the correct
trials in Table 4 to the prediction matrix in Table 2 reveals
an identical match. The observed transition matrix shows
that when participants fixated the English target, they
were more likely to switch to the Dutch competitor (.04)
than to one of the two distractor pictures (.026). This is
supported by the fact that model 1 provided a significantly
better fit to the data than a model in which the probability
of switching from English to Dutch was constrained to be
equal to the probability of switching from English to a dis-
tractor (model 3; �2LLdiff (4) = 10.16, p < .05). This finding
demonstrates that fixations to the critical English target
and Dutch distractor were temporally dependent in correct
trials. This convincingly supports the notion that both lan-
guages were co-activated within trials in which partici-
pants responded correctly to the English target picture.

Though the difference between the Dutch switching
probability of .04 and the distractor switching probability
of .026 is significant, it may seem small in overall magni-
tude. However, it shows that out of all transitions that
are made from the English picture (1–.908 = .092), an esti-
mated 43.5% (.04 out of .092) went to the Dutch competitor
whereas only 28.3% (.026 out of .092) went to one of both
distractor pictures. Thus, the relative differences between
the transition probabilities are substantial (43.5% vs.
28.3%), even though the absolute values of the probabilities
may suggest otherwise.

As mentioned in Predictions, the temporal dependency
between English and Dutch fixations should be bidirec-
tional, meaning that participants should also be more
likely to switch from the Dutch to the English depiction
(compared to a Dutch-distractor switch). However, this
comparison is confounded by task demands. As a result
of the task instructions to click on the English target, par-
ticipants will be more likely to switch to the English target
than a filler even in the absence of co-activation. A way to
deal with this is to estimate a markov model on the data in
which time is reversed. In this case, the transition probabil-
ities are defined in terms of the probability that a switch
was made from a certain picture (backward), which is con-
ceptually different from switching to a certain picture (for-
ward, as in the analyses above). With this approach we are
able to assess whether a switch to English was more likely
to come from a fixation on a Dutch competitor than from a
fixation on a distractor, which would show a temporal
dependency between the English and Dutch depiction be-
yond the dependency that was caused by task demands.
The results of this additional analysis indeed show



11 The more nominal time intervals one uses, the more this may lead to
anticonservative inferences about parameters. In this case it may be useful
to estimate continuous models for time according to a certain function (e.g.,
an ln function). This way, it is not necessary to define relevant time
intervals a priori and one can assess the decay of the effects over time, for
example. Because we tested a priori hypotheses about time to validate our
models, we assessed predefined time intervals.
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evidence for bidirectional temporal dependencies between
the critical fixations (�2LLdiff (4) = 11.73, p < .05). When
participants switched to the English target, they were more
likely to come from the Dutch competitor (.058) than from
one of the two distractor pictures (.045).

Validation of the models
It is possible to include predictors on all levels of the

multilevel markov model, for example to test the effect
of an experimental manipulation on the outcome of a tran-
sition matrix. Such predictors may be added on a partici-
pant, trial, and/or time level. For example, one could add
a variable such as language experience (monolingual/bilin-
gual) or age (continuous) on a participant level, because
people from different groups or ages might show different
fixation patterns. On a trial level, item features could be
added as predictors, such as word length or word fre-
quency. Also, accuracy of the click response could be added
as a predictor on a trial level within an individual, because
the viewing behavior on correct trials might be different
from that on incorrect trials. On a time level, time intervals
(either continuous or nominal) within a trial could be
added as a predictor, because it is highly plausible that fix-
ation patterns change over time during a trial. Due to the
fact that we were able to make a priori predictions about
such a time change within the current paradigm, we have
included a nominal predictor time intervals in an additional
analysis. With this analysis we can investigate the validity
of the previous model and demonstrate the feature of add-
ing a predictor to a markov model.

Model 4a was based on model 1 and included the pre-
dictor time interval. The variable was divided into two
parts; interval 1 (containing all data from 200 ms after
the onset of the target up to 300 ms before the click re-
sponse) and interval 2 (containing data from the last
300 ms before the click response). The selection for these
time intervals was made because it would result in a priori
contrasting predictions with respect to co-activation. We
simply hypothesized that fixation patterns would be differ-
ent at the end of a trial when a response was being made,
relative to the rest of the trial when the response was being
selected. Fixations at the end of a trial should likely be di-
rected at the picture that is selected for responding,
whereas fixations before response selection and execution
should likely be more diverse. We therefore predicted crit-
ical temporal contingencies in interval 1, in which co-acti-
vation should be able to occur and manifest. Furthermore,
we predicted no such dependencies in interval 2, given
that participants would be finished evaluating the alterna-
tive responses (i.e., co-activation should be resolved) and
would fixate the picture they were going to click on while
planning and executing their response.

In model 4b we put a restriction on the first time inter-
val. We constrained the probability of an English–Dutch
switch to be equal to the probability of an English-distrac-
tor switch, to test the specific hypothesis that co-activation
should occur in the first time interval. If the fit of model 4b
(with identical critical switching probabilities) would be
worse than the fit of model 4a (which allowed for different
critical switching probabilities), it would confirm our
hypothesis that co-activation occurred the first time
interval. The difference in fit between model 4a and model
4b was significant, �2LLdiff (4) = 17.72, p < .005, showing
that model 4b provided a worse fit to the data than model
4a. The transition matrix belonging to model 4a showed a
higher probability of switching from the English target to
the Dutch competitor (.053) than to a distractor (.032) in
time interval 1, thereby confirming the temporal contin-
gency between the critical pictures in time interval 1. Next,
we created model 4c, in which we added the same con-
straint to time interval 2. Thus, now the probability of an
English–Dutch switch was constrained to be equal to the
probability of an English-distractor switch for the two time
intervals. Comparison of models 4b (with restrictions on
time interval 1) and 4c (with restrictions on both time
intervals) would test the hypothesis that no evidence for
co-activation could be found in the second time interval.
If model 4c would not have a worse fit to the data than
model 4b, this hypothesis would be confirmed. Indeed,
the models did not have a significantly different fit to the
data, �2LLdiff (1) = 0.01, p > .90, which showed that the crit-
ical switching probabilities in in interval 2 were not signif-
icantly different. The transition matrix for the best time
model (4a) showed that, on time interval 2, the probability
of a transition from the English target to a Dutch compet-
itor (.014) was equal to that of a transition from the English
target to a distractor (.014). This shows that there are no
temporal dependencies between the critical pictures in
time interval 2, as hypothesized.

These results show that the time course within a trial
can be divided into small time frames – as small as the re-
searcher wishes to examine and the sampling rate of the
eye tracking device allows11 – thereby providing a more de-
tailed look in the temporal aspect of language processing.
General discussion

In the present study, we have described and demon-
strated a method for assessing transitions (first-order
shifts in overt attention) in an eye tracking paradigm.
The main idea motivating this approach is that by analyz-
ing transitions between relevant visual referents one can
investigate the co-activation of representations in the
interactive systems that are assumed to underlie viewing
behavior. The crucial point is that, in an interactive system,
the activation of one representation is temporally contin-
gent with the activation of another representation. If fixa-
tions to a relevant visual referent are indicative of the
activation of representations, then a fine-grained and sen-
sitive way to assess cognitive interactions is to search for
temporal dependencies in eye movements. Furthermore,
transitions enable the detection of co-activation where
other methods might either miss (e.g. Table 1B) or spuri-
ously find (e.g. Table 1A) signs of cognitive interactions.
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However, when using the current approach one needs
to consider a number of important factors. Although tran-
sition analyses are extremely helpful to detect cognitive
interactions, there are, as is the case for any method, cir-
cumstances under which they might fail to detect co-acti-
vation. For example, it is possible that co-activation is too
transient or dispersed to be detected through first-order
transitions. In the following section, we therefore discuss
(a) conditions under which direct transitions may or may
not be expected, and (b) possible solutions and applica-
tions in case direct transitions may not occur. We also dis-
cuss other methodological issues that should be taken into
account when using transition analyses. Finally, we will
embed this approach within a broader context by discuss-
ing applications in other theoretical frameworks and
paradigms.
Future development and considerations

Even though the analysis of transitions provides a more
fine-grained window into interactions between represen-
tational units compared to the analysis of proportions or
delays, the critical assumption that co-activation will re-
sult in temporal dependencies in eye-movements may
not hold for every type of experimental paradigm. What
if there are no direct transitions between critical fixations?
It may be either the case that there are no interactions, or
that there are interactions but they are too transient or dis-
persed to be detected.

Importantly, the following methodological assumptions
have to hold when detecting interactions between repre-
sentations using transition analyses in eye-movements. If
these assumptions are not met, interactions might not be
detected. First, the duration of the hypothesized interac-
tion between representations has to be sufficiently long
to result in overt eye movements. Second, the relevant rep-
resentations have to be both sufficiently activated: if one
representation is much more strongly activated than the
other this will likely only result in fixations to the strongest
referent. Third, the time to program and execute a saccade
should not be longer than the temporal shifts in relative
activation of both representations. Fourth, the sequential
fixations have to be long enough to be detected by the
eye-tracking method, but short enough not to mask the
underlying hypothesized interaction. Fifth, the rate of
new bottom-up input has to be slow enough for the
hypothesized interactions to drive the eye movements.12

Of course, these assumptions (and perhaps even more)
implicitly underlie any eye tracking paradigm, and are
therefore also relevant for the proposed transition analyses.

Furthermore, we assessed direct switches under the
theoretical assumption that there were no additional pro-
cesses (e.g., suppression of lexically or semantically related
competitors) and effects (e.g., word frequency) that would
temporarily interfere with co-activation. Any such interfer-
ence might have dispersed the relative activation of targets
and competitors in time, which would not have led to
12 We thank one of the reviewers of this paper for pointing out these
considerations.
direct switches between the target and competitor. For
example, when instructed in English to manipulate a pic-
ture of ‘‘mice’’, a bilingual might first activate lexically re-
lated words in English (such as the rhyme ‘‘rice’’) before
the Dutch counterpart ‘‘mais’’ is sufficiently activated to di-
rect eye movements (see e.g., Marian, Blumenfeld, &
Boukrina, 2007, who demonstrate early effects of such lex-
ical relations in the eye movements of bilinguals). In this
case, cross-language activation might not be manifested
in direct transitions between the target and competitor
pictures. This clearly was not the case in the current design
in which we observed direct switches between the critical
pictures. However, a transition analysis is specifically sen-
sitive to such interfering processes because they give a
more fine-grained index of temporal dependencies over
time compared to the discussed traditional methods.

In general, there are two strategies that researchers
may want to use in order to deal with these issues. First,
like in any design, potentially interfering factors can be
controlled for as much as possible. Alternatively, such
interfering processes can be specifically tested with transi-
tion analyses, by hypothesizing about higher-order transi-
tions (indirect switches) rather than first-order transitions
(direct switches). For example, inclusion of an additional
competitor depiction (such as the rhyme competitor
‘‘rice’’) could explicitly show whether bilinguals fixate this
competitor in between fixations to the English target and
Dutch competitor (EN-rhyme-DU). This directly shows a
great advantage of the current method, namely that transi-
tions can serve as a proxy for the strength of connections
between representations. This way, they might be able to
expose hierarchical features of the representational system
that underlies viewing behavior.

Several previous eye tracking studies were designed for
this specific purpose. For example, Allopenna et al. (1998)
designed a visual world experiment in which participants
were instructed to manipulate a target object (e.g., a bea-
ker), in the presence of a cohort competitor with initial
word overlap (e.g., a beetle), and/or a rhyme competitor
with final word overlap (e.g., a speaker), and an unrelated
distractor (e.g., a carriage). Analyses on the fixation propor-
tions per time window showed that participants activated
the cohort competitor prior to the rhyme competitor. This
supported the notion that the speech signal is continuously
mapped onto potential representations as it unfolds over
time, and it thereby revealed features of the hierarchy in
which representations are accessed during language pro-
cessing. In a comparable fashion, Huettig and McQueen
(2007) used proportion analyses to demonstrate a different
time course for the activation of phonological (e.g., beaver),
shape (e.g., a bobbin), and semantic (e.g., a fork) competi-
tors, respectively, when manipulating a target item (e.g.,
beaker). These results were taken as evidence for a cas-
caded organization of people’s lexical and visual knowl-
edge systems.

Although these studies are indicative of a hierarchy in
which representations are activated, they are sensitive to
the errors we discussed in the introduction because they
cannot assess temporal dependencies within trials. High-
er-order transitions, on the other hand, could give a de-
tailed indication of the sequential order in which
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representations are activated within participants and with-
in trials. In fact, higher-order transitions may even show
whether processes mask co-activation in the absence of
referents of the interfering process. Consider a situation
in which a rhyme effect temporarily interferes with co-
activation (i.e., activation of mice-rice-mais), but in which
the visual world paradigm only consisted of depictions of
the English mice, the Dutch mais, and two unrelated dis-
tractors (not of rice). In this case, one could use higher-or-
der transitions to test whether EN-distractor-DU
sequences were more likely to occur than EN-distractor-
other sequences. This would show that the English and
Dutch fixations were slightly separated in time but still
contingent within a trial.13 To what extent a separation of
critical fixations could still hold as co-activation is up for dis-
cussion, but even at the coarsest level our argument still
holds: Assessing temporal dependencies of fixations within
trials gives a better proxy of temporal dependencies in the
activation of representations than assessing aggregated fixa-
tion data.

Despite these higher-order solutions, it is difficult to
test or control for all possible (potentially unknown) fac-
tors that might temporally interfere with co-activation
and/or to make a priori hypotheses about the possible se-
quences. Further exploration of this transition paradigm
is necessary to examine its possible sensitivity for false-
negatives in more detail. Here, one first step could be to
use transition analyses in conjunction with the more tradi-
tional (multilevel) proportion analyses. Any correspon-
dence between the two would bolster the case for or
against co-activation in an interactive cognitive system.
Also, if one observes a discrepancy between the analyses
such as in Table 1B, this would show that the temporal
co-activation did occur, but that it was missed by propor-
tions that are less sensitive to temporal tests of interactiv-
ity. Finally, if one observes the situation in Table 1A, this
could either imply that the proportion analysis was too lib-
eral or that the transition analysis was too conservative, for
example due to interfering processes. This could then be
further examined, for example by assessing higher-order
transitions as explained above.

Also, some practical considerations should be taken into
account when using the proposed transition paradigm.
First, one should be careful when specifying the time
frames for assessing transitions. In the present example,
time frames were set at 100 ms. However, the sampling
rate of an eye tracker allows researchers to use smaller
time frames (of up to 1 ms, depending on the eye tracking
device). The reason for selecting larger time frames in our
exemplary data lies in the relation between staying and
switching probabilities. The time frames that are included
in a markov model should reflect transition opportunities,
i.e., the case in which it would have been possible to make
an eye movement. The constraints of the human occulo-
motor system are such that individuals cannot make a
13 If one wants to use transition probabilities as a proxy for the strength of
activation, one should add to the model the possibility that participants did
not fixate any picture (e.g., coded as picture 0). In this case, the probabilities
of s = 0, 1, 2, 3, 4 in the formulas in Equations of the multilevel markov
model should sum to one.
saccade to a different picture every few milliseconds; it
takes a minimum of 100 ms to plan and start an eye move-
ment (Altmann, 2011) and an average of about 200–
300 ms to plan and fully execute an eye movement until
it lands on the target location. Therefore, if very small time
frames had been used in the analyses (e.g., much smaller
than 100 ms), the results would have shown relatively
higher staying probabilities and lower switching probabil-
ities. In other words, when using smaller time frames, the
staying probabilities would have been inflated relative to
switching probabilities, possibly pushing switching proba-
bilities toward floor. On the other hand, if larger time
frames (e.g., well over 100 ms) had been analyzed, transi-
tions could be missed given that more than one transition
might have occurred within a single time frame. Loss of
transition information inherently results in a loss of power.
By selecting time frames of 100 ms, we have attempted to
find a balance between keeping the switching probabilities
above floor without compromising the power of the mea-
sure. However, the time frames could also have been set
at somewhat smaller or larger sizes (of e.g., 50 ms or
150 ms). Exactly what size of time frames is optimal when
assessing transitions is open to examination.14

One should further be alert for possible anticipatory ef-
fects due to context (cf., Barr, 2008; Barr, Gann, & Pierce,
2011; Dahan & Tanenhaus, 2005; Dahan, Tanenhaus, &
Salverda, 2007; McMurray, Tanenhaus, & Aslin, 2009;
Wolter, Gorman, & Tanenhaus, 2011). One of the primary
uses of visual world studies is to investigate issues related
to information integration, in which constraining informa-
tion is presented prior to presentation of the target word
(see Barr, 2008). If, for example, the preceding context in
our exemplary study had biased towards the Dutch depic-
tion, the probability of fixating these critical pictures
would have been elevated. Researchers should handle item
selection with great care and make sure that no constrain-
ing context is presented prior to the target word. Fortu-
nately, our proposed method provides an effective way to
handle possible anticipatory effects. For example, by esti-
mating a model over a baseline period before presentation
of the target word, one can assess how transition probabil-
ities after target presentation change with respect to this
baseline. If the experimental design does not allow for such
a baseline period, one might use transition probabilities
from a control condition with identical visual displays as
a baseline for transition probabilities in the critical condi-
tion (see Barr et al., 2011 for a discussion on handling
anticipatory baseline effects).

In sum, there are several considerations to take into ac-
count when assessing transitions in eye movements. How-
ever, the proposed transition analysis has important
advantages over analyses on proportions or delays, and
can provide critical novel insights in viewing behavior
approach, in which the staying probability is treated as the probability of
making the next fixation on the same picture, and the switching probability
is treated as the probability of making the next fixation on a different
picture. In this case, the transition probabilities are calculated on event
boundaries, rather than on time boundaries. However, in such an approach
it remains a matter of definition as to what would count as an event
(fixation or saccade) and what would not, which is open for discussion.
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and the human representational system that underlies this
behavior. The most important advantage is that the transi-
tion approach is able to reveal temporal dependencies in
viewing behavior, because it does not require aggregation
of data over participants, trials, or time. In our current
application, we used the transition method to demonstrate
that the activation of certain representations was co-
dependent on the activation of other representations.
However, transitions allow for a wide range of further no-
vel and interesting assessments of viewing behavior. With-
in the visual world paradigm, for example, one may use
transitions as a proxy for the relative distance or strength
of connections between representations, as explained. Or
one may want to use these analyses to assess other tempo-
ral aspects of viewing behavior, such as the duration of fix-
ations before or after a critical switch was made. One
could, for example, assess whether post-switch staying
probabilities change as a result of a manipulation or over
time, because this might reveal different processes that
evolve from temporal dependencies. However, transition
analyses are not limited to visual world studies. In the next
section, we will provide potential applications of the cur-
rent analyses in different paradigms.

Applications in other paradigms

Even though we have illustrated the transition ap-
proach by assessing lexical competition in a visual world
paradigm, its scope is much broader. This approach can
be used in any eye tracking paradigm in which shifts in
attention within a trial are of interest, such as scene per-
ception, visual search, change blindness studies, or read-
ing. The majority of studies on sentence and text reading,
for example, often analyze averaged measures of forward
or backward fixations as an index for comprehension,
learning, and/or memory processes. For example, the pro-
portion of regressions to previously fixated regions during
sentence reading has been used as a measure for disrupted
language processing, in which a higher proportion of
regressions indicates greater processing difficulties (e.g.,
Frazier & Rayner, 1982). Furthermore, averaged regression
durations on previous or following (parts of) sentences
have been used for this purpose, with longer durations
indicating greater processing difficulties (e.g., Just &
Carpenter, 1978). Instead of assessing averaged regression
durations or proportions across participants and trials, our
current approach can provide estimations on the regres-
sion (i.e., transition) probabilities at an individual trial le-
vel. This enables researchers to distinguish different
types of regression patterns across trials and/or individu-
als. By performing latent class markov analyses, one could,
for example, distinguish between latent regression pat-
terns that are typical for skilled versus poor readers, or
even unravel transition patterns between reading strate-
gies within participants (see Simola et al., 2008).

In general, readers are more likely to move forward in a
sentence or text than to regress backward. Therefore, the
successive locations of fixations (states) are not mutually
independent. When such state dependencies are expected
to occur in an eye tracking paradigm, predictions about
viewing patterns should be formulated as a chain of
transitions to different parts of the sentence or text, and
should therefore include higher-order effects. With some
minor adaptations to the syntax (see the supplemental
material, doi, section B), higher-order hypotheses can eas-
ily be tested using the present markov modeling technique
(see Althoff & Cohen, 1999, for an application of assessing
second-order effects, or Simola et al., 2008).

There are previous applications of similar approaches in
several fields. For example, Simola et al. (2008) distin-
guished three latent states (classes) of viewing behavior
in a reading paradigm, referred to as scanning, reading,
and decision making. In this study, each participant per-
formed three types of information search tasks on a list
of titles: simple word search, a question–answer task,
and a task in which they had to select the subjectively
most interesting topic. The authors found that the different
tasks were characterized by different transition patterns
between states, suggesting that readers switch between
processing strategies (states), and that they do this in a dif-
ferent order depending on the information search task at
hand. Other researchers have used this approach to distin-
guish local (reflecting the extraction of detailed informa-
tion) from global (reflecting the redirection of attention)
states of visual attention when people study advertise-
ments in magazines (Liechty, Pieters, & Wedel, 2003). Fur-
thermore, Althoff and Cohen (1999) and Henderson et al.
(2000) have used markov model analyses to study se-
quences of fixations (referred to as ‘‘scan patterns’’) that
accompany face perception and recognition. Both studies
found dependencies in successive fixation positions when
perceiving an unknown face. For example, when fixating
one of the two eye locations of the face, it was more likely
that the successive fixation was directed to the other eye
than to any other location in the face (Henderson et al.,
2000).

These examples not only show that transition patterns
can be used in different eye tracking paradigms, but also
within different theoretical frameworks.15 One could envis-
age numerous types of research domains that would benefit
from assessing transitions in a fixation pattern, such as stud-
ies assessing attentional biases, approach–avoidance mech-
anisms, object permanence in young children, or social
interactions.

Conclusion

Whenever the aim is to study interactive activation of
representations in a cognitive system, it is not sufficient
to conclude that the visual referents of both systems were
fixated across trials and participants. Rather, assessing
whether a fixation to the referent of one representation
is temporally dependent on a fixation to the referent of
the other representation can provide a good indication of
interactivity. Analyzing eye movement transitions using a
multilevel markov approach is an ideal way to tap into
such temporal dependencies. In this paper, we have
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demonstrated that analyzing transitions cannot only pro-
vide useful, but also essential, novel insights in human
viewing behavior and its underlying cognitive processes.
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