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Consensus molecular subtypes (CMSs) can guide precision treatment of

colorectal cancer (CRC). We aim to identify methylation markers to distin-

guish between CMS2 and CMS3 in patients with CRC, for which an easy

test is currently lacking. To this aim, fresh-frozen tumor tissue of 239

patients with stage I-III CRC was analyzed. Methylation profiles were

obtained using the Infinium HumanMethylation450 BeadChip. We per-

formed adaptive group-regularized logistic ridge regression with post hoc

group-weighted elastic net marker selection to build prediction models for

classification of CMS2 and CMS3. The Cancer Genome Atlas (TCGA)

data were used for validation. Group regularization of the probes was done

based on their location either relative to a CpG island or relative to a gene

present in the CMS classifier, resulting in two different prediction models

and subsequently different marker panels. For both panels, even when

using only five markers, accuracies were > 90% in our cohort and in the

TCGA validation set. Our methylation marker panel accurately distin-

guishes between CMS2 and CMS3. This enables development of a targeted

assay to provide a robust and clinically relevant classification tool for CRC

patients.

1. Introduction

The consensus molecular subtype (CMS) classification

is currently considered to be the most robust molecular

stratification in colorectal cancer (CRC) with signifi-

cant differences in prognosis [1]. Besides the prognostic

value, literature provides some support for a predictive

value of CMS in response to systemic treatment [2].

The FOxTROT study (NCT00647530) and currently

ongoing CONNECTION-II trial (NTR NL8177) are

expected to determine the true predictive value of

CMS in response to chemotherapy. However, in
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general practical and affordable tests to determine

CMS will greatly aid in establishing the clinical value

of these molecular subtypes as these will enable rou-

tine determination of CMS in ongoing CRC research.

The gold-standard classification strategy relies on

genome-wide RNA expression data from sufficient

quantities of fresh-frozen bulk tumor, which hampers

widespread implementation. In addition, different

methods can be used to classify CMS on RNA data,

which inherently causes differences in CMS calling

per method. These classification methods include a

Markov cluster algorithm (MCL), which is the algo-

rithm applied by Guinney et al., a random forest clas-

sifier (RF, based on MCL calls), and a classifier by

similarity to centroid approach (single-sample predic-

tor, SSP) which calls each sample independent from

other samples. An affordable, robust, and practical

classification assay is needed to enable both retrospec-

tive and prospective investigations of the predictive

value of the CMS classification and advance its use in

clinical practice. For CMS1, MSI can be used as a

surrogate marker given the high incidence of MSI in

CMS1 tumors and the low incidence of MSI in

CMS2-4 [3]. Sufficient evidence from both observa-

tional studies and randomized clinical trials is avail-

able to justify that MSI tumors represent a separate

entity requiring a different treatment strategy, irre-

spective of their CMS classification [4,5]. MSI testing

can be done very robustly and is included in the

international clinical guidelines [6]. For CMS4, an

immunohistochemistry-based classifier and an RT-

qPCR test have been described and validated [7,8].

However, a more practical test to distinguish between

CMS2 and CMS3 remains to be identified. Given the

low specificity of the original CMS classification algo-

rithm on archival formalin-fixed paraffin-embedded

(FFPE) tissue specimens for CMS3 and the distinct

epigenomic profile in CMS3 [1], we hypothesized that

DNA methylation may provide stable and useful

markers to discriminate between CMS2 and CMS3.

CMS3 tumors exhibit low somatic copy-number alter-

ations (SCNAs), are hypermutated in 30% of the

samples, and have a low number of CpG island

methylator phenotype (CIMP) cases with intermediate

levels of gene hypermethylation.

Epigenetic gene silencing is one causative factor of

CRC development, with DNA methylation as major

driving force. Aberrant methylation in cancer is gen-

erally characterized by a diffuse DNA hypomethyla-

tion and focal hypermethylation in CpG-rich regions

known as CpG islands and their surrounding shores

and shelves [9,10]. CIMP is regarded as a distinct

CRC subgroup, which largely overlaps with MSI [11].

Studies suggested that the presence of CIMP plays a

role in treatment effect of chemotherapy in patients

with stage II/III colon cancer [12,13]. Furthermore,

several DNA methylation biomarkers exhibit high

sensitivity and specificity both in detection and in

prognosis of CRC [14–17]. DNA methylation markers

are attractive for daily practice due to their stability,

and the feasibility to detect these markers in mini-

mally invasive bodily fluids, stool, and FFPE tissue.

The aim of this study was to complement currently

available CMS classification tools by the identification

of a panel of DNA methylation markers to distin-

guish CMS2 from CMS3 in patients with colorectal

cancer.

2. Methods

2.1. Cohort description

In the MATCH study, a multicentered observational

cohort study, fresh-frozen tumor tissue was collected

from stage I-III colon cancer patients who underwent

surgery between 2007 and 2014 in seven hospitals in

the Rotterdam region, the Netherlands. Inclusion crite-

ria and additional clinical characteristics of the

MATCH study have been described previously [18].

For 239 patients of these patients, matched RNA

expression profiles and DNA methylation profiles were

generated as described below. The experiments were

undertaken with the understanding and written con-

sent of each subject. The study was approved by the

Erasmus MC IRB (MEC-2007-088), and methodolo-

gies conformed to the standards set by the Declaration

of Helsinki.

2.2. RNA expression profiling and CMS

classification

RNA sequencing, data processing, annotation, and

normalization of these samples have been described

previously [18,19]. CMS classification was performed

on the resulting RNAseq data using the single-sample

prediction parameter from the ‘CMSclassifier’ package

(https://github.com/Sage-Bionetworks/CMSclassifier). Data

are available from the European Genome Phenome

Archive under accession number EGAS00001002197.

2.3. DNA methylation profiling

Genomic DNA was isolated from 30-µm frozen tissue

sections using the NucleoSpin Tissue Kit (Biok�e, Lei-

den, The Netherlands) according to the manufacturer’s
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instructions. The aforementioned RNA sequencing

was performed on the same tissue section. Methylation

profiles were generated from 750 ng DNA using the

Infinium HumanMethylation450 BeadChip (Illumina,

San Diego, CA, USA) according to the manufacturer’s

instructions. This platform interrogates over 450 000

methylation sites, covering 99% of all RefSeq genes.

Probes have been annotated by Illumina with respect

to their position relative to gene regions (within 1500

base pairs (bp) from transcription start site (TSS)

(TSS1500), within 200 bp from TSS (TSS200), 5’-

untranslated region (5’UTR), 1st exon, gene body,

3’UTR, or intergenic region, as well as relative to

CpG islands (northern shelf (N-shelf), northern shore

(N-shore), CpG island, southern shore (S-shore),

southern shelf (S-shelf), or open sea)). Data are avail-

able from GSE164811.

2.4. Infinium HumanMethylation450 data

preprocessing

Raw data were processed and normalized using the

Chip Analysis Methylation Pipeline for Illumina

HumanMethylation450 and EPIC (ChAMP) package

in R [20,21]. This package contains functions for filter-

ing low-quality probes, adjustment for Infinium I and

Infinium II probe design, batch effect correction, and

data normalization. In short, bad-quality probes (de-

tection P-value > 0.01), probes containing SNPs,

probes mapping to multiple locations, and probes

mapping to chromosomes X and Y were removed,

resulting in 429 705 probes for further analysis. Data

were normalized using beta-mixture quantile (BMIQ)

normalization to correct for bias between type I and

type II probe chemistry, and potential batch effects

were removed using Combat. The returned beta values

per probe represent the percentage of methylation for

that particular CpG dinucleotide.

2.5. Validation data set from TCGA

To validate the analysis results in the MATCH cohort,

we used data from The Cancer Genome Atlas (TCGA).

Matched RNAseq and Illumina HumanMethylation450

methylation data were available for 274 colorectal car-

cinomas. For CMS classification of these samples, we

again employed the single-sample prediction parameter

from the ‘CMSclassifier’ package (https://github.com/

Sage-Bionetworks/CMSclassifier) to make calls

between both cohorts comparable. Resulting single-

sample calls were also compared with the Markov clus-

ter model-based calls originally reported in the paper

by Guinney et al. [1] to investigate the effect of using

different CMS calling methods.

2.6. Data analysis

From the MATCH methylation dataset, we first

selected highly variable probes by filtering for probes

with a standard deviation of at least 0.15 (beta values)

over all samples, which resulted in 52 988 probes

(12.3% of all probes in dataset). These probes were

matched with TCGA dataset, which contained data

for 45 721 of these 52 988 highly variable probes. All

subsequent analyses were performed with these 45 721

probes.

2.6.1. Methylation-level comparisons

To compare overall methylation levels in CMS2 and

CMS3 samples, we calculated the median beta value

per sample over all 45 721 probes and separately for

probes located in (a) CpG islands (19 873 probes), (b)

shores (11 111 probes: containing both north and

south shores), (c) shelves (2167 probes: containing

both north and south shelves), and (d) open sea

(12 570 probes). The obtained median methylation val-

ues were compared between CMS2 and CMS3 samples

using the Wilcoxon rank-sum test in the MATCH and

TCGA dataset separately.

2.6.2. Group-regularized ridge regression analysis

(grridge)

We performed adaptive group-regularized logistic ridge

regression and post hoc group-weighted elastic net fea-

ture selection as described before [22,23]. Two types of

auxiliary data were separately provided to the model

for group regularization of the included probes: (a)

CpG codata—probe location relative to CpG island

(i.e., within a CpG island (CGI), shore (northern and

southern combined), shelf (northern and southern

combined), or open sea); and (b) CMSori codata—
whether the CpG detected by the respective probe was

associated with a gene included in the original single-

sample CMS classifier (true for 1637 probes). A regres-

sion model was built with the MATCH cohort data

using both types of auxiliary data, and 15, 10, and 5

markers were selected by post hoc group-weighted

elastic net feature selection [23]. Performance of the

model was first evaluated by 10-fold cross-validation

in the MATCH cohort. Predicted probabilities for the

sample being CMS3 were calculated using the different

models. Then, performance of the models was
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visualized by receiver operating characteristic (ROC)

curve and quantified by AUC. Youden’s index was

calculated to determine the optimal probability cut off

for the 15-, 10-, and 5-marker panels based on the

CpG codata and, separately, also for the 15-, 10-, and

5-marker panels based on the CMSori codata. Subse-

quently, the fixed models were applied to TCGA

cohort to validate their performance in an independent

dataset. Youden’s index as determined in the MATCH

dataset was used as cutoff to determine the sensitivity

and specificity of the fixed models in TCGA dataset.

2.6.3. Correlation analysis between DNA methylation

and RNA expression

Out of the 45 721 methylation probes used for predic-

tive modeling, 24 904 were located close to a gene’s

transcription site (TSS; up to 1500 base pairs (bp)

upstream) or within a gene (either in the 5’-

untranslated region (UTR), the gene body, or the

3’UTR). For these probes, we evaluated whether the

methylation level we observed in CMS2 and CMS3

samples of the MATCH cohort was associated with

RNA expression of the respective gene in the same

samples. Spearman’s correlations were calculated for

every probe that was matched to a gene, and a false

discovery rate (FDR) correction was applied to

account for multiple testing.

2.6.4. Multiclass classification

Samples (CMS1-4) from the MATCH and TCGA

cohorts were combined, and a single split was done to

obtain a training (n = 283) and test (n = 141) set.

Training and test sets were balanced with respect to

CMS class distribution and original cohort. We per-

formed multiclass classification by the sparse group

lasso for multinomial response, using R package ‘msgl’

[24], and validated the obtained model from the train-

ing set in the test set. To obtain a more balanced rep-

resentation of the four classes, we double-weighted the

CMS4 samples.

3. Results

3.1. Cohort description

Matched RNAseq and Infinium 450K methylation

profiles were available for 239 colon cancer patients in

the MATCH cohort and 274 colorectal cancer patients

in TCGA cohort. Clinical characteristics of both

cohorts are shown in Table 1. Differences in pT stage

(P < 0.001), pN stage (P < 0.001), tumor stage

(P < 0001), tumor location (P = 0.023), and CMS clas-

sification (P = 0.001) were seen between the two

cohorts. CMS class was determined on the RNAseq

data using the single-sample predictor, which is inde-

pendent from other samples. For TCGA cohort,

obtained CMS calls with the single-sample predictor

were compared with the original calls from the Mar-

kov cluster algorithm [1]. We observed a significant

moderate agreement in the CMS calls obtained by the

two methods (Cohen’s kappa of 0.51, P = 6.92E-63).

However, as shown in Table 2, samples particularly

shifted from CMS3 and CMS4 in the Markov cluster

algorithm to NA in the single-sample predictor and

from NA in the Markov cluster algorithm to CMS2 in

the single-sample predictor. To ensure that CMS call-

ing was comparable between the MATCH and TCGA

cohort, we therefore used the single-sample predictor

calls for both cohorts. Then, CMS2 and CMS3 were

selected from the MATCH cohort (124 CMS2 and 22

CMS3) and TCGA cohort (118 CMS2 and 22 CMS3).

Within the MATCH cohort, tumor differentiation

grade was significantly different between CMS2 and

CMS3, and in TCGA cohort, tumor location was sig-

nificantly different between the two classes (Table S1).

Principal component analysis was performed and did

not show a strong separation between MATCH and

TCGA samples, indicating no obvious bias was intro-

duced by the use of the 2 different cohorts (Fig. 1 and

Fig. S1).

3.2. Comparing CMS2 and CMS3 DNA

methylation profiles

Principal component analysis of both datasets com-

bined showed that CMS2 and CMS3 samples are

partly separated based on overall methylation profiles

(Fig. 2 and Fig. S2). Overall, we observed a signifi-

cantly higher median methylation level for our 45 721

most variable probes in CMS3 compared with CMS2

(Fig. 3A; Mann–Whitney U-test, P = 0.012 and 0.004

for MATCH and TCGA, respectively), which is in line

with the observations by Guinney et al. Interestingly,

when we divided probes based on their position rela-

tive to CpG islands, a difference between CMS2 and

CMS3 was found for those probes located within CpG

islands (Fig. 3B; Mann–Whitney U-test, P = 2.057E-5

and 1.750E-4 for MATCH and TCGA, respectively)

or their shores (Fig. 3C; Mann–Whitney U-test,

P = 0.005 and 0.002 for MATCH and TCGA, respec-

tively), but not for probes located in shelves (Fig. 3D;

Mann–Whitney U-test, P = 0.031 and P = 0.523 for

MATCH and TCGA, respectively) or open sea
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(Fig. 3E; Mann–Whitney U-test, P = 0.104 and 0.964

for MATCH and TCGA, respectively).

3.3. Building and validating a prediction model

for CMS2 and CMS3 classification

Next, we used the MATCH dataset to build a predic-

tion model for the classification of CMS2 and CMS3,

using group-regularized logistic ridge regression (gr-

ridge) and group-weighted post hoc feature selection

[22,23]. As shown in Fig. 4A, the ordinary ridge algo-

rithm already performed well in the classification of

CMS2 versus CMS3. Group regularization of the

Table 1. Clinical and histopathological characteristics of all patients.

MATCH TCGA

P-valueN = 239 % N = 274 %

Gender

Male 126 52.7 146 53.3 0.147

Female 113 47.3 126 46

Missing 2 0.7

Age (median,

IQR)

68 (61–74) 66 (55–76) 0.674

BMI (median,

IQR)

26 (23.5–28.7)

Tumor stage

I 62 25.9 44 16.1 < 0.001

II 108 45.2 105 38.3

III 69 28.9 77 28.1

IV 0 0 36 13.1

Missing 12 4.4

pT stage

Tis 0 0 1 0.4 < 0.001

1 0 0 7 2.6

2 70 29.3 41 15

3 164 68.6 186 67.9

4 5 2.1 37 13.4

Missing 2 0.7

pN stage

0 171 71.6 160 58.4 < 0.001

1 44 18.4 67 24.5

2 24 10 45 16.4

Missing 2 0.7

Tumor differentiation

Good 22 9.2

Moderate 192 80.3

Poor 19 8

Unknown/other 6 2.5

Tumor location

Right 126 52.7 162 59.1 0.029

Left 113 47.3 95 34.7

Missing 17 6.2

Rectum/colon

Colon 239 100 271 98.9

Rectum 0 0 1 0.4

Missing 2 0.7

Adjuvant therapy

No 172 72

Yes 67 28

CMS

1 50 20.9 45 16.4 0.001

2 124 51.9 118 43

3 22 9.2 22 8

4 8 3.3 35 13.9

NA 35 14.6 54 19.7

Microsatellite status

MSS 180 75.3

MSI 53 22.2

Missing 6 2.5

Table 2. CMS calls Markov CLUSTER ALGORITHM vs single-

sample predictor in TCGA dataset.

CMS single-sample predictor

Total

CMS

1

CMS

2

CMS

3

CMS

4 NA

Markov

cluster

algorithm

CMS1 31 0 0 0 3 34

CMS2 0 68 0 0 1 69

CMS3 1 4 14 0 13 32

CMS4 1 8 0 34 14 57

NA 12 38 8 1 23 82

Total 45 118 22 35 54 274

TCGA

MATCH

Fig. 1. Principal component analysis (PCA) of DNA methylation

profiles from all CMS2 and CMS3 samples present in the MATCH

and TCGA cohorts. Principal components were calculated for DNA

methylation profiles of 286 colorectal cancer tissues (146 from

MATCH cohort (black) and 140 from TCGA cohort (red)). PC1, PC2,

and PC3 are shown on the x-, y, and z-axis, respectively, where

each dot represents 1 sample. Samples are colored based on their

cohort of origin (MATCH in black and TCGA in red).
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probes, based on either their relative location to a

CpG island (CpG codata panel) or their location rela-

tive to genes in the original CMS classifier (CMSori

codata panel), improved the AUC by only 1% or

0.5%, respectively. Group-weighted feature selection

down to 15, 10, and 5 markers yielded largely different

marker panels for both types of codata used (4 over-

lapping markers; Table 3) that still performed well in

the classification (Fig. 4B,C). However, the obtained

probabilities for CMS3 increased in the true CMS2

samples, whereas they decreased in the true CMS3

samples when the number of markers was reduced

(Fig. 4D). The methylation levels of all selected probes

for classification between CMS2 and CMS3 are

depicted in Fig. S3A (MATCH cohort) and Fig. S3B

(TCGA cohort).

Youden’s index was calculated to determine the

optimal cutoff for the marker panels based on either

the CpG codata and or the CMSori codata separately.

Even when only 5 markers are used, sensitivities, speci-

ficities and accuracies > 90% are observed for both

codata marker panels in the MATCH dataset using

Youden’s index as a cutoff (Table 4).

The obtained models were subsequently fixed and

applied to the CMS2 and CMS3 samples from TCGA

dataset, to verify the models’ efficacy to predict CMS3

status in independent samples. Using the optimal cut-

offs selected in the MATCH dataset, the highest per-

formance was established with the 15 marker panels.

Again, even the 5-marker panels yielded sensitivities,

specificities and accuracies > 90% in TCGA dataset as

well (Table 4).

3.4. Correlation between DNA methylation levels

and RNA expression

To determine the potential impact of the observed

methylation patterns on gene expression, we calculated

the Spearman correlation between DNA methylation

levels and RNA expression for all gene-associated

methylation probes in the MATCH cohort. In total,

Spearman’s correlations were determined for 24 904

probes. Of these probes, 10.9% and 25.6% were signif-

icantly positively and negatively correlated with the

expression of their associated gene, respectively.

Together, our marker panels included 26 probes of

which 25 were associated with a gene. We observed

that 28% and 36% were significantly positively and

negatively correlated to the expression of their associ-

ated gene, respectively (Table 5). For the CMSori

codata marker panel, selection of gene-associated

probes was favored by the codata itself (probes associ-

ated with genes included in the CMS SSP classifier),

which resulted in 26.7% of the markers showing posi-

tive correlation and 53.3% showing negative correla-

tion. In contrast, for the CpG codata marker panel we

observed that 35.7% of gene-associated markers were

positively correlated with expression, whereas only

14.3% were negatively correlated. Compared with all

probes (n = 24879) not included in our marker panels,

we found that the CpG codata marker panel was sig-

nificantly enriched for positively correlated probes

(chi-square test, P = 0.003), whereas the CMSori

codata marker panel was significantly enriched for

positively and negatively correlated probes (chi-square

test, P = 0.049 and P = 0.014, respectively).

3.5. A DNA methylation-based multiclass CMS

prediction model

Although dedicated assays are already available for

CMS1 and CMS4, ideally one would prefer to have

one affordable and practical CMS classification assay

applicable to FFPE. Therefore, we also evaluated the

potential of DNA methylation for multiclass predic-

tion of CMS1-4. For this purpose, the MATCH and

TCGA datasets were combined and split into a train-

ing (n = 283) and test (n = 141) set with balanced

CMS class distributions and equal contributions from

both cohorts. Results obtained applying the model

from the training set to the test set indicate that

CMS1, CMS2, and CMS3 can be reliably distin-

guished based on their DNA methylation profiles

(Table 6). CMS4, however, is frequently misclassified

as CMS2. Using TCGAbiolinks [25], we found that in

TCGA dataset the estimated tumor purity was

CMS3

CMS2

Fig. 2. Principal component analysis (PCA) of DNA methylation

profiles from all CMS2 and CMS3 samples present in the MATCH

and TCGA cohorts. Principal components were calculated for DNA

methylation profiles of 286 colorectal cancer tissues (242 CMS2

samples (black) and 44 CMS3 samples). PC1, PC2, and PC3 are

shown on the x-, y-, and z-axis, respectively, where each dot

represents 1 sample. Samples are colored based on CMS

classification (CMS2 in black and CMS3).
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significantly lower in CMS4 cases, suggesting a larger

stromal contribution in these samples (Kruskal–Wallis

test, P = 1.30E-31) [26], which may partly explain the

classification difficulties. Together, these results

indicate that DNA methylation markers are not able

to reliably classify colon cancers as CMS4 and that

the already described dedicated IHC and qRT-PCR

assays appear better suited for this purpose [7,8].

**

**

A

B

D

C

E

CMS2

CMS3

*

**

***
***

*

Fig. 3. Box plots showing the median methylation levels observed in CMS2 and CMS3 samples where probes are grouped based on their

location relative to a CpG island (CGI). These are box-and-whisker plots, showing the distribution of the data following the standard

conventions; the median as horizontal bar within the box, which depicts the middle 50% of observations. The whiskers extend to 1.5 IQR

(interquartile range) below Q1 and above Q3 (lower and upper quartile, respectively). Median methylation levels are shown in CMS2 (white)

and CMS3 (gray) samples from the MATCH (left) and TCGA (right) cohorts in A. for all probes included (n = 45 721), in B. for probes located

in CpG islands (CGI; n = 19 837), in C. for probes located in CGI shores (n = 11 111), in D. for probes located in CGI shelves (n = 2167),

and in E. for probes located in the open sea (n = 12570). *P < 0.05; **P < 0.01; and ***P < 0.001 (Mann–Whitney U-test).
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Table 3. Selected probes.

probe_ID Gene chr Position (bp) Gene-CpG

CpG codata CMSori codata

15m 10m 5m 15m 10m 5m

cg19335412 ACTA2 10 90694875 3’UTR-open sea +

cg23928468 SLC5A6 2 27433191 5’UTR-shore +

cg05951860 CTTNBP2 7 117513101 Body-island +

cg20698769 CTTNBP2 7 117513002 Body-island + + +

cg17477990 PDE4DIP 1 144937317 Body-open sea + + +

cg11125249 GYG1 3 148737622 Body-open sea +

cg02827572 C6orf106 6 34566245 Body-open sea +

cg04739880 ANKS1A 6 35017865 Body-open sea + +

cg00512872 CYTH3 7 6268584 Body-open sea + + +

cg14754494 DDC 7 50560743 Body-open sea + + + + +

cg19107055 DDC 7 50560686 Body-open sea + + + + + +

cg05357660 PREP 6 105750581 Body-open sea + +

cg23045908 PDE4B 1 66799419 Body-open sea +

cg16708174 RARRES1 3 158430962 Body-open sea + +

cg00901138 CHN2 7 29329370 Body-open sea + +

cg00901574 POFUT1 20 30804997 Body-open sea +

cg16477879 ASB1 2 239348171 Body-shelf + + +

cg23219253 ASAP2 2 9518751 Body-shelf + + +

cg05211192 MAD1L1 7 2119076 Body-shelf +

cg12492273 MAD1L1 7 2119499 Body-shelf +

cg16772998 MAD1L1 7 2119116 Body-shelf + +

cg00145955 QPRT 16 29703480 Body-shelf + + + + +

cg00097384 QPRT 16 29703459 Body-shelf + +

cg27603796 CTTNBP2 7 117512803 Body-shore + +

cg23418465 3 126239121 IGR-shelf +

cg17842966 FCGBP 19 40441469 TSS1500-open sea + + + + +

Table 4. Performance of both marker panels in MATCH cohort and TCGA cohort.

No of probes

Model used
CpG CMSori

Dataset MATCH TCGA MATCH TCGA

15 Cut off (Youden’s index in MATCH data) 0.24/0.25 0.16

TNR (spec) 0.98 0.99 0.99 0.98

TPR (sens) 0.91 0.82 0.95 0.95

Accuracy 0.97 0.96 0.99 0.98

10 Cut off (Youden’s index in MATCH data) 0.21/0.22 0.13

TNR (spec) 0.98 0.98 0.98 0.94

TPR (sens) 0.91 0.82 0.91 0.95

Accuracy 0.97 0.96 0.97 0.94

5 Cut off (Youden’s index in MATCH data) 0.14 0.11

TNR (spec) 0.93 0.92 0.94 0.92

TPR (sens) 0.95 0.91 0.91 0.91

Accuracy 0.93 0.91 0.93 0.92

Fig. 4. Evaluation of the (gr)ridge prediction models in the training dataset (MATCH). Receiver –operating characteristic (ROC) curves are

shown for (A) ordinary ridge (black) and group-regularized ridge (grridge) models with CpG codata (gray) and CMSori codata (gray dashed

line), (B) grridge models based on CpG codata with post hoc group-weighted elastic net feature selection of 15 (red), 10 (green), and 5

(blue) markers, and (C) grridge models based on CMSori codata with post hoc group-weighted elastic net feature selection of 15 (red), 10

(green), and 5 (blue) markers. In (D) the obtained probabilities for CMS3 are plotted for CpG codata (solid fill) and CMSori codata (striped fill)

models with all features (gray), 15 markers (red), 10 markers (green), and 5 markers (blue).

3356 Molecular Oncology 15 (2021) 3348–3362 ª 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Methylation panel for consensus molecular subtypes 2 and 3 I. van den Berg et al.



4. Discussion

In this study, we aimed to identify DNA methylation

markers to distinguish between CMS2 and CMS3 in

patients with primary CRC based on a genome-wide

analysis of DNA methylation in fresh-frozen tumor tis-

sues. We showed that CMS2 and CMS3 samples can be

distinguished based on overall methylation profiles

using subsequent principal component analysis of two

independent datasets, and these datasets combined.

Group regularization of the methylation probes was

done based on their location either relative to a CpG

island or relative to a gene present in the CMS classifier.

This resulted in two different prediction models and

subsequently different marker panels. For both panels,

even when using only 5 markers, the sensitivity, speci-

ficity, and accuracy were > 90%. Independent valida-

tion of the fixed models in TCGA data showed equal

performances. Exploratory multiclass prediction analy-

ses indicate that CMS4 cases are often misclassified as

CMS2 based on their DNA methylation profiles.

Thus far, almost all CRC subtyping studies were

based on fresh tissue samples, and it remains question-

able whether this classification is readily applicable to

other types of specimens that are available in the

clinic. FFPE-derived RNA is highly degraded and

chemically modified, which can impact its utility as a

faithful source for classification. Also for the CMS,

previous studies have shown that the CMS classifier

developed by Guinney et al. had a poor performance

in FFPE and on biopsy specimen, especially for CMS3

with a specificity of 0.70 [1,27]. This high type II error

rate in CMS3 suggests either biological or technical

differences between FFPE and fresh-frozen samples

and emphasizes the importance of using FFPE samples

for training a classifier in this context. Other previous

studies have performed DNA methylation analysis of

FFPE tissues and provided promising results for the

Table 5. Correlation between methylation levels and expression levels.

Probe Gene-CpG ENSG Gene symbol CpG codata CMSori codata Spearman’s Rho FDR

cg23928468 5’UTR-shore ENSG00000138074 SLC5A6 No Yes �0.56 2.83E-12

cg00901574 Body-open sea ENSG00000101346 POFUT1 No Yes �0.55 1.34E-11

cg00512872 Body-open sea ENSG00000008256 CYTH3 Yes No 0.47 3.64E-08

cg17842966 TSS1500-open sea ENSG00000275395 FCGBP Yes Yes �0.44 2.16E-07

cg00097384 Body-shelf ENSG00000103485 QPRT No Yes 0.42 1.67E-06

cg00145955 Body-shelf ENSG00000103485 QPRT Yes Yes 0.40 4.44E-06

cg27603796 Body-shore ENSG00000077063 CTTNBP2 No Yes �0.34 1.23E-04

cg16708174 Body-open sea ENSG00000118849 RARRES1 No Yes �0.34 1.43E-04

cg20698769 Body-island ENSG00000077063 CTTNBP2 No Yes �0.34 1.91E-04

cg23045908 Body-open sea ENSG00000184588 PDE4B No Yes �0.30 1.15E-03

cg04739880 Body-open sea ENSG00000064999 ANKS1A Yes No 0.27 3.76E-03

cg19107055 Body-open sea ENSG00000132437 DDC Yes Yes 0.25 9.67E-03

cg17477990 Body-open sea ENSG00000178104 PDE4DIP Yes No �0.24 1.42E-02

cg00901138 Body-open sea ENSG00000106069 CHN2 No Yes 0.24 1.46E-02

cg05951860 Body-island ENSG00000077063 CTTNBP2 No Yes �0.21 3.06E-02

cg16477879 Body-shelf ENSG00000065802 ASB1 Yes No 0.21 3.42E-02

cg19335412 3’UTR-open sea ENSG00000107796 ACTA2 No Yes 0.14 1.70E-01

cg12492273 Body-shelf ENSG00000002822 MAD1L1 Yes No 0.14 1.96E-01

cg23219253 Body-shelf ENSG00000151693 ASAP2 Yes No �0.13 2.30E-01

cg14754494 Body-open sea ENSG00000132437 DDC Yes Yes 0.11 3.10E-01

cg11125249 Body-open sea ENSG00000163754 GYG1 Yes No �0.05 7.09E-01

cg16772998 Body-shelf ENSG00000002822 MAD1L1 Yes No �0.05 7.12E-01

cg02827572 Body-open sea ENSG00000196821 C6orf106 Yes No �0.04 7.40E-01

cg05211192 Body-shelf ENSG00000002822 MAD1L1 Yes No 0.04 7.41E-01

cg05357660 Body-open sea ENSG00000085377 PREP No Yes �0.01 9.32E-01

Table 6. Classification of CMS 1-4 based on DNA methylation

profiles.

True CMS class

TotalCMS 1 CMS2 CMS3 CMS4

Predicted CMS1 29 0 2 1 32

CMS2 1 78 2 7 88

CMS3 1 0 10 0 11

CMS4 1 2 0 7 10

Total 32 80 14 15 141

Correct (%) 90.63 97.50 71.43 46.67

False (%) 9.38 2.50 28.57 53.33
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use of FFPE material for DNA methylation profiling

[28–31]. Therefore, in contrast to an RNA-based clas-

sifier, the methylation panel created in this study is

likely to work well on FFPE and may thus provide a

promising alternative for use in daily clinical practice.

Correlation analysis has been widely used to examine

the relationship between methylation and gene expres-

sion. Several studies have elucidated hypermethylation

of CpG islands at promoter regions, which represses

transcription of tumor suppressor genes [32]. However,

only one of the probes we identified in both panels was

located in the promotor region (within 1500 bp

upstream of TSS) of the nearby gene, whereas, except

for one intergenic probe, all other probes were located in

gene bodies. This is in line with previous research, which

showed the impact of DNA methylation at intergenic

regions and gene bodies on gene expression [33,34].

DNA methylation in gene body CpG islands shows an

apparent intriguing positive correlation between methy-

lation and gene expression [35,36]. Yang et al. found that

from the large amount of methylated probes found in

gene body regions, about 20% exhibit a positive correla-

tion between DNA methylation and gene expression. A

large proportion of these positively correlated genes

were overexpressed in primary colon cancer samples

compared with normal colon tissues. Our study shows

similar results with 28% of the probes from both marker

panels being significantly positively correlated to expres-

sion of their associated genes. These findings combined

highlight the importance of methylation in gene bodies

and warrant further research. Furthermore, our results

show that a difference exists between levels of methyla-

tion in CMS2 and CMS3 regarding the position of

probes relative to CpG islands. This difference was

found for methylation of probes within CpG island and

shores, but not for probes located in shelves or open sea.

This is in line with previous research, which shows that

most tissue-specific DNA methylation and cancer-

specific DNA methylation occur at CpG island shores,

especially for colon cancer [37].

Despite the observation that methylation levels in

CMS3 were higher in CpG islands and shores com-

pared with CMS2, probes selected by the grridge algo-

rithm as discriminatory panel between CMS2 and

CMS3 were actually located in CpG island shelves and

in the open sea and mostly showed lower methylation

levels in CMS3.

Interestingly, the CMSori codata marker panel was

enriched for both positively and negatively correlated

probes compared with all probes not selected in the

panel. This suggests that DNA methylation is at least

partly underlying the expression patterns used for the

original CMS2 and CMS3 classification. From the

selected probes for which methylation and expression

were significantly correlated, DDC expression levels

were previously described to vary among colorectal can-

cer tissues and were associated with disease-free and

overall survival [38]. Downregulation of FCGBP has

been described as a potential target for identification of

CRC, and lower expression levels were also associated

with poorer survival within CRC patients [39]. POFUT1

expression was associated with Notch signaling and

decreased goblet cell differentiation and was identified

as a potential driver of tumor progression in colorectal

adenomas [40]. PDE4B, which regulates cellular cAMP

concentrations, plays a significant role in regulating the

malignant phenotype of CRC cells [41]. RARRES1 is

among the most commonly methylated genes and is

silenced in multiple cancers. Interestingly, it is also dif-

ferentially expressed in metabolism-associated diseases

[42], supporting a potential role in CMS3, which is fea-

tured as the metabolic subtype.

The CMS classification revealed a relatively large

number of CMS2 cases and low number of CMS3

cases in the present series. Taking into account the dif-

ferent sample sizes of this study and the original CMS

publication, and given the variation in distributions of

CMS classes among the six datasets from which the

CMS classification originated [1,7,43–49], it may be

that the CMS class distribution varies per dataset. We

chose to use the SSP method for classification because

it is not sensitive to the composition of the dataset to

which it is applied, so the context of a large series of

CRCs or batch effect removal is not required.

Previous literature already provides support for the

predictive value of CMS [2]. In addition, new prospec-

tive clinical studies are being performed to investigate

whether CMS classification can indeed be of added

value in clinical decision making by analyzing its pre-

dictive value for chemotherapy response [50,51]. In the

future, treatments for colon cancer patients will likely

be subtype-specific by targeting characteristically over-

expressed molecular targets per consensus subgroup

[52]. Therefore, a practical, minimally invasive test to

distinguish between the subtypes is needed. Our results

show that DNA methylation profiles can be used to

discriminate between CMS1, CMS2, and CMS3 cases

but do not allow for reliable classification of CMS4.

This may due to the relatively large stromal contribu-

tion to the CMS4 signature, which is not captured

very well in the DNA methylation profile due to the

low cell density of stroma. In addition, even though

DNA methylation can be used to classify CMS1, we

feel that MSI testing, already implemented in routine

diagnostics, is more relevant and will capture the vast

majority of CMS1 cases [1,4–6].
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5. Conclusion

For future studies and retrospective analyses of archi-

val cohorts, our methylation marker panel should

enable the development of a qPCR DNA methylation

assay for distinguishing CMS2 from CMS3 in patients

with CRC. Such an assay can provide a specific, con-

venient, and easily implementable tool for use in rou-

tine diagnostics. Combined with the already-developed

assays for CMS1 and CMS4, this assay may accelerate

the evaluation of the clinical value of CMS classifica-

tion and will ultimately help physicians in selecting

patients for adjuvant treatment based on their CMS

classification.
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samples present in the MATCH and TCGA cohorts.
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CMS3 samples present in the MATCH and TCGA

cohorts.

Fig. S3A. Boxplots of methylation levels for all

selected markers in the MATCH cohort.

Fig. S3B. Boxplots of methylation levels for all

selected markers in the TCGA cohort.

Table S1. Clinical and histopathological characteristics

of CMS2 and CMS3 patients per cohort.
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