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1. Introduction

We are interested in the asymptotic behavior of optimal stopping time

problems for general continuous time Markov-Feller processes.

This kind of problems has been investigated by Bensoussan and Lions

[2] for reflected diffusions with smooth coefficients. The case of reflected

diffusion with jumps has been studied by [6] for bounded measures and in

Garroni and Menaldi [4] under fairly general conditions. On the other hand,

in Robin [10] and Stettner [11] the case of general ergodic semigroup has

been considered, even for more general control problems. We refer also to

Lions and Perthame [5] and Perthame [8] form impulse control problems and

to Menaldi, Perthame and Robin [7] for switching control problems.

In this paper, we consider a fairly general class of semigroup with some

ergodic property. The typical example on hand is the reflected diffusion

processes with jumps.

The first section, §2, present the problem to be studied. In §3, we need to

establish some a priori bounds of Lewy-Stampacchia type to be used later.

Next, in §4, we study a case where the invariant distribution is not necessary.

Finally, under ergodicity assumptions we treat a general case.

2. Statement of the Problem

Let (Xt, t ≥ 0) be a Markov-Feller process with respect to the filtration

(Ft, t ≥ 0) satisfying the usual conditions, with values in some state space

E, a compact metric space. Denote by (Φ(t), t ≥ 0) its semigroup defined

on C(E), the space of continuous functions from E into R; and by L its

infinitesimal generator defined on D(L), subspace of C(E).
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Let T be the set of all stopping time adapted to (Ft, t ≥ 0). Given two

functions and a constant,

f, ψ ∈ C(E), α > 0,(1)

we are interested in the behavior of the optimal cost function

uα(x) = inf{Jα
x (τ) : τ ∈ T},(2)

Jα
x (τ) = E{

∫ τ

0
e−αtf(Xt)dt+ eατψ(Xτ )},

as the positive number α vanishes.

It is clear that this involves ergodic properties of the Markov-Feller process

(Xt, t ≥ 0). Actually, we are concerned with particular processes for which

ergodic properties are recently known, e.g. reflected diffusions processes with

jumps.

Classic results (cfr. Bensoussan [1], Robin [9]) provided a characterization

of uα as the maximum element of the set of function v satisfying

v ∈ C(E), v ≤ ψ,(3)

v ≤ e−αtΦ(t)v +
∫ t

0
e−αsΦ(s)fds, ∀t ≥ 0.

If uα is a function in D(L) then

(Luα − αuα + f) ∧ (ψ − uα) = 0, ∧ = minimum,(4)

Unfortunate, uα does not belong toD(L) generally, even for smooth data f, ψ.

However, if we complete the space D(L) allowing discontinuities then (4)

becomes true. This is referred to as the strong formulation of the variational

inequality (cfr. Bensoussan and Lions [2]) for diffusion processes with jumps.
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Our plan is to establish (4) for general Feller-Markov processes and then

the case of reflected diffusions processes with jumps is studied. First for

Poisson jumps and finally for general jumps.

A priori bounds

Let us assume that for some Radon measure ν on E the semigroup

(Φ(t), t ≥ 0) leaves invariant the sets of zero µ-measure, i.e.

∀t, ε > 0 ∃δ > 0 such that ∀v ∈ C(E) satisfying(5)

µ({x : v(x) > 0}) < δ we have ν({x : Φ(t)v(x) > 0} < ε.

Then we can extend (Φ(t), t ≥ 0) into a weakly-star continuous semigroup

on L∞(E). Its weakly-star infinitesimal generator, still denoted by L, has

domain D∞(L), a subspace of L∞(E) characterized by

v ∈ D∞(L) iff t−1(Φ(t)v − v), t > 0, is bounded in L∞(E).(6)

Moreover,

if v ∈ D∞(L) then t−1(Φ(t)v − v)⇀ Lv weakly-star as t→ 0.(7)

Also the equation

Lu− αu = v, u in D∞(L)

has a unique solution for any α > 0, v in L∞(E).

Recall the maximum principle satisfied by L in D(L):

If v ∈ D(L) ⊂ C(E) attains its global maximum at a point(8)

x0 ∈ E then Lv(x0) ≤ 0.(9)
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Theorem 1

Under the assumptions (1), (5) and

there exists a sequence of functions in D(L)(10)

{ψn}∞n=1, such that ∧k
n=1 ψn → ψ as k → ∞,(11)

and Lψn is uniformly in n bounded from above in L∞(E),(12)

the problem

uα ∈ C(E) ∩D∞(L), (Luα − αuα + f) ∧ (ψ − uα) = 0(13)

has a unique solution, explicitly given by (2). Moreover, uα satisfies the

Lewy-Stampacchia inequality

0 ≤ Luα − αuα + f ≤ [max
n

(Lψn − αψn) + f ]+,(14)

where [·]+ denotes the positive part.

Proof

We use the technique of penalization and we give only the main steps.

Define the mapping τεv = u as the unique solution of the linear equation

Lu− (α +
1

ε
)u+

1

ε
(v ∧ ψ) + f = 0.

Since τε maps C(E) into D(L), the maximum principle (8) applied to the

function

w = ±(u− ũ)− (1 + εα)−1∥v − ṽ∥C(E),

where ∥ · ∥C(E) denotes the supremum norm, gives w ≤ 0, i.e.

∥τεv − τεṽ∥C(E) ≤ (1 + εα)−1∥v − ṽ∥C(E).
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Hence τε is a contraction on C(E), which implies that the penalized problem

Luε − αuε −
1

ε
(uε − ψ)+ + f = 0(15)

has a unique solution in D(L).

By using the maximum principle (8) with the function

w = uε1 − uε, 0 < ε1 < ε,

Lw = αw + (
1

ε1
− 1

ε
)(uε1 − ψ)+ +

1

ε
[(uε1 − ψ)+ − (uε − ψ)+],

we get w ≤ 0, i.e.

uε1 ≤ uε, 0 < ε1 < ε.(16)

Let zkε be the unique solution of the linear equation

Lzkε − (α +
1

ε
)zkε +

1

ε
[max
n≤k

(Lψn − αψn) + f ]+ = 0,(17)

and ukε be the solution of the penalized problem with ψ replaced by ∧k
n=1ψn, ψn

given by (19). Now, from the maximum principle (8) applied to the function

wk = ukε − ψn − εzkε , n ≤ k,

Lwk = (α− 1

ε
)wk + [max

i≤k
(Lψi − αψi) + f ]−+

+[max
i≤k

(Lψi − αψi)− (Lψn − αψn)+

+
1

ε
(ukε − ∧k

i=1ψi)
− +

1

ε
(ψn − ∧k

i=1ψi),

where [·]− is the negative part, we deduce wk ≤ 0 , i.e.

1

ε
(ukε − ∧k

n=1ψn)
+ ≤ zkε , ε > 0.
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Hence, by letting k → ∞ we establish

1

ε
(uε − ψ)+ ≤ zε, ε > 0,(18)

where zε is the solution in D∞(L) of the linear equation (3.10 for k = ∞.

Notice that

∥zε∥C(E) ≤ (1 + εα)−1∥[max
n≥1

(Lψn − αψn) + f ]+∥, ε > 0.(19)

Going back to (13), we may use the maximum principle (8) with the

function

w = uε − uε′ −
1

ε′
∥(uε′ − ψ)+∥C(E)(ε− ε′), 0 < ε′ < ε,

Lw = αw +
1

ε
(yε − ψ)+ − 1

ε′
(uε′)

+,

to get w ≤ 0, i.e.

0 ≤ uε − uε′ ≤ ∥ 1
ε′
(uε′ − ψ)+∥C(E)(ε− ε′), 0 < ε′ < ε.(20)

Notice that we have use the fact that w > 0 implies

0 <
1

ε1
(uε1 − ψ)+ ≤ 1

ε
(uε − ψ)+.

Similarly, the maximum principle (8) applied to the function

w = ±(uε − ũε)−max{ 1
α
∥f − f̃∥C(E), ∥ψ − ψ̃∥C(E),

Lw = αw ± 1

ε
[(uε − ψ)+ − (ũε − ψ̃)+]± (f̃ − f),

gives w ≤ 0, i.e.

∥uε − ũε∥C(E) ≤ max{ 1
α
∥f − f̃∥C(E), ∥ψ − ψ̃∥C(E)},(21)
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where uε and ũε denote the solutions of the penalized problems (12) with

data f, ψ and f̃ , ψ̃.

Now we are ready to pass to the limit as ε vanishes. In view of (15),...,(17)

we get a limiting function uα in C(E) ∩D∞(L) satisfying (10). The Lewy-

Stampacchia inequality (11) follows from (15) and the fact that

zε → [max
n≥1

(Lψn − αψn) + f ]+ as ε→ 0,

weakly star in L∞(E). The estimate (18) gives continuity of the solution uα

w.r.t. data.

One way to show the uniqueness of solution to the problems (10) is to

identify any solution with the value function (2). That can be achieved by

using a weak version of Dynkin formula for function in C(E) ∩D∞(L).

An alternative way is to establish the fact that uα is indeed the maximum

subsolution, i.e. any v in C(E) ∩D∞(L) satisfying

Lv − αv + f ≥ 0, v ≤ ψ(22)

should be v ≤ uα. To that effect, we consider the problem

u ∈ C(E) ∩D∞(L), (Lu− αu+ f) ∧ (u ∧ uα − u) = 0.

We claim v ≤ u which implies v ≤ uα. Indeed

L(v − u)− α(v − u) = g

where g ≥ 0. Because v − u belongs to D∞(L) we deduce v ≤ u ν- a.e., and

continuity gives v ≤ u in C(E). 2
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Poisson Jumps

We assume here that the infinitesimal generator L has a Poisson jumps

part, i.e.

L = L0 + I,(23)

I v(x) = λ(x)
∫
E
[v(y)− v(x)]m(dy),

where L0 is the infinitesimal generator of a semigroup (Φ0(t), t ≥ 0) satisfying

the same assumptions as (Φ(t), t ≥ 0), and m(·) is a probability measure on

E and

λ ∈ C(E), λ(x) ≥ λ0 > 0, ∀x ∈ E.(24)

Let us study the behavior as α vanishes in the equation satisfied by the

optimal cost (2), namely

uα ∈ C(E) ∩D∞(L), (Luα − αuα + f) ∧ (ψ − uα) = 0.(25)

.

Theorem 2

Assume (1), (5), (9), (20) and (21). Then two possibilities may occur as

α vanishes:

(i) either m(uα) =
∫
E uα(y)m(dy) is bounded

(ii) or m(uα) diverges to −∞ (it is always bounded from above).

In the first case (i), the function uα converges weakly star to u0 in D∞(E),

where u0 is the maximum element of the set of functions u satisfying

u ∈ D∞(L), (Lu+ f) ∧ (ψ − u) = 0,(26)
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provided ψ ≤ 0. For the second case (ii), the function vα = uα −M(uα)

converges to weakly star to v0 in D∞(E), where v0 is the unique solution of

the equation,

v0 ∈ D∞(L), m(v0) = 0,(27)

Lv0 + f = r, for some real number r,

provided L satisfies the strong maximum principle, namely: the only solu-

tions of the equation Lv = c, c constant are constants function v, with c = 0.

Proof

From the Lewy-Stampacchia, inequality (11) we have

Luα − αuα + fα = 0,

with fα bounded in L∞(E) as α vanishes. Because

L0vα − (λ+ α)vα = Luα − αuα + αm(uα)

we deduce

∥vα∥C(E) ≤ (
1

λ0 + α
)∥fα + αm(uα)∥L∞(E), ∀α > 0.(28)

Also, since

∥uα∥C(E) ≤
1

α
∥fα∥L∞(E)

we have

|αm(uα)| ≤ ∥fα∥L∞(E), ∀α > 0.(29)
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Then in either cases (i), (ii), we can find a function v0 in D∞(L) such

that

vα ⇀ v0 and Lvα ⇀ Lv0 weakly star in L∞(E)

as α → 0 for some subsequence.

Now, if (i) holds than we have

uα ⇀ u0,

which is clearly a solution of (23). To show that u0 is the maximum subso-

lution (solutions) we denote by u a solution of (23) and by ũα the solution

of problem (10) with data f + αu, ψ. By Theorem 1, we have

u ≤ ũα,

and because u ≤ ψ ≤ 0, the monotonicity in the data implies

ũα ⇀ ũ0 ≤ u0, as α → 0.

Hence u ≤ u0.

for the second case (ii) we notice that

vα ≤ ψ −m(uα) = ψα

Since vα bounded, m(uα) should be bounded from above. In this case (ii),

ψα diverges to +∞ and limiting equation is (24), for

αm(uα) → r.

The uniqueness for the problem (24) is part of the assumption on the

strong maximum principle satisfied by L. 2
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Remark 1

Suppose that the resolvent operator corresponding to L is compact in

C(E) i.e., if fn ⇀ f weakly star in L∞(E) then the solution un of

Lun − αun + fn = 0, α > 0 fixed,

converges in C(E) to the solution u of the limiting equation. We deduce that

the limiting functions either u0 or v0 are in C(E). 2

Remark 2

Notice that the measure m(·) is not in general an invariant measure for

the semigroup, (Φ(t), t ≥ 0).

Remark 3

Most of the results can be extended to the case where E is locally com-

pact metric space. Also other kind of control problem can be studied with

this technique. 2

5. General Jumps

When we allow the probability measure m(·) in (20) to depend on x, the

method of §4 does not work anymore. However, the technique based on the

invariant measure can be carried out. We have in mind the case of reflected

diffusion with jumps studied in [6]. On the other hand, if we want to include

cases with accumulation of jumps, e.g.

Iv(x) =
∫
F
[v(x+ γ, ξ))− v(x)]β(x, ξ)π(dξ),(30)

with π a σ-finite measure on F ,

0 ≤ β(x, ξ) ≤ 1, 0 < γ(x, ξ) ≤ γ0(ξ),(31)
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∫
F
γ0(ξ)T (dz) <∞,(32)

x+ γ(x, ξ) ∈ E, ∀x ∈ E, β(x, ξ) ̸= 0,(33)

then we need to go through precise estimates on the corresponding transition

density function to show the existence of an invariant density measure, cfr.

Garroni and Menaldi [4].

Herein, even if we are thinking of the reflected diffusion with jumps, we

state all results for general semigroup with nice ergodic properties.

Assume that there exists an invariant distribution m(·) for the semigroup

(Φ(t), t ≥ 0) which is exponentially stable, i.e.

∥Φ(t)v −m(v)∥C(E) ≤ Ceνt∥v∥C(E), ∀v ∈ C(E),(34)

for some constant C, ν > 0 and where m(·) is a probability measure on E

and

m(v) =
∫
E
v(y)m(dy),∀v ∈ C(E).(35)

Theorem 3

Let us assume (1), (5), (9) and (29). Then the limit of the solution uα of

problem (22) as α vanishes is characterized as follows:

(i) if m(f) ≥ 0 then uα converges weakly star to u0 in D∞(L), where u0

is the maximum element of the set of functions u satisfying

u ∈ D∞(L), (Lu+ f) ∧ (ψ − u) = 0,(36)

provided ψ ≤ 0;

13



(ii) if m(f) < 0 then vα = uα − m(uα) is bounded in D∞(L) and any

weakly star limit v satisfies

v ∈ D∞(L),m(v) = 0, Lv + f = r, for some constant r.(37)

Moreover, if the operator L satisfies the strong maximum principle mentioned

in Theorem 2, then we have three alternatives

(i) if m(f) > 0 then u0 is the unique solution of (31),

(ii) if m(f) = 0 then u0 is the unique solution of the problem

u0 ∈ D∞(L), Lu0 + f = 0,min{ψ − u0} = 0,(38)

(iii) if m(f) < 0 then v0 is the unique solution of (32) and r = m(f).

Proof

Again by Lewy-Stampacchia inequality (11) we have

Luα − αuα + fα = 0,

where fα remains bounded in L∞(E) as α vanishes. In view of (29) we get

∥vα∥C(E) ≤
1

α + ν
}∥fα − αuα∥L∞(E), ∀α > 0,(39)

after noticing that vα = uα −m(uα),m(vα) = 0,m(fα − αuα) = 0.

We can then assume that

vα ⇀ v0, Lvα ⇀ Lv0, αm(vα) → r,(40)

at least for some sequence in α and the two first convergences are weakly

star in L∞(E).
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Since m(uα) is always bounded from above and

αm(uα) = m(fα) ≤ m(f),

we show that m(uα) bounded implies m(f) ≥ 0. To see the opposite condi-

tion, we look at the stopping set

Sα = {x ∈ E : uα(x) = ψ(x)}.

Because ψ and vα are bounded, there exist α0 > 0 such that Sα is empty

for 0 < α < α0, if we have assumed m(uα) unbounded. In this case fα = f

for 0 < α < α0, which implies m(f) ≤ 0. If actually m(f) = 0 then we can

construct a subsolution as follows: wα solution of

wα ∈ D(L), Lwα − αwα + f = 0

and

w̄α = wα − ∥ψ − wα∥C(E).

The maximum principle yields uα ≥ w̄α. Since wα is bounded, because

m(f) = 0, we should have uα bounded from below, which contradicts the fact

that m(uα) is unbounded. Summing up, we have established the following:

(i) m(uα) is bounded if and only if m(f) ≥ 0(41)

(ii) if m(uα) is unbounded there exists α0 > 0(42)

such that fα = f for 0 < α < α0.(43)

Hence, (34), (35) and (36) allows us to pass to the limit as in Theorem 4.1

to complete the proof, after showing (33). To that effect, notice that fα ≤ f
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and fα converges weakly to f0 as goes to 0. If m(f) = 0 then we have

u0 ∈ D∞(L) Lu0 + f0 = 0, f0 ≤ f,

with u0 being the a weak limit of uα. But m(f0) = m(f) = 0, which implies

f0 = f . 2

Remark

When m(f) > 0, still we have (31) for any continuous function ψ, not

necessarily negative. 2

Remark

Comments similar to those of §4 can be stated. 2
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