1-1-1989

On Asymptotic Behavior of Stopping Time Problems

Jose Luis Menaldi
Wayne State University, menaldi@wayne.edu
Maurice Robin
INRIA

Recommended Citation

J.-L. Menaldi and M. Robin, On asymptotic behavior of stopping time problems, Boll. Un. Mat. Ital. B, 7 (1989), pp. 723-734.

Available at: https://digitalcommons.wayne.edu/mathfrp/49

On Asymptotic Behavior of Stopping

Time Problems

Jose Luis Menaldi
Department of Mathematics
Wayne State University

Detroit, Michigan 48202, USA*

Maurice Robin
INRIA
Domaine de Voluceau - B.P. 105
78153 Le Chesnay Cedex, France

[^0]
1. Introduction

We are interested in the asymptotic behavior of optimal stopping time problems for general continuous time Markov-Feller processes.

This kind of problems has been investigated by Bensoussan and Lions [2] for reflected diffusions with smooth coefficients. The case of reflected diffusion with jumps has been studied by [6] for bounded measures and in Garroni and Menaldi [4] under fairly general conditions. On the other hand, in Robin [10] and Stettner [11] the case of general ergodic semigroup has been considered, even for more general control problems. We refer also to Lions and Perthame [5] and Perthame [8] form impulse control problems and to Menaldi, Perthame and Robin [7] for switching control problems.

In this paper, we consider a fairly general class of semigroup with some ergodic property. The typical example on hand is the reflected diffusion processes with jumps.

The first section, $\S 2$, present the problem to be studied. In $\S 3$, we need to establish some a priori bounds of Lewy-Stampacchia type to be used later. Next, in $\S 4$, we study a case where the invariant distribution is not necessary. Finally, under ergodicity assumptions we treat a general case.

2. Statement of the Problem

Let $\left(X_{t}, t \geq 0\right)$ be a Markov-Feller process with respect to the filtration $\left(\mathcal{F}_{t}, t \geq 0\right)$ satisfying the usual conditions, with values in some state space E, a compact metric space. Denote by $(\Phi(t), t \geq 0)$ its semigroup defined on $C(E)$, the space of continuous functions from E into \mathcal{R}; and by L its infinitesimal generator defined on $D(L)$, subspace of $C(E)$.

Let T be the set of all stopping time adapted to $\left(\mathcal{F}_{t}, t \geq 0\right)$. Given two functions and a constant,

$$
\begin{equation*}
f, \psi \in C(E), \quad \alpha>0 \tag{1}
\end{equation*}
$$

we are interested in the behavior of the optimal cost function

$$
\begin{gather*}
u_{\alpha}(x)=\inf \left\{J_{x}^{\alpha}(\tau): \tau \in T\right\}, \tag{2}\\
J_{x}^{\alpha}(\tau)=E\left\{\int_{0}^{\tau} e^{-\alpha t} f\left(X_{t}\right) d t+e^{\alpha \tau} \psi\left(X_{\tau}\right)\right\},
\end{gather*}
$$

as the positive number α vanishes.
It is clear that this involves ergodic properties of the Markov-Feller process $\left(X_{t}, t \geq 0\right)$. Actually, we are concerned with particular processes for which ergodic properties are recently known, e.g. reflected diffusions processes with jumps.

Classic results (cfr. Bensoussan [1], Robin [9]) provided a characterization of u_{α} as the maximum element of the set of function v satisfying

$$
\begin{gather*}
v \in C(E), v \leq \psi \tag{3}\\
v \leq e^{-\alpha t} \Phi(t) v+\int_{0}^{t} e^{-\alpha s} \Phi(s) f d s, \quad \forall t \geq 0
\end{gather*}
$$

If u_{α} is a function in $D(L)$ then

$$
\begin{equation*}
\left(L u_{\alpha}-\alpha u_{\alpha}+f\right) \wedge\left(\psi-u_{\alpha}\right)=0, \quad \wedge=\text { minimum } \tag{4}
\end{equation*}
$$

Unfortunate, u_{α} does not belong to $D(L)$ generally, even for smooth data f, ψ. However, if we complete the space $D(L)$ allowing discontinuities then (4) becomes true. This is referred to as the strong formulation of the variational inequality (cfr. Bensoussan and Lions [2]) for diffusion processes with jumps.

Our plan is to establish (4) for general Feller-Markov processes and then the case of reflected diffusions processes with jumps is studied. First for Poisson jumps and finally for general jumps.

A priori bounds

Let us assume that for some Radon measure ν on E the semigroup $(\Phi(t), t \geq 0)$ leaves invariant the sets of zero μ-measure, i.e.

$$
\begin{gather*}
\forall t, \varepsilon>0 \exists \delta>0 \text { such that } \forall v \in C(E) \text { satisfying } \tag{5}\\
\mu(\{x: v(x)>0\})<\delta \text { we have } \nu(\{x: \Phi(t) v(x)>0\}<\varepsilon .
\end{gather*}
$$

Then we can extend ($\Phi(t), t \geq 0$) into a weakly-star continuous semigroup on $L^{\infty}(E)$. Its weakly-star infinitesimal generator, still denoted by L, has domain $D^{\infty}(L)$, a subspace of $L^{\infty}(E)$ characterized by
(6) $\quad v \in D^{\infty}(L)$ iff $t^{-1}(\Phi(t) v-v), t>0$, is bounded in $L^{\infty}(E)$.

Moreover,
(7) if $v \in D^{\infty}(L)$ then $t^{-1}(\Phi(t) v-v) \rightharpoonup L v$ weakly-star as $t \rightarrow 0$.

Also the equation

$$
L u-\alpha u=v, \quad u \text { in } D^{\infty}(L)
$$

has a unique solution for any $\alpha>0, v$ in $L^{\infty}(E)$.
Recall the maximum principle satisfied by L in $D(L)$:
(8) If $v \in D(L) \subset C(E)$ attains its global maximum at a point

$$
\begin{equation*}
x_{0} \in E \text { then } \operatorname{Lv}\left(x_{0}\right) \leq 0 . \tag{9}
\end{equation*}
$$

Theorem 1

Under the assumptions (1), (5) and
there exists a sequence of functions in $D(L)$

$$
\begin{equation*}
\left\{\psi_{n}\right\}_{n=1}^{\infty}, \text { such that } \wedge_{n=1}^{k} \psi_{n} \rightarrow \psi \text { as } k \rightarrow \infty, \tag{10}
\end{equation*}
$$

(12) and $L \psi_{n}$ is uniformly in n bounded from above in $L^{\infty}(E)$, the problem

$$
\begin{equation*}
u_{\alpha} \in C(E) \cap D^{\infty}(L),\left(L u_{\alpha}-\alpha u_{\alpha}+f\right) \wedge\left(\psi-u_{\alpha}\right)=0 \tag{13}
\end{equation*}
$$

has a unique solution, explicitly given by (2). Moreover, u_{α} satisfies the Lewy-Stampacchia inequality

$$
\begin{equation*}
0 \leq L u_{\alpha}-\alpha u_{\alpha}+f \leq\left[\max _{n}\left(L \psi_{n}-\alpha \psi_{n}\right)+f\right]^{+}, \tag{14}
\end{equation*}
$$

where $[\cdot]^{+}$denotes the positive part.

Proof

We use the technique of penalization and we give only the main steps.
Define the mapping $\tau_{\varepsilon} v=u$ as the unique solution of the linear equation

$$
L u-\left(\alpha+\frac{1}{\varepsilon}\right) u+\frac{1}{\varepsilon}(v \wedge \psi)+f=0 .
$$

Since τ_{ε} maps $C(E)$ into $D(L)$, the maximum principle (8) applied to the function

$$
w= \pm(u-\tilde{u})-(1+\varepsilon \alpha)^{-1}\|v-\tilde{v}\|_{C(E)},
$$

where $\|\cdot\|_{C(E)}$ denotes the supremum norm, gives $w \leq 0$, i.e.

$$
\left\|\tau_{\varepsilon} v-\tau_{\varepsilon} \tilde{v}\right\|_{C(E)} \leq(1+\varepsilon \alpha)^{-1}\|v-\tilde{v}\|_{C(E)} .
$$

Hence τ_{ε} is a contraction on $C(E)$, which implies that the penalized problem

$$
\begin{equation*}
L u_{\varepsilon}-\alpha u_{\varepsilon}-\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{+}+f=0 \tag{15}
\end{equation*}
$$

has a unique solution in $D(L)$.
By using the maximum principle (8) with the function

$$
\begin{gathered}
w=u_{\varepsilon^{1}}-u_{\varepsilon}, 0<\varepsilon^{1}<\varepsilon \\
L w=\alpha w+\left(\frac{1}{\varepsilon^{1}}-\frac{1}{\varepsilon}\right)\left(u_{\varepsilon^{1}}-\psi\right)^{+}+\frac{1}{\varepsilon}\left[\left(u_{\varepsilon^{1}}-\psi\right)^{+}-\left(u_{\varepsilon}-\psi\right)^{+}\right],
\end{gathered}
$$

we get $w \leq 0$, i.e.

$$
\begin{equation*}
u_{\varepsilon^{1}} \leq u_{\varepsilon}, \quad 0<\varepsilon^{1}<\varepsilon . \tag{16}
\end{equation*}
$$

Let z_{ε}^{k} be the unique solution of the linear equation

$$
\begin{equation*}
L z_{\varepsilon}^{k}-\left(\alpha+\frac{1}{\varepsilon}\right) z_{\varepsilon}^{k}+\frac{1}{\varepsilon}\left[\max _{n \leq k}\left(L \psi_{n}-\alpha \psi_{n}\right)+f\right]^{+}=0 \tag{17}
\end{equation*}
$$

and u_{ε}^{k} be the solution of the penalized problem with ψ replaced by $\wedge_{n=1}^{k} \psi_{n}, \psi_{n}$ given by (19). Now, from the maximum principle (8) applied to the function

$$
\begin{gathered}
w_{k}=u_{\varepsilon}^{k}-\psi_{n}-\varepsilon z_{\varepsilon}^{k}, \quad n \leq k, \\
L w_{k}=\left(\alpha-\frac{1}{\varepsilon}\right) w_{k}+\left[\max _{i \leq k}\left(L \psi_{i}-\alpha \psi_{i}\right)+f\right]^{-}+ \\
+\left[\max _{i \leq k}\left(L \psi_{i}-\alpha \psi_{i}\right)-\left(L \psi_{n}-\alpha \psi_{n}\right)+\right. \\
+\frac{1}{\varepsilon}\left(u_{\varepsilon}^{k}-\wedge_{i=1}^{k} \psi_{i}\right)^{-}+\frac{1}{\varepsilon}\left(\psi_{n}-\wedge_{i=1}^{k} \psi_{i}\right),
\end{gathered}
$$

where $[\cdot]^{-}$is the negative part, we deduce $w_{k} \leq 0$, i.e.

$$
\frac{1}{\varepsilon}\left(u_{\varepsilon}^{k}-\wedge_{n=1}^{k} \psi_{n}\right)^{+} \leq z_{\varepsilon}^{k}, \varepsilon>0
$$

Hence, by letting $k \rightarrow \infty$ we establish

$$
\begin{equation*}
\frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{+} \leq z_{\varepsilon}, \quad \varepsilon>0 \tag{18}
\end{equation*}
$$

where z_{ε} is the solution in $D^{\infty}(L)$ of the linear equation (3.10 for $k=\infty$.
Notice that

$$
\begin{equation*}
\left\|z_{\varepsilon}\right\|_{C(E)} \leq(1+\varepsilon \alpha)^{-1}\left\|\left[\max _{n \geq 1}\left(L \psi_{n}-\alpha \psi_{n}\right)+f\right]^{+}\right\|, \varepsilon>0 \tag{19}
\end{equation*}
$$

Going back to (13), we may use the maximum principle (8) with the function

$$
\begin{gathered}
w=u_{\varepsilon}-u_{\varepsilon^{\prime}}-\frac{1}{\varepsilon^{\prime}}\left\|\left(u_{\varepsilon^{\prime}}-\psi\right)^{+}\right\|_{C(E)}\left(\varepsilon-\varepsilon^{\prime}\right), \quad 0<\varepsilon^{\prime}<\varepsilon \\
L w=\alpha w+\frac{1}{\varepsilon}\left(y_{\varepsilon}-\psi\right)^{+}-\frac{1}{\varepsilon^{\prime}}\left(u_{\varepsilon^{\prime}}\right)^{+},
\end{gathered}
$$

to get $w \leq 0$, i.e.

$$
\begin{equation*}
0 \leq u_{\varepsilon}-u_{\varepsilon^{\prime}} \leq\left\|\frac{1}{\varepsilon^{\prime}}\left(u_{\varepsilon^{\prime}}-\psi\right)^{+}\right\|_{C(E)}\left(\varepsilon-\varepsilon^{\prime}\right), \quad 0<\varepsilon^{\prime}<\varepsilon \tag{20}
\end{equation*}
$$

Notice that we have use the fact that $w>0$ implies

$$
0<\frac{1}{\varepsilon^{1}}\left(u_{\varepsilon^{1}}-\psi\right)^{+} \leq \frac{1}{\varepsilon}\left(u_{\varepsilon}-\psi\right)^{+}
$$

Similarly, the maximum principle (8) applied to the function

$$
\begin{gathered}
w= \pm\left(u_{\varepsilon}-\tilde{u}_{\varepsilon}\right)-\max \left\{\frac{1}{\alpha}\|f-\tilde{f}\|_{C(E)},\|\psi-\tilde{\psi}\|_{C(E)}\right. \\
L w=\alpha w \pm \frac{1}{\varepsilon}\left[\left(u_{\varepsilon}-\psi\right)^{+}-\left(\tilde{u}_{\varepsilon}-\tilde{\psi}\right)^{+}\right] \pm(\tilde{f}-f)
\end{gathered}
$$

gives $w \leq 0$, i.e.

$$
\begin{equation*}
\left\|u_{\varepsilon}-\tilde{u}_{\varepsilon}\right\|_{C(E)} \leq \max \left\{\frac{1}{\alpha}\|f-\tilde{f}\|_{C(E)},\|\psi-\tilde{\psi}\|_{C(E)}\right\} \tag{21}
\end{equation*}
$$

where u_{ε} and \tilde{u}_{ε} denote the solutions of the penalized problems (12) with data f, ψ and $\tilde{f}, \tilde{\psi}$.

Now we are ready to pass to the limit as ε vanishes. In view of (15),...,(17) we get a limiting function u_{α} in $C(E) \cap D^{\infty}(L)$ satisfying (10). The LewyStampacchia inequality (11) follows from (15) and the fact that

$$
z_{\varepsilon} \rightarrow\left[\max _{n \geq 1}\left(L \psi_{n}-\alpha \psi_{n}\right)+f\right]^{+} \text {as } \varepsilon \rightarrow 0,
$$

weakly star in $L^{\infty}(E)$. The estimate (18) gives continuity of the solution u_{α} w.r.t. data.

One way to show the uniqueness of solution to the problems (10) is to identify any solution with the value function (2). That can be achieved by using a weak version of Dynkin formula for function in $C(E) \cap D^{\infty}(L)$.

An alternative way is to establish the fact that u_{α} is indeed the maximum subsolution, i.e. any v in $C(E) \cap D^{\infty}(L)$ satisfying

$$
\begin{equation*}
L v-\alpha v+f \geq 0, \quad v \leq \psi \tag{22}
\end{equation*}
$$

should be $v \leq u_{\alpha}$. To that effect, we consider the problem

$$
u \in C(E) \cap D^{\infty}(L),(L u-\alpha u+f) \wedge\left(u \wedge u_{\alpha}-u\right)=0
$$

We claim $v \leq u$ which implies $v \leq u_{\alpha}$. Indeed

$$
L(v-u)-\alpha(v-u)=g
$$

where $g \geq 0$. Because $v-u$ belongs to $D^{\infty}(L)$ we deduce $v \leq u \nu$ - a.e., and continuity gives $v \leq u$ in $C(E)$.

Poisson Jumps

We assume here that the infinitesimal generator L has a Poisson jumps part, i.e.

$$
\begin{gather*}
L=L_{0}+I \tag{23}\\
I v(x)=\lambda(x) \int_{E}[v(y)-v(x)] m(d y)
\end{gather*}
$$

where L_{0} is the infinitesimal generator of a semigroup $\left(\Phi_{0}(t), t \geq 0\right)$ satisfying the same assumptions as $(\Phi(t), t \geq 0)$, and $m(\cdot)$ is a probability measure on E and

$$
\begin{equation*}
\lambda \in C(E), \quad \lambda(x) \geq \lambda_{0}>0, \quad \forall x \in E . \tag{24}
\end{equation*}
$$

Let us study the behavior as α vanishes in the equation satisfied by the optimal cost (2), namely

$$
\begin{equation*}
u_{\alpha} \in C(E) \cap D^{\infty}(L),\left(L u_{\alpha}-\alpha u_{\alpha}+f\right) \wedge\left(\psi-u_{\alpha}\right)=0 . \tag{25}
\end{equation*}
$$

Theorem 2

Assume (1), (5), (9), (20) and (21). Then two possibilities may occur as α vanishes:
(i) either $m\left(u_{\alpha}\right)=\int_{E} u_{\alpha}(y) m(d y)$ is bounded
(ii) or $m\left(u_{\alpha}\right)$ diverges to $-\infty$ (it is always bounded from above).

In the first case (i), the function u_{α} converges weakly star to u_{0} in $D^{\infty}(E)$, where u_{0} is the maximum element of the set of functions u satisfying

$$
\begin{equation*}
u \in D^{\infty}(L), \quad(L u+f) \wedge(\psi-u)=0 \tag{26}
\end{equation*}
$$

provided $\psi \leq 0$. For the second case (ii), the function $v_{\alpha}=u_{\alpha}-M\left(u_{\alpha}\right)$ converges to weakly star to v_{0} in $D^{\infty}(E)$, where v_{0} is the unique solution of the equation,

$$
\begin{gather*}
v_{0} \in D^{\infty}(L), m\left(v_{0}\right)=0, \tag{27}\\
L v_{0}+f=r, \text { for some real number } r,
\end{gather*}
$$

provided L satisfies the strong maximum principle, namely: the only solutions of the equation $L v=c, c$ constant are constants function v, with $c=0$.

Proof

From the Lewy-Stampacchia, inequality (11) we have

$$
L u_{\alpha}-\alpha u_{\alpha}+f_{\alpha}=0,
$$

with f_{α} bounded in $L^{\infty}(E)$ as α vanishes. Because

$$
L_{0} v_{\alpha}-(\lambda+\alpha) v_{\alpha}=L u_{\alpha}-\alpha u_{\alpha}+\alpha m\left(u_{\alpha}\right)
$$

we deduce

$$
\begin{equation*}
\left\|v_{\alpha}\right\|_{C(E)} \leq\left(\frac{1}{\lambda_{0}+\alpha}\right)\left\|f_{\alpha}+\alpha m\left(u_{\alpha}\right)\right\|_{L^{\infty}(E)}, \forall \alpha>0 . \tag{28}
\end{equation*}
$$

Also, since

$$
\left\|u_{\alpha}\right\|_{C(E)} \leq \frac{1}{\alpha}\left\|f_{\alpha}\right\|_{L^{\infty}(E)}
$$

we have

$$
\begin{equation*}
\left|\alpha m\left(u_{\alpha}\right)\right| \leq\left\|f_{\alpha}\right\|_{L^{\infty}(E)}, \quad \forall \alpha>0 . \tag{29}
\end{equation*}
$$

Then in either cases (i), (ii), we can find a function v_{0} in $D^{\infty}(L)$ such that

$$
v_{\alpha} \rightharpoonup v_{0} \text { and } L v_{\alpha} \rightharpoonup L v_{0} \text { weakly star in } L^{\infty}(E)
$$

as $\alpha \rightarrow 0$ for some subsequence.
Now, if (i) holds than we have

$$
u_{\alpha} \rightharpoonup u_{0}
$$

which is clearly a solution of (23). To show that u_{0} is the maximum subsolution (solutions) we denote by u a solution of (23) and by \tilde{u}_{α} the solution of problem (10) with data $f+\alpha u, \psi$. By Theorem 1, we have

$$
u \leq \tilde{u}_{\alpha},
$$

and because $u \leq \psi \leq 0$, the monotonicity in the data implies

$$
\tilde{u}_{\alpha} \rightharpoonup \tilde{u}_{0} \leq u_{0}, \text { as } \alpha \rightarrow 0 .
$$

Hence $u \leq u_{0}$.
for the second case (ii) we notice that

$$
v_{\alpha} \leq \psi-m\left(u_{\alpha}\right)=\psi_{\alpha}
$$

Since v_{α} bounded, $m\left(u_{\alpha}\right)$ should be bounded from above. In this case (ii), ψ_{α} diverges to $+\infty$ and limiting equation is (24), for

$$
\alpha m\left(u_{\alpha}\right) \rightarrow r .
$$

The uniqueness for the problem (24) is part of the assumption on the strong maximum principle satisfied by L.

Remark 1

Suppose that the resolvent operator corresponding to L is compact in $C(E)$ i.e., if $f_{n} \rightharpoonup f$ weakly star in $L^{\infty}(E)$ then the solution u_{n} of

$$
L u_{n}-\alpha u_{n}+f_{n}=0, \quad \alpha>0 \text { fixed },
$$

converges in $C(E)$ to the solution u of the limiting equation. We deduce that the limiting functions either u_{0} or v_{0} are in $C(E)$.

Remark 2

Notice that the measure $m(\cdot)$ is not in general an invariant measure for the semigroup, $(\Phi(t), t \geq 0)$.

Remark 3

Most of the results can be extended to the case where E is locally compact metric space. Also other kind of control problem can be studied with this technique.

5. General Jumps

When we allow the probability measure $m(\cdot)$ in (20) to depend on x, the method of $\S 4$ does not work anymore. However, the technique based on the invariant measure can be carried out. We have in mind the case of reflected diffusion with jumps studied in [6]. On the other hand, if we want to include cases with accumulation of jumps, e.g.

$$
\begin{equation*}
\left.I v(x)=\int_{F}[v(x+\gamma, \xi))-v(x)\right] \beta(x, \xi) \pi(d \xi), \tag{30}
\end{equation*}
$$

with π a σ-finite measure on F,

$$
\begin{equation*}
0 \leq \beta(x, \xi) \leq 1, \quad 0<\gamma(x, \xi) \leq \gamma_{0}(\xi) \tag{31}
\end{equation*}
$$

$$
\begin{array}{r}
\int_{F} \gamma_{0}(\xi) T(d z)<\infty \\
x+\gamma(x, \xi) \in E, \forall x \in E, \beta(x, \xi) \neq 0 \tag{33}
\end{array}
$$

then we need to go through precise estimates on the corresponding transition density function to show the existence of an invariant density measure, cfr. Garroni and Menaldi [4].

Herein, even if we are thinking of the reflected diffusion with jumps, we state all results for general semigroup with nice ergodic properties.

Assume that there exists an invariant distribution $m(\cdot)$ for the semigroup $(\Phi(t), t \geq 0)$ which is exponentially stable, i.e.

$$
\begin{equation*}
\|\Phi(t) v-m(v)\|_{C(E)} \leq C e^{\nu t}\|v\|_{C(E)}, \forall v \in C(E), \tag{34}
\end{equation*}
$$

for some constant $C, \nu>0$ and where $m(\cdot)$ is a probability measure on E and

$$
\begin{equation*}
m(v)=\int_{E} v(y) m(d y), \forall v \in C(E) . \tag{35}
\end{equation*}
$$

Theorem 3

Let us assume (1), (5), (9) and (29). Then the limit of the solution u_{α} of problem (22) as α vanishes is characterized as follows:
(i) if $m(f) \geq 0$ then u_{α} converges weakly star to u_{0} in $D^{\infty}(L)$, where u_{0} is the maximum element of the set of functions u satisfying

$$
\begin{equation*}
u \in D^{\infty}(L),(L u+f) \wedge(\psi-u)=0, \tag{36}
\end{equation*}
$$

provided $\psi \leq 0$;
(ii) if $m(f)<0$ then $v_{\alpha}=u_{\alpha}-m\left(u_{\alpha}\right)$ is bounded in $D^{\infty}(L)$ and any weakly star limit v satisfies

$$
\begin{equation*}
v \in D^{\infty}(L), m(v)=0, L v+f=r, \text { for some constant } r \tag{37}
\end{equation*}
$$

Moreover, if the operator L satisfies the strong maximum principle mentioned in Theorem 2, then we have three alternatives
(i) if $m(f)>0$ then u_{0} is the unique solution of (31),
(ii) if $m(f)=0$ then u_{0} is the unique solution of the problem

$$
\begin{equation*}
u_{0} \in D^{\infty}(L), L u_{0}+f=0, \min \left\{\psi-u_{0}\right\}=0, \tag{38}
\end{equation*}
$$

(iii) if $m(f)<0$ then v_{0} is the unique solution of (32) and $r=m(f)$.

Proof

Again by Lewy-Stampacchia inequality (11) we have

$$
L u_{\alpha}-\alpha u_{\alpha}+f_{\alpha}=0,
$$

where f_{α} remains bounded in $L^{\infty}(E)$ as α vanishes. In view of (29) we get

$$
\begin{equation*}
\left.\left\|v_{\alpha}\right\|_{C(E)} \leq \frac{1}{\alpha+\nu}\right\}\left\|f_{\alpha}-\alpha u_{\alpha}\right\|_{L^{\infty}(E)}, \forall \alpha>0 \tag{39}
\end{equation*}
$$

after noticing that $v_{\alpha}=u_{\alpha}-m\left(u_{\alpha}\right), m\left(v_{\alpha}\right)=0, m\left(f_{\alpha}-\alpha u_{\alpha}\right)=0$.
We can then assume that

$$
\begin{equation*}
v_{\alpha} \rightharpoonup v_{0}, L v_{\alpha} \rightharpoonup L v_{0}, \alpha m\left(v_{\alpha}\right) \rightarrow r, \tag{40}
\end{equation*}
$$

at least for some sequence in α and the two first convergences are weakly star in $L^{\infty}(E)$.

Since $m\left(u_{\alpha}\right)$ is always bounded from above and

$$
\alpha m\left(u_{\alpha}\right)=m\left(f_{\alpha}\right) \leq m(f),
$$

we show that $m\left(u_{\alpha}\right)$ bounded implies $m(f) \geq 0$. To see the opposite condition, we look at the stopping set

$$
S_{\alpha}=\left\{x \in E: u_{\alpha}(x)=\psi(x)\right\} .
$$

Because ψ and v_{α} are bounded, there exist $\alpha_{0}>0$ such that S_{α} is empty for $0<\alpha<\alpha_{0}$, if we have assumed $m\left(u_{\alpha}\right)$ unbounded. In this case $f_{\alpha}=f$ for $0<\alpha<\alpha_{0}$, which implies $m(f) \leq 0$. If actually $m(f)=0$ then we can construct a subsolution as follows: w_{α} solution of

$$
w_{\alpha} \in D(L), \quad L w_{\alpha}-\alpha w_{\alpha}+f=0
$$

and

$$
\bar{w}_{\alpha}=w_{\alpha}-\left\|\psi-w_{\alpha}\right\|_{C(E)} .
$$

The maximum principle yields $u_{\alpha} \geq \bar{w}_{\alpha}$. Since w_{α} is bounded, because $m(f)=0$, we should have u_{α} bounded from below, which contradicts the fact that $m\left(u_{\alpha}\right)$ is unbounded. Summing up, we have established the following:
(i) $m\left(u_{\alpha}\right)$ is bounded if and only if $m(f) \geq 0$
(ii) if $m\left(u_{\alpha}\right)$ is unbounded there exists $\alpha_{0}>0$ such that $f_{\alpha}=f$ for $0<\alpha<\alpha_{0}$.

Hence, (34), (35) and (36) allows us to pass to the limit as in Theorem 4.1 to complete the proof, after showing (33). To that effect, notice that $f_{\alpha} \leq f$
and f_{α} converges weakly to f_{0} as goes to 0 . If $m(f)=0$ then we have

$$
u_{0} \in D^{\infty}(L) L u_{0}+f_{0}=0, \quad f_{0} \leq f
$$

with u_{0} being the a weak limit of u_{α}. But $m\left(f_{0}\right)=m(f)=0$, which implies $f_{0}=f$.

Remark

When $m(f)>0$, still we have (31) for any continuous function ψ, not necessarily negative.

Remark

Comments similar to those of $\S 4$ can be stated.

REFERENCES

[1] A Bensoussan, Semi-group approach to variational and quasi-variational inequalities, Proceedings of the First Franco-South East Asian Conference on Mathematical Sciences, Manila Philippines, June 1982.
[2] A. Bensoussan, and J.L. Lions, On the asymptotic behavior of the solution of variational inequalities, Proceeding of Theory of Nonlinear Operators, Akademie-Verlag, Berlin (197), pp. 25-40.
[3] I. Capuzzo-Dolcetta and M.G. Garroni, Oblique derivative problems and invariant measures, Annali Scuola Normale Sup. di Pisa, $\underline{23}$ (1986), pp. 689-720.
[4] M.G. Garroni, and J.L. Menaldi, On the asymptotic behavior of solutions of integro-differential inequalities, Ricerche de Matematica, to appear.
[5] P.L. Lions and B. Perthame, Quasi-variational inequalities and ergodic impulse control, SIAM J. Control Optim, $\underline{24}$ (1986), pp. 604-615.
[6] J.L. Menaldi and M. Robin, An ergodic control problem for reflected diffusion with jumps, IMA J. Math. Control Inf., 1 (1984), pp. 309322.
[7] J.L. Menaldi, B. Perthame and M. Robin, Ergodic problem for optimal stochastic switching, preprint.
[8] B. Perthame, Vanishing Impulse Cost for the quasi-variational inequality of ergodic control, Asymptotic Theory, to appear.
[9] M. Robin, Contrôle impulsionnel des processes de Markov, Thèse d'Etat, INRIA, 1879.
[10] M. Robin, Long term average cost control problems for continuous time Markov processes: A survey, Acta Appl. Math., $\underline{1}$ (1983), pp. 281-299.
[11] L. Stettner, On impulse control with long run average cost criterion, Studia Mathematic, $\underline{76}$ (1983), pp. 279-298.

[^0]: *Partially supported by NSF grant DMS-8702236.

