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Abstract 

 

There are various reasons why professional forecasters may disagree in their quotes for 

macroeconomic variables. One reason is that they target at different vintages of the data. We 

propose a novel method to test forecast bias in case of such unobserved heterogeneity. The 

method is based on so-called Symbolic Regression, where the variables of interest become 

interval variables. We associate the interval containing the vintages of data with the intervals 

of the forecasts. An illustration to 18 years of forecasts for annual USA real GDP growth, 

given by the Consensus Economics forecasters, shows the relevance of the method.  
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Introduction and motivation 

 

This paper is about the well-known Mincer Zarnowitz (1969) (MZ) auxiliary regression, 

which is often used to examine (the absence of) bias in forecasts1. This regression, in general 

terms, reads as 

 

𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝛽0 + 𝛽1𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 + 𝜀 

 

Usually, the statistical test of interest concerns, 𝛽0 = 0 and 𝛽1 = 1, jointly. 

 

The setting in this paper concerns macroeconomic variables. For many such variables it holds 

that these experience revisions. For variables like real Gross Domestic Growth (GDP), after 

the first release, there can be at least five revisions for various OECD countries2.  

 

The second feature of our setting is that forecasts are often created by a range of professional 

forecasters. In the present paper for example we will consider the forecasters collected in 

Consensus Economics3. To evaluate the quality of the forecasts from these forecasters, one 

often takes the average quote (the consensus) or the median quote, and sometimes also 

measures of dispersion like the standard deviation or the variance are considered. The latter 

measures give an indication to what extent the forecasters disagree. Recent relevant studies 

are Capistran and Timmermann (2009), Dovern, Fritsche, and Slacalek (2012), Lahiri and 

Sheng (2010), Laster, Bennett, and Geoum (1999), and Legerstee and Franses (2015). 

Reasons for disagreement could be heterogeneity across forecasters caused by their differing 

                                                             
1 Bias in forecasts can come from including inappropriate information in the creating of the 

forecasts. Professional forecasters may rely on econometric models with a range of 

potentially relevant variables, but the forecasters may also decide not to incorporate 

econometric models at all and base their forecasts on intuition, or they may decide to 

manually adjust econometric model forecasts. The results summarized in Franses (2014) 

shows that such manual adjustment or fully ignoring an econometric model can lead to 

substantial bias in forecasts. 
2 http://www.oecd.org/sdd/na/revisions-of-quarterly-gdp-in-selected-oecd-countries.htm 
3 http://www.consensuseconomics.com/. Other professional forecasters’ quotes can be found 

in the Survey of Professional Forecasters: https://www.philadelphiafed.org/research-and-

data/real-time-center/real-time-data/data-files/routput 

 

http://www.oecd.org/sdd/na/revisions-of-quarterly-gdp-in-selected-oecd-countries.htm
http://www.consensuseconomics.com/
https://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/data-files/routput
https://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/data-files/routput
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reactions to news or noise, see Patton and Timmermann (2007), Engelberg, Manski and 

Williams (2009), and Clements (2010), and also information rigidities, see Coibion and 

Gorodnischenko (2012).  

Recently, Clements (2019) suggested that there might be another reason why forecasters 

disagree, and that is, that they may target at different vintages of the macroeconomic data. 

Some may be concerned with the first (flash) quote, while others may have the final (say, 

after 5 years) value in mind. The problem however is that the analyst does not know who is 

doing what.  

 

It is not easy to learn from the actual forecasts how they were created, nor is it easy to learn 

how forecast revisions are created. Clements (2019) proposes a few assumptions, and with 

these, he documents for a few variables that data revisions can be predictable. Aruoba (2008) 

also documents that sometimes data revisions can be viewed as noise, meaning that they can 

be predicted. 

 

The question then becomes how one should deal with the MZ regression. Of course, one can 

run the regression for each vintage on the mean of the forecasts. But then still, without 

knowing who is targeting what, it shall be difficult to interpret the estimated parameters in the 

MZ regression. At the same time, why should one want to reduce or remove heterogeneity by 

only looking at the mean? It could be that the range from the vintages widens, but it could 

also be otherwise. We do not assume that the target of the forecasters interacts with the range 

from the vintages.  

 

To alleviate these issues, in this paper we propose to keep intact the heterogeneity of the 

realized values of the macroeconomic variables as well as the unknown heterogeneity across 

the quotes of the professional forecasters. Our proposal relies on the notion to move away 

from scalar measurements to interval measurements. Such data are typically called symbolic 

data, see for example Bertrand and Goupil (1999) and Billard and Diday (2007). The MZ 

regression for such symbolic data thus becomes a so-called Symbolic Regression.  

 

The outline of our paper is as follows. In the next section we provide more details about the 

setting of interest. For ease of reading, we will regularly refer to our illustration for annual 

USA real growth rates, but the material in this section can be translated to a much wider 

range of applications. The following section deals with the estimation methodology for the 
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Symbolic Regression. We will also run various simulation experiments to examine the 

reliability of the methods. Next, we will apply the novel MZ Symbolic Regression to the 

USA growth rates data and compare the outcomes with what one would have obtained if 

specific vintages were considered. It appears that the Symbolic MZ Regression is 

informative. The final section deals with a conclusion, limitations, and further research 

issues.   

 

Replication files are made available at https://github.com/mwelz/symbreg. 

 

Setting  

 

Consider the I vintages of data for a macroeconomic variable 𝑦𝑡
𝑖, where 𝑖 = 1,2, . . , 𝐼 and 𝑡 =

1,2, … , 𝑇. In our illustration below we will have 𝐼 = 7 and 𝑡 = 1996, 1997, … . , 2013, so 

𝑇 = 18. The sample ends in 2013 to be able to collect the seven vintages of data.  

 

Professional forecasters, like the ones united in Consensus Economics forecasts, give quotes 

during the months m, where 𝑚 = 1,2, … , 𝑀. For the Consensus Economics forecasters 𝑀 =

24, and the months span January in year t-1, February in year t-1, …, December in year t-1, 

January in year t, until and including December in year t. An example of the data appears in 

Table 1, where the quotes are presented for May 13, 2013, for the years 2013 and 2014.  

 

The forecasts can be denoted as 

 

𝑦̂𝑗,𝑡|𝑚 with 𝑗 = 1,2, … , 𝐽𝑡,𝑚 

 

The number of forecasters can change per month and per forecast target, hence we write 𝐽𝑡,𝑚. 

In Table 1 this number is 29. For 2013, and in our notation, Table 1 considers 𝐽2013,5 and for 

2014 it is 𝐽2014,17. 

 

A key issue to bear in mind for later, and as indicated in the previous section, is that we do 

not observe  

 

https://github.com/mwelz/symbreg
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𝑦̂𝑗,𝑡|𝑚
𝑖  with 𝑗 = 1,2, … , 𝐽𝑡,𝑚 , 

 

that is, we do not know who of the forecasters is targeting which vintages of the data. 

To run a Mincer Zarnowitz (MZ) regression, the forecasts per month are usually summarized 

by taking the median, by using a variance measure, or by the mean (“the consensus”), that is, 

by considering  

 

𝑦̂𝑡,𝑚 =
1

𝐽𝑡,𝑚
∑ 𝑦̂𝑗,𝑡|𝑚

𝐽𝑡,𝑚

𝑗=1

 

 

The MZ regression then considered in practice is 

 

𝑦𝑡
𝑖 = 𝛽0 + 𝛽1𝑦̂𝑡,𝑚 + 𝜀𝑡 

 

for 𝑡 = 1,2, … , 𝑇, and this regression can be run for each 𝑚 = 1,2, … , 𝑀. Under the usual 

assumptions, parameter estimation can be done by Ordinary Least Squares. Next, one 

computes the Wald test for the joint null hypothesis 𝛽0 = 0, 𝛽1 = 1. 

 

Now, one can run this MZ test for each vintage of the data, but then still it is unknown what 

the estimated parameters in the MZ regression actually reflect. Therefore, we propose an 

alternative approach. We propose to consider, for 𝑡 = 1,2, … , 𝑇, the interval 

 

(min
𝑖

𝑦𝑡
𝑖;  max

𝑖
𝑦𝑡

𝑖) 

 

as the dependent variable, instead of 𝑦𝑡
𝑖, and to consider  

 

(min
𝑗

𝑦̂𝑗,𝑡|𝑚;  max
𝑗

𝑦̂𝑗,𝑡|𝑚) 

as the explanatory variable, instead of 𝑦̂𝑡,𝑚. These two new variables are intervals, and often 

they are called symbolic variables. The MZ regression thus also becomes a so-called 

Symbolic Regression, see Bertrand and Goupil (1999), Billard and Diday (2000, 2003, 2007).  
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Table 2 presents an exemplary dataset for May in year t, so m = 17. Figure 1 visualizes the 

same data in a scatter diagram. Clearly, instead of points in the simple regression case, the 

data can now be represented as rectangles. 

 

How does Symbolic Regression work? 

 

When we denote the dependent variable for short as y and the dependent variable as x, we 

can compute for the Symbolic MZ Regression 

 

𝛽̂1 =
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑦, 𝑥)

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥)
 

 

and  

 

𝛽̂0 = 𝑦̅ − 𝛽̂1𝑥̅ 

 

thereby drawing on the familiar OLS formulae.  

 

Under the assumption that the data are uniformly distributed in the intervals4, Billard and 

Diday (2000) derive the following results. At first, the averages are  

 

𝑦̅ =
1

2𝑇
∑(max

𝑖
𝑦𝑡

𝑖 + min
𝑖

𝑦𝑡
𝑖)

𝑡

 

 

and  

 

                                                             
4 Even when there are clusters of forecasters who target at specific vintages, the data can be 

uniformly distributed. Or at least, it shall be hard to reject such a uniform distribution in 

practice. An interesting area for further research is the potentially plausible occurrence of 

outlying observations. That is, all forecasters behave similarly, and just one forecaster takes a 

position at far other end of the spectrum. For the data that we consider in this paper we do not 

observe such behavior, but for other variables this may occur.  
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𝑥̅ =
1

2𝑇
∑(max

𝑗
𝑦̂𝑗,𝑡|𝑚 + min

𝑗
𝑦̂𝑗,𝑡|𝑚)

𝑡

 

 

The covariance is computed as  

 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑦, 𝑥)

=
1

4𝑇
∑(max

𝑖
𝑦𝑡

𝑖 + min
𝑖

𝑦𝑡
𝑖)

𝑡

(max
𝑗

𝑦̂𝑗,𝑡|𝑚 + min
𝑗

𝑦̂𝑗,𝑡|𝑚)

−
1

4𝑇2
[∑(max

𝑖
𝑦𝑡

𝑖 + min
𝑖

𝑦𝑡
𝑖)

𝑡

] [∑(max
𝑗

𝑦̂𝑗,𝑡|𝑚 + min
𝑗

𝑦̂𝑗,𝑡|𝑚)

𝑡

] 

 

Finally, the variance is computed as 

 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥) =
1

4𝑇
∑(max

𝑗
𝑦̂𝑗,𝑡|𝑚 + min

𝑗
𝑦̂𝑗,𝑡|𝑚)2

𝑡

−
1

4𝑇2
[∑(max

𝑗
𝑦̂𝑗,𝑡|𝑚 + min

𝑗
𝑦̂𝑗,𝑡|𝑚)

𝑡

]

2

 

 

This expression completes the relevant components to estimate the parameters. 

 

Standard errors 

 

To compute standard errors around the thus obtained parameter estimates 𝛽̂0 and 𝛽̂1, we 

resort to the bootstrap. By collecting T random draws of pairs of intervals, with replacement, 

and by repeating this B times, we compute the bootstrapped standard errors. Together, they 

are used to compute the joint Wald test for the null hypothesis that 𝛽0 = 0, 𝛽1 = 1. 

  

 

Simulations 

 

To learn how Symbolic Regression and the bootstrapping of standard errors works, we run 

some simulation experiments. To save notation, we take as the Data Generating Process 

(DGP) 

 

𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝜀𝑖 
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for 𝑖 = 1,2, … , 𝑁. We set 𝑥𝑖 ~ 𝑁(0,1) and 𝜀𝑖  ~ 𝑁(0, 𝜎𝜀
2). Next, we translate the thus 

generated 𝑦𝑖 and 𝑥𝑖 to intervals by creating  

 

(𝑦𝑖 − |𝑧1,𝑖|; 𝑦𝑖 + |𝑧2,𝑖|)   

(𝑥𝑖 − |𝑤1,𝑖|; 𝑥𝑖 + |𝑤2,𝑖|)   

 

where  

 

𝑧𝑗,𝑖  ~ 𝑁(0, 𝜎𝑧
2),   𝑗 = 1,2 

𝑤𝑗,𝑖 ~ 𝑁(0, 𝜎𝑤
2 ),   𝑗 = 1,2 

 

We set the number of simulation runs at 1000, and the number of bootstrap runs at B = 2000 

(as suggested to be a reasonable number in Efron and Tibshirani, 1993). Experimentation 

with larger values of B did not show markedly different outcomes. The code is written in 

Matlab and R. We set N at 20 and 100, while 𝛼 = 0 or 5, and 𝛽 = −2, or 0, or 2. The results 

are in Tables 3 to 6.  

 

Table 3 shows that when we compare the cases where 𝜎𝑤
2 = 0.5 versus 𝜎𝑤

2 = 2.0 that a larger 

interval of the explanatory variable creates more bias than a larger interval for the dependent 

variable (compare 𝜎𝑧
2 = 0.5 versus 𝜎𝑧

2 = 2.0). Also, the bootstrapped standard errors get 

larger when the intervals of the data get wider, as expected.  

 

Table 4 is the same as Table 3, but now 𝜎𝜀
2 = 0.5 is replaced by 𝜎𝜀

2 = 2.0. Overall this means 

that 𝛽̂ deviates more from 𝛽 when the variance 𝜎𝜀
2 increases. The differences across the 

deviations of 𝛼̂ versus 𝛼 are relatively small.  

 

Table 5 is the same as Table 3, but now 𝑁 = 20 is replaced by 𝑁 = 100. Clearly, a larger 

sample size entails less bias in the estimates, and also much smaller bootstrapped standard 

errors. But still, we see that 𝛼̂ is closer to 𝛼 then is 𝛽̂ to 𝛽. 

 

Table 6 is similar to Table 4, but now for 𝑁 = 100. A larger sample can offset the effects of 

increased variance 𝜎𝜀
2, as the standard errors are reasonably small.  
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In Table 7 we report on the simulations when we assume that there is autocorrelation in the 

forecast revisions. We now consider  

 

(𝑥𝑖 − 𝜌𝑥𝑖−1 − |𝑤1,𝑖|; 𝑥𝑖 − 𝜌𝑥𝑖−1 + |𝑤2,𝑖|),   

 

with the  convention 𝑥0 = 0. We set the number of simulations runs again at 1000, and the 

number of bootstraps runs at B = 2000 (as suggested to be a reasonable number in Efron and 

Tibshirani, 1993). We set N at 100, while 𝛼 = 0, and 𝛽 = −2, or 0, or 2, and we choose 𝜌 =

0.2 𝑜𝑟 0.5. The results in Table 7 show that the method performs well, also when there is 

autocorrelation in the revisions.  

 

Analysis of forecasts 

 

We now turn to an illustration of the Symbolic MZ regression. We choose to consider the 

forecasts for annual growth rates of real GDP in the USA, for the years 1996 to and including 

2013. This makes 𝑇 = 18. Our data source5 gives annualized growth rates per quarter6. As 

there are no vintages of true annual growth data available, we decide to further consider the 

averages of each time these four quarterly growth rates. The data intervals are presented in 

Table 2. The right-hand side columns of Table 2 concern the forecasts created in May of year 

t, which means the case where 𝑚 = 17. This implies that we can consider 24 Symbolic MZ 

regressions, each for each of the 24 months.   

 

Table 8 presents the estimation results, the bootstrapped standard errors and the p value of the 

Wald test for the null hypothesis that 𝛽0 = 0, 𝛽1 = 1. We see from the last column that a p 

value > 0.05 appears for the forecasts quoted in May in year t-1, and that after that the p value 

stays in excess of 0.05. However, if we look at the individual parameter estimates, we see that 

𝛽1 = 0 is with the 95% confidence interval until September, year t-1. So, Table 7 basically 

tells us that unbiased forecasts seem to appear from October, year t-1 onwards.  

 

                                                             
5 http://www.oecd.org/sdd/na/revisions-of-quarterly-gdp-in-selected-oecd-countries.htm 
6 The relevant data in ALFRED go back to 2001, and this would make our sample even 

shorter, and hence we do not consider these data.   

http://www.oecd.org/sdd/na/revisions-of-quarterly-gdp-in-selected-oecd-countries.htm
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Let us now turn to the MZ regression in its standard format, that is, the explanatory variable 

is the mean of the forecasts and the variable to be explained in one of the vintages of the data. 

Table 9 presents the results for the first (flash) release real GDP annual growth rates, whereas 

Table 10 presents the results for the currently available vintage. We also have the results of 

all vintages in between, but these do not add much to the conclusions that can be drawn from 

Tables 9 and 10.  

  

First, we see that the standard errors in Tables 9 and 10 are much smaller than the 

bootstrapped standard errors for the Symbolic MZ Regression. This of course does not come 

as a surprise as we have point data instead of intervals. For the first vintage of data in Table 

9, we see from the p values for the Wald test in the last column that only since March, year t, 

the null hypothesis of no bias cannot be rejected (p value is 0.485). One month earlier, the p 

value is 0.071, but for that month we see that 𝛽1 = 1 is not in 95% confidence interval (0.787 

with a SE of 0.098). Note by the way that the forecasts created in the very last month of the 

current year (December, year t) are biased (p value of 0.012), at least for the first release data.  

 

Table 10 delivers quite intriguing results for the forecasts concerning the most recent vintage 

of data. The p value of the Wald test becomes > 0.05 (that is, 0.083) for the quotes in May, 

year t, but note that 𝛽1 = 1 is not in 95% confidence interval for 23 of the 24 months. Only 

for the forecasts in December, year t, the forecasts do not seem biased (p value of 0.115, and 

𝛽1 = 1 is in the 95% confidence interval (0.820 with SE of 0.088).  

 

In sum, it seems that individual MZ regressions for vintages of data deliver confusing 

outcomes, which seem hard to interpret. Let alone that we effectively do not know who of the 

forecasters is targeting at which vintage. Moreover, it seems that outcomes of the Symbolic 

MZ Regression are much more coherent and straightforward to interpret. Of course, due to 

the very nature of the data, that is, intervals versus points, statistical precision in the Symbolic 

Regression is smaller, but the results seem to have much more face value and interpretability 

than the standard MZ regressions.  

 

The power of our approach of course suffers from the notion that we look at annual data. We 

do not think that power loss is due to bootstrapping. In fact, for the first four months in Table 

8, we do reject the null hypothesis. Also, as time proceeds the standard error get smaller quite 
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rapidly. The Symbolic Regression method incorporates the heterogeneity, that is fully 

ignored buy Ordinary Least Squares. So, we are tempted to argue that the bootstrapped 

standard errors reflect uncertainty more realistically than the OLS based standard errors. At 

the same time, the parameters in the MZ regression are approaching 0 and 1, respectively, as 

time proceeds, which is also something you would expect. This does not happen in Table 10.  

 

Conclusion and discussion 

 

Forecasts created by professional forecasters can show substantial dispersion. Such 

dispersion can change over time but can also concern the forecast horizon. The relevant 

literature has suggested various sources for dispersion. A recent contribution to this literature 

by Clements (2017) adds another potential source of heterogeneity, and this is that forecasters 

may target different vintages of the macroeconomic data. Naturally, the link between targets 

and forecasts is unknown to the analyst.  

 

To alleviate this problem, we proposed an alternative version of the Mincer Zarnowitz (MZ) 

regression to examine forecast bias. This version adopts the notion that the vintages of the 

macroeconomic data can perhaps best be interpreted as interval data, where at the same time, 

the forecasts also have upper and lower bounds. Taking the data as intervals makes the 

standard MZ regression a so-called Symbolic MZ Regression. Simulations showed that 

reliable inference can be drawn from this auxiliary regression. An illustration for annual USA 

GDP growth rates showed its merits.  

 

A limitation to the interval-based data analysis is the potential size of the intervals. In our 

case, the sample size is equal to 18 years. When more data become available, the method will 

become more reliable. A second limitation is that it is assumed that the data are uniformly 

distributed within the intervals. In our empirical exercise, we have a small number of 

observations in the intervals, so basically this assumption is an axiom. It shall not be reliable 

to formally test for the appropriateness of this assumption. Further research with alternative 

distributional assumptions shall be relevant. At present, our application considers only two 

variables, and it would be of interest to study the symbolic regression for more variables, as is 

also done in some of the relevant literature.  
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Further applications of the new regression should shine light on its practical usefulness. The 

method does have conceptual and face validity, but more experience with data and forecasts 

for more variables related to more countries should provide more credibility.  
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Figure 1: The intervals of Table 2.  
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Table 1: An example of the data 

Survey Date:  Gross Domestic 

May 13, 2013  Product 

   real, % change 

   2013 2014 

     
Consensus (Mean)  1,932 2,702 

     
High  2,300 3,380 

Low  1,572 2,007 

Standard Deviation  0,159 0,319 

Number of Forecasts  29 29 

     
     
     
     
UBS  2,300 3,000 

American Int'l Group  2,200 2,600 

First Trust Advisors  2,200 3,000 

Ford Motor Company  2,172 2,996 

Morgan Stanley  2,100 2,500 

Eaton Corporation  2,053 2,887 

Action Economics  2,000 2,800 

RDQ Economics  2,000 2,600 

General Motors  1,960 2,968 

Goldman Sachs  1,959 2,914 

Swiss Re  1,953 3,220 

Macroeconomic Advisers  1,941 2,968 

Moody's Analytics  1,940 3,380 

Northern Trust  1,906 2,722 

Citigroup  1,900 2,800 

DuPont  1,900 3,000 

Fannie Mae  1,900 2,500 

Inforum - Univ of Maryland  1,900 2,600 

Wells Capital Mgmt  1,900 2,600 

Univ of Michigan - RSQE  1,880 2,735 

Credit Suisse  1,868 2,300 

PNC Financial Services  1,846 2,398 

Nat Assn of Home Builders  1,843 2,622 

IHS Global Insight  1,841 2,799 

Barclays Capital  1,803 2,272 

Wells Fargo  1,800 2,100 

Bank of America - Merrill  1,756 2,684 

The Conference Board  1,643 2,374 

Georgia State University  1,572 2,007 

 

 

 

  



 

 
This article is protected by copyright. All rights reserved. 

Table 2: Forecasts and vintages as symbolic data. For the years 1996 to 2013 there are 7 

vintages of quotes. For the month May in year t there are in between 20 to 30 forecasts. The 

data in this table are the lower and upper bounds of the intervals of these observations. The 

data are rounded (at two decimal places) for expository purposes. 

 

  Vintages of real GDP growth   Forecasts 

  Lower bound  Upper bound  Lower bound  Upper 

bound 

Year    

 

1996   2.45  3.79    1.80  2.50 

  

1997   3.76  4.49    2.40  3.80 

1998   3.66  4.45    2.80  3.50 

1999   4.05  4.85    3.20  4.20 

2000   3.67  5.00    3.90  5.30  

2001   0.23  1.24    1.10  2.80 

2002   1.60  2.45    2.20  3.30 

2003   2.51  3.11    1.90  2.60 

2004   3.58  4.44    4.30  5.00 

2005   2.95  3.53    3.20  3.70  

2006   2.66  3.32    2.80  3.70 

2007   1.79  2.23    1.70  2.40 

2008   -0.28  1.23    0.80  1.90 

2009   -3.28  -2.19    -3.87  -2.10 

2010   2.47  3.08    2.86  3.90 

2011   1.74  1.91    2.21  3.05 

2012   2.04  2.78    1.99  2.91 

2013   1.86  1.91    1.57  2.30 
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Table 3: Simulation experiments for the case where 𝑁 = 20 and 𝜎𝜀
2 = 0.5. The cells are 

average estimates of the parameters and associated standard errors (SE) across 1000 

replications. 

 

𝛼 𝛽 𝜎𝑧
2 𝜎𝑤

2    𝛼̂ (SE)   𝛽̂ (SE)   

 

0 -2 0.5 0.5   -0.008 (0.269)  -1.843 (0.168) 

0 -2 0.5 2.0   -0.006 (0.317)  -1.581 (0.206) 

0 -2 2.0 0.5   -0.011 (0.295)  -1.912 (0.207) 

0 -2 2.0 2.0   -0.008 (0.350)  -1.631 (0.248) 

 

0 0 0.5 0.5   -0.010 (0.210)  -0.014 (0.133) 

0 0 0.5 2.0   -0.009 (0.216)  0.029 (0.126) 

0 0 2.0 0.5   -0.012 (0.256)  -0.083 (0.179) 

0 0 2.0 2.0   -0.012 (0.246)  -0.022 (0.171) 

 

0 2 0.5 0.5   -0.011 (0.191)  1.814 (0.128) 

0 2 0.5 2.0   -0.013 (0.199)  1.639 (0.137) 

0 2 2.0 0.5   -0.014 (0.223)  1.745 (0.159) 

0 2 2.0 2.0   -0.015 (0.227)  1.588 (0.164) 

 

 

5 -2 0.5 0.5   4.992 (0.269)  -1.843 (0.178) 

5 -2 0.5 2.0   4.994 (0.318)  -1.581 (0.198) 

5 -2 2.0 0.5   4.989 (0.299)  -1.912 (0.210) 

5 -2 2.0 2.0   4.991 (0.358)  -1.631 (0.250) 

 

5 0 0.5 0.5   4.990 (0.261)  -0.014 (0.132) 

5 0 0.5 2.0   4.991 (0.213)  0.029 (0.122) 

5 0 2.0 0.5   4.988 (0.250)  -0.083 (0.171) 

5 0 2.0 2.0   4.988 (0.253)  -0.022 (0.167) 

 

5 2 0.5 0.5   4.989 (0.199)  1.814 (0.127) 

5 2 0.5 2.0   4.987 (0.208)  1.639 (0.135) 

5 2 2.0 0.5   4.986 (0.226)  1.745 (0.166) 

5 2 2.0 2.0   4.985 (0.221)  1.588 (0.156) 
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Table 4: Simulation experiments for the case where 𝑁 = 20 and 𝜎𝜀
2 = 2.0. The cells are 

average estimates of the parameters and associated standard errors (SE) across 1000 

replications. 

 

𝛼 𝛽 𝜎𝑧
2 𝜎𝑤

2    𝛼̂ (SE)   𝛽̂ (SE)   

 

0 -2 0.5 0.5   -0.015 (0.464)  -1.788 (0.260) 

0 -2 0.5 2.0   -0.013 (0.494)  -1.502 (0.288) 

0 -2 2.0 0.5   -0.017 (0.463)  -1.857 (0.291) 

0 -2 2.0 2.0   -0.015 (0.516)  -1.552 (0.326) 

 

0 0 0.5 0.5   -0.016 (0.407)  0.040 (0.244) 

0 0 0.5 2.0   -0.016 (0.407)  0.108 (0.208) 

0 0 2.0 0.5   -0.019 (0.426)  -0.029 (0.273) 

0 0 2.0 2.0   -0.019 (0.427)  0.058 (0.254) 

 

0 2 0.5 0.5   -0.018 (0.382)  1.868 (0.224) 

0 2 0.5 2.0   -0.020 (0.375)  1.718 (0.208) 

0 2 2.0 0.5   -0.021 (0.406)  1.800 (0.257) 

0 2 2.0 2.0   -0.022 (0.395)  1.667 (0.232) 

 

 

5 -2 0.5 0.5   4.985 (0.462)  -1.788 (0.265) 

5 -2 0.5 2.0   4.988 (0.490)  -1.502 (0.287) 

5 -2 2.0 0.5   4.983 (0.468)  -1.857 (0.287) 

5 -2 2.0 2.0   4.985 (0.500)  -1.552 (0.319) 

 

5 0 0.5 0.5   4.984 (0.411)  0.040 (0.234) 

5 0 0.5 2.0   4.984 (0.408)  0.108 (0.226) 

5 0 2.0 0.5   4.981 (0.448)  -0.029 (0.272) 

5 0 2.0 2.0   4.982 (0.420)  0.058 (0.243) 

 

5 2 0.5 0.5   4.982 (0.393)  1.868 (0.225) 

5 2 0.5 2.0   4.980 (0.378)  1.718 (0.210) 

5 2 2.0 0.5   4.979 (0.385)  1.800 (0.250) 

5 2 2.0 2.0   4.978 (0.387)  1.667 (0.229) 
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Table 5: Simulation experiments for the case where 𝑁 = 100 and 𝜎𝜀
2 = 0.5. The cells are 

average estimates of the parameters and associated standard errors (SE) across 1000 

replications. 

 

𝛼 𝛽 𝜎𝑧
2 𝜎𝑤

2    𝛼̂ (SE)   𝛽̂ (SE)   

 

0 -2 0.5 0.5   0.000 (0.093)  -1.878 (0.080) 

0 -2 0.5 2.0   -0.000 (0.120)  -1.589 (0.095) 

0 -2 2.0 0.5   -0.000 (0.114)  -1.866 (0.110) 

0 -2 2.0 2.0   -0.001 (0.132)  -1.580 (0.115) 

 

0 0 0.5 0.5   0.001 (0.088)  -0.036 (0.075) 

0 0 0.5 2.0   0.001 (0.086)  -0.048 (0.068) 

0 0 2.0 0.5   0.001 (0.109)  -0.024 (0.106) 

0 0 2.0 2.0   0.001 (0.105)  -0.040 (0.097) 

 

0 2 0.5 0.5   0.002 (0.110)  1.806 (0.094) 

0 2 0.5 2.0   0.003 (0.138)  1.493 (0.117) 

0 2 2.0 0.5   0.002 (0.128)  1.818 (0.118) 

0 2 2.0 2.0   0.002 (0.149)  1.501 (0.140) 

 

 

5 -2 0.5 0.5   5.000 (0.095)  -1.878 (0.082) 

5 -2 0.5 2.0   5.000 (0.120)  -1.589 (0.097) 

5 -2 2.0 0.5   5.000 (0.114)  -1.866 (0.111) 

5 -2 2.0 2.0   5.000 (0.139)  -1.580 (0.112) 

 

5 0 0.5 0.5   5.001 (0.086)  -0.036 (0.077) 

5 0 0.5 2.0   5.001 (0.088)  -0.048 (0.070) 

5 0 2.0 0.5   5.001 (0.107)  -0.024 (0.105) 

5 0 2.0 2.0   5.001 (0.107)  -0.040 (0.094) 

 

5 2 0.5 0.5   5.002 (0.108)  1.806 (0.093) 

5 2 0.5 2.0   5.003 (0.138)  1.493 (0.120) 

5 2 2.0 0.5   5.002 (0.127)  1.818 (0.116) 

5 2 2.0 2.0   5.002 (0.149)  1.501 (0.143) 
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Table 6: Simulation experiments for the case where 𝑁 = 100 and 𝜎𝜀
2 = 2.0. The cells are 

average estimates of the parameters and associated standard errors (SE) across 1000 

replications. 

 

𝛼 𝛽 𝜎𝑧
2 𝜎𝑤

2    𝛼̂ (SE)   𝛽̂ (SE)   

 

0 -2 0.5 0.5   0.002 (0.161)  -1.926 (0.129) 

0 -2 0.5 2.0   0.001 (0.176)  -1.645 (0.131) 

0 -2 2.0 0.5   0.001 (0.174)  -1.914 (0.146) 

0 -2 2.0 2.0   0.001 (0.183)  -1.637 (0.139) 

 

0 0 0.5 0.5   0.003 (0.158)  -0.084 (0.131) 

0 0 0.5 2.0   0.003 (0.156)  -0.104 (0.119) 

0 0 2.0 0.5   0.002 (0.177)  -0.072 (0.146) 

0 0 2.0 2.0   0.002 (0.174)  -0.096 (0.137) 

 

0 2 0.5 0.5   0.004 (0.180)  1.758 (0.146) 

0 2 0.5 2.0   0.004 (0.200)  1.436 (0.158) 

0 2 2.0 0.5   0.003 (0.190)  1.770 (0.164) 

0 2 2.0 2.0   0.004 (0.210)  1.444 (0.174) 

 

 

5 -2 0.5 0.5   5.002 (0.158)  -1.926 (0.126) 

5 -2 0.5 2.0   5.001 (0.175)  -1.914 (0.128) 

5 -2 2.0 0.5   5.001 (0.175)  -1.914 (0.148) 

5 -2 2.0 2.0   5.001 (0.190)  -1.637 (0.141) 

 

5 0 0.5 0.5   5.003 (0.161)  -0.084 (0.129) 

5 0 0.5 2.0   5.003 (0.162)  -0.104 (0.122) 

5 0 2.0 0.5   5.002 (0.175)  -0.072 (0.153) 

5 0 2.0 2.0   5.002 (0.175)  -0.096 (0.141) 

 

5 2 0.5 0.5   5.004 (0.176)  1.758 (0.148) 

5 2 0.5 2.0   5.004 (0.197)  1.436 (0.161) 

5 2 2.0 0.5   5.003 (0.191)  1.770 (0.165) 

5 2 2.0 2.0   5.004 (0.211)  1.444 (0.185) 
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Table 7: Simulation experiments for the case where 𝑁 = 100. The cells are average estimates 

of the parameters and associated standard errors (SE) across 1000 replications. 

 

𝛼 𝛽 𝜌 𝜎𝜀
2 𝜎𝑧

2 𝜎𝑤
2   𝛼̂ (SE)   𝛽̂ (SE)   

 

0 -2 0.2 0.5 0.5 0.5  0.002 (0.102)  -1.765 (0.070) 

0 -2 0.5 0.5 0.5 0.5  0.003 (0.123)  -1.491 (0.110) 

0 0 0.2 0.5 0.5 0.5  0.000 (0.076)  0.001 (0.072) 

0 0 0.5 0.5 0.5 0.5  0.000 (0.076)  0.001 (0.066) 

 

0 2 0.2 0.5 0.5 0.5  -0.002 (0.102)  1.767 (0.097) 

0 2 0.5 0.5 0.5 0.5  -0.003 (0.126)  1.493 (0.109) 

0 -2 0.2 2.0 2.0 2.0  0.002 (0.187)  -1.420 (0.159) 

0 -2 0.5 2.0 2.0 2.0  0.004 (0.196)  -1.236 (0.156) 

 

0 0 0.2 2.0 2.0 2.0  0.000 (0.153)  0.003 (0.130) 

0 0 0.5 2.0 2.0 2.0  0.000 (0.153)  0.003 (0.121) 

0 2 0.2 2.0 2.0 2.0  -0.002 (0.186)  1.427 (0.160) 

0 2 0.5 2.0 2.0 2.0  -0.004 (0.195)  1.242 (0.155) 
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Table 8: Symbolic regression results. Bootstrapped standard errors are in parentheses. 

 

Forecast origin  𝛽0   𝛽1   p value Wald test  

 

January, year t-1  2.879 (2.448)  -0.141 (0.762)  0.032 

February, year t-1  3.041 (2.014)  -0.206 (0.648)  0.028 

March, year t-1  2.689 (2.122)  -0.080 (0.658)  0.021 

April, year t-1   2.683 (2.090)  -0.076 (0.659)  0.033 

May, year t-1   2.147 (2.231)  0.118 (0.734)  0.055 

June, year t-1   1.773 (2.485)  0.250 (0.786)  0.108 

July, year t-1   0.649 (2.927)  0.655 (0.956)  0.394 

August, year t-1  -0.104 (2.640)  0.941 (0.893)  0.703 

September, year t-1  0.554 (2.682)  0.703 (0.959)  0.749 

October, year t-1  -0.459 (1.417)  1.148 (0.502)  0.944 

November, year t-1  -0.412 (1.395)  1.156 (0.501)  0.951 

December, year t-1  -0.324 (0.889)  1.131 (0.318)  0.915 

 

January, year t   -0.000 (0.812)  0.999 (0.269)  1.000 

February, year t  -0.167 (0.559)  1.043 (0.188)  0.951 

March, year t   0.052 (0.429)  0.987 (0.146)  0.992 

April, year t   -0.087 (0.420)  1.016 (0.141)  0.966 

May, year t   -0.009 (0.403)  0.976 (0.130)  0.880 

June, year t   -0.075 (0.386)  0.990 (0.127)  0.789 

July, year t   -0.142 (0.331)  1.025 (0.106)  0.856 

August, year t   -0.068 (0.332)  1.011 (0.118)  0.956 

September, year t  -0.077 (0.317)  1.000 (0.107)  0.855 

October, year t   -0.057 (0.291)  1.011 (0.109)  0.965 

November, year t  -0.095 (0.276)  1.024 (0.105)  0.923 

December, year t  -0.087 (0.219)  1.006 (0.081)  0.760 

 

   

 

 

 

 

 

 

 



 

 
This article is protected by copyright. All rights reserved. 

Table 9: MZ results, based on the consensus forecasts, first release data. Standard errors are 

in parentheses. 

 

Forecast origin  𝛽0   𝛽1   p value Wald test  

 

January, year t-1  2.969 (0.258)  -0.028 (0.085)  0.000 

February, year t-1  2.898 (0.276)  -0.024 (0.092)  0.000 

March, year t-1  2.809 (0.293)  0.002 (0.097)  0.000 

April, year t-1   2.708 (0.288)  0.028 (0.096)  0.000 

May, year t-1   2.625 (0.283)  0.058 (0.094)  0.000 

June, year t-1   2.533 (0.276)  0.090 (0.092)  0.000 

July, year t-1   2.389 (0.266)  0.141 (0.088)  0.000 

August, year t-1  2.271 (0.244)  0.163 (0.081)  0.000 

September, year t-1  2.178 (0.258)  0.187 (0.086)  0.000 

October, year t-1  1.558 (0.331)  0.363 (0.110)  0.000 

November, year t-1  1.229 (0.361)  0.466 (0.120)  0.000 

December, year t-1  0.900 (0.350)  0.592 (0.116)  0.014 

 

January, year t   0.729 (0.361)  0.675 (0.120)  0.021 

February, year t  0.441 (0.295)  0.787 (0.098)  0.071 

March, year t   0.101 (0.284)  0.916 (0.094)  0.485 

April, year t   0.101 (0.247)  0.937 (0.082)  0.661 

May, year t   0.009 (0.212)  0.997 (0.070)  0.999 

June, year t   0.009 (0.182)  1.002 (0.061)  0.986 

July, year t   0.034 (0.162)  0.988 (0.054)  0.974 

August, year t   -0.114 (0.141)  1.013 (0.047)  0.519 

September, year t  -0.082 (0.124)  1.008 (0.041)  0.621 

October, year t   -0.175 (0.085)  1.035 (0.028)  0.073 

November, year t  -0.141 (0.067)  1.033 (0.022)  0.089 

December, year t  -0.160 (0.055)  1.051 (0.018)  0.012 
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Table 10: MZ results, based on the consensus forecasts, most recent released data (computed: 

September 2018). Standard errors are in parentheses. 

 

Forecast origin  𝛽0   𝛽1   p value Wald test  

 

January, year t-1  3.046 (0.219)  -0.059 (0.071)  0.000 

February, year t-1  2.983 (0.236)  -0.060 (0.076)  0.000 

March, year t-1  2.910 (0.253)  -0.039 (0.082)  0.000 

April, year t-1   2.811 (0.251)  -0.012 (0.081)  0.000 

May, year t-1   2.737 (0.248)  0.015 (0.080)  0.000 

June, year t-1   2.674 (0.245)  0.036 (0.079)  0.000 

July, year t-1   2.566 (0.241)  0.075 (0.078)  0.000 

August, year t-1  2.470 (0.227)  0.089 (0.074)  0.000 

September, year t-1  2.390 (0.241)  0.109 (0.078)  0.000 

October, year t-1  1.858 (0.316)  0.256 (0.102)  0.000 

November, year t-1  1.587 (0.349)  0.341 (0.113)  0.000 

December, year t-1  1.331 (0.355)  0.442 (0.115)  0.000 

 

January, year t   1.208 (0.373)  0.509 (0.121)  0.000 

February, year t  1.007 (0.351)  0.590 (0.114)  0.002 

March, year t   0.760 (0.372)  0.687 (0.121)  0.035 

April, year t   0.766 (0.353)  0.707 (0.114)  0.037 

May, year t   0.684 (0.333)  0.765 (0.108)  0.083 

June, year t   0.691 (0.323)  0.768 (0.105)  0.072 

July, year t   0.700 (0.307)  0.759 (0.098)  0.046 

August, year t   0.576 (0.310)  0.776 (0.101)  0.083 

September, year t  0.602 (0.302)  0.773 (0.098)  0.066 

October, year t   0.516 (0.291)  0.799 (0.094)  0.102 

November, year t  0.535 (0.278)  0.802 (0.090)  0.087 

December, year t  0.516 (0.272)  0.820 (0.088)  0.115 

 

 

 

 

 

 


