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A B S T R A C T   

Immunosuppressive drugs have been key to the success of liver transplantation and are essential components of 
the treatment of inflammatory bowel disease (IBD) and autoimmune hepatitis (AIH). For many but not all im
munosuppressants, therapeutic drug monitoring (TDM) is recommended to guide therapy. In this article, the 
rationale and evidence for TDM of tacrolimus, mycophenolic acid, the mammalian target of rapamycin in
hibitors, and azathioprine in liver transplantation, IBD, and AIH is reviewed. New developments, including 
algorithm-based/computer-assisted immunosuppressant dosing, measurement of immunosuppressants in alter
native matrices for whole blood, and pharmacodynamic monitoring of these agents is discussed. It is expected 
that these novel techniques will be incorporate into the standard TDM in the next few years.   

1. Introduction 

Therapeutic drug monitoring (TDM) refers to the practice to dose 
drugs based on their concentrations in biofluids, usually whole blood or 
plasma. TDM is most often performed for so-called narrow-therapeutic 
index drugs. These are drugs for which the difference between toxic and 
effective concentrations is relatively small compared to the different 
concentrations seen in patients and that are therefore easily over- or 
under-dosed [1,2]. TDM is now considered standard practice during the 
treatment with most immunosuppressive drugs after solid organ trans
plantation [3]. Cyclosporine A (CsA), the first calcineurin inhibitor 
(CNI), was the first immunosuppressant in transplantation to be dosed 
following the principle of TDM and this has undoubtedly improved the 
efficacy and safety of CsA therapy [4]. Nowadays and in addition to CsA, 
TDM is routinely performed after transplantation for tacrolimus and the 
mammalian target of rapamycin inhibitors (mTORi) sirolimus and 
everolimus. However, there is ongoing debate about the benefits of TDM 
for mycophenolic acid (MPA) and azathioprine [5]. Moreover, TDM is 
not routinely performed for many immunosuppressants when prescribed 

for non-transplantation indications, such as inflammatory bowel disease 
(IBD) and autoimmune hepatitis (AIH), and there remains some debate 
about how to best perform TDM [6,7]. In this review, the principles of 
TDM and its use in liver transplantation and other gastro-enterology 
indications are described. The focus is on the most frequently used 
immunosuppressive drugs for liver transplantation, IBD, and AIH, 
namely tacrolimus, MPA, mTORi, and azathioprine. 

2. Principle of therapeutic drug monitoring 

TDM of a drug can be considered when the following requirements 
are met [8,9].  

(a) There exists a clear correlation between the concentration of a drug in 
a bodily fluid and the biological effect of that drug (either efficacy or 
toxicity);  

(b) There exists a small difference between the effective concentration and 
either the non-effective or toxic concentrations of that drug, i.e. the 
drug has a narrow therapeutic index. The therapeutic index is 
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generally defined as the ratio of the toxic dose (in 50% of sub
jects) to the effective dose (in 50% of subjects). As illustrated in 
Fig. 1, drug A has a wide therapeutic index and TDM is not 
required. In contrast, drug B has a narrow therapeutic index and 
should be closely monitored by TDM since the margin between 
efficacy and toxicity is small. Most immunosuppressants are 
considered narrow therapeutic index drugs;  

(c) There are no other outcomes reflecting a drug’s action that are easier 
to assess than the drug’s concentration. For example, blood pressure 
or the glucose concentration when monitoring the effect of anti- 
hypertensive drugs and glucose-lowering drugs, respectively;  

(d) There exists a high inter-patient variability in drug exposure following 
fixed-dosing of that drug. The phenomenon of a high inter-patient 
variability following fixed-dosing is illustrated in Fig. 2. Myco
phenolate mofetil (MMF) was originally marketed as a fixed-dose 
drug [10]. However, when prescribed in a one-size-fits-all dose, 
the resulting MPA concentrations will vary considerably [11]. 
Drugs that can benefit from TDM should have both a high 
inter-patient variability and narrow therapeutic index. TDM 
would not be necessary if the therapeutic index of MPA was wider 
than its inter-patient variability;  

(e) There exists a small variability in drug exposure within a single patient 
over time when treated with a stable dose of that drug. This so-called 
intra-patient variability (IPV) can be calculated in several ways 
and describes the fluctuation of a drug’s concentration over time 
when the dose is unaltered (Fig. 3) [12]. TDM of a drug with a 
high IPV is generally not recommended as the drug concentration 
measured at a certain time point has little predictive value for the 
next time point. Patients in whom the drug concentration tends to 
vary little over time may be suitable candidates for TDM as the 
measured concentration may accurately predict the concentra
tion on the next occasion;  

(f) The duration of drug treatment must be long enough to benefit from 
TDM;  

(g) The analytic methods for the measurement of the drug of interest need 
to be reliable and standardized. 

In the following paragraphs we will describe the evidence for TDM of 
tacrolimus, MPA, (mTORi), and azathioprine following these basic 
principles. Areas of uncertainty and future research directions are 
described. 

3. Tacrolimus 

3.1. Pharmacokinetics 

Tacrolimus is the mainstay of immunosuppressive therapy after liver 
transplantation and more recently has been studied in the treatment of 

active IBD and as second or third line treatment for AIH [13–15]. The 
drug has a poor bioavailability which averages around 30% [16]. The 
drug is a substrate of the efflux pump ABCB1 (also known as P-glyco
protein) and the metabolizing enzymes cytochrome P450 (CYP) 3A4 and 
3A5. Both ABCB1 and CYP3A are expressed in the intestine and are 
responsible for tacrolimus’ low bioavailability by actively excreting the 
drug from the enterocyte and substantial first pass-metabolism, 
respectively. The majority of the absorbed tacrolimus binds to its re
ceptor FK-binding protein-12 (FKBP-12) which has a high concentration 
in erythrocytes. Of the absorbed tacrolimus, ~80% is located inside 
erythrocytes, whereas ~15% is plasma-protein bound. The free fraction 
of tacrolimus is small and is around 0.5% [17]. 

The systemic metabolism of tacrolimus is dependent on hepatic 
CYP3A4 and CYP3A5 expression and activity, which differs markedly 
between individuals. Based on their CYP3A metabolic activity, patients 
can be classified as poor, intermediate and fast metabolizers (discussed 
below). Tacrolimus is extensively metabolized by CYP3A and less than 
1% of the drug is excreted unchanged in urine and feces. Approximately 
95% of the tacrolimus metabolites is excreted via the biliary route, 
whereas only 2% is excreted by the kidneys [18]. 

3.2. Monitoring strategies 

For TDM of tacrolimus the pre-dose (or trough concentration (C0)) is 
most widely used in every day clinical practice. Ideally, the measure
ment of tacrolimus exposure should be performed by measuring the 12-h 
(the dosing interval) area under the concentration versus time curve 
(AUC). However, measuring a full AUC is impractical. For tacrolimus, 
the correlation coefficient between C0 and AUC in general is acceptable 
with an r of 0.7 and higher [19,20]. However, this correlation ranges 
between 0.34 and 0.60 in some patients [21–23]. The problem is that 
such patients may be considered to have an adequate exposure to 
tacrolimus if only a C0 is measured, whereas the true exposure is off 
target. Vice versa some patients may have a C0 that is outside the target 
range, whereas their exposure (measured by AUC) is in fact adequate. 
Reports have been published of patients experiencing acute rejection 
from inadequate exposure despite having a C0 within the target range 
[24]. 

In clinical practice, C0 is generally used for TDM because of its 
feasibility and simplicity, although the correlation with total tacrolimus 
exposure is not perfect. To better estimate tacrolimus exposure, limited 
sampling strategies (LSS) have been developed. LSS utilize tacrolimus 
concentrations measured at 2–3 time points (rather than ≥8 time-points 
in the full 12-h AUC), to estimate an AUC. The correlation coefficient 
between the full AUC and its estimation by LSS (using multiple linear 
regression) is good with r ≥ 0.90 [25]. Moreover, when LSS is combined 
with Bayesian estimation, which uses information from a priori esti
mated population pharmacokinetic parameters (such as drug clearance 

Fig. 1. The therapeutic index. The therapeutic index of a drug is defined as the ratio between the toxic and effective concentration in 50% of the patients. Drug A has 
a wide therapeutic index, while drug B has a narrow therapeutic index. Therapeutic drug monitoring in general is not necessary for drugs with a wide therapeutic 
index but is recommend for drugs with a small therapeutic index. 
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and volume of distribution), the individualized AUC for each patient can 
be generated after fitting the LSS to the population-based model. This 
enhances the predictive value of LSS for tacrolimus exposure in an in
dividual patient to r ≥ 0.95 [26]. Ideally, the AUC should be evaluated in 
every patient before hospital discharge but this might not be practical in 
all transplant centers. Clinicians can select patients who are suspected of 
having a poor correlation between their tacrolimus C0 and AUC, i.e. 
patients who develop toxicity or rejection despite an C0 within the target 
concentration range, and these may have an indication for an (abbre
viated) AUC measurement. 

A number of studies has been conducted to identify pharmacody
namic biomarkers that can be used in combination with classic phar
macokinetic TDM of tacrolimus. These biomarkers are molecules that 
form part of the pathway targeted by tacrolimus, and include the 
phosphatase activity of calcineurin, the nuclear translocation of the 
nuclear factor of activated T cells (NFAT; measured by flow cytometry), 
NFAT-regulated gene expression, NFAT cytoplasmic 1 (NFATc1) 
amplification, and interleukin (IL)-2 concentration (measured either by 
the IL-2 concentration or IL-2 messenger RNA expression). The results 
from these studies are limited by their relatively small study populations 
and the fact that these were not controlled clinical studies [27–31]. Most 
importantly, measuring the tacrolimus concentration is much easier to 
perform compared to the measurement of these pharmacodynamic 
biomarkers which requires sophisticated analytic procedures and which 
have no demonstrated clinical benefits (yet). As a result, none of the 
markers for pharmacodynamic TDM has currently been implemented in 

routine clinical practice, although this is a subject of active and ongoing 
research. 

3.3. Concentration-effect relationship 

The optimal tacrolimus concentration range that is associated with 
the lowest incidence of toxicity and rejection is poorly characterized. 
Several studies have reported conflicting results and have not been able 
to define the exact cutoffs for the upper and lower limits of the target 
concentration range [32]. 

Only target C0 (not AUC) has been studied in liver transplantation for 
the concentration-effect relationship. Backman et al. observed that the 
C0 of patients with acute rejection versus those with stable graft function 
was within the same range (15–30 ng/mL), but that higher C0 were 
associated with more nephrotoxicity and neurotoxicity [33]. As a result, 
the initial recommended tacrolimus target C0 for liver transplant re
cipients used to be 10–15 ng/mL in the first 4–6 weeks, followed by a 
reduction to 5–10 ng/mL, thereafter [34]. Nashan et al. subsequently 
demonstrated in a randomized, controlled trial (RCT) that the 1-year 
incidence of acute rejection, graft loss, and death among liver trans
plant recipients maintained at a tacrolimus C0 of 5–8 ng/mL was not 
different from patients maintained at 10–15 ng/mL [35]. A 
meta-analysis of 20 RCTs comparing different tacrolimus-based immu
nosuppressive regimens demonstrated no difference in the acute rejec
tion rate between liver transplant recipients maintained at a C0 of 10–15 
ng/mL compared with 6–10 ng/mL in the first month after 

Fig. 2. MPA exposure following fixed-dose MMF. Depicted is the exposure to MPA (measured as area-under the concentration versus time curve; AUC) in solid organ 
transplant recipients in response to MMF 1 g b. i.d. The resulting MPA exposure varies greatly between individual patients (reproduced with permission from Shaw 
et al. ref 11). Dash lines represent the narrow therapeutic index of MPA AUC (30–60 ng h/L). 

Fig. 3. Intra-patient variability and TDM. Depicted are the concentrations over time of drug X and drug Y. The concentration of drug X is a relatively stable over time 
with an unaltered dose, while the concentration of drug Y fluctuates greatly despite the patient receiving a stable dose. For drug X TDM may be indicated and because 
the concentration at a certain time corresponds to the concentration at the next, this is a sensible strategy. The concentrations of drug Y however, have little 
predictive power for the concentration measured on the next occasion and this drug may therefore not be a suitable candidate for TDM. 
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transplantation.34 34 The international consensus on managing modifi
able risk in transplantation (COMMIT) recommends a tacrolimus C0 of 
6–10 ng/mL in the first month after liver transplantation, which is 
reduced to 4–8 ng/mL thereafter [36]. 

Tacrolimus-associated nephrotoxicity is one of the most feared 
complications after organ transplantation, and occurs in as much as 60% 
of patients depending on its definition [34]. For tacrolimus-associated 
nephrotoxicity, a clear and positive correlation has been demonstrated 
with the tacrolimus C0 in liver transplant recipients. Lin et al. showed 
that patients with a tacrolimus C0 of 5–10 ng/mL in the first week after 
liver transplantation had a significantly better renal function at 3 
months post-transplantation compared with patients who had a C0 of 
10–15 ng/mL [37]. In the “ReSpECT study”, a multicenter RCT, patients 
with reduced-dose tacrolimus (target C0 ≤ 8 ng/mL) had a lesser eGFR 
decline and dialysis requirement at 52 weeks, compared with patients 
who were assigned to a standard tacrolimus exposure (C0 > 10 ng/mL) 
[38]. In a meta-analysis, liver transplant recipients with a C0 > 10 
ng/mL were found to have an approximately 2-fold higher risk of renal 
impairment compared with patients maintained at C0 < 10 ng/mL [34]. 

Ongoing attempts are made to further lower the tacrolimus target C0 
in order to decrease its nephrotoxicity. Strategies to achieve this include 
the combination of several immunosuppressants with tacrolimus, i.e. 
combining tacrolimus with either MPA or everolimus, as compared with 
tacrolimus monotherapy (which often requires an exposure C0 > 10 ng/ 
mL) [39]. The recent consensus from the Italian Working Group in liver 
transplantation recommends that in the first 3 months and in case of a 
standard immunological risk recipient, the target tacrolimus C0 should 
be 3–5 ng/mL when combined with MPA, and 5–10 ng/mL when used 
together with everolimus (both with the same level of recommenda
tion), and to avoid the use of tacrolimus monotherapy. Three months 
after liver transplantation, the C0 can be reduced to 2–3 ng/mL (when 
combined with MPA) or tapered slowly to 3–6 ng/mL (if used with 
everolimus) [40]. However, these recommendations require clinical 
studies to demonstrate their proposed renal benefit and safety in terms 
of rejection. 

Tacrolimus is now considered as the second (or third) line option for 
the treatment of AIH [41]. However, no study compared the association 
of different tacrolimus C0 ranges and clinical outcomes of AIH. The 
current recommendation from the European Reference Network is to 
aim for a C0 of 6–8 ng/mL until full biochemical remission is achieved, 
which is then tapered to 3–5 ng/mL thereafter [42]. 

3.4. Inter-patient variability 

Demographic factors, drug-drug interactions, and genetics are causes 
of inter-patient variability. Several single-nucleotide polymorphisms 
(SNPs) have been identified in the CYP3A4 and CYP3A5 genes. The most 
studied SNP is CYP3A5*1/*3. The CYP3A5*3 variant allele causes 
alternative splicing, leading to the absence of functional CYP3A5 protein 
and decreased CYP3A5 activity compared with the CYP3A5*1 allele. 
Patients with the CYP3A5*1/*1 and CYP3A5*1/*3 genotype are 
considered CYP3A5 expressors or “rapid metabolizers” and need 
1.5–2.0-times higher doses of tacrolimus to achieve the same target 
concentration compared with CYP3A5 non-expressors (individuals with 
the CYP3A5*3/*3 genotype) [43]. In liver transplantation, the effect of 
CYP3A5 genotype on enzyme activity is more complicated. Since both 
the recipient’s intestinal and donor’s hepatic CYP3A5 contribute to the 
metabolism of tacrolimus, the genotype of both the donor and the 
recipient needs to be considered [44]. Two meta-analyses have shown 
that the recipient’s CYP3A5 genotype influences the tacrolimus dose 
requirement in the first month post-transplantation, whereas the donor’s 
genotype becomes the major determinant after 1 month [45,46]. This 
finding is likely explained by the gradually recovering function of the 
liver allograft. 

CYP3A4*22 is a variant allele which has been associated with 
decreased CYP3A4 metabolic activity [47]. Based on the combination of 

CYP3A4 and CYP3A5 genotype, rapid (CYP3A4*1/*1 plus the 
CYP3A5*1/*1 or the CYP3A5*1/*3 genotype), and slow metabolizers 
(CYP3A4*1/*22 or CYP3A4*22/*22 plus CYP3A5*3/*3) can be identi
fied. While the rest of the combinations are considered CYP3A inter
mediate metabolizers [48]. The combination of CYP3A4 and CYP3A5 
genotype has been studied in kidney transplantation patients only and 
such information in liver transplantation is lacking. 

Several RCTs in kidney transplantation have shown that CYP3A5 
genotype-guided tacrolimus (start) dosing can lead to a more rapid 
achievement of the target concentration compared with the standard, 
bodyweight-based starting dose [49–51]. However, this has not been a 
universal finding [52]. Possibly, more advanced dosing regimens using 
computerized/algorithm-based dosing can further optimize tacrolimus 
therapy. A maximum a posteriori Bayesian estimation (MAP-BE) tech
nique is currently an accepted method to estimate the AUC that involves 
the use of large patient databases with concentration-time profiles [53]. 
Woillard et al. demonstrated that machine-learning algorithms can 
further improve the accuracy of AUC estimation from MAP-BE [54]. 
Moreover, the same group of authors has shown that machine-learning 
algorithms that used population parameters of previously published 
population pharmacokinetics (instead of the large patient databases 
used in MAP-BE) can yield a comparable estimation of tacrolimus AUC 
with less than 5% bias compared with the MAP-BE [55]. However even 
if such an algorithm-guided tacrolimus dosing strategy is shown to lead a 
better exposure to the drug, a clinical benefit in terms of less rejection 
and toxicity, remains to be demonstrated [50,51,56]. For liver trans
plantation, no studies on CYP3A5 genotype-guided tacrolimus dosing 
have been conducted. 

Other factors that contribute to inter-patient variability include 
clinical factors and drug-drug interactions [57]. Tacrolimus is distrib
uted widely in erythrocytes and anemia increases the concentration of 
unbound tacrolimus, without changing the total whole blood concen
tration. Patients with hepatic dysfunction have a decreased CYP3A ac
tivity and this may result in higher whole blood tacrolimus exposure. 
Finally, drug-drug interactions interfere with CYP3A enzyme activity 
and affect tacrolimus exposure (for an extensive review see van Gelder 
et al.) [58]. 

3.5. Intra-patient variability 

Intra-patient variability in tacrolimus exposure (IPV) denotes the 
variability in tacrolimus concentrations over time without changes in 
the dose. IPV can be calculated in several ways but the most frequently 
used is the coefficient of variability (CV) [12]. Patients having a high IPV 
have large fluctuations in their exposure to tacrolimus and will likely 
spend less time within the therapeutic range and more time in the 
supra-therapeutic or sub-therapeutic concentration ranges. 

Medication non-adherence is considered the most common cause of a 
high tacrolimus IPV, which is usually defined as a CV higher than 
25–30%. Leino et al. showed that in a cohort of kidney and liver 
transplant recipients with 99.9% medication adherence, the tacrolimus 
CV was 16.8% in the former and 14.4% in the latter group [59]. This 
information supports the notion that the intrinsic IPV of tacrolimus is 
low in the absence of medication non-adherence. However, 
missed-doses and fluctuation of the dosing interval (i.e. taking the drug 
too early or later than scheduled) are not uncommon in the real-word, in 
addition to other factors that affect tacrolimus IPV, such as the hemo
globin concentration, hypoalbuminemia, gut dysmotility, and drug-drug 
interactions [57]. 

Several studies have investigated the association between tacrolimus 
IPV and kidney transplantation outcomes (reviewed by Shuker et al.) 
[12]. A high tacrolimus IPV was associated with an increased risk of 
acute rejection, more de novo DSA formation, worse allograft function, 
more rapid evolution of chronic histologic lesions suggestive of tacro
limus nephrotoxicity, and an increased risk of allograft loss [60,61]. 
These findings are in line with the hypothesis that patients with a high 
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tacrolimus IPV will more often be subject to both under- and 
over-immunosuppression and the related complications of rejection and 
chronic tacrolimus-induced nephrotoxicity. 

In liver transplantation, only a limited number of studies into the 
association between tacrolimus IPV and clinical outcomes have been 
conducted. A high tacrolimus IPV after liver transplantation was asso
ciated with a higher incidence of infection, acute rejection, de novo DSA 
formation, acute kidney injury, and graft loss [62–64]. These studies 
were conducted early or immediately after transplantation. To assess the 
association between tacrolimus IPV and outcomes in a more stable 
period when there is less interference from other perioperative factors 
such as bleeding, intestinal dysfunction, drug-drug interaction, and he
modynamic instability van der Veer et al. calculated the tacrolimus IPV 
between month 6 and month 18 after liver transplantation [65]. The 
authors found no association between a high IPV and immune-mediated 
graft injury or graft failure. However, a high tacrolimus IPV was asso
ciated with more renal function loss per year in patients with an esti
mated glomerular filtration rate (eGFR) less than 40 mL/min. This 
finding suggests that in patients with a low baseline eGFR, a high 
tacrolimus IPV leads to more annual eGFR loss, possibly from nephro
toxicity resulting from over-exposure. 

So far, the most effective strategy to reduce tacrolimus IPV is to 
improve medication adherence. This may be accomplished by remote 
drug monitoring and drug-dosing assist software [61,66]. The tacroli
mus IPV can also be reduced by switching from twice-daily tacrolimus to 
the once-daily, extended-release formulation [67]. However, this has 
not been a universal finding [68]. The lower tacrolimus IPV observed in 
patients taking the once-daily tacrolimus formulation likely results from 
the improvement in medication adherence rather than the pharmaceu
tical property of the drug itself [66]. 

3.6. Analytic methods 

The most frequently used analytical methods to measure tacrolimus 
in whole blood are liquid chromatography-tandem mass spectrometry 
(LC-MS/MS) which is the gold standard, or an immunoassay. LC-MS/MS 
is now slowly replacing immunoassays [69]. The advantage of 
LC-MS/MS is its high sensitivity and specificity. However, well-trained 
laboratory personnel is needed and the apparatus is very expensive. 
An important disadvantage of immunoassays is their cross-reactivity 
with some of tacrolimus’ metabolites which may lead to an over
estimation of the true whole blood tacrolimus concentration [48,70]. 

Although whole blood is the routine matrix for TDM of tacrolimus, 
more evidence is accumulating that this may not be the best way to 
measure the drug. Since tacrolimus’ site of action is within the immune 
cells, particularly the lymphocytes, intracellular (intra-lymphocytic) 
tacrolimus may better correlate with the drug’s effect and transplant 
outcomes [71–73]. The landmark study by Capron et al. included 90 
liver transplant recipients who received tacrolimus monotherapy. The 
authors found no association between the whole blood tacrolimus con
centration and liver allograft histological rejection grade. However, the 
concentration of tacrolimus within peripheral blood mononuclear cells 
(PBMCs) did correlate negatively with the histological staging of acute 
liver transplant rejection. There was a poor correlation between the 
intra-PBMC and the whole blood tacrolimus concentration [71]. How
ever, subsequent studies in liver, kidney, and heart transplantation 
could not confirm the association between the intracellular tacrolimus 
concentration and the risk and severity of rejection [74–76]. This may 
relate to differences in study design and analytical differences in the 
assays that were used. Currently, the measurement of intracellular 
tacrolimus is in the initial stage of its development. No cutoff for the 
intracellular tacrolimus concentration associated with a higher risk for 
acute rejection has been established. Further studies should also explore 
the tacrolimus concentration in specific PBMC subsets such as the 
T-lymphocyte. 

Sallustio et al. explored the relationship between the intra-allograft 

and the whole blood concentration of tacrolimus in kidney transplant 
recipients [77]. They demonstrated that recipients who developed acute 
tacrolimus-nephrotoxicity had a significantly higher 
intra-allograft-to-whole blood ratio of tacrolimus. However, their 
finding was limited by the small sample size, low incidence of nephro
toxicity, and the different timing of blood sampling and allograft bi
opsies. Nonetheless, this study demonstrates that the intra-renal 
tacrolimus concentration is in fact related to its renal toxicity. 

Microsample-based tacrolimus concentration monitoring by dried 
blood spot (DBS) is gaining more attention. This method is patient- 
friendly, minimally invasive (only a small volume of blood (10–20 μL) 
is needed), and can be performed by the patient at home. DBS will allow 
more frequent sampling within a dosing interval and more easily enables 
the determination of a full AUC [48]. In addition, this method can be 
used by patients in whom there are contra-indications for the standard 
venous blood sampling, such as children, those who are difficult to 
sample, and those living in remote areas. During the coronavirus 
pandemic, when frequent hospital visits pose a risk to the patient, DBS 
may serve as the alternative method for TDM. We believe that in the 
near future, DBS will be more generally used for TDM. 

4. Mycophenolic acid 

4.1. Pharmacokinetics 

MPA is a potent, non-competitive, selective and reversible inhibitor 
of inosine-5′-monophosphate dehydrogenase (IMPDH). IMPDH is an 
essential enzyme in the de novo purine synthesis pathway, which is 
essential for lymphocyte proliferation and differentiation. Unlike other 
cells, lymphocytes cannot utilize the salvage pathway of purine syn
thesis [78]. Two forms of MPA are used in organ transplantation and 
immune-mediated disease: the prodrugs mycophenolate mofetil (MMF) 
and enteric-coated mycophenolate sodium (EC-MPS). EC-MPS was 
developed to reduce the gastrointestinal side effects of MMF. However, 
clinical research has demonstrated that these two formulations differ 
little in their gastrointestinal side effect profile [79,80]. Although both 
are prodrugs of MPA, in terms of pharmacokinetics, it is important not to 
consider MMF and EC-MPS as bioequivalent. EC-MPS has a slower ab
sorption, a longer time to maximum concentration (tmax), and higher C0 
[5,81–83]. In clinical use, 250 mg of MMF is equivalent to 180 mg of 
EC-MPS in terms of MPA dose since the mofetil group in MMF is heavier 
than the sodium atom in EC-MPS. 

The pharmacokinetics of MPA is more complex compared with 
tacrolimus, as MPA undergoes enterohepatic circulation. After inges
tion, MMF is rapidly de-esterified to MPA in the stomach, where it is 
partly absorbed (the remainder is absorbed in the proximal small in
testine). In contrast, EC-MPS is hydrolyzed to MPA in the small intestine 
where it is easily dissolved in the more neutral pH. MPA is distributed 
mainly in the plasma compartment and up to 97% of MPA is bound to 
albumin. MPA is metabolized to the pharmacologically inactive 7-O- 
glucuronide of MPA (MPAG) mainly by hepatic UGT1A9, and to a lower 
extent in the gastrointestinal tract and kidney. MPAG is then excreted 
via the multidrug resistance-associated protein 2 (MRP2, also known as 
ABCC2) into the biliary tract [84]. In the gut, MPAG undergoes colonic 
bacterial de-glucuronidation and is then reabsorbed into the circulation 
as MPA. This enterohepatic (re)circulation is responsible for 30–40% of 
the total MPA exposure. The use of drugs that interfere with enter
ohepatic circulation, such as cholestyramine, can lower the MPA expo
sure by as much as 40% (Table 1) [85]. Eventually, MPAG is eliminated 
from the body by glomerular filtration and renal tubular secretion and 
more than 95% of orally administered MPA is excreted in the urine [86, 
87]. Both MPA and MPAG have a high albumin-binding capacity (97% 
and 82%, respectively). Free (unbound) MPA is considered as pharma
cologically active. As a result, any condition that interferes with the 
protein binding of MPA (or MPAG), may result in a change of the 
pharmacokinetics and pharmacodynamics of free MPA (Table 1) [78,82, 
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88–91]. Patients who have severe renal impairment or hypo
albuminemia are at risk for developing MPA toxicity as they may 
develop higher concentrations of free MPA despite the same total MPA 
AUC. Renal insufficiency reduces the clearance of MPAG which subse
quently binds to albumin and displaces MPA resulting in a higher free 
fraction and thus increasing the risk of toxicity. Measuring the free MPA 
concentration in these patients might increase the accuracy of MPA 
exposure interpretation [82]. 

4.2. Monitoring strategies 

MPA was initially designed as a one-dose-fits-all drug. However, 
post-launch studies clearly showed a high inter-patient variability with 
at least a 10-fold difference in exposure among patients using the same 
dose, supporting the use of TDM [91]. The pre-dose concentration is a 
suboptimal surrogate for total MPA exposure since it has a 
poor-to-moderate correlation with the AUC with a r of only 0.4–0.7, 
which can be explained by the large effect of enterohepatic circulation 
[92]. Recent studies have shown that the exposure to MPA may be better 
predicted by equations based on LSS, with the use of 2–4 sampling 
points. These LSS equations have a good correlation with AUC with an 
improved r of 0.90–0.94, and are therefore a more appropriate tool for 
TDM than C0 [90,93]. Consequently, LSS is the preferred method for the 
estimation of MPA AUC in clinical practice, particularly the LSS based 
on Bayesian estimators [82,89]. However, these estimating methods 
should be validated in each population before they can be routinely used 
in that particular population, and should consider co-medication, type of 
organ transplant, time after transplantation, and genetic background 
(ethnicity) [83]. 

With regard to pharmacodynamic monitoring of MPA therapy, 
IMPDH enzyme activity is the most investigated target biomarker. The 
activity of IMPDH correlates inversely with the MPA plasma concen
tration [94]. Many studies in kidney and liver transplant recipients 
demonstrated that a high pre-transplantation IMPDH activity/gene 
expression in PBMC is associated with an increased risk of allograft 
rejection, whereas a low pre-transplant IMPDH activity/gene expression 
is associated with an increased risk of MPA-related adverse events 
requiring dose reduction [95–97]. However, TDM based on IMPDH ac
tivity in PBMC during the post-transplantation period is more complex. 

It has been shown that IMPDH activity slowly increases within the first 
year after transplantation as a biological phenomenon, indicating the 
need of dynamic cutoff values adjusted for the time after transplantation 
[96]. Clinical trials that evaluate the role of TDM based on IMPDH ac
tivity to guide MPA dosing are lacking and more studies (with adjusted 
cutoff values at different time points) are needed before IMPDH activity 
assessment can be utilized in clinical practice. The turn-around time of 
IMPDH activity measurement also require shortening. 

4.3. Concentration-effect relationship 

The relationship between MPA exposure and clinical outcomes has 
been clearly demonstrated in kidney transplantation. Hale et al. found 
that an MPA AUC within the range of 30–60 mg/L.h was associated with 
a low risk of acute rejection (10–15%) without excessive drug with
drawal because of adverse effects [98]. This finding was consistent and 
reproducible, and as a result, the recommended target AUC of MPA is 
30–60 mg/L.h for kidney transplantation [91,99]. Data in liver trans
plantation are limited, and the target MPA AUC is derived from the 
studies of kidney transplantation (30–60 mg/L.h). There is no study that 
compared the effect of different MPA AUCs to clinical outcomes in liver 
transplantation, although there is some evidence from studies using C0. 
Tredger et al. observed that in liver transplant recipients (with either 
cyclosporine or tacrolimus as co-medication) an MPA C0 of less than 1 
mg/L was associated with a 2.5-fold higher risk of acute rejection, 
whereas an MPA C0 concentration of 3–4 mg/L was associated with a 
3-fold higher risk of leukopenia, infection, and gastrointestinal distur
bance [100]. This MPA C0 range (between 1 and 3.5 mg/L) can be used 
in liver transplant recipients if the estimation of the MPA AUC (such as 
from LSS) is unavailable [83]. Data on the TDM of MPA as a second line 
treatment in AIH are even more scarce and recommended doses have 
been adapted from organ transplantation [41]. 

RCTs that compared the outcomes of a TDM-based approach to MPA 
dosing with a fixed-dose MPA regimen have been conducted in kidney 
transplantation only. The APOMYGRE study used a target concentration 
intervention (TCI) strategy which provided a dose optimization feed
back loop by using a Bayesian estimator to achieve the target MPA AUC 
of 40 mg/L.h. The authors successfully demonstrated the benefit of MPA 
TDM over the fixed-dose regimen as the former strategy lowered the 

Table 1 
Factors affecting MPA exposure.  

Variables Mechanism Total MPA AUC Free MPA concentration 

Hypoalbuminemia 
(hyperbilirubinemia) 

Decreased protein binding of MPA 
(bilirubin displaces MPA from albumin) 

↓ ↔ (Free MPA fraction is increased from the reduction of 
protein binding, but the free MPA concentration remains 
the same if renal clearance is intact) 

Renal impairment Decreased renal clearance of MPAG, MPAG 
displaces MPA from albumin 

↑ (increased MPA from MPAG 
enterohepatic circulation, uremic toxin 
inhibits UGT enzyme) 

↑ 

↓ (in presence of cyclosporine that 
inhibits enterohepatic circulation) 

↑ 

Hepatic impairment Decreased protein binding of MPA, 
decreased enterohepatic circulation 

↓ ↔ 

Duration after 
transplantation 

Improved albumin, less inflammation ↑ ↔ 

Diarrhea Impaired absorption ↓ ↔ 
Cyclosporine Inhibit enterohepatic circulation (MRP2 

inhibition) 
↓ ↓ 

Corticosteroid Increased UGT activity ↓ ? 
Resin, metal ions Reduced MPA and MPAG absorption in 

gastrointestinal tract 
↓ ? 

PPI Reduced MMF absorption in stomach (but 
not MPS) 

↓ ? 

Cholestyramine Inhibit enterohepatic circulation ↓ ? 
Antibiotics Reduced colonic bacterial glucuronidation 

(and enterohepatic circulation) 
↓ ? 

Rifampicin Increased UGT activity (also possibly inhibit 
enterohepatic circulation via decreased 
MRP2 function) 

↓ ↓  
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incidence of acute rejection [101]. No such RCT has been performed in 
liver transplantation. 

4.4. Inter-patient variability 

Factors that affect MPA inter-patient variability are summarized in 
Table 1. The hepatic enzyme UGT1A9 is responsible to more than 50% of 
MPA metabolism. Several SNPs in UGT1A9 have been identified and 
have been associated with increased MPA glucuronidation and a lower 
total MPA exposure. These SNPs include UGT1A9 275T > A, 2152C > T, 
440C > T, and 331T > C [102]. Patients carrying these SNPs need a 
higher dose of MPA to achieve the same (target) AUC exposure 
compared with patients who do not carry these variant alleles [89]. 
However, no clinical benefit of a pharmacogenetics-guided MPA dosing 
approach has been demonstrated, at least when TDM is performed [90]. 
When TDM is not practiced for MPA, UGT1A9 genotyping may have a 
role and can be used to predict the initial dose of MPA [103]. 

Other genes that are associated with MPA pharmacokinetics are 
UGT1A8 and UGT2B7, SLCO1B1 and SLCO1B3 (organic anion trans
porter polypeptides in the hepatocytes), and ABCC2 (the MRP2 trans
porter for biliary excretion of MPAG). Genetic variants in IMDPH1 and 
IMPDH2 influence the activity of IMPDH and thus MPA pharmacody
namics. However, studies investigating the effects of variation in these 
genes have provided inconsistent data and lack clear evidence of a 
clinical benefit [102,104]. Taken together, at present, little evidence is 
available to support a pharmacogenetics-guided approach to MPA 
treatment. 

Finally, ethnicity also impacts MPA exposure. Differences in MPA 
pharmacokinetics are most significant between Caucasians and Asians. 
A systematic review by Li et al. showed that Asian transplant recipients 
need a 20–46% lower MPA dose compared with Caucasians or African 
Americans to reach the same target AUC [105]. In addition, differences 
between individuals in renal function, plasma protein concentration, 
and concomitant medication all contribute to inter-patient variability 
(Table 1) [83]. 

4.5. Intra-patient variability 

The IPV of MPA is generally low with a CV of less than 20%. How
ever, the CV can increase to 25% in patients with renal dysfunction 
[106]. This low intra-patient variability, combined with its considerable 
inter-patient variability, supports the use of TDM for MPA. 

4.6. Analytic methods 

MPA is largely distributed in the extracellular compartment and 
plasma or serum are the appropriate matrices for the measurement of 
MPA. Some studies have explored the role of pharmacologically active 
MPA, including the free MPA and intracellular (intra-PBMCs) MPA, but 
these studies were limited by their low number of included patients, and 
the evidence that measuring MPA in an alternative matrix improves 
clinical outcomes is lacking [83]. 

Similar to tacrolimus, DBS monitoring of MPA is gaining more in
terest and is considered as a promising tool for MPA TDM. This method 
will facilitate the monitoring of MPA therapy by measuring abbreviated 
AUC. However, the correlation to the MPA concentration measured in 
venous blood is still required to establish the appropriate therapeutic 
range for concentrations measured in finger pricks [83]. 

5. Mammalian target of rapamycin inhibitors 

5.1. Pharmacokinetics 

Two mTORi have been registered for the prevention of solid organ 
transplant rejection, sirolimus and everolimus. mTORi bind to the 
intracellular receptor FKBP12. The mTORi-FKBP12 complex inhibits 

mTOR kinase and interrupts the intracellular mTOR signaling pathway 
[107]. The mTOR signaling pathway consists of the mTOR complex 1 
(mTORC1) and mTOR complex 2 (mTORC2). While both complexes are 
involved in cell metabolism, mTORC1 mainly regulates cell growth and 
proliferation, whereas mTORC2 mainly affects cytoskeletal organization 
and cell migration [108]. In preclinical and animal studies, everolimus 
was shown to inhibit mTORC2 more potently than sirolimus, while they 
both have the same potency for mTORC1 inhibition [107]. 

Everolimus has a higher oral bioavailability than sirolimus (16% 
versus 10%). After ingestion, both drugs are distributed into erythrocytes 
(75–80% for everolimus and 94% for sirolimus) [109,110]. Both drugs 
are metabolized by intestinal and hepatic CYP3A4 and are excreted 
mainly via the biliary route [109,110]. The major difference is in their 
half-lives which is shorter for everolimus (half-life 28 h; and requires 
twice-daily administration), compared with once-daily administration 
in sirolimus (half-life 62 h). This difference also leads to a quicker 
achievement of the steady state for everolimus [111]. 

5.2. Monitoring strategies 

C0 allows a reliable estimation of mTORi AUC [112]. The correlation 
between the C0 and AUC of everolimus and sirolimus is good with r of 
0.9 for both drugs [113,114]. The use of a LSS for TDM of mTORi is thus 
unnecessary in most cases. 

mTOR activity is a potential drug-specific pharmacodynamic 
biomarker. Previous studies examined the phosphorylation of mTORi 
downstream targets including 4E-BP1, S6 kinase beta-1, p70S6K1 ac
tivity, and ribosomal S6 protein [103,115]. The development of these 
molecules as biomarkers is still in the experimental hypothesis-testing 
stage. In addition, their measurements have a long turn-around time 
and are complex and non-standardized. At present, pharmacodynamic 
monitoring of mTORi therapy is not recommended. 

5.3. Concentration-effect relationship 

The exposure to mTORi has a clear correlation with its clinical effects 
and TDM is recommended [116]. Currently, in solid organ trans
plantation, mTORi are mostly used in CNI-minimization regimens 
(together with tacrolimus or cyclosporine) to reduce CNI (nephro-) 
toxicity. Levy et al. showed that an everolimus C0 ≤ 3 ng/mL was 
significantly associated with a higher rate of liver allograft rejection 
compared with a C0 of >3 ng/mL when the drug was combined with 
reduced-dose cyclosporine and corticosteroids [117]. Regarding the 
upper limit of the everolimus therapeutic window, a C0 > 8 ng/mL has 
been shown to associate with a higher incidence of dyslipidemia, 
thrombocytopenia, and proteinuria [111,118]. These findings have been 
confirmed in an RCT of liver transplantation by the H2304 Study Group. 
The authors found that the combination of everolimus (target C0 3–8 
ng/mL) and reduced-dose tacrolimus (target C0 3–5 ng/mL) was not 
inferior to tacrolimus monotherapy in the control arm (which targeted a 
tacrolimus C0 of 8–12 ng/mL) in terms of the composite primary 
endpoint (which consisted of acute rejection, graft loss, or death). 
Everolimus with reduced-dose tacrolimus combination therapy also had 
a significantly lower rate of acute rejection and resulted in a better renal 
function compared with the tacrolimus monotherapy control arm. 
However, the drug discontinuation rate was higher in the combination 
group [119]. Base on this evidence, the target everolimus C0 when used 
with reduced-dose tacrolimus is 3–8 ng/mL [40]. The same therapeutic 
window applies to sirolimus [120,121]. 

5.4. Inter-patient variability 

CYP3A4 is the main metabolizing enzyme of mTORi, hence the same 
drug-CYP interactions as for CNIs can be expected. Interestingly, the 
mTORi dose needs to be significantly increased to achieve the target 
concentration when used together with cyclosporine but not with 
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tacrolimus [116,118]. This may possibly relate to a relatively larger role 
of CYP3A4 in the metabolism of both mTORi and cyclosporine, 
compared with tacrolimus which is mainly metabolized by CYP3A5. 

Although it is clear that CYP3A4 is the main metabolizing enzyme of 
mTORi, the role of CYP3A4 genetic variation in the pharmacokinetics of 
mTORi is still controversial [104,116]. Genotyping for CYP3A5, which 
has a smaller role in mTORi metabolism, and ABCB1, which influences 
the intestinal absorption and intracellular concentration of mTORi, has 
not shown any benefits in terms of mTORi therapy nor with transplant 
outcomes [104]. Based on the current evidence, no recommendation can 
be made regarding pharmacogenetics-based TDM of mTORi [116]. 

5.5. Intra-patient variability 

Only a few studies of intra-patient variability of sirolimus and 
everolimus have been conducted and those are limited to kidney 
transplantation. Wu et al. found that kidney transplant recipients with 
chronic allograft nephropathy (CAN) and who had a sirolimus CV 
>22.9% had a greater risk of progressive deterioration of allograft 
function [122]. In a study by Valero et al. that explored the CV of mTORi 
in 279 kidney transplant recipients, the %CV of sirolimus was signifi
cantly lower than the %CV of everolimus (23.8% versus 27.1%). A %CV 
>28.5% (for both mTORi) was associated with a lower death-censored 
graft survival [123]. No study investigating the IPV of mTORi in liver 
transplantation has been conducted. 

5.6. Analytical methods 

LC-MS/MS is the preferred method for mTORi quantification. How
ever, commercial immunoassays are still used in centers [116]. The 
disadvantage of immunoassays is their cross-reactivity between siroli
mus and everolimus, and this can lead to confusion when a patient needs 
to switch between these two drugs. Whole blood is the matrix to measure 
the mTORi concentration. To date, there is no study that explores the 
association between the intracellular concentration of mTORi and 
transplant outcomes. However, since both sirolimus and everolimus are 
largely distributed in the erythrocytes which are immunologically 
inactive, the measurement of the free concentration or the intra-PBMC 
or maybe even the intra-allograft mTORi concentration might be bet
ter correlated with transplant outcomes. A study regarding the benefits 
of monitoring mTORi by DBS is lacking. 

6. Azathioprine 

Azathioprine is now rarely used as a first-line immunosuppressant 
for solid organ transplantation due to the superior outcomes with MPA 
in preventing acute rejection [124]. However, it is the immunosup
pressant of choice for pregnant transplant recipients [125], and still has 
an important role in the treatment of IBD and AIH. Azathioprine has a 
unique mode of action and pharmacokinetics which is closely linked 
with its pharmacogenetics. 

6.1. Pharmacokinetics 

The oral bioavailability of azathioprine ranges from 50 to 72% 
[126]. Azathioprine is a prodrug which after absorption is rapidly 
converted to 6-mercaptopurine (6-MP) by glutathione-S-transferase. 
6-MP is further metabolized by 3 competing enzymes. The first is 
xanthine oxidase (XO) which oxidizes 6-MP to inactive 6-thiouric acid 
which has no toxicity. The second is hypoxanthine guanine 
phospho-ribosyltransferase (HGPRT) pathway which metabolizes 6-MP 
to 6-thioguanine nucleotides (6-TGN). 6-TGN are the active metabo
lites of azathioprine that have the immunosuppressive effect but are also 
responsible for its myelosuppressive toxicity. 6-TGN incorporates into 
DNA and RNA and blocks the de novo purine synthesis pathway, causing 
cell death. The third pathway is thiopurine-S-methyl-transferase 

(TPMT). TPMT converts 6-MP to the hepatotoxic 6-methylmercaptopur
ine (6-MMP). The activities of XO, HGPRT, and TPMT determine the 
efficacy and toxicity of azathioprine and its metabolites [127]. 
Concomitant allopurinol use strongly inhibits the XO pathway and 
causes a shunting of 6-MP metabolism into the other two pathways 
which may lead to life-threatening toxicity More than 95% of azathio
prine metabolites are excreted by the kidney [128]. 

6.2. Monitoring strategies 

The time to steady state of azathioprine is longer than for other 
immunosuppressants (2–4 weeks) [129]. Standard laboratory moni
toring of azathioprine treatment includes complete blood count (CBC) 
and liver function tests to detect leucopenia and hepatitis. It is recom
mended to monitor every 2 weeks in the first 2 months after starting 
azathioprine followed by every 3 months thereafter [130]. The British 
Society of Gastroenterology consensus recently recommended that 
during azathioprine treatment of IBD, thiopurine metabolites should 
also be monitored to prevent toxicity and inadequate dosing [131]. 
However, no recommendation can be made regarding liver trans
plantation or AIH since all the evidence comes from the studies of IBD. 
The monitoring of thiopurine metabolites can be done by measuring 
6-TGN and 6-MMP concentrations in erythrocytes. The azathioprine 
dose can then be adjusted, aiming to maintain a normal range of both 
6-TGN and 6-MMP [131]. This is strongly recommended in patients with 
inadequate response to therapy or toxicity. However, the monitoring of 
thiopurine metabolites does not replace the standard laboratory evalu
ation as described above. 

6.3. Concentration-effect relationship 

The appropriate timing of 6-TGN and 6-MMP measurements is 12–16 
weeks after the initiation of azathioprine treatment, the timing when 
these metabolites have reached their steady state in patients with IBD. 
The target metabolite concentration has been studied and the recom
mended range is provided in the British Society of Gastroenterology 
guideline [130,131]. Briefly, the therapeutic range of 6-TGN, the main 
metabolite that has immunosuppressive effect, is 235–450 pmol per 8 ×
10 [8] red blood cells (RBC), with concentrations below or above this 
range indicating sub-therapeutic and supra-therapeutic level, respec
tively. However, the interpretation of 6-TGN should be done while 
taking into account the level of 6-MMP, which is the metabolite of the 
TPMT pathway. The normal concentration of 6-MMP is < 5700 pmol per 
8 × 10 [8] RBC, indicating appropriate metabolism of azathioprine to 
6-TGN but not 6-MMP. Patients with 6-TGN within the therapeutic 
range but 6-MMP >5700 pmol per 8 × 10 [8] RBC should decrease their 
azathioprine dose. Patients with 6-MMP >5700 pmol per 8 × 10 [8] RBC 
despite of 6-TGN <235 pmol per 8 × 10 [8] RBC are considered as 
having a predominant methylation pathway, which results in less 6-TGN 
and more 6-MMP, which in turn increases the risk for reduced efficacy 
and hepatotoxicity. The solution is to reduce the azathioprine dose to 
25–33% of the usual dose and to add allopurinol. Allopurinol in this case 
helps to shunt the metabolic pathway to produce more 6-TGN [131]. 
The above-mentioned recommendations come from a study in patients 
with IBD, but no data on organ transplantation are available. 

Unlike IBD, TDM of thiopurine metabolites in the treatment of AIH is 
still controversial and no standard cutoff levels have been defined, 
although there is evidence to show that patients with biochemical 
remission have significantly higher mean 6-TGN concentrations 
compared to those who are not [132]. Clinicians may evaluate 6-TGN 
and 6-MMP concentration in selected patients with AIH who do not 
respond well to a standard dose of azathioprine or whenever they 
experience toxicity. In those cases it is reasonable to target the same 
therapeutic window as for IBD [133]. 
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6.4. Inter-patient variability 

The inter-patient variability of azathioprine is much larger than the 
intra-patient variability [134]. TPMT testing is now generally recom
mended before the start of azathioprine [131,135,136]. This can be 
done by either an enzyme activity assay or TPMT genotyping. Zarca et al. 
found that TPMT activity testing is more cost-effective compared with 
genotyping in the French population [137]. TPMT activity is measured 
in erythrocytes and therefore, a recent blood transfusion can interfere 
with this test [127]. On the other side, genotyping of TPMT can miss the 
rare variants that are not generally tested, and it does not quantify TPMT 
enzyme activity. TMPT*2, TMPT*3A, and TPMT*3C account for 90% of 
the low activity phenotype in patients of European descent and predict 
leukopenia. The starting dose of azathioprine should be adjusted ac
cording to TPMT activity. Patients with very low or absent TPMT ac
tivity (homozygous non-functional alleles) should avoid using 
azathioprine. Patients with intermediate activity or heterozygous defi
ciency should use a 50% lower dose than patients with normal TPMT 
activity to prevent leukopenia [135,138]. 

Another important genotype to determine before azathioprine initi
ation is nudix hydrolase 15 (NUDT15). This enzyme converts 6-TGN 
triphosphate (more cytotoxic) to 6-TGN monophosphate (less cyto
toxic). A poor metabolizer phenotype of NUDT15 is responsible for 
myelosuppression in the Asian population. Consequently, the genotyp
ing of NUDT15 is suggested before the starting of azathioprine in pa
tients of Asian descent [131,135]. 

6.5. Analytic methods 

The analytic methods by Lennard et al. and Dervieux et al. are the 2 
most commonly used methods for the monitoring of thiopurine metab
olites. The Dervieux method results in a 2.6-fold higher 6-TGN con
centration compared with the method by Lennard [139]. The 
above-mentioned therapeutic ranges are derived from studies using 
the Lennard method. As a result, clinicians should be aware of the an
alytic method used in their laboratory when thiopurine metabolite 
concentrations are interpreted. 

7. Conclusions 

There is an important lack in our knowledge of the optimal strategy 
of immunosuppressant TDM for gastro-enterologic diseases and to a 
lesser extent, liver transplantation. Most of the evidence regarding the 
benefits of TDM comes from studies that were performed among kidney 
transplant recipients and these may not be extrapolated to other in
dications. We believe that optimal dosing of these agents may be ach
ieved through the use of dosing algorithms (computerized dosing) which 
incorporate pharmacogenetic (e.g. CYP3A4 and CYP3A5) and clinical 
data (e.g. age and body surface area) [51]. This is an active field of 
research in kidney transplantation and it is expected that the results of 
these studies will make their way into other fields of medicine. 

More recently, the IPV of tacrolimus has been identified as a prog
nostic marker for adverse outcomes in kidney and liver transplantation. 
It is likely that this will be pursued further and that IPV (at least for 
tacrolimus) will be adopted into everyday clinical practice as an easy-to- 
use predictor for tacrolimus treatment. Automatic calculation of the IPV 
from a electronic patient file is possible and feasible. 

The development of novel blood sampling techniques, such as dried 
blood spot monitoring, will facilitate more detailed pharmacokinetic 
sampling and home monitoring, and may allow for more personalized 
immunosuppression. In many centers, the COVID-19 pandemic has 
fueled remote monitoring of immunosuppressants and we feel that this 
may become the standard for selected groups of patients. The mea
surement of the intra-allograft/intra-lymphocytic immunosuppressant 
concentrations is a promising strategy as it may better correlate with an 
immunosuppressant’s efficacy and toxicity than the whole blood 

concentration. However, these alternative strategies of TDM need to be 
much better investigated. 

In conclusion, TDM is required for most immunosuppressants that 
are currently used in liver transplantation, IBD, and AIH. The knowledge 
of the pharmacokinetics, pharmacodynamics, and pharmacogenetics of 
these agents has greatly expanded over the last 20 years and we now 
have tools that allow for a further individualization of immunosup
pressive therapy and the monitoring thereof. 

Practical points  

• Therapeutic drug monitoring (TDM) of tacrolimus and mammalian 
target of rapamycin inhibitors (mTORi) is standard of care after liver 
transplantation.  

• TDM is increasingly used in liver transplantation and gastro- 
enterology for mycophenolic acid (MPA) and azathioprine.  

• For tacrolimus and mTORi the pre-dose concentration (C0) is suitable 
for routine TDM.  

• The MPA C0 has a poor correlation with total exposure and LSS is the 
preferred method for TDM of MPA.  

• In patients who have experienced drug-related toxicity or rejection 
despite the tacrolimus C0 being within the therapeutic range, an 
(abbreviated) AUC measurement should be considered.  

• Currently, pharmacodynamic biomarkers of immunosuppressive 
drug therapy are in the developmental stage and cannot be recom
mended for TDM in clinical practice yet.  

• The use of novel analytic methods such as dried blood spot analysis is 
expected to increase in the next few years. 

Research agenda  

• The efficacy of dosing algorithms for tacrolimus should be studied 
further and comparing computerized-dosing to conventional 
(physician-guided dosing) are needed.  

• The value of intracellular concentration of immunosuppressants 
(tacrolimus, mTORi, and MPA) requires further study to demonstrate 
the correlation with transplant outcomes.  

• The benefit of TDM-guided over fixed-dosing MPA only exists in 
kidney transplantation and requires more studies in liver 
transplantation.  

• The monitoring of azathioprine’s metabolites needs further study to 
demonstrate the benefit in liver transplantation.  

• Pharmacodynamic biomarkers should be further explored to be used 
as a real-time representative of patient’s immune status, which could 
add values to TDM. 
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