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ON SOME OPTIMAL STOPPING PROBLEMS WITH CONSTRAINT∗

J. L. MENALDI† AND M. ROBIN‡

Abstract. We consider the optimal stopping problem of a Markov process {xt : t ≥ 0} when
the controller is allowed to stop only at the arrival times of a signal, that is, at a sequence of instants
{τn : n ≥ 1} independent of {xt : t ≥ 0}. We solve in detail this problem for general Markov–
Feller processes with compact state space when the interarrival times of the signal are independent
identically distributed random variables. In addition, we discuss several extensions to other signals
and to other cases of state spaces. These results generalize the works of several authors where
{xt : t ≥ 0} was a diffusion process and where the signal arrives at the jump times of a Poisson
process.
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1. Introduction. The usual (or standard) optimal stopping time problem refers
to a simple stochastic control problem where the controller may, at any time, choose
to stop the system with a terminal reward or to continue (and stop later).

This type of control problem has been studied extensively both with probabilistic
methods and analytical methods using the link between optimal stopping problems
and variational inequalities; see Bensoussan and Lions [2] and the bibliography therein.

In contrast, the constrained optimal stopping time problem imposes conditions
on the decision of stopping or not, the state of the system.

In this paper, we consider the following constraint: the controller is allowed to
stop the system only when a signal is received. For instance, the system evolves
according to a Wiener process wt (with drift b and diffusion σ) and the signal is the
jumps of a Poisson process Nt, independent of the Wiener process. This particular
model was studied by Depuis and Wang [6] for a geometric Brownian process. The
dynamic programming equation (or HJB equation) takes the form

Au− αu + λ[ψ − u]+ = 0,

(where A is the infinitesimal generator of a Wiener process, λ is the intensity of an
independent Poisson process, and ψ is the reward) and the verification theorem is
based on an explicit solution of the HJB equation and on the solution of a discrete
time problem.

Note that, for the standard stopping problem, the dynamic programming method
leads to a variational inequality (see Bensoussan and Lions [2]).

The aim of the present paper is to generalize the above problem in two directions:
• to replace the one-dimensional Wiener process by a general Markov–Feller
process in finite or infinite dimension,

• to replace the Poisson process by a more general counting process.
We treat in detail the case where the intervals between the arrival times of the

signal are independent identically distributed random variables (IID case), indepen-
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dent from the process to be stopped, and we will discuss extensions to various other
cases.

We obtain existence and uniqueness results for the HJB equation and the existence
of an optimal stopping time. Obviously, in the case of “general” Markov processes,
one cannot rely on an explicit solution of the HJB equation; the solution is obtained
via a discrete time stopping problem associated to the continuous time one.

Let us mention that a variant of the problem with Poisson constraints was studied
by Lempa [11] and that Liang [12] studied the same kind of problems for multidimen-
sional diffusions and a Poisson signal, as well as a switching problem in Liang and
Wei [13].

Let us mention that other classes of stopping problems with constraint have been
studied. An example is given in Bensoussan and Lions [2], where it is allowed to stop
only when the state x of the process lies in some given domain in the state space. Egloff
and Leippold [7] studied an application of this kind of model to American options.

The paper is organized as follows: section 2 is devoted to the statement of the
problem for the IID case and to the definition of the associated discrete time prob-
lem. In section 3, the discrete time problem is completely treated. In section 4, the
solution of the continuous time problem is obtained. In section 5, the extension of the
results of sections 3 and 4 to unbounded rewards and various types of signal processes
is discussed.

2. Statement of the problem. In an abstract probability space (Ω,F , P ), let
{xt : t ≥ 0} be a continuous-time homogeneous Markov process with semigroup Φ(t),
infinitesimal generator A, and transition probability function p(x, t, B), i.e.,

P{xt ∈ B |xs = x} = p(x, t− s,B) ∀x ∈ E, t > s ≥ 0, B ∈ B(E),

where E is a Polish space (complete, separable, and metrizable space) with its Borel
σ-algebra B(E). If this process xt represents the state of the system at time t, and
then the typical optimal stopping time problem is to decide when to stop the system
to maximize the reward functional

(2.1) Jx(θ) = Ex

{
e−αθψ(xθ)

} ∀θ stopping time,

where ψ is a nonnegative Borel measurable function and Ex is the conditional expec-
tation given x0 = x. This amounts to describing the optimal reward function

sup
{
Jx(θ) : θ stopping time

}
and to obtaining an optimal stopping time θ̂ = θ̂(x) for each initial state x. In this
model, the constant α > 0 is the discount factor and the terminal reward function ψ
satisfies suitable conditions.

2.1. The optimal stopping with constraint. The usual optimal stopping
problem as presented above is well known, but our interest here is to restrict the
stopping action (of the controller) to certain instants when a signal arrives. A signal is
given by a sequence {0 ≤ τ1 < τ2 < · · · } of nonnegative random variables independent
of {xt : t ≥ 0}.

The simplest model is when {τn : n ≥ 1} are the jumps of a Poisson process, i.e.,
the time between two consecutive jumps {T1 = τ1, T2 = τ2 − τ1, T3 = τ3 − τ2, . . .}
is necessarily an IID sequence, exponentially distributed. In this paper, we focus on
the situation where {Tn : n ≥ 1} is a sequence of IID random variables with common
law π0 (not exponential in general), and some possible extensions are discussed later.
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Since the distribution is not longer exponential (i.e., not memoryless), it is useful
to introduce an homogeneous Markov process {yt : t ≥ 0} with states in [0,∞[,
independent of {xt : t ≥ 0}, which represents the time elapsed since the last signal (i.e.,
it is as if time is reset to zero when a signal is received and that time is measured), so
that almost surely, the cad-lag paths t �→ yt are piecewise differentiable with derivative
equals to one, with jumps only back to zero, and the form of infinitesimal generator
is expected to be

(2.2) A1ϕ(y) = ∂yϕ(t) + λ(y)[ϕ(0) − ϕ(y)] ∀y ≥ 0,

where the intensity λ(y) ≥ 0 is a Borel measurable function. Thus, the signals are
defined as functionals on {yt : t ≥ 0}, namely,

(2.3) τn = inf
{
t > τn−1 : yt = 0

}
, n ≥ 1.

The couple {(xt, yt) : t ≥ 0} yields an homogeneous Markov process in continuous
time, and a signal arrives at a random instant τ if and only if τ > 0 and yτ = 0.

To define the family of admissible stopping times, first suppose that a cad-lag
realization of the Markov process {(xt, yt) : t ≥ 0} is given, with its filtration F =
{Ft : t ≥ 0} satisfying the usual conditions (of right-continuity and completeness).
This construction also yields a realization of the Markov chain {(xτn , yτn , τn) : n ≥ 0}
with a filtration G = {Gn : n ≥ 0}. With this setting, each signal τn, n ≥ 1, is an
F-stopping time. Note that if η is a G-stopping time with values in N = {1, 2, . . .},
then the composition θ(ω) = τη(ω)(ω) is an F-stopping time. All this leads to the
following.

Definition 2.1. An F-stopping time θ is called “admissible” if for every almost
surely ω there exists n = η(ω) ≥ 1 such that θ(ω) = τη(ω)(ω), and equivalently, if θ
almost surely satisfies θ > 0 and yθ = 0.

Now, without any loss of generality, we may assume that the final cost is nonneg-
ative, ψ ≥ 0, to describe our optimal control problem (or sequential decision problem)
as

(2.4) V (x, y) = sup
{
Jx(θ) : θ is an admissible stopping time

}
with the sequence of signals {τn = τyn : n ≥ 1} and Definition 2.1.

Moreover, if �{y(θ)=0} = 0 when y(θ) 	= 0 and �{y(θ)=0} = 1 only when y(θ) = 0,
then the reward function

(2.5) Jx,y(θ) = Ex,y

{
e−αθψ(xθ)�{y(θ)=0}

} ∀θ F-stopping time

can be used to give an equivalent formulation of our optimal control problem as

(2.6) V (x, y) = sup
{
Jx,y(θ) : θ is a stopping time and θ > 0

}
for any initial value (x, y) in E × [0,∞[.

An auxiliary Markovian model very similar to (2.4) is given by the value function
either

V0(x, y) = sup
{
Jx(θ) : θ is a zero admissible stopping time

}
,

where “zero admissible” stopping time means that n = η(ω) ≥ 0 instead of η(ω) ≥ 1
in Definition 2.1 with τ0 = 0, or equivalently,

(2.7) V0(x, y) = sup
{
Jx,y(θ) : θ is an F-stopping time

}
,
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where the constraint θ > 0 has been removed. Again, the final reward ψ is assumed
nonnegative. This is to say that V0(x, y) is the optimal reward of an “usual” opti-
mal stopping time problem; the only different point is that its final reward function
(x, y) �→ ψ(x)�{y=0} has a discontinuity at y = 0.

2.2. Discrete time model. Based on the admissible stopping times as in Defini-
tion 2.1, it is natural to associate several discrete-time problems (DSTP1 and DSTP2)
to the original problem. In a discrete-time model, a discrete stopping time η (having
values 0, 1, . . . ,∞) is the control, instead of an admissible stopping time θ, which has
values in [0,∞] as in a continuous-time model. Note that capital letters are used for
the various optimal rewards in continuous time V , V0, while lower case letters like v0,
v are used in discrete time.

DSTP1 is defined as follows: The signals are given through an IID sequence
{Ti : i ≥ 0} of nonnegative random variables, i.e., τ1 = T1, . . . , τn = T1+T2+ · · ·+Tn.
Since the signals are independent of {xt : t ≥ 0}, the expressions τ0 = 0 and {zn =
(xτn , τn) : n ≥ 0} define an homogeneous Markov chain.

As mentioned early, a realization of this Markov chain yields a filtration G =
{Gn : n ≥ 0} as generated by the random variables z0, z1, . . . , zn. Therefore, for every
G-stopping time η, the reward functional is given by

(2.8) K(z, η) = Ez

{
e−ατηψ(xτη )

} ∀z = (x, 0), x ∈ E,

with an optimal reward

(2.9) v0(x, 0) = sup
{
K(x, 0, η) : η ≥ 0, G-stopping time

} ∀x.

Since

E0

{
e−ατη

}
= E0

{(
e−αT1

)η}
,

this description corresponds to a standard (or usual) discrete-time optimal stopping
time problem. These type of Markovian models are well known, e.g., see the book by
Shiryaev [19].

DSTP2 is defined as follows: It is a discrete-time optimal stopping time problem
with constraint, namely, the controller is not allowed to stop the dynamic of the system
at the initial time and must wait until the first signal arrives.

It uses the same homogeneous Markov chain {zn : n ≥ 0} as above, but where
the signals given through the homogeneous Markov process {yt : t ≥ 0} represent
the time elapsed since the last signal, i.e., τn is defined by (2.3) with initial value
y0 = y ≥ 0. The reward is now

(2.10) K(x, y, η) = Ex,y

{
e−ατηψ(xτη )

} ∀(x, y) ∈ E × [0,+∞[

and the optimal reward

(2.11) v(x, y) = sup
{
K(x, y, η) : η ≥ 1, G-stopping time

} ∀x, y.

Since no stopping can be applied before τ1, it is intuitive that both problems (DSTP1
and DSTP2) are related by the equation

(2.12) v(x, y) = Ex,y

{
e−ατ1v0(xτ1 , 0)

}
, (x, y) ∈ E × [0,+∞[

with τ1 = τy1 . If y = 0, then τ1 = T1. This will be proved later.
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2.3. Preliminary properties. There are several properties that are easily de-
duced from the formulation of the various problems.

From Definition 2.1 of admissible stopping times, it follows that an F-stopping
time θ is admissible if and only if there exists a discrete G-stopping time η ≥ 1 such
that θ = τη. This simple assertion implies that taking the supremum of Jxy(θ) on θ
admissible or taking the supremum of K(x, y, η) on η ≥ 1 yields the same values, i.e.,

(2.13) V (x, y) = v(x, y) for any initial values (x, y) ∈ E × [0,+∞[.

Similarly,

(2.14) V0(x, 0) = v0(x, 0) for any initial values x ∈ E.

Moreover, if η̂0 and η̂ are optimal discrete stopping times for (DSTP1) and (DSTP2),
respectively, then the continuous stopping times τη̂0 and τη̂ are optimal admissible
stopping times for the continuous time problems with optimal rewards V0(x, 0) and

V (x, y), given by (2.7) and (2.4). Conversely, if θ̂0 and θ̂ are optimal admissible
stopping times for the continuous time problems, then

η̂0 = inf
{
n ≥ 0 : τn = θ̂0

}
and η̂ = inf

{
n ≥ 1 : τn = θ̂

}
are optimal admissible stopping times for the discrete time problems with optimal
rewards v0(x, 0) and v(x, y), given by (2.9) and (2.11). Therefore, to solve our con-
strained continuous time problem with reward V (x, y) given by (2.4), we can solve
the discrete problem with reward v(x, y) given by (2.11). This property is used later.

It is also clear from the definition of the auxiliary Markovian model with reward
V0(x, y) given by (2.7) that

(2.15) if y > 0, then V0(x, y) = V (x, y) ∀x ∈ E,

while

(2.16) V0(x, 0) ≥ V (x, 0) ∀x ∈ E.

Note that we have defined the discrete time optimal rewards v0(x, 0) and v(x, y), but
there is no definition for an optimal reward like v0(x, y) with y > 0 (which is not
used), as in the case of continuous time like V0(x, y).

As discussed later, to actually prove the key relation (2.12), between the two
discrete stopping time problems (DSTP1) and (DSTP2), the discrete dynamic pro-
gramming will be involved.

2.4. Remarks on the model.
(1) The homogeneous Markov process {yt : t ≥ 0} representing the time elapsed

since the last signal can be easily constructed from a given sequence {τn : n ≥ 1}.
Indeed, for initial conditions y0 = 0 define τ0 = 0 and then by induction

(2.17) yt = t− τn−1 if τn−1 ≤ t < τn and yτn = 0, n ≥ 1.

However, if y0 = y > 0, then conditional probability must be used to define yt as
beginning at time “−y” conditional to “having the first jump at sometime t ≥ 0.”
This means that if the initial IID sequence {T1, T2, T3, . . .} of waiting time between
two consecutive signals has its common law π0 supported on [0,∞[, and y > 0 is the
initial condition at time t = 0, then first consider a nonnegative random variable τy
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independent of {T1, T2, . . .} and of the Markov process {xt : t ≥ 0} with distribution

(2.18) P{τy ∈]a, b]} = P{τ1 ∈]a+ y, b+ y] | τ1 ≥ y} =
π0(]a+ y, b+ y])

π0(]y,+∞[)

for any b > a ≥ 0. Now define the sequence of signals

(2.19) τy0 = 0, τy1 = τy and τyn+1 = τyn + Tn ∀n ≥ 1,

and the process {yt : t ≥ 0} with y0 = y by the expressions

(2.20) yt = yτy
n−1

+ t− τyn−1 if τyn−1 ≤ t < τyn and yτy
n
= 0 ∀n ≥ 1,

yτy
n

= 0, which agree with (2.17) when y = 0, while the process ξt =
∑∞

i=1 �τi≤t

counts the jumps. Note that if the law π0 is an exponential distribution, then
τy has also the same exponential distribution π0 (i.e., the jumps of yt do not de-
pend on the initial value y0, in other words, τy can be regarded as one of Ti), and
therefore, there is no need to introduce the Markov process {yt : t ≥ 0} in the model.
Moreover, if the law π0 satisfies π0(]ymax,∞[) = 0 (with 0 < ymax <∞), then the ini-
tial value y should be taken either 0 < y < ymax (if π0({ymax}) = 0) or 0 < y ≤ ymax

(if π0({ymax}) > 0).
(2) As mentioned early, we focus our attention on the case when {yt : t ≥ 0} is an

homogeneous Markov process, independent of {xt : t ≥ 0}, with values in [0,∞), and
such that almost surely its cad-lag paths t �→ yt are piecewise linear with slope equal
to one, except when it jumps back to zero. Thus the recurrence formula τy0 = 0, and

(2.21) τyn = inf
{
t > τyn−1 : yt = 0, y0 = y

}
, n ≥ 1,

defines the sequence {τyn : n ≥ 1} of signals, with a general initial condition y ≥ 0,
even if only y = 0 could be of main interest. Note that the strong Markov property
implies that the law of {yt+τn : t ≥ 0} conditioned to {ys : s ≤ τn} depends only on
yτn = 0, which proves that Tn = τn+1 − τn for n ≥ 1 is an IID sequence.

(3) First, recall three facts:
(a) if {τ1, τ2 − τ1, . . .} is a nonnegative IID sequence independent of a (ho-

mogeneous) Markov process {zt : t ≥ 0}, then the sequence {zτn : n ≥ 1} is a
(homogeneous) Markov chain;

(b) if {zt : t ≥ 0} is a (homogeneous) Markov process and Γ is a Borel subset,
then the following sequence given by induction τ0 = 0 and τn = inf{t > τn−1 : zt ∈ Γ}
can be used to define the (homogeneous) Markov chain {zτn : n ≥ 0}, e.g., z = (x, y)
and Γ = E × {0};

(c) if {T1, T2, . . .} is a nonnegative IID sequence and g, h are Borel functions
(on suitable Borel spaces), then for a given initial condition (ξ0, τ0), the expressions
ξ(τ0) = ξ0,

τn = τn−1 + Tn, n ≥ 1,

ξ(t) = ξn−1 + g(ξ(τn−1))(t − τn−1), τn−1 ≤ t < τn, n ≥ 1,

ξn = ξ(τn) = h(ξ(τn−)) = h
(
ξn−1 + g(ξ(τn−1))Tn

)
define an homogeneous Markov chain {ξn : n ≥ 0}. However, the continuous time
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process {ξ(t) : t ≥ 0} is an homogeneous Markov process only if the distribution of
the IID sequence {Tn} is exponential. In any case, if the process {y(t) = yt : t ≥ 0}
as above (2.20) is added, then the couple {(ξ(t), y(t)) : t ≥ 0} is an homogeneous
Markov process.

Second, note that in particular for (c), if g = 1 and h(ξ) = ξ, then ξn = ξn−1+Tn
for every n ≥ 1, and therefore ξn − τn = ξ0 − τ0 for every n ≥ 1, i.e., the sequences
{τn} and {ξn} are the same if the initial x0 = τ0. Hence, if {τn : n ≥ 1} represents the
sequence of signals, then either {ξn : n ≥ 0} or {τn : n ≥ 0} is an homogeneous Markov
chain, but it is clear that the difference t − τn−1 for τn−1 ≤ t < τn represents the
“time elapsed since the last signal” only for n ≥ 2. On the other hand, if {T1, T2, . . .}
is a sequence of independent nonnegative random variables, then (1) the construction
in (c) also yields a Markov chain {ξn : n ≥ 0} and a Markov process {ξ(t) : t ≥ 0}
(if the common distribution is exponential) and (2) the sequence in (a) defined by
τ0 = 0 and τn = τn−1 + Tn, n ≥ 1, yields also a Markov chain (nonhomogeneous in
general) {zτn : n ≥ 0}, provided {T1, T2, . . .} is independent of the Markov process
{zt : t ≥ 0}. In particular, {τn : n ≥ 0} is a Markov chain (which is homogeneous
if the T1, T2, . . . are identically distributed, i.e., if {Tn} is an IID sequence), but note
that the sequence {τn : n ≥ 0} describes only the n-transition from 0 to τn of the
Markov chain, and the n-transition from any value τ ≥ 0 is given by the conditional
probability

P{τn ∈]a+ τ, b+ τ ] | τn ≥ τ} =
πn(]a+ τ, b+ τ ])

πn(]τ,+∞[)
∀b > a ≥ 0,

where πn is the distribution of Tn, as in the construction of the Markov process
{yt : t ≥ 0}.

(4) In continuous time, the model with optimal reward V0(x, y) given by (2.7) is
not “completely” Markovian even if the couple (x, y) defines an homogeneous Markov
process {(xt, yt) : t ≥ 0}. Indeed, “to wait for a signal” or “to wait for a jumps”
cannot be restated in terms of the “state” (x, y), i.e., a constraint as “stopping is
allowed only when a signal is received” cannot be translated into a condition either
like “on any state of the form (x, 0) the controller can stop the system if desired”
(which implies that at the beginning stopping is allowed) or like “on any state of the
form (x, 0) the controller cannot stop the system” (which implies that the system
can never be stopped). Essentially, the constraint “wait until . . . ” at the moment
the dynamic starts is non-Markovian time-homogeneous (it uses the memory to know
whether a signal has arrived early) for (x, y) as the state of the system. Another way
of describing the situation is to say that the control problem is not time-homogeneous,
i.e., to fully describe the system we need the term (x, y, t), so that stopping is allowed
only when y = 0 and t > 0.

(5) In contrast to Remark 2.4, the discrete time problem (DSTP1) is an usual
discrete optimal stopping time problem. The underlying Markov chain is {zn =
(xτn , τn) : n ≥ 0}. In terms of the Markov chain {Xn = xτn : n ≥ 0} and the
(variable) discount factor βn = e−αTn , the reward functional can be written as

(2.22) K(z, η) = Ez

{
ψ(xτη )

η∏
n=0

βn

}
∀z = (x, 0), x ∈ E.

Alternatively, if the state {X̃n : n ≥ 0} is the Markov chain with transition kernel

Pf(x) =
1

β

∫ ∞

0

e−αtΦ(t)f(x)π0(dt), β =

∫ ∞

0

e−αtπ0(dt),
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where π0 is the common distribution of the IID sequence {Tn : n ≥ 0}, then the same
reward can be written as

K(z, η) = Ez

{
βηψ(X̃η)

}
, ∀z = (x, 0), x ∈ E,

which is a standard discounted discrete time optimal stopping problem.
(6) If the Markov process {xt} is nonhomogeneous, then it suffices to add a new

variable to have an homogeneous process, i.e., to consider the couple (x, t) as the
initial state. In this case, the “time elapsed since the last signal” for a given initial
condition y(t0) = y0 can also be defined as in Remark 2.4 and in terms of the sequence
{Tn : n ≥ 1} of independent random variables (with distributions depending on n)
representing the “waiting time between two consecutive signals,” namely, τ0 = t0, and

τn = τn−1 + Tn and yτn = 0, n ≥ 1,

yt = y + t if τ0 ≤ t < τ1,

yt = t− τn−1 if τn ≤ t < τn+1, n ≥ 1,

and in this case, {(xt, t) : t ≥ 0}, {(yt, t) : t ≥ 0} and {(xt, yt, t) : t ≥ 0} are all
homogeneous Markov processes. Moreover, if the signals are nonhomogeneous (i.e.,
{Tn} is a sequence of independent random variables, nonnecessarily with the same
distribution) then additional variable is necessary as well.

(7) Actually, if the sequence {T1, T2, . . .} is only conditional independent with
respect to {xt : t ≥ 0}, then the (conditional) intensity may also be depending on the
variable x, i.e., λ(x, y),

π0(x, ]a, b]) =

∫ b

a

exp

(
−
∫ y

0

λ(x, t)dt

)
λ(x, y)dy, b > a ≥ 0,

and the above construction (1) still works fine. In this case, the couple {(xt, yt) : t ≥ 0}
or {xt : t ≥ 0} is a homogeneous Markov process, but not necessary {yt : t ≥ 0} alone
is a Markov process.

(8) As mentioned earlier, the signals can be given (a) either via the homogeneous
Markov process {yt : t ≥ 0} representing the time elapsed since the last signal (b) or
via an IID sequence {Tn : n ≥ 1} of random variables representing the waiting time
between two consecutive signals. The simplest model is the signals as the jumps of a
Poisson process, where the common law π0 of the IID sequence {Tn : n ≥ 1} is the
exponential distribution and the infinitesimal generator of the homogeneous Markov
process {yt : t ≥ 0} is

A1ϕ(y) = ∂yϕ(y) + λ[ϕ(0) − ϕ(y)] ∀y ≥ 0,

where ∂y is the derivative and λ > 0 is the intensity. However, the whole Markov
process {yt : t ≥ 0} is of no use in this case. In general, the distribution π0 must have
support in either [0,∞[ or [0, ymax] for some ymax <∞, and the form of infinitesimal
generator is expected to be

(2.23) A1ϕ(y) = ∂yϕ(y) + λ(y)[ϕ(0) − ϕ(y)] ∀y ≥ 0,

where the intensity λ(y) ≥ 0 is a Borel measurable function. If the common distribu-
tion π0 has a density π̇0, i.e.,

π0([0, y]) =

∫ y

0

π̇0(s)ds ∀y ≥ 0,
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then

λ(y) =
π̇0(y)

1− π0([0, y])
= lim

h→0

P{y ≤ T1 ≤ y + h | T1 ≥ y}
h

∀y ≥ 0,

or equivalently

λ(y) =

{
− ln

[
1−

∫ t

0

π̇0(s)ds

]}′
∀y ≥ 0,

which yields the conditional distribution

π(y, ]a, b]) =
π0(]a, b]∩]y,∞[)

π0(]y,∞[)
=

∫ b

a

exp

{
−
∫ t

0

λ(y + s)ds

}
λ(t+ y)dt

for any real numbers b > a ≥ y ≥ 0. However, for a common distribution π0 without a
density (with respect to the Lebesgue measure) the form of the infinitesimal generator
A1 may not be known. In any case, it should be clear that almost surely the cad-lag
paths t �→ yt are piecewise linear with slop equals to one, and with jumps only back
to zero.

3. Discrete time HJB equations. For the sake of simplicity and to fully
understand the difficulties of this problem, it is convenient to impose throughout this
section a restrictive assumption on the model. In section 4.2, some generalizations in
various directions are discussed.

Assume that the homogeneous Markov process {xt : t ≥ 0}, with semigroup
{Φ(t) : t ≥ 0} and infinitesimal generator A, is a Feller process and E is a compact
metric space, i.e.,

(3.1) Φ(t) is a continuous semigroup on E, compact metric space.

The discount factor α is positive and the reward function ψ is continuous, i.e.,

(3.2) α > 0 and ψ ∈ C(E).

The signals {τn : n ≥ 1} besides being independent of {xt : t ≥ 0} are given either
though an IID sequence {Tn : n ≥ 1} of waiting time between two consecutive signals
with a common distribution π0 satisfying

(3.3) E
{
e−αT1

}
=

∫
[0,∞[

e−αtπ0(dt) = k0 < 1,

or equivalently, the homogeneous Markov process {yt : t ≥ 0} of the time elapsed
since the last signal satisfies

(3.4) E
{
e−ατ

}
= k0 < 1 with τ = inf

{
t > 0 : yt = 0, y0 = 0

}
.

Sometimes, we will assume that the common distribution π0 has a density.
These assumptions will be modified later to include a local compact metric space

E or a Banach space and a reward with polynomial growth.
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3.1. Discrete time standard optimal stopping. The dynamic programming
principle in discrete time for (DSTP1) with an initial state (x, 0) is expressed as
follows: the controller can decide either (a) to stop with a reward ψ(x) or (b) to wait
(i.e., to postpone the decision) with a discounted reward Ex,0e

−ατ1u0(xτ1 , 0). This
yields the following HJB equation:

(3.5) u0(x, 0) = max
{
ψ(x),Ex,0e

−αT1u0(xT1 , 0)
} ∀x ∈ E.

Theorem 3.1. Under the assumptions (3.1), (3.2), and (3.4), there exits one and
only one solution u0 in C(E) of the HJB equation (3.5).

Proof. In view of the assumptions, the operator

T0w(x) = max
{
ψ(x),Ex{e−ατ1w(xτ1 )}

}
satisfies

|T0w1(x)− T0w2(x)| ≤ Ex{e−ατ1}‖w1 − w2‖ ≤ k0‖w1 − w2‖ ∀x ∈ E,

where ‖ · ‖ is the sup-norm in C(E). Thus, the operator T0 is contraction mapping
on C(E), which proves that the HJB equation (3.5) has a unique solution u0(x, 0) in
C(E).

Theorem 3.2. Under the assumptions (3.1), (3.2), and (3.4), the unique solu-
tion u0 in C(E) of the HJB equation (3.5) is indeed the optimal reward (2.9), i.e.,
u0(x, 0) = v0(x, 0). Moreover, the first exit time from the continuation region is
optimal, i.e., the discrete stopping time

(3.6) η̂0 = inf{n ≥ 0 : u0(xτn , 0) = ψ(xτn)}
satisfies u0(x, 0) = K(x, 0, η̂0) as given by (2.8).

Proof. The HJB equation (3.5) yields

u0(x, 0) = Ex,0

{
e−ατ1u0(xτ1 , 0)

}
+ Ex,0

{
e−ατ1 [ψ(xτ1)− u0(xτ1 , 0)]

+
} ∀x ∈ E.

or equivalently,
u0(x, 0) =

[
Q
(
u0(·, 0) + [ψ − u0(·, 0)]+

)]
(x),

using the sub-Makovian kernel ϕ �→ Qϕ, with(
Qϕ

)
(x) = Ex,0

{
e−ατ1ϕ(xτ1)

}
.

Thus, substituting x for xτn−1 , this can be written as

u0(xτn−1 , 0) =
[
Q
(
u0(·, 0) + [ψ − u0(·, 0)]+

)]
(xτn−1),

or equivalently,

u0(xτn−1 , 0) = Exτn−1
,τn−1

{
e−αTnu0(xτn , 0)

}
+ Exτn−1

,τn−1

{
e−αTn [ψ(xτn)− u0(xτn , 0)]

+
} ∀n ≥ 1,

where Ex,τ means the conditional expectation with respect to the initial condition
xτ = x. Hence, the strong Markov property yields

u0(xτn−1 , 0) = E
{
e−αTnu0(xτn , 0) | Gn−1

}
+ E

{
e−αTn [ψ(xτn)− u0(xτn , 0)]

+ | Gn−1

} ∀n ≥ 1,
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and multiplying by e−ατn−1, this becomes

e−ατn−1u0(xτn−1 , 0) = E
{
e−ατnu0(xτn , 0) | Gn−1

}
+ E

{
e−ατn [ψ(xτn)− u0(xτn , 0)]

+ | Gn−1

} ∀n ≥ 1.

Actually, in this calculation, the integer value n could be replaced by any G-stopping
time η ≤ n.

Now, iterate this argument to deduce

(3.7) u0(x, 0) = Ex,0

{
e−ατnu0(xτn , 0)

}
+

n∑
k=1

Ex,0

{
e−ατk [ψ(xτk)− u0(xτk , 0)]

+
}
.

Moreover, since all expectation are uniformly integrable (due to the fact that u0 is
bounded), the integer value n in the equality (3.7) could be replaced again by any
G-stopping time (nonnecessarily bounded, this time).

Hence, the equality (3.7) proves that

u0(x, 0) ≥ Ex

{
e−ατηu0(xτη , 0)

} ≥ Ex

{
e−ατηψ(xτη )

} ∀x ∈ E,

and for every G-stopping time η, i.e., u0(x, 0) ≥ v0(x, 0), for every x in E. On the
other hand, the definition of first exit time from the continuation region (3.6) and the
equality (3.7) show the optimality of η̂0, i.e.,

u0(x, 0) = Ex

{
e−ατ̂0ψ(xτ̂0)

}
, τ̂0 = τη̂0 ,

and therefore u0(x, 0) = v0(x, 0) for every x in E.

Remark 3.1. The martingale theory can be used to prove Theorem 3.2. Indeed,
define the processes

an = e−ατnu0(xτn , 0), n ≥ 0,

bn = amin{n,η̂0} = e−αθnu0(xθn , 0), θn = τmin{n,η̂0}, n ≥ 0,

to check that the HJB equation (3.5) and the Markov property imply that {an : n ≥ 0}
is a bounded supermartingale and {bn : n ≥ 0} is a bounded martingale. Hence, the
sampling theorem and the equality u0 ≥ ψ yield

K(x, 0, η) = Ex

{
e−ατηψ(xτη )

} ≤ Ex{aη} ≤ Ex{a0} = u0(x, 0)

for every G-stopping time η, i.e., u0 ≥ v0. Also, with τ̂0 = τη̂0 , the martingale part
implies

u0(x, 0) = lim
n

Ex{bn} = Ex

{
e−ατ̂0u0(xτ̂0 , 0)

}
= Ex

{
e−ατ̂0ψ(xτ̂0)

}
,

i.e., η̂0 is an optimal G-stopping time and u0 = v0.

3.2. Discrete time constrained optimal stopping. The dynamic program-
ming principle in discrete time for (DSTP2) with an initial state (x, y) at the initial
time is expressed as follows: the controller (cannot decide to stop immediately) have
to wait (i.e., to postpone the decision) and either to stop at time t = τ1 with a re-
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ward ψ(xτ1) or to continue with a reward u(xτ1 , 0). These two possibilities should be
discounted, i.e., the following HJB equation

(3.8) u(x, y) = Ex,y

{
e−ατ1 max{ψ(xτ1), u(xτ1 , 0)

} ∀(x, y) ∈ E × [0,∞[.

Now, the model involves the Markov process {yt : t ≥ 0} representing the time elapsed
since the last signal. Depending on the common distribution π0 of IID sequence
{Tn : n ≥ 1}, the process {yt : t ≥ 0} is a Feller process. Actually only the fact that

(3.9) (x, y) �→ Ex,y

{
e−ατ1ϕ(xτ1 )

}
is continuous

for every continuous and bounded function ϕ is needed.

Theorem 3.3. Under the assumptions (3.1), (3.2), and (3.4), there exits one
and only one solution x �→ u(x, 0) in C(E) of the HJB equation (3.8) with y = 0.
Moreover, the same HJB equation (3.8) determines the values of u(x, y) when u(x, 0)
is known, and y �→ u(x, y) continuous if a nonnegative Borel measurable and bounded
intensity y �→ λ(y) exists.

Proof. This is analogous to Theorem 3.1. Consider the HJB equation (3.8) with
y = 0 and the operator

Tw(x) = Ex,0

{
e−ατ1 max{ψ(xτ1), w(xτ1 )}

}
, note that τ1 = T1,

which is also contraction mapping on C(E). This proves that the HJB equation (3.8)
has a unique solution u(x, 0) in C(E). Next, the values of u(x, y) for y > 0 are
obtained from u(x, 0) by (3.8).

Now, if an intensity λ(y) exists and ϕ is a nonnegative Borel measurable and
bounded function, then

(3.10) Ex,y{e−ατ1ϕ(xτ1)} =

∫ ∞

y

exp

{
−αt−

∫ t

y

λ(ξ)dξ

}
λ(t)[Φ(t − y)f(x)]dt,

and the last integral is equal to∫ ∞

0

exp

{
−αt−

∫ t

0

λ(y + ξ)dξ

}
λ(t+ y)[Φ(t)f(x)]dt,

where {Φ(t) : t ≥ 0} is the semigroup of the initial Markov process. Hence, the
expression (3.10) proves that the function (3.9) depends continously on y, even if the
intensity λ(y) is only a nonnegative Borel measurable bounded function. Therefore,
the last assertion holds.

Remark 3.2. If an intensity λ (density π̇) exists for the common law π of the
sequence {Tn : n ≥ 1} of the waiting time between to consecutive signals (or equiva-
lently, the infinitesimal generator A1 of the Markov process {yt : t ≥ 0} representing
the time elapsed since the last signal has the form (2.2), and λ satisfies λ(t) ≤ λ0 <∞,
a.e. t ≥ 0), then the operator T in the proof of Theorem 3.1 can be rewritten as

T (w) =

∫ ∞

0

exp

{
−αt−

∫ t

0

λ(r)dr

}
λ(t)

[
Φ(t)

(
ψ ∨ w)]dt.
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Hence, the inequality∫ ∞

0

exp

{
−αt−

∫ t

0

λ(r)dr

}
λ(t)dt

= −
∫ ∞

0

e−αtd

[
exp

{
−
∫ t

0

λ(r)dr

}]
= 1

− α

∫ ∞

0

exp

{
−αt−

∫ t

0

λ(r)dr

}
dt ≤ 1− α

α+ λ0
=

λ0
α+ λ0

shows also that T is a contraction, i.e.,

‖T (w1)− T (w2)‖ ≤ λ0
α+ λ0

‖w1 − w2‖ ∀w1, w2 ∈ C(E),

where ‖·‖ is the sup-norm on C(E). A similar argument can be made for the operator
T0.

Theorem 3.4. If the assumptions (3.1), (3.2), and (3.4), then HJB equation
(3.8) becomes

(3.11) u(x, y) = Ex,y

{
e−ατ1u0(xτ1 , 0)

} ∀(x, y) ∈ E × [0,∞[.

Moreover, the solution of HJB equations (3.5) and (3.8) satisfy the relation u0(x, 0) =
max{ψ(x), u(x, 0)} for every x in E.

Proof. Define w(x) = max{ψ(x), u(x, 0)} and use the HJB equation (3.8) with
y = 0 to substitute u(x, 0) and deduce that

w(x) = max{ψ(x), u(x, 0)}
= max

{
ψ(x),Ex,y

{
e−ατ1 max{ψ(x), u(xτ1 , 0)

}}
= max

{
ψ(x),Ex,y{e−αT1w(xT1 )}

}
.

This means that w is a solution of the HJB equation (3.5), and by uniqueness we get
w = u0(x, 0).

Theorem 3.5. Under the assumptions (3.1), (3.2), and (3.4), the unique solution
u in C(E) of the HJB equation (3.8) is indeed the optimal reward (2.11), i.e., u(x, y) =
v(x, y). Moreover, the exit time from the continuation region is optimal, i.e., the
discrete stopping time

(3.12) η̂ = inf{n ≥ 1 : u0(xτn , 0) = ψ(xτn)}
satisfies u(x, y) = K(x, y, η̂) as given by (2.10).

Proof. All that is needed is to use the strong Markov property and the HJB
equation (3.8), in relation to Theorem 3.2. Indeed, once an optimal stopping time
has been found for the discrete stopping time problem (DSTP1) with optimal reward
v0(x, 0) = u0(x, 0), the HJB equation (3.11) yields an optimal stopping time η̂ as the
τ1-translation of η̂0, i.e., for an initial value (x, y) no stopping is allowed, we are forced
to wait until the next possible stopping time given by τ1, and at this new initial value
x1 = xτ1 with y = 0, the optimal stopping time η̂0 is used. All this can be shown by
following the argument in Theorem 3.2 and recalling that

u(x, y) = Ex,y

{
e−ατ1u0(xτ1 , 0)

}
and

u0(xτ1 , 0) = Exτ1 ,0

{
e−ατη̂0ψ(xτη̂0 )

}
,
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i.e., the HJB equation (3.11) and the optimal character of η̂0. This proves that
u(x, y) = v(x, y), the optimal reward (2.11), and that there exits an optimal stopping
time, i.e., for (DSTP2) as defined in section 2.2 . This optimal stopping time can be
defined as the exit time of the continuation region, after waiting for the first signal,
i.e.,

η̂ = inf{n ≥ 1 : u0(xτn , 0) = ψ(xτn)}, τ̂ = τη̂;

note the condition n ≥ 1 instead of n ≥ 0 as in (DSTP1).
Now, from the HJB equation (3.11) and the equalities u(x, y) = v(x, y) and

u0(x, 0) = v0(x, 0) we deduce the assertion (2.12). Note that we could replace u0(x, 0)
in (3.12) with max{ψ(x), u(x, 0)}, i.e.,

η̂ = inf{n ≥ 1 : u(xτn , 0) ≤ ψ(xτn)}

as expected.

4. Continuous time HJB equation.

4.1. Formal analysis. Let us look at the dynamic programming principle in
continuous time for our initial problem of optimal stopping time with constraint,
where the optimal reward is given by (2.6). This argument is better understood
under the assumption that the common distribution π0 has a density so that

(4.1) lim
h→0

P
{
T1 ∈ [y, y + h[ |T1 ≥ h > 0

}
h

= λ(y),

where λ(y) is a nonnegative Borel measurable function.
For the initial value (x, y) in E × [0,∞[ at the initial time t = 0, the optimal

reward V (x, y) can be expressed on a small time interval [0, h[ as either (a) the future
reward if the controller decides to do nothing on the [0, h[ or (b) the future reward
if the controller decides to stop at τ1 if it appears on the time interval [0, h[ and to
continue if it does not appear, i.e.,

V (x, y) = max{(a), (b)} with

(a) = Ex,y{e−αhV (xh, yh)},
(b) = λ(y)hEx,y{e−αhψ(xh)}+

(
1− λ(y)h)

)
Ex,y{e−αhV (xh, y + h)},

since yh = y + h if there is not jump on [0, h[. By means of infinitesimal generator
Ax,y of the homogeneous Markov process {(xt, yt) : t ≥ 0} this can be written as

(a) = V (x, y) +

∫ h

0

e−αt
Ex,y

{
Ax,yV (xt, yt)− αV (xt, yt)

}
dt,

(b) = λ(y)hψ(x)

+ (1− λ(y)h)

[
V (x, y) +

∫ h

0

e−αt
Ex,y

{
[AxV (xt, y + t)]

+
∂V (xt, y + t)

∂y
− αV (xt, y + t)

}
dt

]
,

where

Ax,yϕ(x, y) = Axϕ(x, y) +
∂ϕ(x, y)

∂y
+ λ(y)[ϕ(x, 0) − ϕ(x, y)]
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with Ax the infinitesimal generator of {xt : t ≥ 0}. Hence, as h→ 0, (a) yields

Ax,yV (x, y)− αV (x, y)

and (b) yields

AxV (x, y) +
∂V (x, y)

∂y
+ λ(y)[V (x, 0)− V (x, y)]− αV (x, y)

+ λ(y)[ψ(x) − V (x, 0)].

Both together yield

(4.2) Ax,yV (x, y)− αV (x, y) + λ(y)
[
ψ(x) − V (x, 0)

]+
= 0,

which can also be written as

(4.3) AxV (x, y) +
∂V (x, y)

∂y
− [α+ λ(y)]V (x, y) + λ(y)max

{
ψ(x), V (x, 0)

}
.

Now, let us go back to the auxiliary Markovian model given by the optimal reward
V0(x, y) as in (2.7), where the constraint θ > 0 have been removed. In this case, the
controller is allowed to stop the evolution of the system only when the state (x, y)
belongs to the region {(x, y) ∈ E × [0,∞[: y = 0}, in short, when y = 0.

Therefore, the dynamic programming principle applied to the auxiliary Markovian
model (which is also an optimal stopping time with constraint) would be solved by the
equations derived from the following: (a) in the region where stopping is not allowed,
only run the dynamics until exits the region, and (b) in the region where stopping
is allowed, either stop or continue, whatever is better. Thus, use the generators
Ax,y = Ax + Ay = A+A1 of a the continuous time Markov process {(xt, yt) : t ≥ 0}
to obtain the HJB equation

(4.4) (A+A1 − α)V0(x, y) = 0 if y > 0

with the boundary condition

(4.5) max
{
(A+A1 − α)V0(x, y), ψ(x) − V0(x, y)

}
= 0 if y = 0,

and if an intensity of jumps exists, then A1 = ∂y on the boundary y = 0. Moreover,
since V0 ≥ ψ and ψ could be taken strictly positive (without any loss of generality),
we can combine these conditions as

(4.6) max
{
(A+A1 − α)V0(x, y), ψ(x)�{y=0} − V0(x, y)

}
= 0

for every x in E and y ≥ 0.
Actually, since we do not expect V0 to belong to the domain of the infinitesimal

generator, an equivalent expression in terms of the semigroup of the couple (x, y) is
desired, e.g., V0 should satisfy the inequalities

U0(x, y) ≥ Ex,y

{
e−αtU0(xt, yt)

} ∀t ≥ 0,

U0(x, y) ≥ ψ(x)�{y=0} ∀x, y,
with U0 = V0; actually, V0 should be the minimum solution of these inequalities, i.e.,
V0 ≤ U0 for any other U0 as above. By means of the discrete time problem, a better
alternative to this equation is

(4.7) V0(x, y) = max
{
ψ(x),Ex,y{e−ατyV0(xτy , 0)}

} ∀x ∈ E, y ≥ 0,
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where τy = inf
{
t > 0 : yt = 0, y0 = y

}
for every x in E and y ≥ 0. Moreover, the

expression

V0(x, y) = Ex,y

{
e−ατyV0(xτy , 0)

}
= Ex

{∫ ∞

0

e−αt exp

(
−
∫ t

0

λ(y + s)ds

)
λ(y + t)V0(xt, 0)dt

}

yields the value V0(x, y) after V0(x, 0) has been found.
Comparing with the optimal reward V (x, y) as given by (2.4), the same HJB

equation (4.4) and (4.5) should be satisfied by V , except that at the initial time (say,
t = 0), (4.4) should hold true, even if y = 0. This means that when the evolution
begins, the controller should wait for the signal to arrive, even if the “state” is (x.y)
with y = 0. In this model, the full state is (x, y, t), i.e., it is not time-homogeneous.

4.2. Solving HJB equation. Based on the previous arguments on the discrete
time problems, we have the following.

Theorem 4.1. Under the assumptions (3.1), (3.2), and (3.4), the HJB equa-
tion (4.3) has one and only one weak solution (i.e., in term of the resolvent) V in
Cb(E×]0,∞[), which agrees with the optimal reward (2.4). Moreover, the exit time

from the continuation region is optimal, i.e., the continuous stopping time θ̂ = τη̂ with
the discrete stopping time

(4.8) η̂ = inf{n ≥ 1 : V (xτn , 0) ≤ ψ(xτn)}

satisfies V (x, y) = Jx(θ̂) as given by (2.1). Furthermore, if the intensity of jumps
y �→ λ(y) is a continuous function, then the unique solution V the HJB equation
(4.2) belongs to the domain Dx,y ⊂ Cb(E×]0,∞[) of the infinitesimal generator Ax,y.

Proof. All that is necessary to point out is that the HJB equation (4.3) can be
written as

V (x, y) =

∫ ∞

0

e−αte−
∫

t
0
λ(y+r)drλ(y + t)Φ(t)

(
max{ψ, V (·, 0)})(x)dt,

which is also

V (x, y) = Ex,y

{
e−ατ1 max{ψ(xτ1), V (xτ1 , 0))}

}
.

This is the HJB equation (3.8) corresponding to the discrete time constrained optimal
stopping (DTSP2) with optimal reward v(x, y) given by (2.11).

At this point, we could repeat the discussion in Theorems 3.3–3.5 to conclude that
there is a unique solution V (x, y) and the fact that the exit time from the continuation
region is optimal.

Furthermore, the HJB equation (4.2) and the assertion that λ is continuous imply
that Ax,yV is also continuous, i.e., which proves that V belongs to the domain Dx,y

of the infinitesimal generator Ax,y.

Remark 4.1. The HJB equation (4.2) is similar to the penalized equation of the
unconstrained problem, e.g., see Bensoussan and Lions [2]. Similarly, using the same
method as in the penalized problem, if λ goes to zero (uniformly), then the solution
Vλ converges to the solution (which is a function of x only) of the classical variational
inequality of the unconstrained problem.
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5. Extensions. Some possible extensions are discussed below, without full de-
tails and only with precise indications. A full analysis could take much more space
and is not suitable for a short publication.

5.1. Unbounded data. As presented in section 2, the state of the system to be
controlled is represented by continuous-time homogeneous Markov process {xt : t ≥ 0}
with semigroup Φ(t), infinitesimal generator A, and transition probabilities function
p(x, t, B), x in E, t ≥ 0, B in B(E), where E is a Polish space (complete, separable
and metrizable space) with its Borel σ-algebra B(E). This general structure includes
many situations, but, in proving the results in previous sections 3 and 4, the conditions
(3.1) and (3.2), i.e., E compact, Φ(t) Feller, discount α > 0, and reward ψ bounded
continuous, and also the key assumption (3.4).

5.1.1. Locally compact or finite dimension. To include more practical mod-
els, we need to allow a reward ψ unbounded and a value space E like Rd, i.e., a Polish
space locally compact (not necessarily compact). For that purpose more conditions
should be imposed on the semigroup {Φ(t) : t ≥ 0} of the continuous-time homoge-
neous Markov process {xt : t ≥ 0}.

To simplify a little, assume that E = R
d and for convenience, instead of using

{xt : t ≥ 0} as the notation of the Markov process, now we switch to {X(t, x) : t ≥ 0}
(in short X(t, x), where x refers to the initial condition at the initial time t = 0) as a
homogeneous Markov–Feller process on Rd such that the following hold:

(1) x �→ X(t, x) is locally uniformly continuous (in x), locally uniformly continu-
ous for any t in [0,∞), i.e., for any ε > 0 there is a δ > 0 such that for any x, x̄ in Rd

satisfying |x− x̄| < δ, |x| ≤ 1/ε and |x̄| ≤ 1/ε we have

(5.1) P

{
sup

0≤t≤1/ε

|X(t, x)−X(t, x̄)| ≥ ε

}
< ε.

(2) t �→ X(t, x) is locally uniformly continuous (in t) for any x in R
d, i.e., for any

x in Rd and for any ε > 0 there is a δ > 0 such that

(5.2) P

{
sup

0≤t≤δ
sup

0≤s≤1/ε

|X(t+ s, x)−X(s, x)| ≥ ε

}
< ε.

(3) For any p > 0 there are positive constants α0 and μ sufficiently large such
that the estimate

(5.3) E

{
sup
t≥0

e−α0t(μ+ |X(t, x)|2)p/2
}

≤ Kp (μ+ |x|2)p/2 ∀t ≥ 0, x ∈ R
d,

holds, with some Kp ≥ 1 and Kp = 1 if the sup is removed in the left-hand side. To
this three conditions, add the following:

(4) t �→ X(t, x) is continuous at t = 0, locally uniformly in x, i.e., for any ε > 0
there is a δ > 0 such that for any x in Rd satisfying |x| ≤ 1/ε we have

(5.4) P

{
sup

0≤t≤δ
|X(t, x)− x| ≥ ε

}
< ε.

Note that these properties are not easily expressed in terms of the semigroup {Φ(t) :
t ≥ 0}, and therefore it is necessary to change of notation from xt, Px, and Ex to
X(x, t), P , and E. Here, the expressions P{·} and E{·} refer to the probability and
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the mathematical expectation relative to the canonical probability space (satisfying
the usual conditions), where the Markov–Feller process is defined.

If Φα(t) with a properly selected α ≥ 0 denotes the semigroup associated with
the Markov–Feller process, i.e.,

(5.5) Φα(t)h(x) = E{e−αth(y(t, x))},
then Φα(t) is a strongly continuous semigroup on C0(R

d) = Cb(R
d), the space of real

(uniformly) continuous and bounded functions in R
d. However, to include a reward

function ψ with a polynomial growth, another space is used.
Let Cp(R

d) be the space of real uniformly continuous functions on any ball and
with a growth bounded by the norm to the p ≥ 0 power, in other words, the space
of real functions h on Rd such that x �→ h(x)(1 + |x|2)−p/2 is bounded and locally
uniformly continuous, with the weighted sup-norm

(5.6) ‖h‖ = ‖h‖Cp := sup
x∈Rd

{|h(x)|(μ + |x|2)−p/2},

where μ is a positive constant sufficiently large to so that estimate (5.3) holds. It is
clear that Cb(R

d) ⊂ Cq(R
d) ⊂ Cp(R

d) for any 0 ≤ q < p. Then the (linear) semigroup
{Φα(t), t ≥ 0} with an α–exponential factor is a weakly continuous Markov–Feller
semigroup in the space Cp(R

d), i.e.,

(5.7)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Φα(t+ s) = Φα(t)Φα(s) ∀ s, t ≥ 0,

‖Φα(t)h‖ ≤ ‖h‖ ∀ h ∈ Cp(R
d),

Φα(t)h(x) → h(x) as t→ 0 ∀ h ∈ Cp(R
d),

Φα(t)h(x) ≥ 0 ∀ h ≥ 0, h ∈ Cp(R
d).

This follows immediately from the conditions (5.1), (5.2), and (5.3) imposed on the
Markov–Feller process y(t, x), provided α ≥ α0 with α0 aad μ as in (5.3). Conditions
(5.3) and (5.4) imply

(5.8) ‖Φα(t)h → h‖ → 0 as t→ 0 ∀ h ∈ Cp(R
d),

which make {Φα(t), t ≥ 0} a strongly continuous semigroup in the Banach space
Cp(R

d).
At this point, the arguments discussed in sections 3 and 4 can be repeated with

Cp(R
d) instead of C(E), E compact, and with a reward function ψ in Cp(O). Cer-

tainly, depending on the growth (given by p > 0) assumption (5.3) on α0 = α0(p, λ)
shows its strength.

In the present case, u0 or u will belong to Cq(R
d) for some q and, for the proof of

the properties of Theorems 3.2 and 4.1, the uniform integrability of u0(xτn) exp(−ατn)
will be obtained from (5.3).

Remark 5.1. A good prototype where the above properties are satisfied is the
diffusion with jumps as in Menaldi [14]. Moreover, the case where E is a convenient
(unbounded) subset of Rd can also be treated with suitable modifications.

5.1.2. Nonlocally compact or infinite dimension. If the continuous-time
homogeneous Markov process {xt : t ≥ 0} takes values in a Polish space E which is
not locally compact, then another problem appears. For instance, if E is a Banach
of Hilbert space of infinite dimension, then a prototype could be stochastic partial
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differential equations (stochastic PDE), where the semigroup {Φ(t) : t ≥ 0} is not
strongly continuous.

For instance, in trying to use the general semigroup formulation (on a separable
Banach space E other than the Euclidean space) one finds the typical situation when
the semigroup is not continuous, i.e., the semigroup corresponds to a strong Markov
process, but not exactly a Feller process, e.g., the semigroup is defined on E = L2,
but it maps continuous functions on E = H1 into continuous functions on E = L2.
For instance, this is the case of a stochastic PDE, of which an extreme situation is the
stochastic Navier–Stokes equation, i.e., Menaldi and Sritharan [17]. In this case, there
is a reasonable set of assumptions to be used, namely, (5.1), (5.2), (5.3), but certainly
not (5.4). In this case we only has a weakly continuous Markov–Feller semigroup in
the space Cp(R

d) satisfying (5.7), but not (5.8).
Since the semigroup is not strongly continuous, we cannot consider the strong

infinitesimal generator as acting on a dense domain in Cp(R
d). However, this Markov–

Feller semigroup (Φα(t), t ≥ 0) may be considered as acting on real Borel functions
with p-polynomial growth, which is a Banach space with the norm (5.6) and is denoted
by Bp(R

d). It is convenient to define the family of seminorms on Bp(R
d)

(5.9) p0(h, x) := E

{
sup
s≥0

|h(X(s, x))| e−α0s

}
∀x ∈ R

d,

where 2α0 satisfies the estimate (5.3) with 2p and μ, and when p = 0 we may take α0 =
0. If a sequence {hn} of equi-bounded functions in Bp(R

d) satisfies p0(hn − h, x) → 0
for any x in R

d, we say that hn → h boundedly pointwise relative to the above family
of seminorms. In view of (5.2), it is clear that p0(Φα(t)h − h, x) → 0 as t → 0, for
every function h in Cp(R

d) and every x in Rd.

Definition 5.1. Let C̄p(R
d) be the subspace of functions h̄ in Bp(R

d) such that
the mapping t �→ h̄[X(t, x)] is almost surely continuous on [0,∞) for any x in Rd and
satisfies

(5.10) lim
t→0

p0(Φα(t)h̄− h̄, x) = 0 ∀x ∈ R
d,

where p0(·, ·) is the seminorm given by (5.9), and if α0(p) denotes the constant ap-
pearing in (5.3), then 2α > α0(2p) with p ≥ 0 and α0(0) = 0.

This is the space of functions (uniformly) continuous over the random fieldX(·, x),
relative to the family of seminorms (5.9), and it is independent of α, as long as (5.3)
holds. Hence, we may consider the semigroup {Φα(t) : t ≥ 0}. Then, the tools exist
to treat the optimal stopping problem for a class of infinite dimensional processes.
Details can be found in Menaldi [16].

5.2. Other types of signals. There are several variants on this model; only a
couple of them are mentioned below.

5.2.1. Pure jump Markov processes. Suppose we are given a pure jump
Markov process {ξt : t ≥ 0} with infinitesimal generator

A1ϕ(ξ) = λ(ξ)
[
Qϕ(ξ)− ϕ(ξ)

]
, Qϕ(ξ) =

∫
ϕ(ζ)q(ξ, dζ)

with a Markovian kernel q(ξ, dζ) on a space E1 and a bounded continuous intensity
λ(ξ). Then, define the signals {τn : n ≥ 1} as the sequence of jumps times of the
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process {ξt : t ≥ 0}. All this leads to the problem

V (x, ξ) = sup
{
Ex,ξ{e−αθψ(xθ)} : θ admissible

}
with the HJB equation either

AxV +A1V − αV + λ(ξ)[ψ −QV ]+ = 0

or
AxV (x, y)− (

α+ λ(ξ)
)
V (x, y) + λ(ξ)max

{
ψ(x), QV (x, y)

}
.

The same kind of analysis as before allows one to obtain the existence and uniqueness
of the solution of the HJB equation and the verification theorem.

Note that this case is not included in the IID case treated early (when π0 is not
exponential).

5.2.2. Semi-Markov processes. The case where the process giving the signals
is a semi-Markov process allows one to cover both the IID case and the pure jump
Markov processes. Assume that {y1t : t ≥ 0} is a semi-Markov process with values in
a space E1 (with the discrete topology and the Borel σ-algebra) and {yt = (y1t , y

2
t ) :

t ≥ 0} is the appropriated Markov process where {y2t : t ≥ 0} is the elapsed time since
the last jump of {y1t : t ≥ 0}, e.g., see Jacod [10], Gikhman and Skorokhod [8], and
Robin [18], among others.

If we are given λ : E1 × [0,∞[−→ [0,∞[ satisfying

0 ≤ λ(y1, y2) ≤M, y2 �→ λ(y1, y2) continuous

and a transition probability q(y1, y2,Γ) with

y2 �→
∫
E1

q(y1, y2, dz)ϕ(z) continuous,

for every ϕ bounded measurable on E1, one can show that {yt : t ≥ 0} can be
constructed as a Markov process with infinitesimal generator

A1f =
∂f

∂y2
+ λ(y1, y2)

[∫
E1

q(y1, y2, dz)f(z, 0)− f(y1, y2)

]
.

Then, one can state the optimal stopping problem with constraint in the same way
as before for V (x, y) = V (x, y1, y2) with y = (y1, y2) and obtain the HJB equation

AxV +A1V − αV + λ(y)[ψ −QV ]+ = 0,

where

QV (y) = QV (y1, y2) =

∫
E1

q(y1, y2, dz)V (x, z, y2).

It is not difficult to prove similar results to section 3 and 4 for this class of processes
and the above assumptions.

5.2.3. Piecewise-deterministic Markov processes. Refer to Davis [4] (or
the book by Davis [5]) for the definition of piecewise-deterministic Markov processes
(PDMPs). This class of Markov process contains both pure jump Markov processes
and the IID case in the sense that the process {yt :≥ 0} of the IID case is a PDMP.
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Actually, in the IID case, if Nt =
∑

n �τn<t, then {Nt : t ≥ 0} is a semi-Markov
process and the couple (Nt, yt) is a PDMP.

Let us assume that {yt :≥ 0} is a PDMP with values in a space E1 and satisfies
the conditions of Davis [4, p. 77] in order to be a Feller process, namely, λ is bounded
and continuous on E1 and y �→ Qf(y) is continuous for any f bounded continuous,
where λ is the intensity of the jumps and Q is the Markovian kernel of the jumps.
This means that the infinitesimal generator of {yt :≥ 0} is

(5.11) A1f(y) = Df(y) + λ(y)

[∫
E1

q(y, dz)f(z)− f(z)

]

with Df being the infinitesimal generator of a deterministic movement.
In that framework, we have again a similar HJB equation for V (x, y) (with y

being multidimensional here), and one can see that the same method as before can
be applied to solve the constrained optimal stopping problem.

5.2.4. Diffusion processes with jumps. It is clear that diffusion processes
with jumps could be used as a model for the signal, if the jumps do not accumulate, i.e.,
the source of the jumps is a composed Poisson process, instead of any general Poisson
martingale measure (e.g., see Applebaum [1], Ikeda and Watanabe [9], Menaldi [14],
among many others books). In this case, if the first order partial differential operator
Df in the expression (5.11) of the infinitesimal generator A1 in the previous section
on PDMP is replaced by a second order partial differential operator Af corresponding
to a diffusion process, then the whole argument in section 5.2.3 can be repeated to
include the class of diffusion with jumps, where the jumps are generated by a composed
Poisson process.

5.3. Impulse control problems. A typical impulse control problem is given
by a controlled process such that

dxt = bdt+ σdt+
∑
i≥1

ξiδ(t− θi), x0 = x,

(with δ being the delta distribution) where the control is the sequence ν = {ξi, θi :
i ≥ 1} of stopping times θi, θi+1 ≥ θi, at which ξi is added to the state xθi− and can
be chosen in order to minimize the cost

J(ν) = E

⎧⎨
⎩
∫ ∞

0

e−αtf(xt)dt+
∑
i≥1

e−αθik(ξi)

⎫⎬
⎭ ,

where k(ξ) is the cost of impulses. It is know (see Bensoussan and Lions [3], and also,
e.g., Menaldi [15], Robin [18], among many others) that under suitable assumptions
the optimal cost function u(x) is the solution of a quasi-variational inequality⎧⎪⎪⎨

⎪⎪⎩
−Au + αu ≤ f,

u ≤Mu := inf
ξ

{
k(ξ) + u(x+ ξ)

}
,

(−Au+ αu− f)(u−Mu) = 0.

It is also known that u is the limit of a sequence of optimal stopping problems un.
One can consider the above problem with a constraint such that θi has to be chosen
in a sequence of signals {τn : n ≥ 1} independent of xt. The treatment of this kind of
impulse control with constraint is the subject of on going work.
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